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Abstract

In this paper, the Stein-Haff identity is established for positive-
definite and symmetric random matrices belonging to the exponential
family. The identity is then applied to the matrix-variate gamma
distribution, and an estimator that dominates the maximum likelihood
estimator in terms of Stein’s loss is obtained. Finally a simulation
study is conducted in order to support the theoretical results.
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1 Introduction

The Stein-Haff identity was first derived by Stein (1977) and Haff (1979)
regarding the problem of estimating the covariance matrix of multivariate
normal populations. The p× p sample covariance matrix W of such a pop-
ulation follows a Wishart distribution, and is commonly estimated using the
unbiased estimator W/n, where n is the sample size. However, the eigenval-
ues of the estimator W/n tends to spread out more over the positive real line,
than the equivalent eigenvalues of the population covariance matrix Σ. For
example, letting λ1, . . . , λp be the p ordered eigenvalues of Σ and l1, . . . , lp be
the p ordered sample eigenvalues of W/n, l1 is an positively biased estimator
of λ1 and lp is a negatively biased estimator of λp (see e.g. Van der Vaart
(1961)). As such, it can often be useful to consider estimators that aim to
decrease larger sample eigenvalues and increase smaller sample eigenvalues.

∗E-mail: gustava@math.su.se. Address: Department of Mathematics, Stockholm Uni-
versity, Roslagsvägen 101, SE-10691 Stockholm, Sweden.



Additionally, the problem of an estimator of the covariance matrix of a
normal population have been well studied from a decision-theoretic view-
point1. In this approach estimators are evaluated with a non-negative loss
function L(θ̂, θ) and associated risk function E[L(θ̂, θ)], where θ is a param-
eter vector and θ̂ is an estimator of θ and the expectation is taken under the
true parameter value θ. Moreover, the estimator θ̂2 is said to dominate the es-
timator θ̂1 with respect to a given loss function if E[L(θ̂2, θ)] ≤ E[L(θ̂1, θ)]∀θ,
with strict inequality for at least one value of θ. Depending on the loss
function used, several estimators of Σ that dominate W/n have been pro-
posed (see e.g. James and Stein (1961), Takemura (1984), Dey and Srini-
vasan (1985), Sheena (1995), Kubokawa (2005), Konno (2009) and Tsukuma
(2014)), the majority of which are based on functions of the sample eigen-
values.

Furthermore, a class of estimators of Σ often considered are orthogonal
invariant estimators , i.e. estimators Σ̂ that can be written as Σ̂ = HΦ(l)H′,
Φ(l) = diag(φ1(l), . . . , φp(l)), φi(l) > 0, i = 1, . . . , p., where l is the vector
of ordered sample eigenvalues of W, and H is the orthogonal matrix of the
eigenvalue decomposition W = HLH with L = diag(l). The Stein-Haff
identity, which expresses E[tr(HΦ(l)H′Σ−1)] in terms of the function Φ(l),
is a flexible tool that readily applies to evaluate various risk function of
orthogonal estimators Σ̂. One such risk function is the one associated with
Stein’s loss2 E[L(Σ̂,Σ)] = E[tr(Σ̂Σ−1]−E[log |Σ̂Σ−1|]−p where the identity
is directly applicable to the first term. Further, the identity can also be used
in order to derive various moments of the Wishart distribution, as presented
in for example Haff (1979).

Apart from the derivation by Stein (1977) and Haff (1979) in the case
of the non-singular Wishart matrix, equivalent identities have also been pre-
sented in the case of a singular Wishart matrix (see Kubokawa and Srivastava
(2008)), in the case of a complex Wishart matrix (see Konno (2009)) and in
the case of elliptically countoured distributions (see Kubokawa and Srivas-
tava (1999), Konno (2007) and Bodnar and Gupta (2009)).

In this paper, we generalize the Stein-Haff identity to the case of positive-
definite and symmetric random matrices of the exponential family, given
certain conditions on the density function of the considered distribution. For
such a random matrix S, the result expresses E [tr (HΦ(l)H′θ2)], where H
and l are the components of the eigenvalue decomposition S = HLH′ with
L = diag(l) and θ2 a matrix parameter, in terms of the function Φ(l) and the
various components of the matrix distributions density function, a formula

1For a general discussion on the decision-theoretic framework, see for example Ferguson
(1967).

