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Abstract

In this paper we introduce the concept of quantile-based optimal portfolio

selection and a specific portfolio connected to it, the Conditional Value of

Return (CVoR) portfolio. The portfolio selection consists solely of quantile-

based risk and return measures. The portfolio has several advantages. It

circumvents the estimation problem of mean while still taking the positive

part of the return distribution into consideration. It constrains the negative

values of the return distribution by a quantile based risk measure. Thus, it

takes both tails of the return distribution into account.

Financial institutions that work in the context of Basel 4 use Conditional

Value-at-Risk as a risk measure. Under these conditions we provide sufficient

and necessary conditions for optimality of the CVoR portfolio under a general

distributional assumption. The financial institutions that work in the context

of the Solvency 2 insurance regulation must use Value-at-Risk as a risk mea-

sure. We provide a verification type theorem for a global optimum under the

use of Value-at-Risk as a risk measure. Moreover, we show that the CVoR

portfolio is mean-variance efficient when the returns are assumed to follow an

elliptically contoured distribution. Under this assumption we derive closed

form expressions for the weights and characteristics of the CVoR portfolio.

The introduced methods are illustrated based on weekly stock data, and

the results obtained by elliptically contoured asset return distribution are com-

pared with nonparametric CVoR portfolios. For the data at hand, the CVoR

portfolio performs best when assuming elliptically contoured distributions in

comparison to the nonparametric portfolio.

Keywords: Quantile-based return measure, VaR, CVaR, optimal portfolios, ellip-

tical distributions
1Corresponding author. email: erik.thorsen@math.su.se, phone: +468-16 20 00



1 Introduction

Since Markowitz (1952) posed the allocation problem of portfolio theory several

extensions have been introduced. In Markowitz (1952) a portfolio which provided

the smallest risk given an expected return was proposed. Here the variance of the

portfolio was used as a risk measure. The use of variance as a risk measure has

been critized by practioners and researchers in finance. One of the critiques is that

when an asset returns are large the variance scales accordingly. An asset with higher

return need not be riskier. It also depend on the whole loss distribution which might

not be desirable. This has led to one of many extensions to Markovitz portfolio

theory, the change of risk measure. One generalisation is that the variance has been

exchanged for a quantile-based risk measure (see e.g. Linsmeier and Pearson (2000),

Rockafellar and Uryasev (2002)). The two most commonly used are Value-at-Risk

(VaR) and Conditional Value-at-Risk (CVaR). This is a consequence of the Solvency

(EP (2009)) and Basel (BIS (2017)) requirements. In Solvency 2 restrictions on

insurance companies are imposed by using the VaR as a risk measure while the

recent Basel requirements enforce financial institutions to transition from VaR to

CVaR for measuring risk.

Albeit a quantile-based measure for risk has generally been accepted by aca-

demics and practitioners, the expected return is most commonly taken as a default

for the measure of return. Quantile-based risk measures do not depend on the pos-

itive values of the portfolio return distribution; one can ask why the measure of

return should rely on negative values of the portfolio return distribution? Also, us-

ing the portfolio mean as a metric for the investor preferences of the portfolio return

comes with limitations. An example of such a limitation is if the portfolio return

distribution is complicated, such as skew or a mixture of distributions, the mean

might be misleading. In such situations the portfolio’s expected return is not infor-

mative. The mean of a distribution has a nice interpretation in probability theory

only for symmetric distributions where it indicates the location of the distribution.

Moreover, since the quantities of interest are usually not known when a portfolio is

constructed, we must use estimates of the unknown quantities to realise our posi-

tions. As an estimate, the sample mean is known to be poor in terms of stability and

convergence when compared to the quantities used for constructing risk measures,

such as the covariance matrix (see e.g. Merton (1980), Best and Grauer (1991) and

Chan et al. (1999)). Albeit the investor can use any estimate, the issue an investor

poses is then to motivate why he or she chooses to optimize towards the mean. In

this paper we propose an extension to the existing quantile-based portfolio selection

problems to tackle these described shortcomings.
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Portfolios using quantile-based risk measures together with the mean have been

investigated in Alexander and Baptista (2002), Alexander and Baptista (2004) and

Yao et al. (2013) to name a few. Alexander and Baptista (2002) investigated a

mean-VaR portfolio selection problem under gaussian returns. The authors used

the mean as a return measure while minimizing the risk, measured by VaR. Goh

et al. (2012) also looked upon then same portfolio selection problem but extended

it by modifying a worst-case scenario VaR to specifically cover asymmetry in the

returns. Alexander and Baptista (2004) then extended their work from 2002 by

considering the mean-CVaR portfolio under gaussian returns. Huang et al. (2010)

considered a robust version of the portfolio selection problem, placing bounds on

the unknown parameters of interest while considering the mean-CVaR portfolio se-

lection problem. Since Rockafellar and Uryasev (2002) showed that the CVaR has

the property of being coherent (convex) under a general distribution a number of

purely data-driven portfolios have emerged. They proposed the use of the empirical

distribution function as an approximation of the true underlying density. Yao et al.

