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Abstract

When analysing new emerging infectious disease outbreaks, one typically
has observational data over a limited period of time and several parameters
to estimate, such as growth rate, the basic reproduction number Ry, serial
interval or generation time distribution, latency and incubation times or case
fatality rates. Also parameters describing times between onset of symptoms,
notification, death and recovery/discharge will be of interest. These param-
eters form the basis for predicting the future outbreak, planning preventive
measures and monitoring the progress of the disease outbreak.

We study inference problems during the emerging phase of an outbreak,
and point out potential sources of bias related to exponential growth during
the emerging phase and to the unobservability of the moment of trans-
mission, with emphasis on: contact tracing backwards in time, replacing
generation times by serial intervals, multiple potential infectors and to cen-
soring effects amplified by exponential growth. These biases directly affect
the estimation of e.g. the generation time distribution and the case fatal-
ity rate, but can then propagate to other estimates such as Ry and growth
rate. We propose methods to remove or at least reduce bias using statistical
modelling. We illustrate the theory by numerical examples and simulations
based on the recent 2014-15 West Africa Ebola epidemic to quantify possi-
ble biases, which may be up to 20% underestimation of Ry, if the epidemic
growth rate is fitted to observed data or, conversely, up to 62% overesti-
mation of the growth rate if the correct Ry is used in conjunction with the
Euler-Lotka equation.

*Stockholm University, Sweden; tom.britton@math.su.se

tUniversity of Rome Tor Vergata, Italy, scaliato@mat.uniroma2.it



1 Introduction

During the last decades, several new disease outbreaks have struck the human
or domesticated animal populations, e.g. SARS, foot and mouth disease, HIN1
influenza, and, more recently, Ebola. These outbreaks have in common the need
for estimation of key parameters to be performed early on in the outbreak, in order
to plan interventions and monitor the progress of the disease. Thus estimation
must be performed in the emerging phase of an outbreak, when the number of
infected individuals is in the hundreds or at most thousands, while the community
fraction of infected is still small. Typically the early numbers grow exponentially,
as also predicted by mathematical epidemic models (e.g. Diekmann et al. (2013)).

There may be many complicating or limiting factors related to completeness of
data, lack of detailed knowledge about the disease and other issues when analysing
data from the early phase of the outbreak. Despite these complicating factors, the
conclusions drawn from early analyses, often based on simple models, are usually
highly valuable. The aim of the present paper is to identify and highlight some
of the potential biases in the statistical analysis of emerging outbreaks inherent in
the early phase itself, and to illustrate how they can be propagated to parameter
estimates and predictions. A further aim is to give some fairly simple suggestions
for how to reduce, or even remove, such biasing effects.

The typical available data consist of reported numbers of confirmed cases per
day or week, some case histories illustrating the course of the disease and some con-
tact tracing data containing information about possible durations between onset
of symptoms of infected individuals and their infectors, whereas little information
is usually available about uninfected individuals and their amount of exposure.
The epidemic models used in the statistical analyses are often of simple form, ne-
glecting various heterogeneities. The use of simple models in these situations is
motivated by the lack of detailed information but has also recently been studied
by Trapman et al. (2016) who show that neglecting population structures when
making inference in emerging outbreaks has little effect. However, estimation in
simple models can still be quite complicated. The complications are mainly due
to three factors: 1) important events, such as times of infection, are usually unob-
served, but instead some proxy measures such as onset of symptoms are available,
2) estimation of parameters of the epidemic process is based on observations up
to some fixed time, implying that events occuring later are censored, and 3) the
population of infectives is increasing (exponentially) with time.

In our investigation, we first discuss the effect of estimating the generation
time distribution from observations of generation times observed backwards in
time using contact tracing, i.e. the time between the infection time of an indi-
vidual (the infectee) and that of his/her infector (rather than the infection time
of the individuals he/she infects). The second problem we study is the effect of



replacing generation times (the time between infections of an infector and an in-
fectee) with the more commonly observed serial intervals (the time between onset
of symptoms of an infector and an infectee). A third problem we discuss is how
to treat the common situation, when contact tracing, where there is more than
one potential infector of some of the cases, with the implication that the back-
ward generation time or incubation time (time from infection to symptoms) is one
out of several possible values. As it turns out, the overall biasing effect, if these
problems are not considered, can be highly significant when estimating e.g. the
basic reproduction number R, (defined as the average number of infections in a
fully susceptible population). We also point out some general stability properties
of ratios during exponential growth that may be useful for inference. We then
quantify the various biases that can arise in a realistic parameter setting, using
estimates and assumptions from the recent Ebola epidemic in West Africa (WHO
Ebola Response Team, 2014). It turns out that e.g. Ry could be underestimated
by as much as 20%, backward observation of generation times and the treatment
of the multiple possible infectors problem being the main potential sources of error
in that parameter setting, but it should be noted that results could be even worse
in other settings.

Below we first introduce the underlying stochastic epidemic model. Then, in
Sections 3 to 5, we investigate how the three potential biases appear and how to
reduce/remove their effects. In Section 6 we describe a general way of approximat-
ing ratios of counts of individuals in various stages of disease, with an application
to the estimation of the case fatality rate. In Section 7 we illustrate our findings
with parameters inspired by the recent West Africa Ebola epidemic, with the aim
of quantifying how big biases due to the various causes may be and report some
interesting simulation results. Section 8 is a brief discussion and, finally, some
mathematical and numerical details are collected in Supplementary Information.

2 The underlying model and some key epidemi-
ological quantities

We start by presenting the basic underlying epidemic model. We assume that
individuals are at first susceptible and later may become infected, and that in-
fected individuals may then infect other individuals over time starting from the
time of infection. The infection ends with death or recovery and subsequent im-
munity. The population is assumed to be a homogeneously mixing community of
homogeneous individuals. Usually this is not the case, but including all potential
heterogeneous aspects is typically not possible due to lack of data and time pres-
sure to obtain results; besides, it has been shown by Trapman et al. (2016) that
neglecting heterogeneity when analysing an emerging outbreak has little effect on



estimates of fundamental parameters like the basic reproduction number R, and
that the (small) effect is nearly always in the direction of being conservative. Since
we model the initial phase of the outbreak, the depletion of susceptibles is consid-
ered as negligible. Also, we assume that individuals do not change their behaviour
over the considered time period as a consequence of the ongoing outbreak, nor
are there yet any control measures put in place by health authorities or similar.
Finally, we assume that there are no seasonal changes in transmission. Similar
assumptions are often made in early estimation of emerging outbreaks (e.g. WHO
Ebola Response Team (2014)). Predictions are made assuming that the disease
spreading mechanism continues unaltered, reflecting what would presumably hap-
pen in the absence of control measures (these predictions should then be compared
with predictions including various preventive measures).

Traditionally, the population effects of such an infection have been modelled us-
ing compartmental models with separate states for e.g. susceptible, latent (histori-
cally called exposed and hence abbreviated by E), infectious or recovered /removed
individuals (SI, SEI, SIR and SEIR models, see e.g. Anderson & May (1991) or
Diekmann et al. (2013)). Recently, modelling has reverted to something akin to
the original Kermack & McKendrick (1927) formulation, with emphasis on one
single quantity, 5(s), the average rate at which an infected individual infects new
individuals s time units after his/her time of infection, denoted the infection rate
(or infectivity function, e.g. Diekmann et al. (2013)). The assumption of a ho-
mogeneous community implies that (s) is the same for all individuals, and the
assumptions of no depletion of susceptibles, no preventive measures and no sea-
sonal effects imply that 3(s) is independent of the time of infection of the indi-
vidual. The previously mentioned compartmental models can all be translated to
this framework. While the original treatment of the Kermack-McKendrick model
was deterministic (Volterra type integral equations), statistical modelling requires
a stochastic formulation which, in this case, corresponds to Crump-Mode-Jagers
branching processes (see e.g. Jagers (1975)) in the initial phase of spread. It should
be noted that the infectivity functions in a stochastic model may be different from
individual to individual, although the average behaviour is the same, and that dif-
ferent stochastic models may have the same average behaviour (see e.g. Svensson
(2015)).

The average infection rate £(s) completely determines the basic reproduction
number Ry and the epidemic exponential growth rate r, as is well-known in epi-
demic modelling (see e.g. Diekmann et al. (2013)) and branching process theory
(see e.g. Jagers (1975)).

