

Mathematical Statistics Stockholm University Research Report 2018:17, http://www.math.su.se

Stein-Haff identity for the exponential family

Gustav Alfelt*

July 2018

Abstract

In this paper, the Stein-Haff identity is established for positivedefinite and symmetric random matrices belonging to the exponential family. The identity is then applied to the matrix-variate gamma distribution, and an estimator that dominates the maximum likelihood estimator in terms of Stein's loss is obtained. Finally a simulation study is conducted in order to support the theoretical results.

Keywords and phrases: Random matrices, matrix-variate gamma distribution, decision theory.

2010 Mathematics Subject Classification: Primary 62H12; Secondary 62C99.

Introduction 1

The Stein-Haff identity was first derived by Stein (1977) and Haff (1979) regarding the problem of estimating the covariance matrix of multivariate normal populations. The $p \times p$ sample covariance matrix **W** of such a population follows a Wishart distribution, and is commonly estimated using the unbiased estimator \mathbf{W}/n , where n is the sample size. However, the eigenvalues of the estimator \mathbf{W}/n tends to spread out more over the positive real line, than the equivalent eigenvalues of the population covariance matrix Σ . For example, letting $\lambda_1, \ldots, \lambda_p$ be the *p* ordered eigenvalues of Σ and l_1, \ldots, l_p be the p ordered sample eigenvalues of \mathbf{W}/n , l_1 is an positively biased estimator of λ_1 and l_p is a negatively biased estimator of λ_p (see e.g. Van der Vaart (1961)). As such, it can often be useful to consider estimators that aim to decrease larger sample eigenvalues and increase smaller sample eigenvalues.

^{*}E-mail: gustava@math.su.se. Address: Department of Mathematics, Stockholm University, Roslagsvägen 101, SE-10691 Stockholm, Sweden.