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Abstract

This paper sets out a model for analysing claims development data, which we call
the collective reserving model (CRM). The model is defined on the individual claim
level and it produces separate IBNR and RBNS reserve estimators at the collective
level without using any approximations. The CRM is based on ideas from a paper by
Verrall, Nielsen and Jessen (VNJ) from 2010 in which a model is proposed that relies
on a claim giving rise to a single payment. This is generalised by the CRM to the case
of multiple payments per claim. All predictors of outstanding claims payments for the
VNJ model are shown to hold for this new model. Moreover, the quasi-Poisson GLM
estimation framework will be applicable as well. Furthermore, analytical expressions
for the variance of the total outstanding claims payments are given, with a subdivision
on IBNR and RBNS claims. To quantify the effect of allowing only one payment per
claim, the model is related and compared to the VNJ model, in particular by look-
ing at variance inequalities. The double chain ladder (DCL) method is discussed as
an estimation method for this new model and it is shown that both the GLM- and
DCL-based estimators are consistent in terms of an exposure measure. Lastly, both of
these methods are shown to asymptotically reproduce the regular chain ladder reserve
estimator, motivating the chain ladder technique as a large-exposure approximation of
this model.

JEL: G22.

Keywords: Stochastic claims reserving; risk; solvency; chain ladder.

1 Introduction

There has been much research carried out in the area of triangle-based reserving methods,
with one of the most famous methods being the chain ladder technique. The chain ladder
technique is a simple algorithm used to predict outstanding claims payments based on
historical payment patterns. Initially it was not based on any stochastic model, and for this
reason, considerable effort has been made trying to motivate its use. Models that produce the
same estimators as the chain ladder technique can be found in, for instance, Mack (1991)
and Renshaw and Verrall (1998). In Mack (1991), the maximum likelihood estimators of
a multiplicative Poisson model and the estimators from the chain ladder technique were
shown to coincide. In Renshaw and Verrall (1998), another prominent triangle-based model,
the over-dispersed Poisson model, was introduced and also shown to have estimators which
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coincide with the chain ladder technique. Further, Mack (1993) presented a model often
referred to as the distribution-free chain ladder model, which built on ideas from Schnieper
(1991).

Instead of looking for a model that motivates the chain ladder technique, other authors start
from a suitable stochastic model given some assumptions on the data generating process, and
derive reserve estimators based on this. A few articles have even moved away from aggregated
data and developed models at the level of individual claims; see for instance Norberg (1993,
1999), and more recently, Antonio and Plat (2014). In Antonio and Plat (2014), a likelihood
approach is taken based on the framework of position dependent marked Poisson processes
and recurrent events, and a complete simulation procedure is detailed based on this to project
future losses. Others use aggregated data but based on models built from the ground up,
such as Bühlmann et al. (1980), Norberg (1986) and Verrall et al. (2010).

In this paper, we present a new model for stochastic claims reserving which provides a con-
nection between detailed assumptions for individual claims and a model for data aggregated
into triangles. The model is motivated by the starting point for all actuarial modelling: risk
theory based on Poisson-generated events. This new model is related to the approach set
out in Verrall et al. (2010) in that it is based on detailed assumptions on individual claims,
but is then modelled by an over-dispersed Poisson distribution on the aggregate level. In the
proposed model, each individual claim is assumed to follow a discrete-time inhomogeneous
Poisson process and the number of claims is assumed to be generated by an over-dispersed
Poisson distribution. It is helpful to give our new model a name, and we decided on call-
ing it the collective reserving model (CRM). The reason for choosing this name is that it
emphasises the similarity in the approach with collective risk theory: we start with events
generated by Poisson processes and derive distributions for a portfolio of risks as a whole
without approximations. For a detailed discussion on collective risk models, see Mikosch
(2009) (Part I).

The model of Verrall et al. (2010) relies on the assumption that each claim will give rise
to a single payment (which can be zero). The model proposed in this paper, the CRM,
generalises this to the case of multiple (including zero) payments per claim. We will show
that all predictors of outstanding payments from Verrall et al. (2010) hold for this new model,
and, moreover, the quasi-Poisson generalized linear model (GLM) estimation framework will
be applicable as well. There will, however, be subtle differences between the models. To name
one; the CRM presented here can be represented as an over-dispersed Poisson distribution,
while in Verrall et al. (2010) this is an approximation. Therefore the aggregate modelling
of this new model will be exact, as opposed to the model in Verrall et al. (2010). This and
other differences will be discussed in this paper. Furthermore, we give analytical expressions
for the variance of the total outstanding claims payments, with a subdivision on IBNR and
RBNS claims.

Further, to quantify the practical implications of using the simplifying assumption of one
payment from Verrall et al. (2010), we will relate and compare the CRM to the model in
Verrall et al. (2010), especially by looking at second moments. This is done in two ways.
First by relating the models through a theoretical construct that amounts to replacing a
series of payments with a single payment whose first two moments are equal to those of the
underlying series, and then comparing the resulting model variances. Secondly, by comparing
the estimators of the variances obtained by plugging in the parameter estimators.

Parameter estimation is, as mentioned, primarily done in the same way as in Verrall et al.
(2010) and Miranda et al. (2011). Another estimation approach is the double chain ladder
method as described in Miranda et al. (2012). We show in this paper that both of these
methods yield consistent estimators and that the reserves of the methods are asymptotically
close. The asymptotic argument is based on an exposure measure and is therefore not
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dependent on the size of the claims triangles. Furthermore, we show that both of these
methods asymptotically reproduce the standard chain ladder reserve estimator, thereby
motivating it as a large-exposure approximation of the collective reserving model.

Finally, we give a brief discussion on predictive uncertainty. To quantify predictive uncer-
tainty, bootstrap methods are often used. See for instance Pinheiro et al. (2003), Björkwall
et al. (2009) and England and Verrall (1999) for bootstrap methods applied to reserving. In
Miranda et al. (2011) this is discussed in detail for the model of Verrall et al. (2010), setting
up all the necessary components for a parametric bootstrap, all of which will apply, with
slight modification, for the model presented in the present paper. To add to this, we will
present a different approach to account for predictive uncertainty, based on recent develop-
ments in semi-analytical approximations of the mean squared error of prediction (MSEP) in
Lindholm et al. (2018). For similar results for the chain ladder model, see Diers et al. (2016),
Röhr (2016) and Buchwalder et al. (2006). This approximation of the MSEP is, naturally,
based on the variances of the total outstanding claims payments, and we will see that the
MSEP differs between the CRM and the model of Verrall et al. (2010) only as much as their
variances differ. Moreover, the described approach only relies on quantities obtained from a
standard quasi-Poisson GLM fit using e.g. R.

The remainder of the paper is organized as follows: In Section 2 a brief description of the
notation and relevant data used for the models is given. Section 3 introduces the CRM and
several theoretical results, such as moments and model fitting, and how the model relates
to the chain ladder technique and the DCL method. In Section 4 the CRM is compared
to the model of Verrall et al. (2010) in terms of variance inequalities, and in Section 5 the
semi-analytical approximation of the MSEP is given. Finally, a numerical example, which
compares the two models and benchmarks them against the chain ladder model, is presented
in Section 6.

2 Data and notation

This section introduces the notation and relevant data used throughout this paper. Let m
be the total number of accident years and let d be the maximal delay with which claims pay-
ments are made after being reported. Using this, let Xij denote the incremental aggregated
claims payments during development year j ∈ {0, . . . ,m + d − 1}, and let Nij denote the
incremental number of claims incurred in development year j ∈ {0, . . . ,m − 1}, both from
accidents during accident year i ∈ {1, . . . ,m}. The data can be formatted in the following
rectangles:

N10 . . . N1,m−1
N20 . . . N2,m−1

...
...

Nm0 . . . Nm,m−1

X10 . . . X1,m+d−1
X20 . . . X2,m+d−1

...
...

Xm0 . . . Xm,m+d−1

The data known ”today” and the data used for prediction consists of the Xij and Nij where
(i, j) ∈ A0 where

A0 := {(i, j) ∈ N× N0 : i+ j ≤ m}.

That is, data on the following form:

N10 N11 . . . N1,m−2 N1,m−1
N20 N21 . . . N2,m−2

...
. . .

Nm0

X10 X11 . . . X1,m−2 X1,m−1
X20 X21 . . . X2,m−2

...
. . .

Xm0
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For estimation of parameters needed for the variance of the total outstanding claims pay-
ments we will need a triangle consisting of the total number of payments made in (i, j) ∈ A0,

denoted by Npaid
ij .

The lower right trapezoid that is to be predicted consists of the Xijs with indices in the set

A∗0 := {(i, j) ∈ N× N0 : i ≤ m, j ≤ m− 1 + d, i+ j ≥ m+ 1}.

If we only consider predictions confined to a regular lower right triangle, such as the predic-
tions made with the chain ladder technique, the index set for predictions would be

Ã∗0 := {(i, j) ∈ A∗0 : j ≤ m− 1}.

It will also be useful to define the filtration

N0 := σ{Nij : (i, j) ∈ A0},

corresponding to the information generated by the number of claims observed up until
”today”.

Lastly, in this paper we will define the CRM and the model of Verrall et al. (2010), referred
to as the VNJ model. Superscripts ”(CRM)” and ”(VNJ)” will be used to indicate which of
these models certain quantities are referring to.

3 A model with multiple payments per claim

The model introduced in Verrall et al. (2010) relies on a claim giving rise to a single payment.
Given this assumption, the authors show how predictors of the total outstanding claims
payments are calculated and describe how the model may be fitted as a quasi-Poisson GLM.
A formal definition of the model from Verrall et al. (2010), henceforth referred to as the
VNJ model, together with a summary of relevant properties, can be found in Appendix A.