The mean number of infections during the infectious period, better known as
the basic reproduction number and denoted Ry, is given by:

Ry — /0“ B(s)ds. (1)



It is well-known that an epidemic can take off if and only if Ry > 1, which we from
NOwW on assume.

Another important quantity is the so-called generation time distribution fg(s),
which is simply the infection rate scaled to make it a probability distribution:

Bs) _ BLs)
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The generation time distribution is the probability distribution of the time between
the moment of infection of a randomly chosen infective and that of his/her infector.

In what follows we will write Ry fc(s) instead of B(s).

Let i(t) denote the expected incidence at ¢ (time since the start of the outbreak),
i.e. the average community rate of new infections. Since we assume that individuals
infected s time units ago (at time ¢t — s if present time equals ¢) will infect new
individuals at rate Ryfg(s) we have the following renewal equation for i(t) (see
e.g. Diekmann et al., 2013, p212):

fa(s) = (2)

i(t) = /Otz'(t—s)ROfG(s)ds+RofG(t) _ /OtRofG(t—s)i(s)ds+RofG(t). (3)

The additive term in the above equation derives from the initial infective that is
supposed to have started the outbreak at ¢ = 0. It is well known that the incidence
i(t) will quickly approach exponential growth i(t) ~ Ce™ where r is the so-called
Malthusian parameter defined as the solution to the Euler-Lotka equation

1= /O T e Ry fo(t)dt. (4)

To simplify matters, we will assume that this exponential growth of new cases
holds from the start. The validity of this assumption will be shown by subsequent
simulations. In Figure 1, ten simulated epidemics are plotted over time showing
the exponentially growing feature (clearly visible on the log-scale).

Thus, knowing the generation time distribution fg(+) and one of Ry and r allows
the determination of the other one (cf. Wallinga and Lipsitch (2007)), e.g. using
Equation (4). For this reason, estimation of the generation time distribution fg(-)
becomes paramount in this model formulation and will be extensively discussed
in following sections. Also, various rather general conclusions about the effects of
varying the components of (4) related to the directions of biases in the estimation
of these components can be drawn. The mathematical details are given in the
Supplementary Information and the specific results will be discussed in the relevant
sections.
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Figure 1: Initial stages of ten simulated epidemics with Ry = 1.7 and generation time
G being Gamma distributed with mean = 15 days and standard deviation = 8.7 days.
Incidence over time in log-scale. It is seen that incidence grows exponentially (linear
on log-scale) but that there is a random time-shift before the epidemic takes off in the
different simulations As explained in the Supplementary Information, simulations were
continued until 4500 cumulated cases (= 3.65 in log-scale) and then for further 6 weeks
or until week 36.

There are other approaches to the estimation of Ry and r. The exponential
growth rate can be directly estimated from case data and Ry through modelling
approaches (see e.g. Cauchemez (2006a) and (2006b), Mercer et al. (2011), Rebuli
et al. (2018)), assuming the generation time distribution to be known, or in so
called "First Few Hundred” studies, usually restricted to transmission in house-
holds (see e.g. Walker (2015), Black & Ross (2013), Black et al. (2017)). In Griffin
et al. (2011), the joint estimation of Ry and the generation time distribution is
contemplated, but the authors suggest that these methods do not work well dur-
ing the early phase of an epidemic. In this paper, we assume that the generation
time distribution, as well as the incubation time distribution and also distributions
of time from notification to recovery/death, will be estimated by limited contact
tracing or specific samples during the initial phase of the disease spread and that,
otherwise, just counts of cases in various stages are available.



In the model description above, the expected incidence i(t) is a time-continuous
deterministic function. The true incidence is, of course, integer-valued and, in most
situations, observations are not made continuously but are aggregated in discrete
time units such as days or weeks. A related discrete time model is obtained by
suitably discretizing Equation (3) so that the expected incidence I(t + 1) in time
(interval) ¢ + 1 is expressed as

t

HE41) = ST+ 1— ) Ropals) = 3 Ropolt +1— 9)I(s), (5)

s=1 s=1

where p¢ is a discrete probability distribution for the generation time correspond-
ing to the continuous time distribution fg. A natural statistical model for data
collected daily or weekly is then to assume that the number of newly infected
I(t + 1), given previous incidence, follows a Poisson distribution with mean pa-
rameter Y., Ropa(t+1—s)I(s) (cf. WHO Ebola Response Team, 2014). Equation
(5) is a discrete time version of (3). This discrete time model gives rise to a dis-
crete time Euler-Lotka equation corresponding to (4) with the difference that the
integral is replaced by a sum and the generation time density fg is replaced by
discrete generation time distribution pg. The conclusion is hence also here that, if
the generation time distribution is estimated through contact tracing, the Euler-
Lotka equation can be used to estimate one of r or Ry given the other. It is not
possible to estimate both r and Ry since they are not separately identifiable from
only case counts: many combinations of the two will lead to the same epidemic
growth.

Finally, the quantitative evaluation of many theoretical results requires explicit
assumptions about the involved probability distributions and other parameters
typical of the disease under study. As illustrations, we have chosen to use Gamma
distributions, where possible, because of their flexibility and analytical properties,
and parameters compatible with the recent 2014 West Africa Ebola epidemic (cf.
WHO Ebola Response Team, 2014). Various formulae related to these assumptions
are collected in Supplementary Information.

3 Looking backwards rather than forwards in
time

The generation time distribution fg(t) = B(t)/ Ry describes the variability of the
(random) time between the moment of infection of an individual and the moments
that this individual infects other individuals (so an individual who infects three
people gives rise to three generation times). When trying to estimate this quan-
tity from outbreak data, the most common situation is where infected cases are



contact-traced, i.e. the infectors of cases are identified, and the duration between
the infection times of infector and infectee is ascertained (in theory, but see also
next section). This seemingly innocent choice of looking backwards rather than
forwards in time (measuring duration backwards from an infectee rather than for-
wards from an infector) actually modifies the distribution of observed times in the
early stage of an outbreak when the epidemic grows at an exponential rate (see
e.g. Svensson (2007), Scalia Tomba et al (2010), Champredon & Dushoff (2016)).
The reason is that, by looking backwards in time, long generation times will be
underrepresented and short generation times will be overrepresented because ex-
ponential growth implies that there are many more recently infected individuals
who are potential infectors compared to those infected longer ago. As a conse-
quence, if the generation time distribution is estimated from a sample of backward
generation times, the resulting distribution fg(s) will be different from the true
generation time distribution fg(s).

In fact, it can be shown that (see the above references) the backward generation
time has density fp(t) = e " Rofq(t) (note that Equation (4) implies that this
function integrates to 1). It can also be shown that this density has smaller mean
than fg(-) (see Supplementary Information). We can in fact say more. If the
backward generation time distribution is used to calculate the exponential growth
rate in Equation (4), assuming that the correct value of Ry is used, the resulting
growth rate rp will always be larger than r. The exact relation is model specific,
but as an example one may consider the simple Markovian SIR model, where the
infectious period has an exponential distribution with expected value 1/ and the
infectious contacts, in the initial phase of the epidemic, occur with intensity [
during the infectious period. The resulting Ry is /v, r = 8 — 7, fa(t) = ye
and fp(t) = Be P!. Then, the resulting rp equals Ryr. With typical values of Ry
being between 1.5 to 2, this means that the exponential growth rate will be grossly
overestimated (50-100%), when using Equation (4).

One can also predict the effect on estimating Ry of using fp(t) instead of
fc(t) assuming that the growth rate r is known or approximately known through
observations (see Supplementary Information). Since incidence essentially is Ry
x a weighted sum of previous incidence (c.f. Equation (5)) and fp(t) attributes
too much weight to recent incidence (shorter generation times), which is higher
than earlier incidence, there will be a compensatory underestimation of Ry. In
Section 7, where we compute biasing effects with parameters inspired by the recent
Ebola epidemic, we illustrate both scenarios: estimation of Ry when r is estimated
directly from data, and estimation of r if instead Ry is assumed known, for example
from earlier outbreaks or case studies.