2A commonly used loss function first considered in James and Stein (1961).
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readily applicable to both estimation problems and derivation of moments.
The identity is then applied to the matrix-variate gamma distribution, where
it is used to evaluate estimators for samples of the matrix-variate gamma
distribution with common scale matrix and different shape parameters. For
the class of simple estimators consisting of a constant times the sum of the
observed matrices, the estimator that minimizes Stein’s loss is derived, and
turns out to be the maximum likelihood estimator. Moreover, the identity is
used to derive a condition for orthogonoally invariant estimators to dominate
the maximum likelihood estimator, together with an example of such an
estimator. Finally a small simulation study is conducted in order to support
the dominance results.

The rest of the paper is organized as follows. Section 2 consists of the
main contribution of this paper, the generalization of the Stein-Haff identity
to matrices of the exponential family. Section 3 applies the identity to the
matrix-variate gamma distribution and together with a simulation study to
support the theoretical results. Section 4 concludes. Lemmas with proofs
used throughout the paper can be found in the Appendix.

2 Stein-Haff identity for the exponential fam-

ily

Let the p× p matrix S be a real, positive-definite, symmetric random matrix
belonging to the exponential family. As such, the density function of S can
be factorized as

f(S) = a(θ)h(S)e(θ′t(S)), (1)

where θ is the canonical parameter and t(S) is the canonical statistic. Fur-
ther, let l denote the p× 1 vector of ordered eigenvalues of S and impose the
following conditions:

h(S) = u(l) (2)

t(S) = (v(l)′, vec(S)′)′, (3)

where vec(·) is the vectorization operator3. As such, the above conditions re-
quire that h(S) is dependent only on the eigenvalues l and that the canonical
statistic can be decomposed into one part consisting of vec(S) and one part
dependent only on l. For notational convenience, let θ be decomposed as
θ = (θ′1,−vec(θ2)′)′, where θ1 is a vector of the same length as the vector v(l)
and θ2 is a p×p matrix. Note that in the case of a real, symmetric matrix A,

3The operator that stacks all columns of a matrix into a vector.
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the common matrix-to-scalar operators tr(A) and |A| depends only on the
eigenvalues of A. Hence conditions (2) and (3) still allows for a wide range
of density funcitons.

As an example of an exponential distribution of the form (1) conforming
to (2) and (3), consider the problem presented in Section 1. Thus, suppose
Z ∼ Nn×p(0, In ⊗ Σ) such that S = Z′Z follows a Wishart distribution
with n ∈ Z degrees of freedom and postive-definite covariance matrix Σ.
Then the density of S can be expressed in the form (1) with θ = vec(2Σ)−1,

a(θ) = |θ|n/2Γp(n/2), h(S) = u(l) =
∏p
i=1 l

(n−p−1)/2
i and t(S) = vec(S).

Further, as discussed in Section 1, for problems concerning estimation
of the parameters of a random matrix, it is often required to compute the
expected value of a function of the observed random matrices. Such is for
example the case when working with loss and risk functions in the decision-
theoretic framework. Furthermore, the functions are often readily expressed
in terms of the observed random matrices associated eigenvalues and eigen-
vectors. As such, we now derive the expectation of such functions with regard
to distributions of the form (1). To this end, let Op denote the set of p×p or-
thogonal matrices and let S = HLH′ be the eigendecomposition of S, where
H ∈ Op and L = diag(l). From Theorem 3.2.17 in Muirhead (1982), note
that for a p×p positive-definite random matrix S with density function f(S),
the joint density of the p eigenvalues l1, . . . , lp, where l1 > . . . > lp > 0, is
given by

πp
2/2

Γp(p/2)

p∏
i<j

(li − lj)
∫
Op
f(HLH′)(dH). (4)

Thus, letting Lp = {l|l1 > l2 > . . . > lp > 0}, we have for any scalar function
g(H,L) with E [g(H,L)] <∞,

E [g(H,L)] =
πp

2/2

Γp(p/2)

∫
Lp

∏
i<j

(li − lj)
∫
Op
g(H,L)f(HLH′)dHdL

=
πp

2/2

Γp(p/2)
a(θ)

∫
Lp

∏
i<j

(li − lj)u(l) exp (θ′1v(l))∫
Op
g(H,L) exp (−vec(θ2)′vec(HLH′))dHdL

=
πp

2/2

Γp(p/2)
a(θ)

∫
Lp

∏
i<j

(li − lj)u(l) exp (θ′1v(l))∫
Op
g(H,L) exp (−tr(θ2HLH′))dHdL, (5)

where the second equality comes from inserting (1) and the third equality
comes from the identity vec(A)′vec(B) = tr(A′B) together with the sym-
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metry of S. Now let A = H′θ2H and denote the elements of A as aij(H).
Then

tr(θ2HLH′) = tr(LA)

=
p∑
i=1

liaii(H).