The single payment assumption is in many cases unrealistic. Inspired by the work in Verrall
et al. (2010) and Miranda et al. (2011, 2012), we will in this section introduce a new model,
referred to as the collective reserving model (CRM). The CRM will allow for multiple pay-
ments per claim, but still possess the desirable features of the VNJ model discussed in the
aforementioned papers.

Following the introduction of the new model, we will in Section 3.1 make a simplifying
assumption and calculate expectations and variances of claim amounts. Thereafter, we will
discuss parameter estimation and show consistency of parameter estimators, primarily in
terms of an exposure measure, before moving on to giving separate predictors of outstanding
IBNR and RBNS claims payments with corresponding variances. In Section 3.2 we will
discuss the double chain ladder technique as an estimation method for the CRM and present
corresponding consistency results. Finally, we motivate the chain ladder technique by an
asymptotic argument.

The new multiple payments model is defined as follows:

CRM: The collective reserving model. Let the total number of claims incurred in
accident year i that are reported j periods later, Nij, follow an over-dispersed Poisson dis-
tribution according to Nij ∼ ODP(νij , φ), i.e.

E[Nij ] = νij ,

Var(Nij) = φE[Nij ],
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where all Nij are assumed to be independent. Further, each claim will produce a series of
payments according to a discrete-time Poisson process, that is

N
paid,(CRM)
ijk | Nij ∼ Po(λkNij), λk ≥ 0, k = 0, . . . , d,

where N
paid,(CRM)
ijk denotes the number of payments stemming from claims reported in (i, j),

paid k periods later. Similarly, let Ỹijkl denote the lth payment from claims reported in (i, j),

paid k periods later, where all Ỹijkl are assumed to be independent over all l for fixed (i, j, k)
with

E[Ỹijkl] = µijk,

Var(Ỹijkl) = σ2
ijk.

Note that by introducing N
paid,(CRM)
ij according to

N
paid,(CRM)
ij :=

j∧d∑
k=0

N
paid,(CRM)
i,j−k,k ,

i.e. the number of payments in (i, j), it follows that

N
paid,(CRM)
ij |{Nil}l≤j ∼ Po

(
j∧d∑
k=0

λkNi,j−k

)
.

Further, the total aggregated incremental payments in (i, j) may be written according to

X
(CRM)
ij :=

j∧d∑
k=0

X
(CRM)
i,j−k,k :=

j∧d∑
k=0

N
paid,(CRM)

i,j−k,k∑
l=0

Ỹi,j−k,k,l, (1)

where the superscript (CRM) refers to the collective reserving model. This implies the
following payment dynamics of the CRM:

Proposition 1. For the CRM it holds that

E[X
(CRM)
ij |N0] =

j∧d∑
k=0

E[X
(CRM)
i,j−k,k | N0] =

j∧d∑
k=0

λkµi,j−k,kNi,j−k, (2)

and that

Var(X
(CRM)
ij |N0) =

j∧d∑
k=0

Var(X
(CRM)
i,j−k,k|N0) =

j∧d∑
k=0

σ2
i,j−k,k + µ2

i,j−k,k

µi,j−k,k
E[X

(CRM)
i,j−k,k | N0]. (3)

Moreover, all X
(CRM)
ij and X

(CRM)
ijk are independent.

The proof is given in Appendix B. A problem with the general formulation of Proposition
1 is that without additional structure, parameters with indices in A∗0, i.e. the lower right
trapezoid including the tail, cannot be estimated based on the data with indices in A0. An
example of structure that makes estimation possible is setting µijk = µi and σ2

ijk = σ2
i .

There is always the possibility of extrapolation, but we will refrain from going into this
topic. In the next section we introduce a simplifying assumption that will deal with this
problem.
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3.1 The homogeneous CRM

In this section, we will make a simplifying assumption on the payment distribution, after
which we will calculate expectations and variances of claim amounts. Following this, we will
discuss parameter estimation and show consistency of parameter estimators, primarily in
terms of an exposure measure. Then we move on to give separate predictors of outstanding
IBNR and RBNS claims payments with corresponding variances.

The following assumption is a natural starting point for modelling:

Assumption 1. All Ỹijkls are independent with

E[Ỹijkl] = µ,

Var(Ỹijkl) = σ2.

This simplifying assumption more or less amounts to payments being i.i.d. This is, however,
unlikely to be valid in practise, and in further developments of the CRM, this assumption
can likely be relaxed. Given Assumption 1 we obtain the following corollary to Proposition 1:

Corollary 1. Given Assumption 1, it holds that

E[X
(CRM)
ij |N0] = µ

j∧d∑
k=0

λkNi,j−k, (4)

and that

Var(X
(CRM)
ij |N0) =

σ2 + µ2

µ
E[X

(CRM)
ij |N0]. (5)

That is, X
(CRM)
ij may be represented as an over-dispersed Poisson distribution with mean

E[X
(CRM)
ij |N0] and over-dispersion parameter

ϕ :=
σ2 + µ2

µ
.

Moreover, all X
(CRM)
ij are independent.

Note that in Corollary 1 we have equality, whereas there is only approximate equality for the
variance of the VNJ model, see (24) in Appendix A. Henceforth, unless stated otherwise, all

Ỹijkls will be assumed to follow Assumption 1 to allow for easy comparison to results from
Verrall et al. (2010) and Miranda et al. (2011, 2012). Moreover, the CRM will refer to the
homogeneous CRM in accordance with Assumption 1.

Further, note that if we let

Λ :=

d∑
k=0

λk,

πk = λk/Λ and µ̃ = µΛ, it follows that

E[X
(CRM)
ij |N0] = µ

j∧d∑
k=0

λkNi,j−k

= µ̃

j∧d∑
k=0

πkNi,j−k.
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Here µ̃ can be interpreted as the expected total claim amount for a single claim and πk
corresponds to the distribution of the payments over time from reporting since π0+. . .+πd =
1. Further, note that, in agreement with Verrall et al. (2010), see Appendix A, the CRM
may be fitted using standard GLM theory, replacing

ψk := µpk

from Verrall et al. (2010) with
ψ̃k := µ̃πk,

where
d∑
k=0

πk =

d∑
k=0

pk = 1.

That is, in our situation

E[X
(CRM)
ij |N0] =

j∧d∑
k=0

ψ̃kNi,j−k.

Since these two parameters, ψk and ψ̃k, will be estimated in the same way, we drop the
tilde and refer to both as ψk. The above means that the parameters ψk in the CRM are
estimated by ψ̂k which maximize the quasi-likelihood

lp(ψ;F0) =
∑
i,j∈A0

[
Xij log

(
j∧d∑
k=0

ψkNi,j−k

)
−

j∧d∑
k=0

ψkNi,j−k

]
.

Moreover, by assuming that E[Nij ] = αiβj , estimation and prediction of the count variables
Nij may be carried out using the classical chain ladder technique, see for instance Mack
(1991). Thus, all expressions for predictors of outstanding payments from Verrall et al.
(2010) will hold for the CRM as well. In particular, the predictor of outstanding claims
payments can be sub-divided into an IBNR and an RBNS part, which we will return to
after a short discussion on parameter estimation.

Note that by using the above parametrisation we have that

d∑
k=0

ψk = µ̃

d∑
k=0

πk = µ̃ = µΛ,

that is, unless we have explicit knowledge of {Npaid,(CRM)
ij } we will not be able to identify µ

and Λ. Since we may express all predictors of outstanding payments in terms of ψk, this only
poses an issue when interpreting model output and, as we will see below, when estimating the
variance of outstanding claims payments. From a practical perspective, however, it does not

seem controversial to assume knowledge of {Npaid,(CRM)
ij }, which would allow for standard

estimation of µ by, for instance,

µ̂ =
1

|A0|
∑
i,j∈A0

Xij

N
paid,(CRM)
ij

,

where |A0| = m(m + 1)/2 is the size of the observed triangles. Using this we can then
estimate the rest of the parameters by

π̂k = ψ̂k∑d

j=0
ψ̂j

,

Λ̂ =

∑d

j=0
ψ̂j

µ̂ ,

λ̂k = ψ̂k

µ̂ ,

σ̂2 = ϕ̂µ̂− (µ̂)2,
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where the over-dispersion parameter ϕ is estimated using (11) in Miranda et al. (2011), i.e.

ϕ̂ =
1

|A0| − (d+ 1)

∑
i,j∈A0

(
Xij −

∑j∧d
k=0 ψ̂kNi,j−k

)2
∑j∧d
k=0 ψ̂kNi,j−k

.

Further, assuming that νij = αiβj , φ is estimated by

φ̂ =
1

|A0| −m(m− 1)

∑
i,j∈A0

(Nij − ν̂ij)2

ν̂ij
.

Remark 1. Note that µ̂ is needed for identification of µ and Λ – the CRM and the VNJ
model use the same ψ̂ks given the original quasi-Poisson GLM-based estimation procedure
in Verrall et al. (2010). Therefore, the predictors of outstanding claims payments, given by

(4) and (22), will be equal given estimation by plugging in the ψ̂ks.

Now, given the above parameter estimators, we can state the following proposition dealing
with consistency:

Proposition 2. The maximum quasi-likelihood estimator ψ̂ of the CRM and the VNJ model
satisfy

(i) ψ̂
p→ ψ

as n→∞ when estimating over

Ā0 := A0 ∪ {(i, j) : i = −n, . . . , 0, j = 0, . . . ,m− 1}.

Moreover, if wi is an exposure measure such that E[Nij ] = wiνij, then

(ii) ψ̂
p→ ψ

as wi →∞ for all i = 1, . . . ,m.