4 Replacing Generation times with Serial inter-
vals

As described earlier, the generation time is defined as the time between moments
of infection of an infector-infectee pair. However, in real life, the infection times
are rarely known. Instead, typically, the onset of symptoms is observed. For this
reason, the serial interval, which is defined as the time between symptom onsets in
the two individuals mentioned above, is often used as a surrogate for the generation
time.

We now study the effects of using serial intervals instead of "true” genera-
tion times when estimating the generation time distribution fg(-) and on derived
quantities, such as r and Ry.

Considering the disease and infectivity history of an individual, starting from
the moment of infection, several time periods are of interest (see also Figure 2).
We denote the time of infection of this individual by t;, there may be a latent
period of length ¢, until start of infectivity followed by an infectious period of
length ip, and a time from infection to symptoms (incubation period) of length
Sg. Assume that another individual is infected by the first one after a time g,
within the infectious period iy, i.e. at time t; = tg + ¢y + g, and that this second
individual shows symptoms at time s; after infection. Then, the generation time
is G = (to+lo + g«) — to and the serial interval S = (t; + s1) — (to + o), see Figure
2 for an illustration.

Although much work has been devoted to estimating the distributions of in-
cubation, latent and infectious periods for various diseases, relatively little has
been done regarding their joint distribution. It will be seen below that this joint
distribution plays an important role for the relation between G and S. Let us only
assume, for a start, that the involved times are independent between different in-
dividuals and that corresponding periods have identical marginal distributions for
different individuals. We may then rewrite the above expressions as

G:So—i‘(fo—i‘g*—SO) and S:sl+(€0+g*—so). (6)

These representations are quite unnatural, but show the common structure of
G and S. For instance, we see that S = G + (s; — s9) and thus the expected
values of G and S will be equal since sg and s; are assumed to have identical
expected values. We also see in Equation (6) that S is the sum of two independent
components (since they regard different individuals) and thus its variance will be
the sum of the variances of these components, while the variance of G, in addition
to the same sum of two variances, will also contain the term +2Cov(sg, fo+ g« — So),
by the rule for variances of sums. Depending on assumptions, we can now have
different results. If we, e.g., want the variances of G and S to be the same, we must



Infectee ¢ =

to tl
Figure 2: Relation between generation time G and serial interval S of an infector
and its infectee. The infector is infected at time ¢y and then infects the infectee at ¢7.
The red circles indicate end of latent period and start of infectious period, the black
circles indicate onset of symptoms, and black boxes end of infectious period (either by
death or recovery). In the figure, the infectious period starts slightly before onset of
symptoms, but, in general, the relation between these event times is disease dependent.
In the illustration the serial interval is shorter than the generation time: S < G, but the
opposite relation could equally well happen.

require Cov(sg, {o+ g« — So) = 0, which is a rather special balance between various
parameters in the joint distribution of (s, ¢y, %) (to simplify matters slightly, one
can note that assuming g, to have a uniform distribution in iy leads to Cov(sg, g.) =
Cov(so,i0)/2). Under quite usual assumptions of independence between s, ¢y and
ip and also Var(sg) > 0, the covariance will be negative, implying that Var(S) >
Var(G). However, it is also theoretically possible to have the reverse relation, e.g.
if sg = £y and Cov(sg,ig) > 0.

One may also investigate whether the distributions of S and G can be identical,
as argued in (WHO Ebola Response Team, 2014), under the assumption that
so = oy (i-e. the end of the latent period/start of infectious period is identical with
onset of symptoms). However, since one then has G = sy + g, and S = s1 + ¢,
one must impose further conditions. The independence of sy and g, (or iy) would
be sufficient but not necessary for the result. At least, so must be uncorrelated
with g¢,, since variances must coincide. However, we have not been able to find a
simple sufficient and necessary condition for equality.

The exact relation between the generation time GG and serial interval S is thus
model dependent, but it always holds that they have the same mean. As for the
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variances nothing can be said in complete generality. However, for all existing
models we are aware of, it holds that V' (S) > V(G), with equality requiring rather
specific assumptions. So, except in specific cases, the observed serial interval
distribution will be a biased estimate of the generation time distribution and will
have a larger variance. The quantitative effects of using a distribution with equal
mean but larger variance than the true one are again model dependent, but |,
e.g., assuming Gamma distributions, there will be underestimation of Ry, given r,
and overestimation of r, given Ry (see Section 7.2 for numerical illustrations and
Supplementary Information for analytical results in the Gamma distribution case).

5 Multiple exposures

Contact tracing means that reported cases are investigated to find out when they
have been in contact with infectious individuals, with the aim of finding who the
infector was and when the case was infected, thus giving the incubation period
(the time between infection and onset of symptoms). In practice, when infected
individuals are contact traced, certain cases will have one unique possible infection
time, but others will have several potential infectors or infection occasions, or no
identified exposure. In the first situation, it is clear who the infector was and
also how long the incubation period was, and, in the last case, when there is no
identified exposure, there is not much to do. But, in the second scenario, it could
be any one of the potential exposures that caused the infection, also implying that
the incubation period could be one out of several values. In the current section
we describe one way to infer the incubation period distribution of contact traced
individuals in this situation, and also to study the effects of not acknowledging
the multiple exposures situation. It should be noticed that this is not a standard
problem in survival data analysis, where it is usually assumed that the time origin
of durations is well defined.

Most of the literature about the ”uncertain origin problem” in an epidemiolog-
ical context arose during the 1980’s in connection with inference on AIDS data,
where the moment of infection of patients was usually not known exactly (see e.g.
Giesecke et al. (1988), Darby et al. (1989), Struthers & Farewell (1989) or De
Gruttola & Lagakos (1989)). Often, analyses were based on the assumption of a
known interval within which infection had occured and some kind of continuous
distribution therein for the moment of infection . The problem reemerged during
the SARS pandemic in the early 2000’s (see e.g. Donnelly et al. (2003), McBryde
et al. (2006)), but again with data limited to single exposures during known time
intervals. In this paper, we analyze the situation where individuals may have more
than one exposure, the times of these exposures are known and where there is no
detailed information about the nature/strength of exposures.

11



Let us start by considering the problem of estimating the incubation period
distribution, i.e. the time from infection to symptoms, for a simple model allowing
for multiple infection exposures, and to formulate an appropriate likelihood. Con-
sider one infected individual with onset of symptoms at time s that has been traced
for previous infectious contacts and assume that these exposures took place at the
time points eq,..., e, where e; < --- < ¢ < s. In order to obtain a likelihood
we introduce some notation and assumptions. Suppose that at time ¢, the rate of
infection exposure equals A(¢), and that the probability of infection upon exposure
equals p (the same p for all contacts whether with the same or different infected
individuals; if more detailed contact information is available it would be possible
to have different p’s for different type of contacts and/or different individuals).
Finally, let g(¢) denote the density distribution of the incubation period. For this
model, the likelihood for the infected individual with exposures at times ey, ..., ¢
and onset of symptoms at s is then given by

S k k .
Ley,... e, 8) =€ Jo Ay U Ae) x> p(l—p)~tg(s —e). (7)

=1

We will discuss the estimation problem arising from Equation (7) below, but we
start with some general considerations. It is of course possible to also study more
complicated models allowing for individual heterogeneity in susceptibility and/or
various type of contacts having different transmission probabilities, but here we
consider the simplest model still taking multiple exposures into account, based
only on number and times of contacts and time of symptoms. Were data to be
different, e.g. containing genetic information from whole genome sequencing of the
pathogens, different models would be possible (see e.g. Campbell et al. (2018)).
One can imagine several ways to try to avoid the multiple exposures problem.
One approach could be to simply assume that the earliest potential infector is
the infector, so that the likelihood contribution related to the incubation time
distribution is changed to g(s — e;) (this would approximately be the same as
Equation (7) if p ~ 1). This would however certainly lead to the duration of
incubation periods being overestimated. The opposite approach, to pretend that
the most recent contact was the infector, would similarly lead to underestimation.
A type of compromise could be to treat all potential contacts as being potential
infection times (to different cases). As a consequence, one observation with &
multiple potential infectors would then result in k independent incubation periods
s —ep,...,5— ey, and the likelihood contribution would become [T%_, g(s — ;).
Compared to the likelihood in Equation (7), where the shorter incubation periods
are given relatively lower weight due to the factor (1—p)*~!, such an analysis would
lead to the incubation periods (and serial intervals) being underestimated but
much less as compared to assuming the most recent contact causing the infection

12



(and precision of the slightly biased estimate will be overestimated because of the
apparent higher number of data points). A related assumption, leading to the same
conclusion, would be to assume that the infection time is uniformly distributed
among all potential exposures (which would approximately hold true if p = 0).