(2013) considered a nonparametric mean-CVaR portfolio by using kernel density

estimators to approximate the true density.

To overcome these discussed shortcomings, we introduce the Conditional Value of

Return (CVoR) portfolio which is solely constructed from quantile-based measures.

The mean is replaced by a quantile-based measure which depends on the positive

part of the portfolio return distribution. The risk is constrained by using a quantile-

based risk measure. By doing so we are able to take both tails of the portfolio return

distribution into account. To our knowledge, no such portolio selection problem

exists in the literature. Our aim is to show the great applicability and flexibility of

such a portfolio for an investor who is interested in maximizing their return (how

he or she chooses to define it) while constraining their risk. This is in accordance

with the modern portfolio theory of Markowitz (1952).

The CVoR portfolio will also be connected to the work of Merton (1972) who

showed that the Markowitz portfolio lies on the efficient frontier, a parabola in

the mean-variance space. Merton also showed that the parabola is completely de-

termined by a set of three parameters. One determines the shape and the other

determines its location. The properties of the parameters that constitute the effi-

cient frontier has been widely investigated under different assumptions. Bodnar and

Gupta (2009) derived the parametric form of the efficient frontier under elliptically

distributed returns which we will connect to as a special case of the CVoR portfolio.

The remainder of the paper is outlined as follows. In Section 2 we present

the CVoR portfolio in its most general form. Here, we discuss the implications of
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using such a portfolio. In Section 3 we present the CVoR portfolio assuming that

the returns are elliptically contoured distributed. Under this assumption we will

connect it to the efficient frontier in the mean-variance space and give a closed form

solution to the portfolio weights and its characteristics. We end the paper with an

empirical analysis in Section 4 and conclude with a discussion in Section 5.

2 The Conditional Value of Return Portfolio

In this section we will introduce the conditional value of return portfolio selection

problem. We first define coherency for a functional according to Artzner et al.

(1999). We thereafter connect this to the conditional value of return portfolio. We

have the following

Definition 1. Let (Ω,F) denote a measure space, X a linear space of F measurable

functions such that any X ∈ X , X : Ω→ R. A coherent functional A from X → R

must fulfill

1. Concavity: ∀X, Y ∈ X , λ ∈ [0, 1] then A(λX + (1 − λ)Y ) ≥ λA(X) + (1 −
λ)A(Y )

2. Monotonicity: if X ≤ Y then A(X) ≤ A(Y )

3. Translation equivariance: A(Y + a) = A(Y ) + a, where a ∈ R

4. Positive homogeneity: λ ≥ 0 we have that A(λY ) = λA(Y ).

A coherent risk functional is then on the form ρ = −A. This small rewriting of

the definition is of great interest since it explicitly defines the concept of coherency

for return measures. It can be seen that the functional A works exactly like one

would think a return measure should. Taking A to be the ordinary expectation we

can see that it fulfills all properties of being a coherent return measure.

Let X and w be p-dimensional vectors consisting of asset returns and portfolio

weights, respectively. We define the portfolio as Xw = f(w,X) for a given set of

weights w. Most often f will be an affine function, i.e f(w,X) = w>X. Now, let

qβ(X) := infx{FX(x) ≥ β} where β ∈ (1/2, 1), be the β percentile of the distribution

X. We define the conditional value of return (CVoR) as E[Xw|Xw ≥ qα1(Xw)] at

significance level α1 with weights w. It is easy to see from Definition 1 that the

CVoR is a coherent return measure and that it truly behaves like a return measure.

If we have two positions X and Y for which F (X ≥ x) ≤ F (Y ≥ x), then the same

inequality holds for the CVoR. Also, assuming that α1 is fixed and qα1(Xw) = 0
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we can interpret the CVoR return measure as the expected return, given that we

actually make a profit. Rockafellar and Uryasev (2002) showed that the the CVaR

functional is a coherent function for a general loss distribution and investigated

its properties as a function of the portfolio (decision vector) w. Through their

results, more specifically Theorem 10 of Rockafellar and Uryasev (2002), the CVoR

is concave in w as long as f is concave in w.