The proof of Proposition 2 is given in Appendix B. From this proposition it is possible to
show convergence of parameter estimators that are functions of the ψ̂ks. As an example, it

can be shown using Slutsky’s theorem that π̂k
p→ πk, but this will not be further discussed

in this paper.

Note that the interesting part of Proposition 2 is part (ii) since this deals with convergence
in terms of an exposure measure while keeping the size of the triangle fixed. Part (i) relies
on the claims triangle growing height wise, which is merely a technical affirmation of the
estimation procedure being sound.

Regarding the split of future payments into an RBNS and IBNR part, let

N
R,(CRM)
ij :=

j∧d∑
k=j−(m−i)

N
paid,(CRM)
i,j−k,k , (i, j) ∈ A∗0,

corresponding to the total number of RBNS claims payments in (i, j), and let

N
I,(CRM)
ij :=

j−(m−i)−1∑
k=0

N
paid,(CRM)
i,j−k,k , (i, j) ∈ A∗0,
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denote the corresponding IBNR claims payments. Thus, the total RBNS claims payments
in (i, j) ∈ A∗0 is given by

X
R,(CRM)
ij :=

N
R,(CRM)
ij∑
l=0

Y
R,(CRM)
ijl , (i, j) ∈ A∗0,

where Y
R,(CRM)
ijl is the lth payment in (i, j) stemming from RBNS claims. That is, for a

fixed (i, j), it is an enumeration of all Ỹi,j−k,k,p with k ≥ j − (m − i). Similarly, the total
IBNR claims payments in (i, j) ∈ A∗0 is given by

X
I,(CRM)
ij :=

N
I,(CRM)
ij∑
l=0

Y
I,(CRM)
ijl , (i, j) ∈ A∗0,

where again, Y
I,(CRM)
ijl is the lth payment in (i, j) stemming from IBNR claims. That is, for

a fixed (i, j) it is an enumeration of all Ỹi,j−k,k,p with k < j − (m− i). From this, we finally
get that the total outstanding claims payments stemming from RBNS claims for accident
year i is

R
R,(CRM)
i :=

m−1+d∑
j=m−i+1

X
R,(CRM)
ij , (6)

and the corresponding quantity for IBNR claims for accident year i is

R
I,(CRM)
i :=

m−1+d∑
j=m−i+1

X
I,(CRM)
ij . (7)

Hence, based on relations (6) and (7) it is clear that the expected claims payments stemming
from RBNS and IBNR claims are

h
R,(CRM)
i (ψ;N0) := E

[
R
R,(CRM)
i | N0

]
=

m−1+d∑
j=m−i+1

j∧d∑
k=j−m+i

ψkNi,j−k, (8)

h
I,(CRM)
i (ψ,ν) := E

[
R
I,(CRM)
i | N0

]
=

m−1+d∑
j=m−i+1

(j−m+i−1)∧d∑
k=0∨(j−m+1)

ψkνi,j−k, (9)

respectively. Using this we denote the plug-in estimators of the RBNS and IBNR claims
reserves by

h
R,(CRM)
i (ψ̂;N0)

and
h
I,(CRM)
i (ψ̂, ν̂),

i.e. the estimators acquired from simply plugging in the parameter estimators. Note that
this is not to be confused with non-parametric plug-in estimation, also referred to as the
”plug-in principle”, see e.g. Efron and Tibshirani (1994) and Friedman et al. (2001).

Note that we have not defined ν̂. If we assume that E[Nij ] = αiβj , then it would be the

vector of the α̂is and β̂js from applying the chain ladder technique to the triangle of incurred
claims.

To end this section we present a proposition giving the variance of the outstanding claims
payments, both in total but also the variances stemming from IBNR and RBNS claims
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separately. This proposition will be useful later when we discuss the semi-analytical approx-
imation of the MSEP, since part of this quantity is the variance of the outstanding claims
payments. The proof is given in Appendix B. For later comparison, the analogous results
for the VNJ model are presented in Appendix A, (Proposition 11).

Proposition 3. Given Assumption 1, the variance of the total outstanding claims payments
is given by

Var(R(CRM) | N0) = Var

(
m∑
i=1

R
R,(CRM)
i +R

I,(CRM)
i

∣∣∣∣∣ N0

)

=

m∑
i=1

Var(R
R,(CRM)
i | N0) +

m∑
i=2

Var(R
I,(CRM)
i ),

where

Var(R
R,(CRM)
i | N0) = σ2

m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

λkNi,j−k, (10)

and

Var(R
I,(CRM)
i ) = (σ2 + µ2(1 + Λφ))Λ

m−1∑
j=m−i+1

νi,j . (11)

3.2 A connection to the double chain ladder method and the chain
ladder technique

In this section, we will discuss the double chain ladder (DCL) technique as an estimation

method for the CRM. By letting E[Nij ] = αiβj with
∑m−1
j=0 βj = 1, the CRM fulfils Assump-

tions M1-M3 in Miranda et al. (2012). Therefore a number of the results in that paper apply
to the CRM. Most importantly, it is possible to use the DCL technique as an estimation
method. While we have already shown that the GLM-based estimators are consistent, one
might ask if the same thing holds for the DCL estimators in terms of an exposure measure.
In this section, we will show this to be the case. Moreover, we will show that the plug-in
reserve estimator of the CRM, suitably normalised, converges to the same limiting object
independent of the estimation method used (GLM or DCL). Further, this limiting object
turns out to be the same as the asymptotic normalised reserve of the chain ladder technique,
motivating its use as a large-exposure approximation of the CRM.

To summarise, this section aims to motivate:

• The use of the DCL estimators for the CRM.

• The chain ladder technique as a large-exposure approximation of the CRM.

The DCL method uses the chain ladder technique separately on the two triangles of claims
payments and claim counts. Equivalently, it fits a Poisson-GLM with multiplicative row and
column effects, see Mack (1991). It then solves for the parameters used in prediction by
exploiting a relationship between the row and column effects of the two triangles. To show
that the CRM fits into this structure we state the following proposition:

Proposition 4. Assume that
E[Nij ] = αiβj ,
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with
d∑
j=0

βj = 1.

It then holds that

E[X
(CRM)
ij ] = α̃iβ̃j ,

where
α̃i := cµ̃αi,

and

β̃j :=
1

c

j∧d∑
k=0

λkβj−k.

for some c ∈ R.

The proof of Proposition 4 is a direct consequence of Corollary 1. Proposition 4 shows that
the aggregated incremental payments has multiplicative row and column effects in the CRM.
Moreover, it shows how the row and column effects of the triangle of claim counts, αi and
βj , relate to the corresponding ones for the triangle of claims payments, α̃i and β̃j .

We will now collect the row and column effects of the two triangles into two vectors θ and

θ̃, with corresponding chain ladder technique estimators θ̂ and
ˆ̃
θ. For these estimators it is

possible to show the following proposition dealing with consistency in terms of exposure:

Proposition 5. Assuming that

E[Nij ] = wiᾱiβj ,

Var(Nij) = φE[Nij ],

it holds that

θ̂
p→ θ,

ˆ̃
θ

p→ θ̃,

as wi →∞ for all i = 1, . . . ,m.

The proof of Proposition 5 follows from a slight, but straightforward, modification of the
proof of Proposition 2 part (ii).

Assuming that inflation is already accounted for, i.e. γi from Miranda et al. (2012), there
are two more parameters defining the DCL method, (πD

0 , . . . π
D
m−1) and µD, here with the

superscript D to distinguish them from the already defined parameters πk and µ. These are
estimated by equations (7) and and (9) in Miranda et al. (2012), i.e. by solving for the πks
in 

ˆ̃
β0
...
...

ˆ̃
βm−1

 =


β̂0 0 . . . 0

β̂1 β̂0
. . . 0

...
. . .

. . . 0

β̂0 . . . β̂1 β̂0




π0
...
...

πm−1

 ,

yielding estimators π̂D
k , and by calculating

µ̂D =
ˆ̃α1

α̂1
.

11



Using these estimators it is possible to construct estimators of the ψks by

ψ̂D
k := µ̂Dπ̂D

k .

Now the following proposition, dealing with consistency of the DCL estimators of the ψks,
can be stated:

Proposition 6. For the DCL estimators π̂D
k and µ̂D it holds for k = 1, . . . ,m− 1 that

π̂D
k

p→ 1

c
λk1{k≤d},

µ̂D p→ cµ,

as wi →∞ for some c ∈ R. From which it is clear that

ψ̂D
k := µDπ̂D

k
p→ µλk1{k≤d} =: ψk,

for k = 1, . . . ,m− 1.

The proof of Proposition 6 can be found in Appendix B. Proposition 6 states that the DCL
estimators ψ̂D

k of ψk are consistent in terms of exposure. Therefore, the DCL method yields
consistent estimators of the parameters ψk in the CRM, motivating its use.

Now that we know that the DCL estimation procedure yields consistent estimators, we
move on to show that the reserve estimates acquired using plug-in of either the GLM or the
DCL-based estimators are asymptotically close. And further, that they are asymptotically
close to the reserve estimator of the chain ladder technique.