An alternative approach to overcome the difficulty of having multiple potential
infectors, is to base inference only on individuals having one exposure, i.e. simply
leaving out all contact traced individuals having more than one exposure. This
clearly increases uncertainty by using less data points. However, it also leads to
biased estimates, as we now explain. Individuals having only one exposure and
then symptoms must have been infected at this first exposure and thus their infec-
tion history is certain. However, the fact that no other exposures have happened
during the incubation period favours shorter than usual intervals. In fact, the
observed time interval will be the minimum of a typical "inter-exposure time”
and an incubation time, and will thus have a distribution different from a generic
incubation time. In order to obtain explicit expressions for the size of the bias,
explicit models of the ”exposure process” and the incubation time distribution are
required.

If we adopt the simple multiple exposure model just defined it is however pos-
sible to estimate the incubation period distribution using the likelihood in (7). It
is reasonable to condition on the number and times of exposure, since these essen-
tially depend on the ”inter-exposure process”, and to base inference on the second
part of the likelihood expression only, containing parameters p and the incuba-
tion distribution g(-). Assuming a parametric form for g(-), e.g. a two-parameter
gamma distribution, the problem is non-standard but essentially a three-parameter
maximum-likelihood problem with natural bounds on parameters.

It is also possible to find nonparametric (distribution-free) moment estimators
of p, the mean and the variance of the incubation time at the cost of assumptions
about the contact process, e.g. as a constant rate Poisson process. Details about
one set of such moment estimators and their performance are given in Supplemen-
tary Information.

6 Counting delayed events

The individual evolution of a disease is often a sequential process of events delayed
with respect to some previous event, starting with infection and then followed
by e.g. symptoms, notification, admission to treatment, recovery or death, not
necessarily passing through all these states nor in that particular order. The
prevalence of individuals in some of these disease stages are of public health interest
but reliable data may not always be available. During the early phase of an
outbreak, information is usually incomplete due to censoring, but also distorted

13



by exponential increase. The estimation problems and possibilities are thus quite
different during the initial phase compared to, retrospectively, after or near its
end (see e.g. Donnelly et al. (2003), Garske et al. (2017)) for some analyses
based on more complete data). However, during the exponentially increasing phase
of spread, a well-known result from branching process theory (a special case of
”counting by random characteristics”, see e.g. Taib (1992)), implies that ratios
between counts within a specific time window can be predicted.

Assume that events occur on the time interval [0,7]. Assume also that each
event may be followed, with a certain probability p, by a secondary event after
some time having probability density h(s). Then, assuming that the number of
primary events grows exponentially at rate r, the fraction 7 (T") of secondary events
to primary events in [0, 7] will quickly approach (for T not too small)

(00) = p /0 T e h(s)ds. (8)

More details are given in Supplementary Information and in section 7.6 about the
stability of ratios between various events in the simulations.

The above formula illustrates the combined effect of censoring and exponential
growth on (theoretical) counts. Thus, taking e.g. infection as primary event and
notification as secondary event, knowledge about the notification probability and
about the distribution of the time to notification allows estimation of not yet
notified cases or of total number of infected from the number of notifications in
[0, T]. Another useful application of the above result is to count-based estimation of
the case fatality rate (CFR). The problem has been treated by many authors under
many different assumptions of data availability, e.g. Garske et al. (2009,2017),
Nishiura et al. (2009) and Kucharski & Edmunds (2014). It is well-known that
a crude estimator of the type D/N, D denoting number of dead individuals and
N number of notified individuals in [0,7], will underestimate the ”true” CFR.
In theory, disregarding biased reporting, the underestimation is reflected in the
integral part of Equation (8), which is always less than 1, where A now denotes
the pdf of the time between notification and death. Consequently, knowledge of r
and of the distribution h could be used to correct the naive estimate D/N. As an
illustration, if the distribution h is assumed to be a simple exponential distribution
with expected value pu, the correction factor would simply be 1 + rpu.

In (WHO Ebola Response Team, 2014) another approach is used, namely esti-
mating only on cases with a known final destiny (death or recovery). Let us denote
by R the number of cases who are observed as recovering in [0,T] and, as before,
by D those that have died. Then, another application of Equation (8) gives that
the fraction R/N will be close to (1 — p)p, where p is the integral part of Equation
(8) calculated with the probability density of the time from notification to recov-
ery. As before, the fraction D/N will be close to pd, where 0 is the corresponding
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expression involving the pdf of the time from notification to death, and thus the
estimator D/(D + R) will be close to
po p

po+(1—pp p+(1—p)

S

Thus, the estimate will be (approximately) unbiased only if p = 6. If p < §
then the CFR will be overestimated. This happens if the time to remission is
stochastically larger than the time to death, which is the case for many diseases,
for instance this seems to be the case for Ebola (see Section 7.5). However, the
reverse case, i.e. p > 4, is also interesting, e.g. for influenza (see Garske et al.
(2009)). Of course, this analysis only considers the theoretical effects of censoring
and exponential growth, not other effects such as differential reporting, reporting
delays or general underreporting.

7 Results

We now illustrate our findings based on data and estimates from the recent Ebola
epidemic in West Africa as described in WHO Ebola Response Team (2014). We
emphasize that our results are not based on raw data and only use convenient
approximations of the estimates obtained in the paper as plug-in estimates to
illustrate the magnitude of the various potential biasing effects in a realistic pa-
rameter setting. We also report results from simulations using the same parameter
setting. Details about theoretical derivations and about the simulation program
and related results are reported in Supplementary Information. The Sections 7.1
and 7.2 respectively illustrate the biases arising from the use of backward instead
of forward generation times, and the use of serial intervals instead of generation
times in Equation (4) to estimate Ry or r (we remind the reader that both pa-
rameters are not jointly identifiable as explained in Section 2). In Section 7.3, the
effects of using data from individuals with only one possible infector, instead of
complete data with multiple possible infectors, are studied. In Section 7.5, some
results related to the estimation of the case fatality rate are derived, while Section
7.6 contains some interesting observations obtained from the simulated epidemic
outbreaks.

7.1 Looking backwards

We assume that the generation time follows a gamma distribution G ~ T'(«, A)
with (a,A) = (3,0.2) and that Ry = 1.7. For given basic reproduction number

Ry this induces a true exponential growth rate equal to r = )\(R(l)/ “ —1). The
generation time when looking backwards in time (by means of contact tracing
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reported cases) also follows a gamma distribution, but with different parameters:
B ~ T(a,A+r = )\R(l)/ “). If the exponential growth rate is computed for this

(backward) generation time distribution and the true Ry, we get rp = Ré/ “r.
Conversely, if we assume that the true r-value is known and we compute the
corresponding basic reproduction number, we get R\ = (1= (55)%)* Ro.

In numbers, our assumptions about the generation time distribution and Ry
correspond to an expected value of 15 days and standard deviation (sd) = 8.66 and
exponential growth rate r = 0.0387 (per day). The backward generation time will
instead have mean 12.6 days and sd = 7.26. The induced exponential growth rate
then equals rg = 0.0462. Thus, the growth rate estimate is overestimated by 19%.
Conversely, if the true value r» = 0.0387 is used in Equation (4), but a and \ are
taken from the backward generation time distribution, the result is RE)B) = 1.57 as

compared to the true value Ry = 1.7, and Ry will be underestimated by 8%.

7.2 Serial intervals

We start by looking at the consequences of overestimating the variance of the gen-
eration time distribution by using serial intervals instead of generation time data
in the simplified framework where both distributions are of the Gamma type and
the difference is represented by the coefficient of variation of the serial interval
distribution being larger than that of the generation time distribution by a fac-
tor ¢ > 1, while the means are equal, as predicted by theory (see Section 4). If
we assume the same basic parameter values as in the preceding Section (i.e. the
generation time follows a gamma distribution G ~ I'(a, A) with (a, A) = (3,0.2)
and Ry = 1.7), and calculate the biases resulting from e.g. ¢ = 1.1, 1.2, 1.5 and 2,
we find that the corresponding Ry values, assuming the true r value, are underes-
timated by 0.9, 1.8, 4.8 and 9.6%, respectively, while the corresponding r values,
assuming Ry = 1.7, are overestimated by 1.9, 4.1, 12.3 and 32.9%, respectively.
Thus, sizeable bias can be obtained if the serial intervals are much more variable
than the generation times.