As such, (5) becomes

πp
2/2

Γp(p/2)
a(θ)

∫
Lp

∏
i<j

(li−lj)u(l) exp (θ′1v(l))
∫
Op
g(H,L) exp

(
−

p∑
i=1

liaii(H)

)
dHdL.

Further denote

c =
πp

2/2

Γp(p/2)
a(θ)

b(l) =
∏
i<j

(li − lj)u(l) exp (θ′1v(l)),

w(l) =
∫
Op

exp

(
−

p∑
i=1

liaii(H)

)
dH.

and define, for i = 1, . . . , p,

l0 = ∞
lp+1 = 0

l(i) = (l1, . . . , li−1, li+1, . . . , lp)

L(i) = {l(i)|l1 > . . . > li−1 > li+1 > . . . > lp}.

We can now formulate the Stein-Haff identity for S. The proof is a general-
ization of the derivations in Sheena (1995).

Theorem 1. Let S be a real, positive-definite, symmetric p×p random matrix
from the exponential family for which conditions (2) and (3) hold. Further let
S = HLH′ be the eigendecomposition of S and let Φ(l) = diag(φ1(l), . . . , φp(l)).
Moreover, assume that

(i) All the following expectations are finite;

(ii) φi(l)b(l), i = 1, . . . , p is absolutely continuous with respect to li;

(iii) φi(l), i = 1, . . . , p satisfies

lim
li→li+1

φi(l)b(l)w(l) = 0 and lim
li→li−1

φi(l)b(l)w(l) = 0 ∀l ∈ Lp.
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Then the following identity holds

E [tr (HΦ(l)H′θ2)] =
p∑
i=1

E

∂φi(l)
∂li

+
∂u(l)

∂li

φi(l)

u(l)
+ θ′1φi(l)

∂v(l)

∂li
+
∑
i<j

φi(l)− φj(l)
li − lj

 .
(6)

Proof. Let I = E [tr (HΦ(l)H′θ2)]. We then have

I = E [tr (Φ(l)A)]

=
p∑
i=1

E [φi(l)aii(H)]

=
p∑
i=1

c
∫
Lp
φi(l)b(l)

∫
Op
aii(H) exp

(
−

p∑
i=1

liaii(H)

)
dHdL

= −
p∑
i=1

c
∫
L(i)

∫ li−1

li+1

φi(l)b(l)
∂

∂li

[∫
Op

exp

(
−

p∑
i=1

liaii(H)

)
dH

]
dlidl(i)

= −
p∑
i=1

c
∫
L(i)

∫ li−1

li+1

φi(l)b(l)
∂w(l)

∂li
dlidl(i).

By condition (ii) we can apply integration by parts and write∫ li−1

li+1

φi(l)b(l)
∂w(l)

∂li
dli = lim

li→li−1

φi(l)b(l)w(l)− lim
li→li+1

φi(l)b(l)w(l).

−
∫ li−1

li+1

∂φi(l)b(l)

∂li
w(l)dli.

Due to conditiion (iii), I can now be written

I =
p∑
i=1

∫
L(i)

∫ li−1

li+1

c
∂φi(l)b(l)

∂li
w(l)dlidl(i)

=
p∑
i=1

E

[
1

b(l)

∂φi(l)b(l)

∂li

]

=
p∑
i=1

E

[
∂φi(l)

∂li
+ φi(l)

∂b(l)

∂li

1

b(l)

]

=
p∑
i=1

E

[
∂φi(l)

∂li
+ φi(l)

∂ log(b(l))

∂li

]
.

Since log b(l) =
∑
i<j log(li − lj) + log u(l) + θ′1v(l) we have that

∂ log b(l)

∂li
=
∂u(l)

∂li

1

u(l)
+ θ′1

∂v(l)

∂li
+
∑
i 6=j

1

li − lj
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and thus

I =
p∑
i=1

E

∂φi(l)
∂li

+
∂u(l)

∂li

φi(l)

u(l)
+ φi(l)θ

′
1(l)

∂v(l)

∂li
+
∑
i 6=j

φi(l)

li − lj


=

p∑
i=1

E

∂φi(l)
∂li

+
∂u(l)

∂li

φi(l)

u(l)
+ φi(l)θ

′
1(l)

∂v(l)

∂li
+
∑
i<j

φi(l)− φj(l)
li − lj

 .