Let FXw(·) denote the cumulative distribution function (CDF) of the portfolio

return. Let ρ(Xw;α2) denote a quantile-based risk measure at the significance level

α2 constructed for the loss distribution of Xw. Consider the following optimization

problem

max
w

E[Xw|Xw ≥ qα1(w)]

s.t. w>1 = 1

ρ(Xw;α2) ≤ v0,

(1)

where α1, α2 ∈ (1/2, 1). The optimization problem (1) and its optimal solution will

henceforth be called the Conditional Value of Return (CVoR) portfolio. The CVoR

portfolio can be seen as a mean-variance portfolio but with quantile-based measure

for the return and risk. Also note that we define the CVoR portfolio under a general

return distribution and risk measure. By optimizing towards the return measure

and constraining the risk in terms of the risk measure ρ(Xw;α2), both tails of the

return distribution are accounted for.

Next, we investigate the properties of the CVoR portfolio. Let value-at-risk

(VaR) of a loss distribution Y be defined as VaRβ(Y ) := qβ(Y ) where β ∈ (1/2, 1).

The conditional value-at-risk (CVaR) is defined as E[Y |Y ≥ VaRα1(Y )]. By the

results of Rockafellar and Uryasev (2002) we retrieve necessary and sufficient con-

ditions for the existence of the CVoR portfolio when ρ(Xw;α2) is chosen to be

the CVaR. These are summarized in Theorem 1, whose proof follows immediately

from the Karush-Kuhn-Tucker conditions presented in Theorems 4.3.7 and 4.3.8 of

Bazaraa et al. (2013).

Theorem 1. Let ρ(Xw;α2) = E[−Xw|−Xw ≥ VaRα2(−Xw)] and Xw is concave in

w. A portfolio w∗ is a global solution to (1) if and only if the Karush-Kuhn-Tucker

conditions hold.

By construction the CVoR portfolio inherits sufficient and necessary conditions

under a general return distribution. Not only does it imply an extreme flexibility in

terms of modelling in the context of the CVoR portfolio but also gives great comfort

in terms of its economical applicability. If an investor needs to work in the context of
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the new Basel requirements, then he or she will choose the CVaR as a risk measure.

The investor can then be sure that the solution and optimum of (1) is the unique

maximum. He or she cannot do any better.

The results of Theorem 1 is not limited to the use of CVaR as a risk measure.

However, the practical relevance of the CVoR portfolio is then lost (to some extent)

because of the Basel requirements. As long as the investor can limit themselves to

a certain class of risk measures, the results of Theorem 1 still applies. We have the

following

Remark 1. Assume that ρ(Xw;α2) is a coherent risk measure. Then the results of

Theorem 1 still apply.

An example of risk measures that are coherent are the class of spectral risk

measures. For a more thorough introduction to spectral risk measures, see e.g.

Acerbi (2002) and Adam et al. (2008).

In an insurance context, European insurers have to follow the Solvency 2 reg-

ulation. The risk measure is now chosen to be the Value-at-Risk (VaR). However,

all quantile-based risk measures are not obviously coherent (convex) (see e.g. Rock-

afellar and Uryasev (2000)) and one such examples is the VaR. This poses several

difficulties for the construction of the CVoR portfolio under a general return dis-

tribution when ρ(Xw;α2) = VaRα2(−Xw) in (1), since the distribution function

FXw(x) may contain atoms. However, by imposing regularity conditions we may

provide somewhat weaker conditions in comparisons to Theorem 1. Under these

assumptions, which are to be disclosed, we are able to present a verification type

theorem for the CVoR portfolio using the VaR as a risk meaure.

Theorem 2. Let X denote the class of random variables which are absolutely con-

tinuous, have support on Rp and whose cumulative distribution function is quasicon-

cave2. Let ρ(Xw;α2) = VaRα2(−Xw), Xw be an affine function in w and assume

that the return distribution X ∈ X . A portfolio w∗ which fulfills the Karush-Kuhn-

Tucker conditions of (1) is a global optimum.