In WHO Ebola Response Team (2014), the generation time distribution was es-
timated from observed serial intervals, under the assumption that the distributions
would be equal, which was assumed to be a consequence of the exact coincidence of
onset of symptoms and beginning of infectious period (i.e. exact equality of latent
period and incubation time, see Section 4). In our simulations, we however assume
that the equality is only approximately exact by taking the incubation period equal
to a factor U times the latent period, where U is chosen uniformly in the interval
[0.8,1.2], thus assuming that the difference is at most +£20%, with mean 0%.. Thus
symptoms are allowed to appear a little before or after the start of the infectious
period. Straightforward calculations yield that this modification corresponds to a
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¢ value of 1.026, i.e a very small increment in variability of serial intervals relative
to generation times, which would modify R, and r values calculated as above by
only 0.2 and 0.5%, respectively.

Thus, the above favourable assumptions combined with the parameter values as
estimated by WHO Ebola Response Team (2014) lead to a very small effect of the
use of serial intervals instead of generation times, but we would like to point out
that the chosen model for the relation between these quantities is a very specific
one, chosen to avoid statistical complications. In other situations, larger differences
between latent periods and incubation times, or other assumptions about the time
order of events in the natural history of the infection, may lead to larger differences
between serial intervals and generation times.

7.3 Multiple exposures

In order to estimate the effects of basing the estimates of durations on individuals
having only one exposure (see Section 5), some additional assumptions are needed.
For the recent Ebola epidemic, WHO Ebola Response Team (2014) find that the
incubation period distribution fp, assumed to be equal to that of the latent period,
is Gamma distributed with mean 11.4 days and sd = 8.1 days and that the serial
intervals are Gamma distributed with mean 15.3 days and sd = 9.3 which is
also assumed to be the distribution of generation times. They also report that
approximately 25% of the contact traced individuals had one unique infector and
75% had more than one potential infector. We will use the above parameter values
for this example. With the complete data, it would have been possible to estimate
the contact rate A and the probability p to get infected by a close Ebola contact
separately. Here we can only use that 25% had a single contact. We simply assume
that p = 0.5 and equate P(a single contact) = p [;° e fp(s)ds to the empirical
value 0.25. The result is that A = 0.0725 per day (so about one close contact every
2 weeks for the contact-traced individuals).

Once values for p and A are available, one can compute the mean incubation
period for observations having only one possible infector:

E(D|one possible infector) = / spfp(s)e **ds/P(one possible infector) ~ 8.1.
0

Thus, the mean incubation period for infectees with only one potential infector
will be 11.4 — 8.1 = 3.3 days shorter than the mean incubation period had all
observations been used. This in turn implies that the mean generation time from
the same data would be underestimated by 3.3 days, giving a mean of 12 instead of
15.3 days. Assuming that the standard deviation remains unchanged (= 9.3 days),
the estimated generation time distribution would be Gamma distributed with mean
12 and sd = 9.3. Assuming Ry = 1.7, the "true” exponential growth rate equals
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r = 0.0383, whereas the exponential growth rate estimated from the contact traced
individuals having only a single unique infector would approximately equal 4 =
0.0522, which overestimates the true value by 36%. Once again, assuming r =
0.0383 to be known (e.g. estimated from the observed growth rate), instead leads
to Rosingte = 1.50, an underestimation of 12%.

Instead, going back to the use of maximum-likelihood (ML) estimation based
on (7) and an alternative set of moment estimators, we have simulated observa-
tions from 500 individuals (see Supplementary Information for details), showing
that estimates of p and the parameters of the incubation period distribution seem
reasonably unbiased, given the parameter setting and assuming the correct dis-
tributional form in the likelihood method. If the incubation period has a distri-
bution differing from the assumed (gamma) model distribution (the log-normal
distribution, in our simulation), the moment-estimators still perform well, but the
ML-estimates of mean and variance derived under the assumption of gamma dis-
tributed incubation times now acquire some bias. The speed of convergence of
estimates and further properties under misspecification of assumptions need fur-
ther study, but this initial experiment shows that unbiased estimation based on
all observations is possible.

7.4 Combined effect of generation time biases

The bias effects of the three sources of errors as well as the combined effect, is
summarized in Table 1 below. The combined effect is obtained assuming that that
the three sources of error act independently.

Table 1: Bias in estimating Ry assuming r known, and vice versa, using Equation (4)
for three sources of errors discussed in the text. Parameter values and other assumptions
are taken from the West Africa Ebola epidemic (WHO Ebola Response Team, 2014).
See text for further explanations.

Source of error Biasin Ry Biasinr
given r  given R
Looking backwards -8% +19%
Serial intervals -0% +0%
Multiple exposures -12% +36%
Combined effect -20% +62%
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7.5 Case fatality rate example

WHO Ebola Response Team (2014) report that the average time from symptoms
to death is 5 + 4 = 9 days, while to remission the average time is 5 + 12 = 17
days. The numerical consequences of the results in Section 6 can be sizeable. If we
assume that we have exponential growth with a doubling time of say 20 days, the
growth rate r becomes 0.0347. Under the simplifying assumption that the time
from notification to death follows an exponential distribution with mean pu = 9
days, the multiplier ﬁ becomes 0.76, i.e there is an underestimation of about
24% of the CFR, using the simple estimator D/N. However, similarly the factor p
will be 0.63 and, assuming a CFR of 70%, say, the estimator relying only on cases
with a known final destiny will overestimate the CFR by approximately 5%.

7.6 A simulation study

In order to better study the behaviour of various observables during the early phase
of an outbreak, we have conducted simulations and evaluated various statistics (for
details of the simulation model and parameters, see Supplementary Information).
As before, values were chosen to be similar to the recent Ebola epidemic in West
Africa. Only simulations of outbreaks becoming large (reaching at least 4500 cases,
this number was chosen being the number of reported cases at which predictions
were made in WHO Ebola Response Team (2014)) are considered. The most
interesting findings are as follows:

Time from introduction of first case to 4500 notified Average and me-
dian approximately 200 days (sd = 33), but with a range of [123,358]. Since
these numbers reflect the time from the introduction of the first case until the day
4500 in total have been notified, they are a couple of days longer than what will
be observed from the first day a case is notified. A deterministic estimate would
probably be In(4500)/r = 217, where r is the exponential increase rate. The slight
difference might be due to the conditioning on non-extinct trajectories. Further-
more, the largest part of variability is in the first part of the epidemic (cf. Figure
1). If one divides the time period in a first part until the first 100 (cumulative)
cases are reached and a second part until level 4500 is reached, one finds that the
first part has average length 102 days with sd = 28 and the 95% central range
[63,174] and that the second part has mean 98 days, sd = 10 and 95% range
83, 119].

Stability of various ratios when 4500 cases have been notified At the
time of 4500 cases notified (in total), the numbers of individuals infected, who
had died or who had gotten well, were recorded. It should be noted that the
total number of infected is not observable, but of interest to estimate. It should
also be noted that all numbers above are examples of delayed observations (see
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Supplementary Information), from infection to notification and from notification
to final destiny. One should therefore expect that the ratios should stabilize around
values given by the formulae in that Section. The ratio notified /infected was, on
average, 0.70 with 95% of values between 0.68 and 0.72, essentially identical to the
theoretical prediction based on ”knowing” the incubation time distribution, which
is assumed to also be the time from infection to notification. The narrow range of
the observed ratios indicates that this is a viable method to predict the true actual
size of the outbreak from the number of notified cases, given that good estimates of
the distribution of time to notification and exponential increase rate are available.
An analogous result holds for the ratios of infected to dead or recovered individuals.
With the specific parameters of the simulations, at 4500 notifications, on average
3350 of them had either recovered or died, and the remaining 1150 remained
between notification and final destiny. At the time of 4500 notifications, an average
of 1900 additional individuals had been infected but not yet notified.