Apart from being useful in evaluating estimators, as shown in the sub-
sequent section, Theorem 1 can also be applied in order to derive various
moments of S. For example, by noting that S−1 = (HLH′)−1 = HL−1H′ we
can insert φi(l) = 1/li, i = 1, . . . , p in (6) to obtain

E[tr(S−1θ2)] =
p∑
i=1

E

− 1

l2i
+
∂u(l)

∂li

1

u(l)li
+
θ′1
li
φi(l)

∂v(l)

∂li
−
∑
i<j

1

lilj

 .
3 Application to the matrix-variate gamma

distribution

In this section, the identity derived in Section 2 is applied to the matrix-
variate gamma distribution, a generalization of the gamma distribution to
positive-definite matrices. Section 3.1 presents the distribution on the form
(1) and with the identity, Section 3.2 applies the identity in order to derive a
condition for which to beat the maximum likelihood estimator together with
an example of such an estimator and Section 3.3 verifies the results through
a simulation study.

3.1 Stein-Haff identity for the matrix-varaite gamma
distribution

Let the p×p matrix S follow a matrix-variate gamma distribution with shape
α > (p− 1)/2 and symmetric scale matrix Σ > 0, denoted S ∼MGp (α,Σ).
As such, the p.d.f of S is

f(S) =
|Σ|−α

Γp(α)
|S|α−(p+1)/2 exp(tr

(
−Σ−1S

)
). (7)

This matrix distribution belongs to the exponential family, and the above
p.d.f can be written on the form (1) by setting θ1 = α, θ2 = Σ−1, t(S) =

7



(
∑p
i=1 log li, vec(S)′)′, a(θ) = |θ2|θ1

Γp(θ1)
and h(S) = u(l) =

∏p
i=1 l

−(p+1)/2
i and thus

it also conforms to conditions (2) and (3).
By applying (6) we have that

E [tr (HΦ(l)H′θ2)] =
p∑
i=1

E

∂φi(l)
∂li

+
(
θ1 −

p+ 1

2

)
φi(l)

li
+
∑
i<j

φi(l)− φj(l)
li − lj


or, in the parametrization (α,Σ),

E
[
tr
(
HΦ(l)H′Σ−1

)]
=

p∑
i=1

E

∂φi(l)
∂li

+
(
α− p+ 1

2

)
φi(l)

li
+
∑
i<j

φi(l)− φj(l)
li − lj

 .
(8)

3.2 Estimation of the scale matrix Σ

Now consider a sample of independent matrices S1, . . . ,Sn, where Sk ∼
MGp (αk,Σ) , k = 1, . . . , n and αk > (p − 1)/2 are known while Σ > 0 is
unknown4. Further, suppose we are interested in an orthogonally invariant
estimator for Σ, such that the estimator can be written as

Σ̂ = HΦ(l)H′, Φ(l) = diag(φ1(l), . . . , φp(l)), φi(l) > 0, i = 1, . . . , p.

Moreover, assume that we want to minizime the risk for this estimator in
terms of Stein’s loss function

L(Σ̂,Σ) = tr(Σ̂Σ−1)− log |Σ̂Σ−1| − p, (9)

which has the associated risk function

E[L(Σ̂,Σ)] = E[tr(Σ̂Σ−1)]− E[log |Σ̂Σ−1|]− p. (10)

Consider first estimators of the form Σ̂ = dV, where d is a constant
and V =

∑n
k=1 Sk. By Lemma A3, V ∼ MGp (q,Σ), where q =

∑n
k=1 αk.