In Miranda et al. (2012) it is shown that using the DCL estimators and replacingNij in (8) by

α̂iβ̂j , yields the chain ladder reserve estimator based on only the triangle of claims payments.
For the CRM, this is equivalent to basing prediction on E[Xij ] and not on E[Xij |N0]. Note
that for the IBNR part this makes no difference and we only have to investigate the RBNS
part. The following proposition shows that these two methods are equivalent in the limit as
the exposure tends to infinity:

Proposition 7. Let h
R,(CRM)
i (ψ;N0) be defined according to (8) and assume that E[Nij ] =

wiᾱiβj, where wi is an exposure measure. For any δ > 0 it holds that

P
(

1

wi

∣∣∣E[R
R,(CRM)
i |N0]− E[R

R,(CRM)
i ]

∣∣∣ > δ

)
= P

(∣∣∣∣ 1

wi
h
R,(CRM)
i (ψ;N0)− r̄i

∣∣∣∣ > δ

)
≤ v̄i
δ2wi

→ 0,

as wi →∞, where

r̄i :=
1

wi
E[h
R,(CRM)
i (ψ;N0)] = µ

m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

λkᾱiβj−k,

v̄i :=
1

wi
Var(h

R,(CRM)
i (ψ;N0)) = φµ2

m−i∑
j=0

d∧(m−1+d−j)∑
k=m−i+1−j

λk

2

ᾱiβj .

The proof of Proposition 7 is given in Appendix B, from which it is clear that the same
result follows verbatim for the VNJ model. Proposition 7 states that

1

wi
h
R,(CRM)
i (θ;N0)

p→ r̄i,
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as wi →∞, i.e. that the normalised conditional expectation of the outstanding claims pay-
ments stemming from RBNS claims converges to the normalised unconditional ones. Since
the corresponding IBNR quantities are the same for finite exposure this implies that the
conditional expectation of the total outstanding claims payments converges to the uncondi-
tional one.

Remark 2. Note that Proposition 7 gives convergence when we consider X
R,(CRM)
ij with

(i, j) ∈ A∗0 and not Ã∗0, i.e. in the complete lower right trapezoid (including the tail) and
not just the regular lower right triangle (without the tail), but it is straightforward to modify
the proof to this case.

In practice, it is necessary to estimate the parameters and use these when performing pre-
diction. Since r̄i := r̄i(ψ;θ) the plug-in estimator of r̄i is given by r̄i(ψ̂; θ̂). An application
of Slutsky’s theorem together with Proposition 7 yields the following corollary:

Corollary 2. The following convergences hold as wi →∞:

1

wi
h
R,(CRM)
i (ψ̂;N0)

p→ r̄i,

1

wi
h
R,(CRM)
i (ψ̂

D
;N0)

p→ r̄i,

r̄i(ψ̂; θ̂)
p→ r̄i,

r̄i(ψ̂
D

; θ̂)
p→ r̄i.

Corollary 2 states that plug-in prediction of the outstanding claims payments from RBNS
claims, based on either conditional or unconditional expectations, and either GLM or DCL-
based estimators, converge to the same limiting object. Using r̄i with plug-in of the DCL

estimators ψ̂
D

and θ̂ together with the corresponding IBNR part, both restricted to the
lower right triangle without the tail Ã∗0 (see Remark 2) yields the reserve estimator of the
chain ladder technique, see Miranda et al. (2012). It is thus clear that the chain ladder
technique can be motivated as a large-exposure approximation of the CRM without the
tail.

4 Comparison of the CRM and the VNJ model

As pointed out in Section 3, the VNJ model assumes that a claim can only generate a single
payment, whereas the CRM allows for multiple payments per claim. We will now relate
the two approaches by making a detailed comparison of the models. The main purpose of
this paper is to set out the theory underlying the CRM, but it is also of interest to see
the modelling consequences of using the simplified single payment model. In Section 4.1 we
relate the two models using a theoretical construct and investigate the relationship between
model variances. Section 4.2 is concerned with comparing estimated variances based on
plug-in estimation.

4.1 Comparison in terms of model dynamics

In this section, we will introduce a parametrisation of the VNJ model corresponding to a
series of payments being exchanged for a single payment. This single payment will have the
same first two moments as those of the underlying series of payments coming from the CRM.
This is a straightforward way of connecting the two models, which will allow for comparison
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of model dynamics. Note, however, that the two models are fundamentally different. Given
that a claim has already given rise to one payment, the CRM assumes that there are possible
future payments that are unknown today. In the VNJ model, however, these are considered
known since they are part of the already occurred payment.

The parametrisation introduced below will guarantee that the expected outstanding claims
payments are the same between the two models, but the variances will naturally be different.
We will now investigate the effect of approximating the CRM by the VNJ model in the above
described manner on the ordering of the variances.

To make the connection between the models more precise, let N tot
ij denote a random variable

which is distributed in the same way as the number of payments of a single claim incurred
in (i, j) given the payment dynamics of the CRM, i.e.

N tot
ij ∼ Po (Λ) .

Now, define the payment distribution of the VNJ model in the following way:

Y
(VNJ)
ijk

d
=

Ntot
ij∑
l=0

Y
(CRM)
ijl (12)

where Y
(CRM)
ijl is the lth payment in (i, j) in the CRM. That is, for a fixed (i, j) it is an

enumeration of all Ỹi,j−k,k,p. Moreover, let the payments in the VNJ model be distributed
according to the intensities of the Poisson payment process of the CRM, i.e.

pk :=
λk
Λ

= πk. (13)

That is, by this definition, Y
(VNJ)
ijk corresponds, in distribution, to the replacement of a series

of payments with a single aggregated payment, which is distributed in time according to
probabilities proportional to the Poisson-intensities. For the VNJ model, parametrised in
this way, it holds that

E[Y
(VNJ)
ijk ] = µΛ = µ̃, (14)

and

Var(Y
(VNJ)
ijk ) = (µ2 + σ2)Λ = σ̃2. (15)

Note that the meanings of πk and pk differ: The πks describe how payments, generated by
a claim in the CRM, are distributed w.r.t. time since reporting, whereas the pks describe
the distribution of when in time a single total payment is paid w.r.t. time since reporting.
That is, we replace a Poisson number of smaller payments with a single larger payment.
This single larger payment is paid k periods since reporting with a probability proportional
to the kth Poisson intensity.

Given the above definition we can now state the following result relating the two models:

Proposition 8. For X
(VNJ)
ij defined in terms of Y

(VNJ)
ijk in (12) such that (13), (14) and

(15) are fulfilled, it holds that

E[X
(VNJ)
ij |N0] = E[X

(CRM)
ij |N0],

and

Var(X
(VNJ)
ij |N0) ≥ Var(X

(CRM)
ij |N0).
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Further, it holds that

Var(R
R,(VNJ)
i | N0) ≥ Var(R

R,(CRM)
i | N0),

and
Var(R

I,(VNJ)
i | N0) = Var(R

I,(CRM)
i | N0),

i.e.
Var(R(VNJ) | N0) ≥ Var(R(CRM) | N0).

The proof of Proposition 8 is a direct consequence of the parametrization (13)-(15) together
with simple algebraic manipulations of the expectations and variances found in (5), (23),
and in Proposition 3 and 11. Proposition 8 states that the variances of the outstanding
payments from IBNR claims are equal for the two models. This is no surprise, since in the
IBNR case we sum over the whole future of a claim that is currently unreported. In this
case it does not matter how in time the payments are distributed, only that the moments of
the total payments are equal. For the RBNS part, the variance is always greater in the VNJ
model. Part of the reason for this is that there is more of an ”all or nothing” situation in
the VNJ model. That is, since we are not conditioning on whether a payment has occurred
or not, it is possible that a payment has already occurred for a claim, and therefore there
will be 0 outstanding payments coming from that claim. Comparatively, in the CRM there
is more of a steady stream of smaller payments.

The above comparison is based on a theoretical construct. The models are fundamentally
different and exist on completely different probability spaces. In the next section we look
at a comparison that is more practically relevant. We look at the ordering of the estimated
variances based on plug-in of the parameter estimates.

4.2 Comparison in terms of the effect of parameter estimation

In Section 4.1 we discussed the effect of replacing a series of payments with a single pay-
ment whose first two moments are equal to those of the underlying series of payments. The
conclusion stated in Proposition 8 is that the process variance is larger in the approximat-
ing single payment model, the VNJ model, compared with the multiple payments model,
the CRM. In this section we discuss the effects of fitting the two different models to the
same data, regardless of what process has generated it, and how this affects the size of the
estimated variances. In Section 3, when parameter estimation was discussed, it was noted
that both the CRM and the VNJ model will use the same ψ̂ks, see Remark 1. Therefore,
both models will produce the same reserve estimates. This, however, does not imply that
the variances are related according to the theoretical construct of Section 4.1. By using the
parameter estimates from Section 3, it is possible to show the following:

Proposition 9. Let V̂ar(i)(·|N0) = Var(·|N0)(θ̂
(i)

) denote the plug-in variance estimator
using the parameter estimators of model i, i ∈ {CRM, VNJ}. It then holds that

V̂ar(VNJ)(X
(VNJ)
ij | N0) ≤ V̂ar(CRM)(X

(CRM)
ij | N0),

and

V̂ar(VNJ)(R
I,(VNJ)
i | N0) ≤ V̂ar(CRM)(R

I,(CRM)
i | N0).

Moreover,

V̂ar(VNJ)(R
R,(VNJ)
i | N0) ≤ V̂ar(CRM)(R

R,(CRM)
i | N0),
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if and only if

Λ̂ ≥
∑m−i
j=0 Nij q̂j∑m−i
j=0 Nij q̂

2
j

=: Λ̂Bound,1
i , (16)

and

V̂ar(VNJ)(R
(VNJ)
i | N0) ≤ V̂ar(CRM)(R

(CRM)
i | N0), (17)

if and only if

Λ̂ ≥
∑m−i
j=0 Nij q̂j∑m−i

j=0 Nij q̂
2
j +

∑m−1
j=m−i+1 ν̂ij

=: Λ̂Bound,2
i , (18)

where

q̂j =

d∧(m−1+d−j)∑
k=m−i+1−j

p̂k. (19)

The proof of Proposition 9 can be found in Appendix B. The first thing we can conclude from
Proposition 9 is that we will always estimate the variance of a single cell to be larger in the
CRM. Moreover, the same conclusion follows for the total (per accident year) outstanding
payments stemming from IBNR claims. The RBNS part is not as straightforward, and the
ordering depends on the estimated payment delay distribution in a complex way. The vari-
ance of the total outstanding claims payments per accident year is even less straightforward
to interpret since it depends on the estimated values of the νijs.