Observed generation times and serial intervals In each simulation run,
500 generation times and 500 serial intervals were sampled from the first 4500
notified individuals by systematically taking every ninth individual until the sam-
ple was complete. The times and intervals were ascertained ”backwards”, i.e. the
infector of the chosen individual was identified and time distance between the re-
spective infection or symptom times was recorded. The distributions of sample
means are reasonably concentrated around the respective central values, 12.5 for
serial intervals and 12.6 for generation times. It should be remembered that theory
predicts that both should have the same expected value which should be less than
the true expected generation time, which is 15. Theory again predicts that the
backward generation time should have mean 12.57, which is not far from what
is observed. The variance of the true generation time is 75 (sd = 8.7) and both
variance estimates from the simulation samples tend to be much less, somewhat
above 50 (sd = 7.1). This also leads to the useful conclusion that serial inter-
vals are affected by the same ”contraction” as generation times when ascertained
"backwards”, at least in the chosen parameter setting.

Predicting the size of the outbreak at a later time Finally, we study the
performance of the renewal equation (Equation 5 ) approach proposed in WHO
Ebola Response Team (2014). This approach is intended to allow estimation of
R; (in our simulation, R; is kept constant = Ry all the time and the method is
adapted accordingly) and to further allow prediction of cases 6 weeks (42 days)
after the last observed datum. The results, using probabilities derived from ob-
serving backward serial intervals, thus biased with respect to the true generation
time distribution, indicate that this method seriously underestimates R, but has
good predictive power anyway. The 95% range of the ratio predicted/true values
at 6 weeks after the level 4500 notified has been reached is [—10%, +12%)], which is
slightly better than just using a growth rate based estimate (i.e. just multiplying
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with exp(42r), using some good estimate of the growth rate r) derived from the
first 4500 cases. This is perhaps natural, since the method amounts to an adaptive
regression method which has fitted all the observed data up to level 4500 as well
as possible, and then extrapolated this fit. As predicted by theory, the estimate of
Ry that results from this method underestimates the true value, in fact the true
value 1.7 is never reached in 1000 simulations. The average estimate of Ry is 1.57,
with 95% range [1.51, 1.63], compared to the true value 1.7, thus having an average
bias of —8%.

8 Discussion

In the current paper we have, by means of modelling, analysis and heuristics, both
theoretical and simulation-based, in a setting resembling the recent 2014 Ebola
epidemic, studied inferential problems in an ongoing epidemic outbreak in its early
stage. Our analyses give insights into where biases might "hide” and also how to
avoid these biases. We have studied three potential sources of bias: 1) backward
estimation of generation times (contact tracing), 2) using serial intervals instead of
generation times, and 3) contact tracing leading to several potential infectors thus
making infection time uncertain. Importantly, all three sources lead to biases in the
same direction, causing the basic reproduction number Ry to be underestimated
if the epidemic growth rate r is correctly estimated. The converse is also true,
namely that the growth rate will be overestimated if a correct estimate of Ry is
available, but this situation is likely to be less common in practice.

Using parameter values stemming from the recent Ebola epidemic, it is shown
that these biasing effects can be substantial; in magnitude, the third effect (multi-
ple exposures) is largest and the second effect (serial intervals replacing generation
times) is smallest. In particular since all three effects lead to bias in the same
direction, the combination of their effects can be quite large. If we assume that
the biasing effects act independently and take parameters and assumptions from
WHO Ebola Response Team (2014) as numerical illustration, then the estimate
of Ry could be negatively biased by at least about 10%, up to 20%, depending on
how estimation is performed. In our illustration, the true Ry was assumed equal
to 1.7 and our estimate of potential bias indicates that an estimate could be as
low as 1.36. Such a difference can have quite large consequences when planning
control measures. For instance, the critical immunization level (both for vaccina-
tion and any other measure aimed at reducing infection) is usually calculated as
ve = 1 — 1/Ry. For the true Ry, this results in v. = 41%, while the lower biased
estimate yields 0. = 26%. The underestimation of Ry may hence lead to suggested
preventive measures that are insufficient to stop the spread.

The focus of the paper has been on studying potential biasing effects originating
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from a typical set of observables in the initial phase of an outbreak. However, there
are also some positive observations. The stability of proportions of individuals
in different phases of disease during the increasing phase is one, since quite good
estimates of the total number of infected or not yet notified infected could be made,
based on number of dead patients or notified ones, if good information about the
related stage duration distributions is available. Another positive observation is
that accurate inference in the multiple infector problem seems possible, although
more research is needed. Finally, many biases can be understood and corrected
for if the sampling situation is correctly modelled. It may be difficult to obtain
simple analytical results, but simulation can then reveal the performance of various
estimation procedures.

In the paper it was assumed that incidence was reported on aggregated level
without additional information on household or spatial structure of the reported
cases. If more detailed data were available, then more sophisticated models taking
such heterogeneities into account may be used. This will improve the statistical
analyses in that the model better describes the spreading patterns of the disease.
The biases under focus in the present paper will however remain, but it is in open
problem to study if they are reduced or increased as compared to the present
homogeneous modelling assumptions. The biases originate from problems in esti-
mation of the generation time distribution. These problems are present whether
using frequentist or Bayesian statistical methods, but in the paper the frequentist
approach was adopted when estimating parameters in the simulations.

Of course, there are also many other problems related to data from an emerging
outbreak not treated in the current paper, important ones being underreporting
and reporting delays, but also batch-reporting of numbers. A rather different type
of potential source of bias, also not studied here, is when model assumptions are
violated. For example, it has been assumed that there was no individual or society-
induced changing behavior during the data collection period, and social or spatial
effects on spreading patterns have been ignored. Social structures have been shown
to have limited effects for estimation in emerging epidemics (Trapman et al., 2016),
but spatial effects (cf. Lau et al., 2017) clearly play a role in disease spread, and
their effect on parameter estimates is yet to be investigated. Changing behavior
probably kicks in early in emerging outbreaks of serious diseases like Ebola, and
are hence also important to include in future inferential procedures for emerging
epidemic outbreaks.

Still, it is our hope that the results can help improving future analyses of emerg-
ing outbreaks and the important efforts to guide health authorities in predictions
and identifying possible preventive measures.
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Supplementary information

In what follows, frequent reference is made to Gamma distributed quantities. We
use the notation I'(a, A) for a Gamma distribution with shape parameter o and
scale parameter A\, having expected value /X and variance /2. Further results
related to Gamma distributions are given in Section 4 in this Appendix.

1 The simulation model

Model structure The simulated epidemic has been constructed to be close to
the parameters reported for the recent Ebola epidemic by WHO Ebola Response
Team (2014). Each infected individual follows a stochastic SEIR model with all
time periods following Gamma distributions, the time unit being 1 day. The latent
period E is assumed to be I'(2,1/5) (mean = 10, sd = 7.1) and the infectious
period I'(1,1/5) (mean = 5, sd = 5). After the infectious period, the individual
may either recover, with probability 30%, or die, with probability 70%. The time
until recovery is assumed to be I'(4,1/3) (mean = 12, sd = 6) and the time
to death I'(4/9,1/9) (mean = 4, sd = 6). Furthermore, each individual has an
incubation time (time until symptoms) which is assumed to be similar to the
latent period, but with some variation. The incubation time is given by E times
a uniformly distributed variable in the interval [0.8,1.2]. It is assumed that a case
is reported when symptoms arise. Finally, during the infectious period, new cases
are produced with rate 0.34/day, resulting in Ry = 0.34 -5 = 1.7.

Duration of simulations Only "exploding” trajectories, corresponding to
"big” outbreaks, are kept. Outbreaks start with 1 infected individual and are
rejected if they do not reach 4500 reported cases. At the time of reaching this
level, some statistics are collected and then the simulation is continued for 6 weeks
further. The purpose of this continuation is that a prediction of the final level 6
weeks later is attempted, based on the first 4500 cases. Statistics are based on
1000 accepted trajectories.

Programming details The simulation program was written in standard C,
because of the need to keep links between infectors and infectees, in order to
simulate contact tracing, and executed on a desktop computer. Results from
the simulations were elaborated using the software R to produce the Ry and r
estimates, and the 6 week projections as well as statistical summaries. Random
number generation for Gamma distributions with non-integer shape parameter
used the algorithm of Phillips & Beightler (1971).