Further, letting V = HLH′, such estimators can be written as Σ̂ = HΦ(l)H′

where φi(l) = dli. As such, the first term in the risk function (10) becomes,

4Comparable to the case of sample covariance matrices for a multivariate normal dis-
tribution with a common unknown covariance matrix Σ.
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using (8),

E[tr(Σ̂Σ−1)] = E
[
tr
(
HΦ(l)H′Σ−1

)]
=

p∑
i=1

E

d+ d
(
q − p+ 1

2

)
+ d

∑
i<j

1


=

dp(p− 1)

2
+

p∑
i=1

d+ d
(
q − p+ 1

2

)

=
dp(p− 1)

2
+ dp+ dpq − dp(p+ 1)

2
= dpq

Let M ∼ MGp(q, 2Ip) and tii ∼ Γ(q − (i + 1)/2, 2). The second term of
(10) can then be written as

E[| log Σ̂Σ−1|] = E[log |dVΣ−1|]
= E[log |Σ−1/2VΣ−1/2|] + p log d

= E[log |2−1M|] + p log d

= E[log |M|]− p log 2 + p log d|
= E[log |TT′|]− p log 2 + p log d

= E

[
log

p∏
i=1

t2ii

]
− p log 2 + p log d

=
p∑
i=1

E[log t2ii]− p log 2 + p log d

=
p∑
i=1

ψ(q − (i+ 1)/2) + p log d,

where the third equality is due to Lemma A4, the fifth equality is due to
Lemma A5 and ψ(·) is the digamma function. As such, we can write (10) as

E[L(Σ̂,Σ)] = dpq −
p∑
i

ψ(q − (i+ 1)/2)− p log d− p. (11)

Deriving (11) w.r.t. d and setting it equal to zero we obtain that the risk
function for estimators of the form dV has its minimum at d = q−1 =
1/(

∑n
k=1 αk), which in accordance with Lemma A6 also is the maximum

likelihood estimate of Σ in the considered case. In addition, note that in this
case the risk function is constant with respect to Σ.

Further, the above results allows us to obtain a condition under which
estimators dominate the maximum likelihood estimator Σ̂MLE = V/q.
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Proposition 1. Let Sk ∼ MGp(αk,Σ), k = 1, . . . , n, where αk > (p − 1)/2

are known, q =
∑n
i αk,

∑n
k=1 Sk = HLH′ and let Σ̂D = HΦ(l)H′, with

Φ(l) = diag(φ1(l), . . . , φp(l)), φi(l) > 0, i = 1, . . . , p, be an orthogonal invari-

ant estimator of Σ. Then Σ̂D will dominate Σ̂MLE, with regard to Stein’s
loss function (9), if and only if

p∑
i=1

E

∂φi(l)
∂li

+
(
q − p+ 1

2

)
φi(l)

li
+
∑
i<j

φi(l)− φj(l)
li − lj

− log
φi(l)

li

 ≤
p+ p log q, (12)

for all values of Σ, with strict inequality for at least one value of Σ.

Proof. We have that Σ̂D will dominate Σ̂MLE if and only if

E[L(Σ̂D,Σ)] ≤ E[L(Σ̂MLE,Σ)], (13)

for all values of Σ , with strict inequality for at least one value of Σ. By (8)
we have, since

∑n
k=1 Sk ∼MGp(q,Σ), that

E[L(Σ̂D,Σ)] = E[tr(HΦ(l)H′Σ−1)]− E[log |HΦ(l)H′Σ−1|]− p

=
p∑
i=1

E

∂φi(l)
∂li

+
(
q − p+ 1

2

)
φi(l)

li
+
∑
i<j

φi(l)− φj(l)
li − lj


−E

[
log

p∏
i=1

φi(l)

]
+ log |Σ| − p

=
p∑
i=1

E

∂φi(l)
∂li

+
(
q − p+ 1

2

)
φi(l)

li
+
∑
i<j

φi(l)− φj(l)
li − lj

− log φi(l)


+ log |Σ| − p (14)

Further we have

E[L(Σ̂MLE,Σ)] = E

[
tr

(
V

q
Σ−1

)]
− E

[
log

∣∣∣∣∣Vq Σ−1

∣∣∣∣∣
]
− p

= p− E[log |V|] + log |Σ| − p log
1

q
− p

= −E
[
log

p∏
i=1

li

]
+ log |Σ|+ p log q

= −
p∑
i

E[log li] + log |Σ|+ p log q. (15)

Inserting (14) and (15) into (13) gives the desired result.
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Finally, Proposition 1 can be applied in order to derive an estimator that
dominates Σ̂MLE. Here we will consider orthogonally invariant estimators
where Φ(l) = diag(φ1(l), . . . , φp(l)) is of the form φi(l) = dili, i = 1, . . . , p,
where di is a constant.