Proof. We need only to devote ourselves to the risk constraint. By absolute conti-

nuity, we may rewrite the constraint according to 1 − α2 ≤ FXw(v0). By Theorem

4.39 of Shapiro et al. (2009) we have that the constraint is a quasiconcave function

of w. The rest of the proof follows from Theorem 4.3.8 of Bazaraa et al. (2013).

2Let g : S → R have support on S, a convex set in Rp. The function g is quasiconcave at
x∗ ∈ S if

g(λx∗ + (1− λ)x) ≥ max(g(x∗), g(x))

for each λ ∈ (0, 1) and each x ∈ S.
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The sufficient conditions give us some comfort in the applicability of the CVoR

portfolio under Solvency 2. The class of absolutely continuous distributions is grand.

Distributions of complicated forms, such as skew, fat tailed or mixture distributions

are covered. Note that the assumption, that the cumulative distribution function

of asset returns is quasiconcave, in turn implies that the cumulative distribution

function of the portfolio return is also quasiconcave.

2.1 Numerical approaches for constructing the CvoR Portfolio and their

complexity

In this section we shortly discuss the applicability of numerical methods for finding

solutions to the CVoR portfolio. We continue to divide the discussion of algorithms

in the context of the Basel and Solvency requirements.

Under the Basel requirements we use CVaR as a risk measure. By convexity,

the optimum is easily attained by standard optimization algorithms. It poses no

problem to optimize the CVoR portfolio under a general return distribution. In the

context of the Basel requirements, we may choose any distribution function and op-

timize thereafter. As Rockafellar and Uryasev (2002) noted, if one believes that the

true portfolio distribution function is determined by its empirical counterpart, the

Empirical Cumulative Distribution Function (ECDF), or that it approximates the

true portfolio distribution close enough, then the portfolio allocation problem (1)

becomes a linear programming problem. To show that it holds for the CVoR portfo-

lio as well assume that we select CVaR as a risk measure and that we approximate F

by its ECDF F̂ and it is based on a sample of size N . Also, let [t]+ = max(t, 0). Let

X denote the full sample where each column, denoted Xk, k = 1, ..., N , corresponds

to an observation and each row represents a specific asset. Also, let 0a×b denote the

zero matrix consisting of a rows and b columns, 1a×b be a matrix containing ones

of size a× b and Ia×a be the diagonal matrix of size a. By Theorem 10 Rockafellar

and Uryasev (2002), we have that

E[Xw|Xw > qα1(w)] = min
q

{
q +

1

(1− α1)N

N∑
k=1

[f(w,X)k − q]+
}
. (2)

By using (2) we are able to rewrite (1) and arrive at the following computational

lemma.

Lemma 1. Let Xw = w>X, w = u− v, q = q1− q2, ξ = ξ1− ξ2 and let ηk, θk ≥ 0,

k = 1, ..., N such that −(u−v)>Xk−(γ1−γ2)−ηk ≤ 0 and (u−v)>Xk−(ξ1−ξ2)−
θk ≤ 0, and let z = (u1, u2, ...up, v1, v2, ..., vp, q1, q2, ξ1, ξ2, η1, η2, ..., ηN , θ1, θ2, ..., θN).
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By approximating the distribution function of the portfolio return by its sample coun-

terpart, the optimization problem (1) can be rewritten as

min
z

c>z

s.t. Az− b ≤ 0
(3)

where all elements of z are greater than zero, c =
(
01×2p 1 −1 0 0 1

(1−α1)N
11×p 01×N

)>
,

b =
(
1 −1 v0 02N×1

)>
and

A =



11×p −11×p 0 0 0 0 01×N 01×N

−11×p 11×p 0 0 0 0 01×N 01×N

01×p 01×p 0 0 1 −1 1
(1−α2)N

11×N 01×N

−X X −1N×1 1N×1 0 0 −IN×N 0N×N

X −X 0 0 −1N×1 1N×1 0N×N −IN×N


The proof is presented in the appendix. For actual computation and optimiza-

tion of problem (3) one should consider multiplying the constraint with (1 − α2)N

to increase numerical stability. We can further note that the number of constraints

grows quadratically with N and linearly with p so an application in higher dimen-

sions could be done without a considerable effort.

By Theorem 2 we still have some guarantees on the optimum of the CVoR port-

folio under Solvency 2, using the VaR as a risk measure. The regularity conditions

constrains the random variables to absolutely continuous return distributions, im-

plying that their densities exists. An optimal portfolio w may then be found using

algorithms such as gradient ascent or Newton’s method (Bazaraa et al. (2013, ch.