We can, however, note that Λ̂Bound,1
i ≥ 1 since 0 ≤ q̂j ≤ 1. Therefore, if the estimated

expected number of payments per claim is smaller than 1, then the RBNS variance of the
CRM is guaranteed to be smaller than that of the VNJ model.

We will refrain from going further into interpreting Proposition 9 and simply conclude that
the bounds Λ̂Bound,1

i and Λ̂Bound,2
i depend on estimated parameters, making it difficult to say

beforehand what ordering will hold. Moreover, the ordering might be different for different
accident years. In Section 6 we illustrate the bounds in a real world example based on the
data used in Verrall et al. (2010).

As a final note, in Section 5 we will see that the ordering of the estimated variances of the
total outstanding claims payments also applies to the ordering of the approximations of the
MSEP according to Lindholm et al. (2018), see Corollary 3.

5 Assessment of prediction uncertainty

To assess prediction uncertainty, including estimation error, Miranda et al. (2011) described
how to bootstrap the VNJ model, and this can also be applied to the CRM by exchanging
the multinomial distribution for a Poisson distribution. Since there is not much to add to
this method of estimating the predictive uncertainty, we will discuss another method based
on semi-analytical approximations of the conditional MSEP.

Let us define the conditional MSEP. Given a random variable X, a filtration F0 and an
F0-measurable predictor of X, X̂, we define the conditional MSEP as follows:

MSEP(X, X̂) = E[(X − X̂)2|F0]

= Var(X|F0) + (E[X|F0]− X̂)2.
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With a bootstrap approach in mind, it is possible to consider semi-analytical approxima-
tions following, for example, Lindholm et al. (2018), which gives an estimator of the mean
squared error of prediction (MSEP). See also Diers et al. (2016), Röhr (2016) and Buchwalder
et al. (2006) for similar approaches, particularly applied to the distribution-free chain ladder
model. In Lindholm et al. (2018) the following approximation of the conditional MSEP is
provided:

M̂SEP(X, X̂) = V̂ar(X | F0) +∇E[X|F0](θ̂;F0)′Ĉov(θ̂)∇E[X|F0](θ̂;F0),

where the gradient of the expectation is taken with respect to the parameter vector θ and the
hats on the variance and covariance denote plug-in estimation. For the CRM this translates
to

M̂SEP(R(CRM), R̂(CRM)) =V̂ar(R(CRM) | N0) (20)

+∇h(CRM)(θ̂;N0)′Ĉov(θ̂)∇h(CRM)(θ̂;N0),

where
h(CRM)(θ;N0) = E[RR,(CRM) +RI,(CRM) | N0],

and θ̂ is a vector containing the parameter estimators ψ̂ and ν̂. The approximation is based
on a re-sampling/bootstrap argument together with a Taylor approximation. Moreover, the

result relies on (i) that E[θ̂] = θ (unbiased estimators), (ii) that it is possible to calculate

the variance and (iii) that it is possible to calculate Cov(θ̂). For both the CRM and the VNJ
model (ii) is possible, see Proposition 3 and 11. Concerning (i), if the estimator is biased,
then there is a need for the following bias correction term:

Bias(θ̂)′∇h(CRM)(θ̂;N0)∇h(CRM)(θ̂;N0)′Bias(θ̂),

see Lindholm et al. (2018). Now, it is the case that the maximum quasi-likelihood estimator
will (likely) be biased. Since we cannot quantify this bias, and since the estimators are
consistent in terms of exposure (and therefore asymptotically unbiased), we can approximate
the MSEP by disregarding this, likely, small contribution.

We still need to be able to calculate the covariance matrix of the estimator. This is not
an easy task since we are optimizing a quasi-likelihood without a closed form solution. A
solution to this would be to approximate the covariance matrix by the Hessian of the quasi-
likelihood, evaluated at the maximum quasi-likelihood estimate. The rationale being that
this is a consistent estimator of the expected Fisher information, which in a conventional
maximum likelihood setting is the asymptotic variance. Here, this is not the case, but it will
serve as an approximation.

We stress that, since we are already performing a GLM fitting on the incurred claims triangle
and on the aggregated claims payments triangle, we would have easy access to the Hessians
and therefore this approximation of the conditional MSEP is easily calculated.

A final note is that the Hessian of the quasi-likelihood, evaluated at the maximum quasi-
likelihood estimate, will be the same for the CRM and the VNJ model. Therefore, the
approximated MSEP will differ between them only as much as the variances differ. The
following corollary to Proposition 9 states this:

Corollary 3. Let q̂j be as in (19), then

M̂SEP(R(VNJ), R̂(VNJ)) ≤ M̂SEP(R(CRM), R̂(CRM)),

if and only if (18) holds.
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It should be noted though that this is in terms of the approximation of the MSEP. The
actual MSEP will likely differ in more than the variance.

We end this section by including a proposition giving all the necessary gradients needed
to calculate (20). The proof is a simple exercise in taking derivatives and keeping track of
indices and is therefore left out.

Proposition 10. The gradients needed to calculate (20) are:

∂

∂αl
h
I,(CRM)
i (θ;N0) = 1{l=i}

m−1+d∑
j=m−l+1

(j−m+l−1)∧d∑
k=0∨(j−m+1)

ψkβj−k,

∂

∂βl
h
I,(CRM)
i (θ;N0) = 1{m−i+1≤l}αi

(m−1+d−l)∧d∑
k=(m−i+1−l)∨0

ψk,

∂

∂ψl
h
I,(CRM)
i (θ;N0) =

m−1∑
k=m−i+1

νik,

∂

∂ψl
h
R,(CRM)
i (θ;N0) =

m−i∑
k=(m−i+1−l)∨0

Nik.

6 Numerical example

The main contribution of this paper is the theoretical underpinning. It is however useful
to have an illustration to see how the CRM compares in a benchmarking situation. In this
section we will look at a numerical example to illustrate how the CRM compares to the VNJ
model and to other benchmarking models, such as the distribution-free chain ladder model.
Moreover, some results from this paper will be illustrated in this numerical example.

We will make use of the same data as Verrall et al. (2010) and Miranda et al. (2011, 2012)
consisting of a portfolio of motor third party liability policies from the general insurer Royal
& Sun Alliance. The data are in two triangles consisting of aggregate claims payments and
total incurred claims as specified in Section 2. The size of the triangles is m = 10 and they
can be seen in Tables 1 and 2. Since we do not have access to the number of payments made
we cannot separate Λ from µ in the CRM when doing estimation. Therefore we will have
to make an assumption about the size of Λ. For simplicity we choose Λ = 1. Moreover, we
have to choose the number of delay parameters. We choose d = 7 to keep in line with the
numerical example of Verrall et al. (2010).

In Table 3 we show the point predictions of the RBNS, IBNR and the total outstanding
claims payments according to (8) and (9) for the CRM and the VNJ model. For comparison
we have included the predictions from the chain ladder technique. The predictions are split
by accident year with the total at the bottom. To illustrate how the tail affects the result we
have included the predictions from the CRM restricted to Ã∗0, i.e. the lower right triangle
excluding the tail. We see that, in this particular case, there is little difference between doing
this and including the tail. Further, there is not a huge difference between the prediction
from the chain ladder technique and the predictions from the CRM and the VNJ model,
which is in line with the conclusions of Section 3.2 that the chain ladder technique is a
large-exposure approximation of the CRM.

In Table 4, RBNS, IBNR and total standard deviations are shown. For comparison we have
included the corresponding quantities for the distribution-free chain ladder model (CLM)
and an ODP model with multiplicative row and column effects. Looking at the total, it can
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Table 1: Run-off triangle of aggregated payments, Xij .

i
j

0 1 2 3 4 5 6 7 8 9

1 451,288 339,519 333,371 144,988 93,243 45,511 25,217 20,406 31,482 1,729
2 448,627 512,882 168,467 130,674 560,44 33,397 56,071 26,522 14,346
3 693,574 497,737 202,272 120,753 125,046 37,154 27,608 17,864
4 652,043 546,406 244,474 200,896 106,802 106,753 63,688
5 566,082 503,970 217,838 145,181 165,519 91,313
6 606,606 562,543 227,374 153,551 132,743
7 536,976 472,525 154,205 150,564
8 554,833 590,880 300,964
9 537,238 701,111
10 684,944

Table 2: Run-off triangle of number of reported claims, Nij .

i
j

0 1 2 3 4 5 6 7 8 9

1 6,238 831 49 7 1 1 2 1 2 3
2 7,773 1,381 23 4 1 3 1 1 3
3 10,306 1,093 17 5 2 0 2 2
4 9,639 995 17 6 1 5 4
5 9,511 1,386 39 4 6 5
6 10,023 1,342 31 16 9
7 9,834 1,424 59 24
8 10,899 1,503 84
9 11,954 1,704
10 10,989

Table 3: The reserve estimates split into IBNR and RBNS claims together with the total
reserve estimate for each accident year i = 1, . . . , 10. Moreover, the total reserve estimate
based on the lower right triangle Ã∗0 is added to illustrate the effect of the tail. The reserve
estimates from the chain ladder technique are added as a benchmark.

i IBNR RBNS Total Cut Total Chain Ladder
1 0 556 556 0 0
2 628 605 1,233 539 1,685
3 1,350 4,514 5,863 5,010 29,379
4 1,510 43,623 45,133 44,231 60,638
5 1,967 94,526 96,493 95,575 101,158
6 2,579 171,633 174,212 173,217 173,802
7 3,168 299,136 302,304 301,327 249,349
8 5,349 509,334 514,684 513,662 475,992
9 14,280 852,144 866,424 865,301 763,919
10 254,499 1,135,678 1,390,177 1,389,152 1,459,860

Total 285,329 3,111,750 3,397,079 3,388,014 3,315,779
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be seen that the CRM and the VNJ model have similar estimates, while the ODP model
has a smaller variance and the CLM has a larger variance.