Proposition 2. Let Sk ∼ MGp(αk,Σ), k = 1, . . . , n, where αk > (p − 1)/2

are known, q =
∑n
i αk,

∑n
k=1 Sk = HLH′ and let Σ̂1 = HΦ(l)H′ with Φ(l) =

diag(d1l1, . . . , dplp) and

di =
1

q + (p+ 1)/2− i
, i = 1, . . . , p, (16)

be an esitmator of Σ. Then Σ̂1 dominates Σ̂MLE with regard to Stein’s loss
function (9).

Proof. First, note that by definition l1 > · · · > lp and further that d1 < · · · <
dp. By (12) in Proposition 1 we have that if

p∑
i=1

E

di +
(
q − p+ 1

2

)
di +

∑
i<j

dili − djlj
li − lj

− log di

 < p+ p log q,(17)

Σ̂1 will dominate Σ̂MLE. Now (17) can be written as

p+ p log q >
p∑
i=1

(
1 + q − p+ 1

2

)
di + E

∑
i<j

dili − djlj
li − lj

− log di

=
p∑
i=1

(
1 + q − p+ 1

2

)
di + E

∑
i<j

lj
li − lj

(di − dj)

+
∑
i<j

di − log di

=
p∑
i=1

(
1 + q − p+ 1

2

)
di +

∑
i<j

E

[
lj

li − lj

]
(di − dj) + di(p− i)− log di

=
p∑
i=1

(
q +

p+ 1

2
− i

)
di +

∑
i<j

E

[
lj

li − lj

]
(di − dj)− log di

Let mi =
∑
i<j E

[
lj

li−lj

]
(di − dj) and note that mi < 0, i = 1, . . . , p since

(lj)/(li − lj) > 0 and di − dj < 0. Inserting di = 1/(q + (p+ 1)/2− i) we get

p+ p log q >
p∑
i=1

1 +mi + log(q + (p+ 1)/2− i)

p log q >
p∑
i=1

log(q + (p+ 1)/2− i) +
p∑
i=1

mi.
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Since
∑p
i=1mi < 0, it will suffice to show that p log q >

∑p
i=1 log(q + (p +

1)/2− i), or similarly

qp >
p∏
i

(q + (p+ 1)/2− i). (18)

To this end set ai = (p + 1)/2 − i and note that ai = −ap−i+1. Further we
have that

(q + ai)(q + ap−i+1) = (q + ai)(q − ai)
< q2. (19)

If p is even we can write

p∏
i

(q + (p+ 1)/2− i) =
p/2∏
i

(q + ai)
p/2∏
i

(q − ai) < qp (20)

where the inequality is in accordance with (19). In contrary if p is odd we
can write

p∏
i

(q + (p+ 1)/2− i) = (q)
(p−1)/2∏

i

(q + ai)
(p−1)/2∏

i

(q − ai) ≤ qp, (21)

where the inequality again is due to (19). Combining (20) and (21) shows
(18) which completes the proof.

As an example, consider p = 3, such that the constants of the estimator
Σ̂1 becomes d1 = 1/(q+ 1), d2 = 1/q, d3 = 1/(q− 1). Similarly the MLE can
be expressed in this form with d1 = d2 = d3 = 1/q. As such, comparing with
the equivalent constants in the MLE, the constant of Σ̂1 associated with the
largest sample eigenvalue is smaller than 1/q while the constant associated
with the smallest eigenvalue is larger than 1/q. Thus this estimator aims
to pull sample eigenvalues towards a middle point. Further note that when
n = 1 the estimator derived in Proposition 2 is closely related to the esti-
mator derived by Stein (1977) and Dey and Srinivasan (1985) regarding the
estimation of the covariance matrix of a normal population.

3.3 Simulation study

In order to illustrate that Σ̂1, defined in Proposition 2, dominates Σ̂MLE in
terms of Stein’s loss, we conduct a small Monte Carlo simulation study. As
such, we first define the difference in estimation loss r as

12



r = L(Σ̂MLE,Σ)− L(Σ̂1,Σ), (22)

such that E[r] > 0 for all values of Σ. Further define the matrix Jp =
(0.5|i−j|)i,j, i, j = 1, . . . , p. We now perform a simulation study according to
the following algorithm:

1. For each combination of matrix dimension p = {2, 4, 10} and param-
eters α = {5, 10, 100} and Σ = {Ip,Jp}, draw a sample of n = 10
matrices S ∼MGp(α,Σ).