8.2)) from the Langragian. However, this relies on the fact that we are able to eval-

uate a large number of integrals since the portfolio return distribution is determined

by a (potentially large) convolution of the asset return distribution. The evaluation

of the objective function may be costly and time-consuming. It may also be hard

to attain the gradients since these will contain convolutions. The computational

complexity to evaluate the objective function for a given portfolio w may in itself be

large. However, under a known set of portfolio weights w a scenario model is easy

to implement. Under a known set of weights, we can evaluate the VaR constraint

using the empirical cumulative distribution function. As suggested in Meucci (2009,

Sec. 8.2) an investor may determine a set of portfolios W which is feasible for their

purpose. The investor may then try to perform an exhaustive search on this space

and calculate the empirical quantities of VaR and CVoR. However, he or she then

faces the issue of dimensionality. If one looks at a large asset class and take the
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cardinality of the space W into account, a grid search on that space may not be

practically feasible because of computational time it takes.

One specific class of distributions has been widely considered in financial appli-

cations, the elliptically contoured distribution. Some examples of applications and

reviews of the topic are Owen and Rabinovitch (1983), Hamada and Valdez (2008)

and Gupta et al. (2013). In the next section, we derive an analytical solution to (1)

under this large class of probability distributions.

3 The CVoR Portfolio for elliptically contoured distribution

3.1 Elliptically contoured distributions

If a random vector Y has the following characteristics function

E[exp(it>x)] = exp{iµ>t}φ(t>Dt), for t ∈ Rp,

it is said to have a p-dimensional elliptically contoured distribution with location

parameter µ, dispersion matrix D and φ(·) is a function determined by the family

of distribution. In the following we denote this class of multivariate distributions

by ECDp(µ,D, φ(·)). If the second moment of Y exists, then µ = E[Y] and

Σ = V ar[Y] = γ2D with γ =
√
−φ′(0)/2. Moreover, assuming that Y has a

density fY(y), we get

fY(y) = |D|−1/2g((y − µ)>D−1(y − µ)). (4)

where g(·) is the density generator. For the interested reader, the technical condi-

tions when Y actually has a density can be found in Fang and Zhang (1990). We

will simply assume that the density exists in the following sections.

Elliptically contoured distributions constitute a large class of multivariate (and

also matrix-variate) distributions. Some examples of these are the multivariate nor-

mal distribution, the t-distribution and the Laplace distribution (see e.g. Fang and

Zhang (1990)). Elliptically contoured distributions have many desirable properties.

One of interest is the following: if Y = (l>Y− l>µ)/
√

l>Dl then the distribution of

Y is independent of the value of l by Fang and Zhang (1990, Theorem 2.6.3). It only

depends on the specific family of elliptical distributions Y belongs to. A classical

example of this property is the multivariate normal distribution.

We are now ready to introduce the closed-form solution to the CVoR portfolio

choice problem under elliptically contoured distributed asset returns.
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3.2 Closed form solution

In this section we will consider the class of elliptically countoured distributions which

are absolutely continuous for which the second moment exist. We will also consider

the special case where Xw = w>X.

The expected return of the portfolio with weights w is given by E[Xw] = w>µ

and its variance by Var(Xw) = w>Σw. Let dα1 be the α1-percentile of the stan-

dardized portfolio return X
d
= (w>X−w>µ)/

√
w>Dw and fX(·) and FX(·) denote

the density and cumulative distribution function of X, respectively. When using

CVaR as a risk measure the optimization problem in (1) can then be rewritten as

max
w

w>µ+ kα1

√
w>Σw

s.t. w>1 = 1

−w>µ− k1−α2

√
w>Σw ≤ v0

(5)

where

kα =

∫∞
dα
xfX(x)dx

(1− α)γ
, dα = F−1X (α).

The risk measure CVaR can easily be changed to VaR in this setting. This is simply

done by replacing the constant k1−α2 with d1−α2 in the risk-constraint. We will

proceed with deriving all results using CVaR as a risk measure, but note that the

results hold true with VaR as a risk measure.

Since the risk-constraint is a convex function of w there exists a global optimum.

A question is whether or not the risk constraint results in equality. We have the

following result

Lemma 2. Let wCV oR denote the global optimum of (5), we then have that

−w>CV oRµ− k1−α2

√
w>CV oRΣwCV oR = v0,

the risk constraint of (5) results in equality, i.e. the constraint is active.