Table 4: The row-wise conditional standard deviations of the total outstanding claims pay-
ments stemming from IBNR and RBNS claims together with their total for the CRM and
the VNJ model. The corresponding quantities from the chain ladder model (CLM) and an
ODP model with multiplicative row and column effects are added as benchmarks.

i CRMIBNR CRMRBNS CRMTotal VNJIBNR VNJRBNS VNJTotal ODP CLM
1 0 3,099 3,099 0 3,107 3,107 0 0
2 3,464 3,232 4,738 3,449 3,241 4,733 4,250 4,848
3 5,078 8,827 10,184 5,057 8,866 10,207 17,748 14,047
4 5,372 27,441 27,962 5,349 27,565 28,080 25,498 16,643
5 6,131 40,394 40,857 6,105 40,572 41,029 32,933 25,708
6 7,020 54,431 54,882 6,990 54,661 55,106 43,168 40,761
7 7,781 71,859 72,279 7,748 72,138 72,553 51,706 51,324
8 10,111 93,766 94,310 10,068 94,092 94,629 71,439 63,787
9 16,520 121,283 122,403 16,449 121,621 122,728 90,502 135,237
10 69,740 140,014 156,422 69,443 140,254 156,504 125,110 234,965

Total 73,843 231,765 243,244 73,529 232,406 243,760 188,550 288,133

The estimated payment parameters, based on the assumption that Λ̂ = 1, are µ̂ = 162.41
and σ̂2 = 2,803,491. Further, Table 5 shows the estimates (π̂0, . . . , π̂7). Based on these, and
the ν̂ijs, we can calculate the ratios in (16) and (18), corresponding to the bounds of Λ̂ for
which the estimated RBNS and total variances change ordering, respectively. These can be
seen in Table 6. Concerning the RBNS variances, the first bounds are quite a bit greater
than the assumed Λ̂ = 1. For half of the accident years to have a greater estimated RBNS
variance in the CRM, compared to the VNJ model, we would need Λ̂ ≈ 4. With the assumed
Λ̂ = 1, the only accident year where the estimated total variance is larger for the CRM than
for the VNJ model is year 2. As Proposition 9 states, the estimated IBNR variances are
always greater for the CRM.

Table 5: Quasi-maximum likelihood estimates of the parameters πk for k = 0, . . . , d.
j 0 1 2 3 4 5 6 7
π̂j 0.36 0.29 0.11 0.09 0.07 0.04 0.03 0.02

Table 6: Ratios Λ̂Bound,1 and Λ̂Bound,2 as defined by (16) and (18), respectively.

i Λ̂Bound,1 Λ̂Bound,2

1 2.18 2.18
2 2.51 0.70
3 16.24 2.77
4 28.08 14.24
5 16.53 12.30
6 9.85 8.58
7 5.84 5.50
8 3.84 3.69
9 2.45 2.36
10 1.57 1.16
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Finally, we compare the MSEP of the CRM, the VNJ model and the distribution-free chain
ladder model given in Mack (1993). These can be seen in Table 7. The MSEP is smaller
for the CRM and the VNJ model than for the chain ladder model. This stems partly from
the variances being smaller for those models, but it also indicates that the estimation error
is of reasonable size. One could have imagined that the number of parameters necessary to
estimate in the CRM and the VNJ model, would have led to a large estimation error.

Table 7: Approximated root MSEP for the CRM and the VNJ model with the MSEP for
the Chain Ladder model according to Mack (1993) as a reference.

CRM VNJ Mack CL
337,742 338,114 351,784

7 Conclusions

In this paper, we have introduced a model that generalises the model presented in Verrall
et al. (2010). This model has the advantage that it allows for multiple payments per claim
and zero claims. Since predictors of outstanding payments are the same and model fitting
can be done in the same way, this model allows the use of results from Verrall et al. (2010)
while feeling confident that the common case of multiple payments is still taken into account.
In addition, we have provided variance expressions for total outstanding payments stemming
from both IBNR and RBNS claims. This together with the semi-analytical approximation
of the conditional MSEP given in Section 5 provides the possibility to conveniently assess
predictive uncertainty.

Another interesting result presented in this paper is that the double chain ladder method
gives consistent estimators, motivating its use. This together with the fact that it is easily
implemented, speaks in its favour. Moreover, as was stated in the introduction, many articles
have sought to motivate the chain ladder technique. In this paper we have provided a result
stating that the chain ladder technique reserve estimate is asymptotically the same as that of
the model of Verrall et al. (2010) and the model introduced in the present paper, restricted
to the lower right triangle, regardless of estimation method used (GLM or DCL). This
motivates the chain ladder technique as a large-exposure approximation of the model of
Verrall et al. (2010) and the model of the present paper.
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A Summarising properties for the Single payment model
introduced in Verrall et al. (2010)

Verrall et al. (2010) introduced the following model:

The VNJ model. Let the total number of claims incurred in accident year i that are
reported j periods later, Nij, follow an over-dispersed Poisson distribution according to Nij ∼
ODP(νij , φ), i.e.

E[Nij ] = νij ,

Var(Nij) = φE[Nij ],

where all Nij are assumed to be independent. Further, each claim will produce a single
payment, paid with a delay after reporting according to a multinomial distribution. That is,
for each (i, j), the payments from the Nij claims are distributed in time according to

(N
paid,(VNJ)
ij0 , . . . , N

paid,(VNJ)
ijd ) ∼ Mult(Nij ; p0, . . . , pd),

d∑
i=0

pi = 1,

where N
paid,(VNJ)
ijk denotes the number of payments stemming from claims reported in (i, j),

paid k periods later. Moreover, let Yijk denote the kth payment in (i, j), where all Yijk are
assumed to be independent with

E[Yijk] = µ,

Var(Yijk) = σ2.

Note that the VNJ model consists of two parts: (i) a model for claim counts Nij and (ii) a
model for how payments are distributed given observed claim counts. An appealing feature
of the VNJ model is that by assuming that

νij := αiβj ,

m−1∑
j=0

βj = 1, (21)

these parameters may be estimated using the standard Chain-Ladder technique, see e.g.
Renshaw and Verrall (1998). Concerning estimation of the parameters of the payment part,
part (ii), of the VNJ model, it follows by construction that the total amount paid in (i, j) ∈
A0 is given by

X
(VNJ)
ij :=

N
paid,(VNJ)
ij∑
k=0

Yijk,

where “(VNJ)” refers to “the VNJ model” and

N
paid,(VNJ)
ij :=

j∧d∑
k=0

N
paid,(VNJ)
i,j−k,k .

In particular it follows that

E[X
(VNJ)
ij | N0] = µ

j∧d∑
k=0

pkNi,j−k, (22)

Var(X
(VNJ)
ij | N0) = σ2

j∧d∑
k=0

pkNi,j−k + µ2

j∧d∑
k=0

Ni,j−kpk(1− pk) (23)

≈ ϕE[X
(VNJ)
ij |N0], (24)
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where ϕ = (σ2 + µ2)/µ. That is, conditional on N0, Xij may be, approximately, defined in
terms of a quasi-Poisson or over-dispersed Poisson generalized linear model, whose parame-
ters are easy to estimate using standard statistical software, e.g. R, by introducing the alter-
native parametrisation ψk = µpk and using that µ =

∑d
k=0 ψk together with σ2 + µ2 = ϕµ:

p̂k = ψ̂k∑d

j=0
ψ̂j

,

µ̂(VNJ) =
∑d
j=0 ψ̂j ,

(σ̂(VNJ))2 = ϕ̂µ̂(VNJ) − (µ̂(VNJ))2.

Further, if we let R
R,(VNJ)
i and R

I,(VNJ)
i be defined in accordance with (6) and (7), then

E
[
R
R,(VNJ)
i | N0

]
= µ

m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

pkNi,j−k, (25)

E
[
R
I,(VNJ)
i | N0

]
= µ

m−1+d∑
j=m−i+1

(j−(m−i+1))∧d∑
k=0

pkνi,j−k. (26)

Note that in (26) we have used that E[Ni,j−k | N0] = E[Ni,j−k] = νi,j−k due to construction.
The reserve estimators used in practice are hence obtained by replacing all parameters in
(25) and (26) with their corresponding estimates. That is, the νij are estimated using the
chain ladder technique and all other parameters are estimated using the above described
quasi-likelihood approach.