Theoretical results It is easily shown (see e.g. Svensson (2007)) that the
generation time distribution fs in the above model is I'(3,1/5) (mean = 15,

sd = 8.7) and that the Malthusian parameter is r = A(Ry® — 1) = 0.0387.



The deterministic doubling time is 17.9 days. The stochastic process as such
is a Crump-Mode-Jagers branching process, in which the expected incidence of
infections b(t) satisfies (see Jagers (1975)) the renewal equation

b@:%é%p@m@w+%hw

The solution to this equation quickly approaches exponential growth ~ Ce™. The
same exponential growth, although with different constants, will also apply to the
total number of infected, reported, recovered, dead, etc., individuals.

2 Delayed observations

Suppose that events occur with expected intensity A(s) (cumulative intensity A(s))
on the time interval [0,7]. Assume also that each event is observed after a de-
lay which is distributed according to the density h(s) with cdf H(s). Then the
expected number of observed events on [0,T] is

T
/ ANS)H(T — s)ds
0
which constitutes the fraction

T \s)H(T — 5)
wajzA R

of the expected number of events on the interval. If the intensity A(s) is constant
or even polynomially growing, it can be shown that 7(7) — 1 as T grows large,
while, if the intensity grows exponentially, i.e. A(s) ~ e, then this fraction quickly
approaches (after some simple integration steps)

(o) =7 /OOO e " H(s)ds = /OOO e "h(s)ds

as T grows large, which is equivalent to calculating the expected value E(e™"P),
with D having a probability distribution with density h. If D has distribution
['(a, A), then m(00) = (m)a. It is interesting to note that this is a decreasing
function of «, for fixed » and E(D). Thus the case a« = 1, i.e. the Exponential
distribution, yields the largest possible value among Gamma distributions with

given mean.



3 7”Backward” observation of generation times

Observing generation times, i.e. the time between infection of one individual and
another one infected by the first one, has been discussed by several authors, e.g.
Svensson (2007), Scalia Tomba et al (2010), Champredon & Dushoff (2016). In the
exponentially increasing phase of a homogeneously mixing model, the distribution
of times observed ”backwards”, starting from a randomly chosen newly infected
individual, will have density fz(t) = e "¢'Ryfg(t), where fo denotes the gener-
ation time distribution, Ry the basic reproduction number of the disease and rg
the related Malthusian parameter (this result is approximate in the sense that the
truncation effect of the time origin is disregarded). The parameter rg satisfies the
equation

1= /oo e " Rofa(s)ds
0

If one solves the Euler-Lotka equation for the Malthusian parameter rg using the
density fp(t) instead, one obtains

1 :/ e " Ry fp(s)ds :/ e "BSR2eT"C5 fi(s)ds.
0 0
This equation can be rewritten as
1/R§ = E(e7"8TereT)

where T" has the generation time distribution fg. Because both functions of T" in
the expectation are monotone decreasing, their covariance is positive and thus

1/R; = E(e*TBTe*TGT) > E(e*’"BT)E(e*rGT) = E(eTBT)}%.
0

Since F(e™"T) is a decreasing function of r and E(e™"¢T) = 1/Ry, and since the
above inequality translates to E(e "8T) < 1/Ry, we have that rg > rg. More
specifically, if the generation time is assumed to have distribution I'(a, A), by
direct integration, one finds that rg = Ré/ “ra.

By the same kind of argument, denoting a time with distribution fgz by T and
one with distribution fg by T, one finds that

E(Ty) = /0 T tRoe ! fo(t)dt = E(ToRoe eTe) < E(Te)x E(Roe"970) = E(T4),

because the two functions of Ty inside the expectation now have different mono-
tonicity.



4 The Euler-Lotka equation and G ~ I'(a, )

If the probability density f in the E-L equation of the form
1:/ e " Rf(s)ds
0

is a I'(a, A) distribution, the equation becomes

1

A+71) R

and thus 7 = A(RY* — 1) or R = (1 +7/)\)*.

It should be noted in the I'(cr, \) distribution, the coefficient of variation (ratio
of standard deviation to mean) is 1/y/« and that given the expected value p and
the variance o2, one has o = p?/0? and A = p/o?.

The above results directly apply to calculating the exponential growth rate if
the generation time distribution is I'(a, A) and Ry is known or, viceversa, calcu-
lating Ry if the exponential growth rate r is known.

It is also easy to see that if the generation time distribution is I'(«, A) and,
denoting the corresponding Ry- and r-values by R(()G) and r¢g, the ”backwards”
generation time distribution (see Section 3) will be I'(a, A + r¢) and, using this
density to solve for the exponential growth rate r = rg, assuming R(()G) as R-value,
or solving for Ry = RSB), assuming rg as r-value, in the general E-L. equation
above, yields, after some simplification,

rg = R Yo,

2 [e%
R{P = 1—(“’ ) R\
0 ( A+rg 0

Finally, if the generation time G has a I'(«, A) distribution and another time S
has a Gamma distribution with the same mean but larger variance so that the
coefficient of variation of S is larger, by a factor ¢ > 1, than the coefficient of
variation of G, S will have a T'(a/c?, \/c?) distribution (this situation relates to
the problem treated in Sections 4 and 7.2). Then, straightforward calculations
applied to using this density to solve for the exponential growth rate r = rg,
assuming R(()G) as Ry-value, or solving for Ry = Rés), assuming rg as r-value, in
the general E-L equation above, yields, after some simplification,

and

S A
2 R(()G’) o _ 4

4



and P

rg 9 a/C
RS — (L+5) o

(0%
(%)

It is again straightforward to show that, all other parameters fixed, rg is an in-
creasing function of ¢ for ¢ > 1 and that R(()S), all other parameters fixed, is a
decreasing function of ¢ for ¢ > 1. Thus, use of a Gamma distribution with larger
variance than the generation time distribution but same mean always leads to
overestimation of the exponential growth rate and underestimation of the basic
reproduction number, given the true value of the other parameter, since the value
¢ = 1 corresponds to the true value generated by the generation time distribution.

5 Modelling multiple exposures and estimating
the incubation period

As discussed in Section 5, in order to estimate the parameters of the incubation
time distribution and the infection probability per contact p, once assigned a para-
metric model, it should be possible to use maximum-likelihood techniques on the
relevant part of Equation (7). One might also try to find moment relations that
allow estimation of p and mean and variance of the incubation time distribution.
Suppose that the ”contact” process is modelled as a Poisson process with con-
stant rate p with ¢ = 0 at the first contact with an infective, that the probability
of infection per contact is p, independently at each contact, and that the time from
infection to symptoms is denoted by 7', with mean E(T') and variance Var(T).
Then the index I of the contact that infects will be Geom(p), i.e. P(I = k) =
p(1 —p)*=t k = 1,.... After that, the number of contacts S before symptoms
appear will have a Poisson distribution with mean 7', given 7. The number of
observed contacts will be C' = I + S, with summands independent. The relations

E(C) =1/p+ pE(T)

and

Var(C) = (1 —p)/p* + pE(T) + p*Var(T)

will then hold.

Denote by S the time from first contact to symptoms. Then S is the sum of
the time until infection and the incubation time. The time until infection is, given
I, Gamma distributed with parameters I — 1 and p. Thus

_l-pl

E(S) p p

+ E(T)



Table 1: Empirical 95% confidence intervals of parameter estimates from 1000 simulated
samples of 500 individuals with true values p = 0.5, E(T) = 11.4 and s.d.(T) = 8.1.
Simulations from two situations, T being gamma-distributed or log-normal, and ML-

estimation based on gamma-distribution in both situations.

Model,estimator p (=0.5) E(T) (=11.4) | s.d.(T) (=8.1)
T ~T, ML (0.500, 0.503) | (1141, 11.47) | (8.11, 8.18)
T ~ T, Mom (0.503, 0.508) | (11.39, 11.63) | (7.57, 8.22)
T ~ LogN, ML | (0.486, 0.488) | (10.80, 10.85) | (6.33, 6.39)
T ~ LogN, Mom | (0.502, 0.507) | (11.36, 11.61) | (7.52, 8.17)
and 1-p1 1-p1
—-Pp —-p
Var(S) = — — + Var(T
===t e (1)

Since E(C), Var(C), E(S) and Var(S) can be estimated from data, the four
equations can be used for moment estimation of p, u, E(T) and Var(T).