2. For each such sample, estimate Σ̂1 and Σ̂MLE, and compute r.

3. Repeat the above steps 1000 times and compute the average value of r
for each combination of p, α and Σ.

Table 1 summarizes the results. First, all average values of r are pos-
itive, as is expected since E[L(Σ̂MLE,Σ)] > E[L(Σ̂1,Σ)]. Further, for a
given value of α and structure of Σ, r tends to increase as the dimension p
increases. Conversely, r tends to decrease as α increases. Additionally, in
all the considered cases, the loss difference is smaller when the off-diagonal
elements of Σ are non-zero compared to when they are zero. This suggest
that the risk improvement is greater for the identity matrix, similar to for
example the conclusions of Dey and Srinivasan (1985) in the case of a nor-
mal population. Finally note that since E[L(Σ̂MLE,Σ)] is constant with
respect to Σ, any differences in E[r] due to changes in Σ stems from the
term E[L(Σ̂1,Σ)].

Σ = Ip Σ = Jp
α/p 2 4 10 2 4 10

5 0.0024 0.017 0.17 4.1 · 10−4 0.0043 0.071
10 8.5 · 10−4 0.0060 0.061 6.4 · 10−5 8.9 · 10−4 0.019
100 2.7 · 10−5 2.0 · 10−4 0.0020 9.9 · 10−7 9.5 · 10−6 2.0 · 10−4

Table 1: The average of r, the difference in Stein’s losses L(Σ̂MLE,Σ) and
L(Σ̂1,Σ), for various values of p, α and Σ.

4 Conclusion

In this paper, we derive the Stein-Haff identity for random matrices of the
exponential family, generalizing existent results. This identity is then applied
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to the matrix-varaite gamma distribution, where it is implemented in order
to derive an estimator that dominates the MLE in terms of Stein’s loss. In
order to support these derivations, a simulation study is conducted, where the
results suggest that the risk improvement is greater when the scale matrix is
the identity matrix rather than a matrix with non-zero off-diagonal elements,
and that improvement tends to increases with dimension.

Topics for future research includes deriving the Stein-Haff identity for
even more general random matrices. One approach is to relax the condition
of symmetry, or the requirements on the density function imposed by (2) and
(3) in the case of the exponential family. Another related field of interest is
how to improve estimators in the case of samples from the matrix-variate
gamma distribution with unknown shape parameters.

Appendix

In this section we present several results regarding the matrix-variate gamma
distribution needed for the derivations in Section 3.2, of which most are
directly related to results on the Wishart distribution.

Lemma A1. If α > (p−1)/2 and Σ is a symmetric p×p matrix with Σ > 0,
where α and the elements of Σ are real valued, then∫

S>0
exp(−tr(Σ−1S))|S|α−(p+1)/2dS = Γp(α)|Σ|α.

Proof. In the integral, make the variable change S = Σ1/2AΣ1/2. By Theo-
rem 2.1.6 in Muirhead (1982) (dS) = |Σ|(p+1)/2(dA) and as such we have∫
S>0

exp(−tr(Σ−1S))|S|α−(p+1)/2dS =
∫
A>0

exp(−tr(A))|A|α−(p+1)/2dA|Σ|α

= Γp(α)|Σ|α,

in accordance of the definition of the multivariate gamma function Γp(α).

Lemma A2. If S ∼MGp(α,Σ) then the characteristic function of S is

ϕ(Θ) = E [exp(tr(iTS))] = |I− iΣT|−α,

where Θ is a symmetric p× p matrix, T = (tij), i, j = 1, . . . , p and

tij =

θij if i = j

θij/2 if i 6= j
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Proof. By the density of S, as noted in (7), we have

E [exp(tr(iTS))] =
|Σ|−α

Γp(α)

∫
S>0
|S|α−(p+1)/2 exp(tr(−Σ−1S)) exp(tr(iTS))dS

=
|Σ|−α

Γp(α)

∫
S>0
|S|α−(p+1)/2 exp(tr(iTS−Σ−1S))dS

=
|Σ|−α

Γp(α)

∫
S>0
|S|α−(p+1)/2 exp(−tr((Σ−1 − iT)S))dS. (23)

By setting B−1 = Σ−1 − iT we can by the aid of Lemma A1 write (23) as

|Σ|−α

Γp(α)

∫
S>0
|S|α−(p+1)/2 exp(−tr(B−1S))dS =

|Σ|−α

Γp(α)
Γp(α)|B|α

= |Σ|−α|B−1|−α

= |Σ|−α|Σ−1 − iT|−α

= |Σ|−α|(Ip − iTΣ)Σ−1|−α

= |Ip − iTΣ|−α

Lemma A3. Let S1, . . . ,Sk be independent and Sk ∼ MGp (αk,Σ) , k =
1, . . . , n. Then

n∑
k=1

Sk ∼MGp (α,Σ) ,

where α =
∑n
k=1 αk.