Further, the variance for the VNJ model, not found in Verrall et al. (2010), is given in the
following proposition:

Proposition 11. The variance of the total outstanding claims payments in the VNJ model
is given by

Var(R(VNJ) | N0) = Var

(
m∑
i=1

R
R,(VNJ)
i +R

I,(VNJ)
i

∣∣∣∣∣ N0

)

=

m∑
i=1

Var(R
R,(VNJ)
i | N0) +

m∑
i=2

Var(R
I,(VNJ)
i ),

where

Var(R
R,(VNJ)
i | N0) = σ2

m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

pkNi,j−k

+ µ2
m−i∑
j=0

Nijqj(1− qj), (27)

where

qj =

d∧(m−1+d−j)∑
k=m−i+1−j

pk,

and where

Var(R
I,(VNJ)
i ) = (σ2 + φµ2)

m−1∑
j=m−i+1

νi,j . (28)

The proof of Proposition 11 is given in Appendix B.
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B Proofs

Proof of Proposition 1. By towered expectations we have

E[X
(CRM)
ij |N0] =

j∧d∑
k=0

E[X
(CRM)
i,j−k,k | N0]

=

j∧d∑
k=0

µi,j−k,kE[N
paid,(CRM)
i,j−k,k ]|N0]

=

j∧d∑
k=0

λkµi,j−k,kNi,j−k,

and by variance decomposition we have

Var(X
(CRM)
ij |N0) =

j∧d∑
k=0

(
σ2
i,j−k,kE[N

paid,(CRM)
i,j−k,k |N0] + µ2

i,j−k,k Var(N
paid,(CRM)
i,j−k,k |N0)

)

=

j∧d∑
k=0

(σ2
i,j−k,k + µ2

i,j−k,k)λkNi,j−k

=

j∧d∑
k=0

σ2
i,j−k,k + µ2

i,j−k,k

µi,j−k,k
E[X

(CRM)
i,j−k,k|N0].

The independence between all X
(CRM)
ij and X

(CRM)
ijk follows trivially from the independence

between all N
paid,(CRM)
ijk and Ỹijkl.

Proof of Proposition 2 Part (i). We can split the quasi-likelihood into two parts according
to:

lp(θ;F0) = lptri(θ;F0) + lpn(θ;F0),

where

lptri(θ;F0) =

m∑
i=1

m−i+1∑
j=0

[
Xij log

(
j∧d∑
k=1

θkNi,j−k

)
−

j∧d∑
k=1

θkNi,j−k

]
,

lpn(θ;F0) =

0∑
i=−n

m∑
j=0

[
Xij log

(
j∧d∑
k=1

θkNi,j−k

)
−

j∧d∑
k=1

θkNi,j−k

]
.

This function is a sum of compositions of a mapping of the form η 7→ a log(η)− η (which is

concave for a ≥ 0) and the mapping θ 7→
∑j∧d
k=1 θkNi,j−k (which is also concave). Since com-

positions of concave functions are concave, lp is concave in θ. Define Mn(θ) := 1
n l
p(θ;F0),

then

Mn(θ)
p→

m∑
j=0

E

[
Xij log

(
j∧d∑
k=1

θkNi,j−k

)
−

j∧d∑
k=1

θkNi,j−k

]
=: M(θ),

as n→∞ for all θ ∈ Θ, where Θ is the parameter space (either R or R+ in our case), since
1
n l
p
n(θ;F0)

p→ M(θ) by the weak law of large numbers and 1
n l
p
tri(θ;F0)

p→ 0 trivially. Now,
by iterated expectations, we know that

M(θ) =

m∑
j=0

E

[(
j∧d∑
k=1

ψkNi,j−k

)
log

(
j∧d∑
k=1

θkNi,j−k

)
−

j∧d∑
k=1

θkNi,j−k

]
.
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This function is again concave and has the unique optimum ψ. By (Schweder and Hjort,

2016, Lemma A.2) it now follows that ψ̂ converges in probability to ψ.

Proof of Proposition 2 Part (ii). We first note that
Nij

wi

p→ νij as wi → ∞ since, for any
δ > 0,

P
(∣∣∣∣Nijwi − νij

∣∣∣∣ > δ

)
≤ Var(Nij)

δ2w2
i

=
φνij
δ2wi

→ 0,

as wi →∞. Moreover, for any δ > 0,

P

(∣∣∣∣∣Xij

wi
−

j∧d∑
k=0

ψkνi,j−k

∣∣∣∣∣ > δ

)
≤ Var(Xij)

δ2w2
i

=
1

δ2wi

j∧d∑
k=0

λkνi,j−k
(
µ2(1 + φλk) + σ2

)
→ 0,

as wi →∞, and therefore
Xij

wi

p→
∑j∧d
k=0 ψkνi,j−k as wi →∞.

Furthermore, we have that

Nij∑
i wi

=
wi∑
i wi

Nij
wi

p→ ciνij ,

where ci ∈ [0, 1].

Now, let

Mn(θ) :=
1∑
i wi

∑
i,j∈I

[
Xij log

(∑j∧d
k=0 θkNi,j−k

wi

)
−

j∧d∑
k=0

θkNi,j−k

]

∝ lp(θ;F0)∑
i wi

,

which is nothing but the normalized quasi-likelihood with a constant function of the wis
added to it. It will be concave and have the same optimum as the quasi-likelihood. From
the above it is clear that

Mn(θ)
p→
∑
i,j∈I

ci

[(
j∧d∑
k=0

ψkνi,j−k

)
log

(
j∧d∑
k=0

θkνi,j−k

)
−

j∧d∑
k=0

θkνi,j−k

]
=: M(θ)

and that the optimum of M is ψ. It now follows, again by (Schweder and Hjort, 2016,

Lemma A.2), that ψ̂ converges in probability to ψ.

Proof of Proposition 11. Since all accident years, as well as IBNR and RBNS claims pay-

ments, are independent it suffices to analyse R
(VNJ)
i . Further, by expanding R

(VNJ)
i we get

that

Var(R
R,(VNJ)
i | N0) = Var

 m−1+d∑
j=m−i+1

X
R,(VNJ)
ij | N0


= Var

 m−1+d∑
j=m−i+1

N
R,(VNJ)
ij∑
l=0

Y
R,(VNJ)
ijl | N0

 .
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Moreover, if we set NR,(VNJ) := σ{NR,(VNJ)
ij : (i, j) ∈ A∗0} we can use variance decomposi-

tion which yields

Var(R
R,(VNJ)
i | N0) = E[Var(R

R,(VNJ)
i | NR,(VNJ)) | N0]+Var(E[R

R,(VNJ)
i | NR,(VNJ)] | N0),

where

E[Var(R
R,(VNJ)
i | NR,(VNJ)) | N0] = E

 m−1+d∑
j=m−i+1

Var

N
R,(VNJ)
ij∑
l=0

Y
R,(VNJ)
ijl | NR,(VNJ)

 | N0


= E

 m−1+d∑
j=m−i+1

N
R,(VNJ)
ij σ2 | N0


= σ2

m−1+d∑
j=m−i+1

j∧d∑
k=j−(mi−i)

pkNi,j−k,

where the first equality follows from that all Y
R,(VNJ)
ijl are independent together with the

conditioning on NR,(VNJ). Similarly it follows that

Var(E[R
R,(VNJ)
i | NR,(VNJ)] | N0) = Var

 m−1+d∑
j=m−i+1

E

N
R,(VNJ)
ij∑
l=0

Y
R,(VNJ)
ijl | NR,(VNJ)

 | N0


= µ2 Var

 m−1+d∑
j=m−i+1

N
R,(VNJ)
ij | N0

 ,

where we may make use of that

m−1+d∑
j=m−i+1

N
R,(VNJ)
ij =

m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

N
paid,(VNJ)
i,j−k,k

=

m−i∑
l=0

d∧(m−1+d−l)∑
v=m−i+1−l

N
paid,(VNJ)
i,l,v (29)

which combined with the above gives us

Var(E[R
R,(VNJ)
i | NR,(VNJ)] | N0) = µ2 Var

m−i∑
l=0

d∧(m−1+d−l)∑
v=m−i+1−l

N
paid,(VNJ)
i,l,v | N0


= µ2

m−i∑
l=0

Nilql(1− ql),

where

ql =

d∧(m−1+d−l)∑
v=m−i+1−l

pv.

Analogously we may, for i ≥ 2, calculate

Var(R
I,(VNJ)
i | N0) = Var(R

I,(VNJ)
i )

= E[Var(R
I,(VNJ)
i | N I,(VNJ))] + Var(E[R

I,(VNJ)
i | N I,(VNJ)]).
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The first term is given by

E[Var(R
I,(VNJ)
i | N I,(VNJ))] = σ2

m−1+d∑
j=m−i+1

(j−(m−i+d))∧d∑
k=0

pkE[Ni,j−k]

= σ2
m−1+d∑
j=m−i+1

(j−(m−i+d))∧d∑
k=0

pkνi,j−k

= σ2
m−1+d∑
j=m−i+1

νij ,

where the last equality follows from that we for each νij will sum over all pk where
∑
pk = 1,

i.e. we sum over all possible future payment periods. Further, the second term may be
simplified to

Var(E[R
I,(VNJ)
i | N I,(VNJ)]) = µ2 Var

 m−1+d∑
j=m−i+1

N
I,(VNJ)
ij


and we may, similarly to (29), make use of an alternative re-indexation which gives us that

m−1+d∑
j=m−i+1

(j−(m−i+d))∧d∑
k=0

N
paid,(VNJ)
i,j−k,k =

m−1∑
l=m−i+1

d∑
v=0

N
paid,(VNJ)
i,l,v

=

m−1∑
l=m−i+1

Nil,

where the last equality is due to the multinomial assumption. By combining the above we
get

Var(E[R
I,(VNJ)
i | N I,(VNJ)]) = µ2 Var

 m−1∑
j=m−i+1

Nij


= µ2φ

m−1∑
j=m−i+1

νij ,

which finally gives us that

Var(R
I,(VNJ)
i ) = (σ2 + µ2φ)

m−1∑
j=m−i+1

νij , i ≥ 2.