Both ML-estimation and moment estimation have been implemented in a small
simulation experiment, with 1000 replicates of estimation based on 500 individu-
als, each having a number of contacts C' and a time S between first contact and
symptoms. In the simulation, it was assumed that p = 1/2, that the incubation
period had mean 11.4 (sd = 8.1) and that contacts happened according to a Pois-
son process with intensity 0.0725 (mean interval between contacts = 13.8 days).
To test the stability of the estimation methods, one simulation run was performed
with Gamma-distributed incubation times, assuming that the target distribution
in the ML-method was effectively Gamma and another run using log-normally
distributed times with the same mean and variance but still using the Gamma
distribution as target in the ML-estimation.

From the simulation results, shown in Table 1 one may conclude that the ML-
method works well if the correct distribution is assumed, but less well in case
of misspecification, while the moment method seems quite stable, maybe with a
hint at downward bias with the lognormally distributed data. However, further
research is needed about the best moment expressions to use and possible other
approaches to this estimation problem.

6 The simulation model for generation times and
serial intervals

The representation of generation times and serial intervals in Section 4 shows that
E(G) = E(S) but that Var(S) = Var(G) + 2Couv(so, ly + g* — so) (it should be



noted that the distribution of the infectious period and thus of g* depends on a size-
biased version of the model infectious period (see e.g. Scalia Tomba et al., 2010),
but that this does not affect the present argument). Since the simulation model
assumes independence between latent period ¢, and the infectious period, upon
which ¢* depends and that sy = ufy, where u ~ Uniform[0.8,1.2], the difference
between Var(S) and Var(G) can be written as 2(Cov(uly, £y) — Var(ulp)). Since
E(u) = 1, this reduces to 2E(¢2)(1 — E(u?)). Since E(3) = 150 and E(u?) =
1.0133, we should have Var(S) — Var(G) = 3.99. Furthermore, in the model we
have G ~ I'(3,1/5) and thus Var(G) = 75. However, in the simulation results, we
find the estimates Var(G) ~ 52.4 and Var(S) ~ 54.6. It should be remembered
that the generation times are observed ”"backwards”, in which case theory predicts
that the observed distribution should change from I'(3, 0.2) to I'(3, 0.2387), leading
to Var(G) = 52.7, which is now in good agreement with simulations. It thus
appears that the ”"backward” observation shortening also affects the observed serial
intervals and the difference between observed generation time and serial interval
distributions. In this case, in order to theoretically predict the observed difference
in variances, one would have to calculate the effect of ”backward” observation of
a generation time on the marginal distribution of the corresponding latent and
incubation periods.

A calculation needed in Section 7.2 regards the coefficients of variation of G' and
S, when it is assumed that the latter is larger by a factor ¢ compared to the former.
Since the means of G and S are the same, we will have ¢ = Var(S)/Var(G) and
thus ¢ = 78.99/75 = 1.053 according to the above calculations. Thus ¢ = 1.026
in the simulation model.

7 Estimating the growth rate

Estimating the growth rate of the outbreak or its doubling time or other equivalent
measures (under the assumption of exponential growth) is interesting per se and
is useful for predictions of the future size of the outbreak if it is assumed that
the current growth rate will not change. There are several possible methods but,
unfortunately, it seems difficult to evaluate them theoretically on finite samples.
We have already illustrated the use of Equation (4), but it is of course possible
to estimate the growth rate directly from case data. However, there seems to
be a lack of systematic evaluations adapted to infectious disease spread data. A
sensible approach is then to simulate the performance of the chosen estimation
method in simulations as close as possible to the data generating situation. We
have therefore evaluated various data-based methods in the simulations inspired
by data on the 2014 Ebola epidemic in West Africa (WHO Ebola Response Team,
2014). The compared methods are:



a) linear regression on logarithms of cumulative numbers of notified cases,

b) linear regression on logarithms of daily numbers of notified cases,

c) taking the mean of daily ratios of successive cumulative numbers,

d) estimating exp(r), the daily multiplication factor, with a branching process
type estimator of the form (n(2) +.... +n(K))/(n(1) +--- 4+ n(K — 1)), where
n(i) is the number of cases notified day i, and reporting the logarithm,

e) fitting the discretized renewal equation described in Section 2 to observed
incidence data, using the generation time distribution estimated from backward
times. This method produces an estimate of Ry and not of the growth rate r but
can anyway extrapolate values of future incidence.

Using the 1000 simulated epidemic trajectories, the estimators a) - e) of the
exponential growth rate r and their usefulness in predicting the epidemic size 6
weeks after reaching 4500 notified cases were tested. The methods a) - d) estimate
r using data from the last 6 weeks before reaching level 4500, while the fifth
method, based on the discretized renewal equation (Equation 5) estimates Ry,
using regression weights derived from the estimated generation time distribution
based on observed backward serial intervals, as suggested by WHO Ebola Response
Team (2014).

In the simulation model, the true value of r is 0.03870 and of exp(r) is 1.03946.
It should be noted that what is then used in the prediction of the situation 6
weeks later would be the factor exp(42r) (with true value = 5.07973), which is
also studied, both in isolation and used as predictor in combination with the last
datum.

All 4 estimators of r show reasonably concentrated values around the true value
0.0387, as shown in Table 2:

Table 2: Some distributional summaries for the estimators a)-d) (see text) of the
exponential increase rate based on time series of notified cases. The theoretical value to
be estimated is » = 0.03870.

Statistic (a) (b) (c) (d)

Maximum 0.04588 0.04605 0.04583 0.05168
Median 0.03883 0.03901 0.03885 0.03904
Minimum 0.03272 0.03125 0.03319 0.02785
Mean 0.03891 0.03905 0.03892 0.03901
Std Dev 0.00220 0.00230 0.00217 0.00407
Upper 95% Mean | 0.03905 0.03919 0.03905 0.03927
Lower 95% Mean | 0.03877 0.03890 0.03878 0.03876




However, all slightly overestimate r, since the 95% confidence intervals do not
contain the true value, although by less than 1%, on average. If one considers
the prediction factor exp(42r), on average all four estimators again overestimate a
little. Estimator (a) is the best, with mean 5.14729, but the sd of the distribution
is now 0.48000 and a 95% prediction interval ranges from 4.2914 to 6.1641, which
means [—16%, +21%)] relative to the true value.

However, if one implements the prediction by multiplying the last cumulative
datum by the estimate of exp(42r) and divides the result by the true cumulative
datum 42 days later, there is still overestimation, by about 1%, but the prediction
interval for method (a) has shrunk a little, to [—13%, +18%]. There is no big
difference between methods, but (a) seems to have a slight advantage.

Finally, we study the performance of the renewal equation (5) which is also
used in WHO Ebola Response Team (2014). This approach is intended to allow
estimation of R; (in our simulation, R; is kept constant = Ry all the time and the
method is adapted accordingly) and to further allow prediction of cases 6 weeks
after the last datum. There are many small details to decide when using this
method. We have made the following assumptions and considerations:

- the time series of reported cases starts with day 1 when the first case is reported
(= becomes symptomatic in our simulation) and goes on until the day the total
4500 is reached. The length of this series is thus different from the one counted
from the introduction of the first infective.

- the method uses the serial interval distribution, assumed Gamma, as estimated
from data. However, this distribution has to be discretized to daily probabilities.
We know from previous discussions that this distribution is a biased estimate of
the true generation time distribution.

- assuming the auto-regressive Poisson model for the time series of daily cases, the
estimator of Ry can be explicitly deduced.

- with this estimated Ry, the time series can be brought forward until the desired
prediction date is reached.

The results indicate that this method underestimates Ry but has good predictive
power anyway, as follows:

-while the true value of R in the simulation is 1.7, the mean of estimates obtained
is 1.566 with 95% confidence limits 1.564 and 1.568, the minimum value in 1000
simulations was 1.467 and the maximum 1.683;

- using the quotient predicted/true observed value 6 weeks later as indicator of
predictive accuracy, the mean was 1.0040 with 95% confidence limits 1.0006 and
1.0074, with minimum value 0.856 and maximum 1.213.

Thus, the predictor is almost unbiased and a 95% prediction interval is [-
10%,+12%] around the true value, which is slightly better than the previous r-
based methods.
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