Proof. Since S1, . . . ,Sk are independent, the characteristic function of
∑n
k=1 Sk

is the product of the characteristic funcitons of S1, . . . ,Sk. It is as such, in
accordance with Lemma A2,

n∏
k=1

|I− iΣT|−αk = |I− iΣT|−α,

which is the characteristic funciton of MGp (α,Σ), completing the proof.

Lemma A4. If S ∼ MGp(α,Σ) and M is a k × p matrix of rank k then
MSM′ ∼MGk(α,MΣM′).

Proof. By Lemma A2 we have that the characteristic function of MSM′ is

E[exp(tr(iTMSM′))] = E[exp(tr(iM′TMS))]

= |Ip − iM′TMΣ|−α

= |Ik − iMΣM′T|−α

= |Ik − iTMΣM′|−α, (24)
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where the third equality is due to Sylvester’s determinant identity (see e.g.
Harville (1997)). The right side of (24) is the characteristic function of
MGk(α,MΣM′) which proves the result.

Lemma A5. Let S ∼ MGp(α, 2Ip) with α > (p − 1)/2. Further define
S = TT′ where T = (tij) is the lower-triangular Cholesky root of S. Then
the following holds:

(i) tij, 1 ≤ j ≤ i ≤ n are mutually independent;

(ii) tij ∼ N (0, 1) (standard normal distribution) for 1 ≤ j < i ≤ n;

(iii) t2ii ∼ Γ(α− i−1
2
, 2) (gamma distribution with shape (α− i−1

2
) and scale

2) for i = 1, . . . , n.

Proof. We have

tr(S) =
p∑
j≤i

t2ij

|S| =
p∏
i=1

t2ii

(dS) = 2p
p∏
i=1

tp+1−i
ii

p∧
j≤i

dtij,

where the product 2n
∏n
i=1 t

n+1−i
ii denotes the Jacobian of the transformation

S → T. Substituting the above equalitites into (7), including the volume
element dS and with scale matrix 2Ip, we obtain the density of T as

f(T) =
2p

2pαΓp(α)
e
−
∑p

i≤j t
2
ij

p∏
i=1

t2α−iii

p∧
j≤i

dtij. (25)

Further note that

Γp(α) = πp(p−1)/4
p∏
i=1

Γ(α− i− 1

2
)

2pα−p(p−1)/4−p = 2
∑p

i=1
(α− i−1

2
−1).

As such, (25) can be written

f(T) =
p∏
j<i

1√
2π
e−

t2
ij
2 dtij

p∏
i=1

1

2α−(i−1)/2−1Γ(α− i−1
2

)
e−

t2
ii
2 t2α−iii dtii.

=
p∏
j<i

1√
2π
e−

t2
ij
2 dtij

p∏
i=1

1

2α−(i−1)/2Γ(α− i−1
2

)
e−

t2
ii
2 (t2ii)

α− i−1
2
−1dt2ii,
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which is the joint density of the independent random variables tij ∼ N (0, 1)
and t2ii ∼ Γ(α− i−1

2
, 2), 1 ≤ j < i ≤ p.

Lemma A6. Consider an i.i.d. sample S1, . . . ,Sk, where Sk ∼MGp (αk,Σ) , k =
1, . . . , n, αk > (p − 1)/2 are known and q =

∑n
k=1 αk. The maximum likeli-

hood esitmate of Σ is then given by

Σ̂MLE =

∑n
k=1 Sk
q

Proof. The log-likelihood function for the sample S1, . . . ,Sn is

l(S1, . . . ,Sn) = −q log |Σ| − n log Γp(α) +
(
α +

p+ 1

2

) n∑
k=1

log |Sk| − tr

(
Σ−1

n∑
k=1

Sk

)
.

Deriving by Σ and equating to zero we obtain

qΣ−1 = Σ−1
n∑
k=1

SkΣ
−1

Σ̂ =

∑n
k=1 Sk
q

,

as desired.
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