Proof of Proposition 3. The proof of the variance of the outstanding payments stemming
from RBNS claims is identical with that of Proposition 11, although the assumption of
a Poisson number of payments per claim introduces independence between disjoint time
intervals. Thus,

Var(R
R,(CRM)
i | N0) =E[Var(R

R,(CRM)
i | NR,(CRM)) | N0]

+ Var(E[R
R,(CRM)
i | NR,(CRM)] | N0)
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where

E[Var(R
R,(CRM)
i | NR,(CRM)) | N0] = E

Var

 m−1+d∑
j=m−i+1

N
R,(CRM)
ij∑
l=0

Y Rijl | NR,(CRM)

 | N0


= σ2

m−1+d∑
j=m−i+1

E

 j∧d∑
k=j−(m−i)

N
paid,(CRM)
i,j−k,k | N0


= σ2

m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

λkNi,j−k,

and

Var(E[R
R,(CRM)
i | NR,(CRM)] | N0) = µ2 Var

 j∧d∑
k=j−(m−i)

N
paid,(CRM)
i,j−k,k | N0


= µ2

m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

λkNi,j−k,

which concludes the proof for the RBNS reserve.

Concerning the IBNR reserve, we may again exploit the independence between payments in
different time intervals, which gives us that

Var(R
I,(CRM)
i ) = E[Var(R

I,(CRM)
i | N I,(CRM))] + Var(E[R

I,(CRM)
i | N I,(CRM)])

= σ2E

 m−1+d∑
j=m−i+1

N
I,(CRM)
ij

+ µ2 Var

 m−1+d∑
j=m−i+1

N
I,(CRM)
ij

 .

By letting N ∗0 := σ{Nij : (i, j) ∈ A∗0} we can use towered expectation to get

E

 m−1+d∑
j=m−i+1

N
I,(CRM)
ij

 = E

 m−1+d∑
j=m−i+1

(j−(m−i+1))∧d∑
k=0∨(j−m+1)

N
paid,(CRM)
i,j−k,k


= E

E
 m−1+d∑
j=m−i+1

(j−(m−i+1))∧d∑
k=0∨(j−m+1)

N
paid,(CRM)
i,j−k,k | N ∗0


=

m−1+d∑
j=m−i+1

(j−(m−i+1))∧d∑
k=0∨(j−m+1)

λkνi,j−k

= Λ

m−1∑
j=m−i+1

νij ,

since the sum spans all possible future payment periods for each νij . Following the IBNR
calculations in the proof of Proposition 11, where the same argument together with another
variance decomposition w.r.t. N ∗0 yields

Var

 m−1+d∑
j=m−i+1

N
I,(CRM)
ij

 = E

Λ

m−1∑
j=m−i+1

Nij

+ Var

Λ

m−1∑
j=m−i+1

Nij


= Λ(1 + Λφ)

m−1∑
j=m−i+1

νij ,
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which finishes the proof.

Proof of Proposition 6. By Lemma 5.2 in Lehmann and Casella (2006), as wi → ∞, π̂D
k

converges in probability to πD,asy
k , denoting the solution of

β̃0
...
...

β̃m−1

 =


β0 0 . . . 0

β1 β0
. . . 0

...
. . .

. . . 0
β0 . . . β1 β0




π0
...
...

πm−1

 .

Row-wise this is

β̃j =

j∑
k=0

πD,asy
k βj−k.

Noting that β̃j = 1
c

∑j∧d
k=0 λkβj−k and solving for πD,asy

k row by row, starting at j = 0, we
get

πD,asy
k =

1

c
λk1{k≤d},

i.e.

π̂D
k

p→ 1

c
λk1{k≤d},

as wi →∞.

For the parameter µD we note that

µ̂D =
ˆ̃α1

α̂1

p→ α̃1

α1
= cµ,

as wi →∞ by Proposition 5. Therefore, for 0 ≤ k ≤ d,

ψ̂D
k := µ̂Dπ̂D

k
p→ µλk =: ψk,

as wi →∞.

Proof of Proposition 7. Note that r̄i is a direct consequence of (8) together with the assumed
parametrisation of νij = wiᾱiβj . Concerning v̄i, we can rewrite (8) as

h
R,(CRM)
i (θ;N0) = µ

m−i∑
j=0

d∧(m−1+d−j)∑
k=m−i+1−j

λkNi,j ,

and therefore

v̄i :=
1

wi
Var(h

R,(VNJ)
i (θ;N0)) = φµ2

m−i∑
j=0

d∧(m−1+d−j)∑
k=m−i+1−j

λk

2

ᾱiβj .

By Chebyshev’s inequality it holds for δ > 0 that

P
(∣∣∣∣ 1

wi
h
R,(CRM)
i (θ;N0)− r̄i

∣∣∣∣ > δ

)
≤ v̄i
δ2wi

→ 0,

as wi →∞.
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Proof of Proposition 9. For the CRM we have

V̂ar(CRM)(X
(CRM)
ij |N0) = ((σ̂(CRM))2 + µ̂2)

j∧d∑
k=0

λ̂kNi,j−k

= ϕ̂µ̂Λ̂

j∧d∑
k=0

π̂kNi,j−k,

and for the VNJ model we have

V̂ar(VNJ)(X
(VNJ)
ij |N0) = (σ̂(VNJ))2

j∧d∑
k=0

p̂kNi,j−k + (µ̂(VNJ))2
j∧d∑
k=0

Ni,j−kp̂k(1− p̂k)

= (ϕ̂Λ̂µ̂− Λ̂2µ̂2 + Λ̂2µ̂2)

j∧d∑
k=0

p̂kNi,j−k − µ̂2Λ̂2

j∧d∑
k=0

Ni,j−kp̂
2
k

= ϕ̂Λ̂µ̂

j∧d∑
k=0

p̂kNi,j−k − µ̂2Λ̂2

j∧d∑
k=0

Ni,j−kp̂
2
k.

Therefore,

V̂ar(VNJ)(X
(VNJ)
ij |N0)− V̂ar(CRM)(X

(CRM)
ij |N0) = −µ̂2Λ̂2

j∧d∑
k=0

Ni,j−kp̂
2
k ≤ 0,

and thus first part follows.

We now move on to the variances of the total outstanding claims stemming from either IBNR
or RBNS claims. We start with the RBNS variance. First of all, inserting the parameter
estimators of the CRM into (10) yields

V̂ar(CRM)(R
R,(CRM)
i | N0) = (σ̂(CRM))2

m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

λ̂kNi,j−k

= Λ̂
(
ϕ̂µ̂− µ̂2

) m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

1

µ̂Λ̂
ψ̂kNi,j−k.

In the same way, inserting the parameter estimators of the VNJ model into (27) yields

V̂ar(VNJ)(R
R,(VNJ)
i | N0)

= (σ̂(VNJ))2
m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

p̂kNi,j−k + (µ̂(VNJ))2
m−i∑
j=0

Nij q̂j(1− q̂j)

=
(
ϕ̂µ̂Λ̂− µ̂2Λ̂2

) m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

1

µ̂Λ̂
ψ̂kNi,j−k + µ̂2Λ̂2

m−i∑
j=0

Nij q̂j(1− q̂j).

By noting that

m−i∑
j=0

Nij q̂j(1− q̂j) =

m−i∑
j=0

Nij q̂j −
m−i∑
j=0

Nij q̂
2
j ,
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and

m−i∑
j=0

Nij q̂j =

m−i∑
j=0

d∧(m−1+d−j)∑
k=m−i+1−j

p̂kNij

=

m−1+d∑
j=m−i+1

j∧d∑
k=j−(m−i)

p̂kNi,j−k,

we finally get that

V̂ar(VNJ)(R
R,(VNJ)
i | N0)− V̂ar(CRM)(R

R,(CRM)
i | N0) = µ̂2Λ̂

m−i∑
j=0

Nij q̂j − Λ̂

m−i∑
j=0

Nij q̂
2
j

 .

From which it is clear that

V̂ar(VNJ)(R
R,(VNJ)
i | N0) ≤ V̂ar(CRM)(R

R,(CRM)
i | N0)

if and only if (16) holds.

For the IBNR variance we go about things in the same way. Inserting the parameter esti-
mators of the CRM into (11) yields

V̂ar(CRM)(R
I,(CRM)
i ) =

(
(σ̂(CRM))2 + µ̂2(1 + Λ̂φ̂)

)
Λ̂

m−1∑
j=m−i+1

ν̂ij

=
(
ϕ̂µ̂+ µ̂2Λ̂φ̂

)
Λ̂

m−1∑
j=m−i+1

ν̂ij ,

and inserting the parameter estimators of the VNJ model into (28) yields

V̂ar(VNJ)(R
I,(VNJ)
i ) =

(
(σ̂(VNJ))2 + φ̂(µ̂(VNJ))2

) m−1∑
j=m−i+1

ν̂ij

=
(
ϕ̂µ̂− µ̂2Λ̂ + φ̂µ̂2Λ̂

)
Λ̂

m−1∑
j=m−i+1

ν̂ij .

Therefore we can conclude that,

V̂ar(VNJ)(R
I,(VNJ)
i )− V̂ar(CRM)(R

I,(CRM)
i ) = −µ̂2Λ̂2

m−1∑
j=m−i+1

ν̂ij ≤ 0.

Finally, the last part of the proposition follows in the same way as the first part, but instead
looking at the difference(

V̂ar(VNJ)(R
I,(VNJ)
i ) + V̂ar(VNJ)(R

R,(VNJ)
i )

)
−
(

V̂ar(CRM)(R
I,(CRM)
i ) + V̂ar(CRM)(R

R,(CRM)
i )

)
.

This calculation is left out of the proof since it is a tedious repetition of the above calculations
with a slight modification.
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