The proof of Lemma 2 is presented in the appendix. By Lemma 2 we may impose

an equality on the risk constraint in the CVoR portfolio. We will do so throughout

the remainder of this section. A consequence of the equality constraint is that the

CVoR portfolio can be attained by considering an easier optimization problem. Let
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W denote the constraint set of (5), which allows us to write

wCV oR = arg max
w∈W

{
w>µ+ kα1

√
w>Σw

}
= arg max

w∈W

{
w>µ− kα1

k1−α2

(
−k1−α2

√
w>Σw −wTµ

)
− kα1

k1−α2

wTµ

}

= arg max
w∈W

{(
1− kα1

k1−α2

)
w>µ− kα1

k1−α2

v0

}
= arg max

w∈W

{
w>µ

}
,

where we use that − kα1
k1−α2

> 0 since α1, α2 ∈ (1/2, 1). Hence, the CVoR portfolio,

retrieved from (5) does not depend on kα1 which can be explained by the symmetry

of the distribution of X. Therefore, if a solution exists to (5) then the same solution

can be obtained by solving

max
w

w>µ

s.t. w>1 = 1

−w>µ− k1−α2

√
w>Σw = v0.

(6)

The above problem is closely related to the portfolio dicussed in Alexander and

Baptista (2002) and Alexander and Baptista (2004). Here, the authors introduced

the mean-VaR and mean-CVaR efficient frontier in the context of an equivalent

optimization problem to (6) under the assumptions of normality. The authors con-

sidered minimizing the portfolio CVaR (VaR) with a constraint on the expected

return. They discussed the economical implications of using the portfolio VaR as

the objective function compared to using the variance, as a risk measure. Under

the assumption of Gaussian returns they showed that the portfolio is mean-variance

efficient. To show that the same holds for the CVoR portfolio, let

wGMV =
Σ−11

1>Σ−11
, RGMV =

µ>Σ−11

1>Σ−11
, VGMV =

1

1>Σ−11
.

The efficient frontier, in its parametric form, is then defined as

(RGMV −R)2 = s (V − VGMV ) (7)

where s = µ>Qµ and Q = Σ−1− (Σ−111>Σ−1)/1>Σ−11. Note that for the mean-

variance efficient frontier to exist we must assume that µ is not proportional to 1.

For all practical purposes this poses no issue. In the following theorem we show the

CVoR portfolio is mean-variance efficient under elliptically distributed returns.
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Theorem 3. Assume that X ∼ ECDp(µ,Σ, φ(·)), where rank(Σ) = p and let

wCV oR denote the CVoR portfolio. Assume that µ is not proportional to 1, w>CV oRµ >

RGMV and k21−α2
> s then the CVoR portfolio is mean-variance efficient.

The proof of the theorem is presented in the appendix. It is obtained by rewrit-

ing the solution of the Langragian on the form of the mean-variance portfolio for

elliptically contoured models. There are a number of constraints in the construction.

The assumption that µ can not be proportional to the vector of ones is merely tech-

nical, such that the efficient frontier exists at all. The constraint w>CV oRµ > RGMV

and k21−α2
> s guarantees that the portfolio lies on the efficient frontier, not only on

the mean-variance parabola.

We are now ready to present the closed form solution to the CVoR portfolio.

Theorem 4. Assume that X ∼ ECDp(µ,Σ, φ(·)), where rank(Σ) = p. Also,

assume that w>CV oRµ > RGMV , α2 ∈ (1/2, 1), k21−α2
> s and v0 ≥ CVaRα2(Xwgmv),

then the CVoR portfolio exists and it has the following weights and characteristics

wCVoR = wGMW +
η

s
Qµ, (8)

RCV oR = E[Xw] = RGMV + η, (9)

VCV oR = V ar[Xw] = w>CVoRΣwCVoR =

(
VGMV +

η2

s

)
(10)

E[Xw|Xw > qα1 ] = RGMV + η + kα1

√√√√(VGMV +
η2

s

)
(11)

where RCV oR,VCV oR is the portfolio return and variance respectively, and

η =
(RGMV + v0)s+

(
k21−α2

s
(
(RGMV + v0)

2 + (s− k21−α2
)VGMV

))1/2
k21−α2

− s
(12)

The proof is presented in the appendix. By Theorem 3 we know that the CVoR

portfolio is on the mean-variance efficient frontier. Therefore, the proof consists of

solving the CVaR constraint in (6).

Through Theorems 3 and 4 two especially interesting facts arise. Under the use of

CVaR as a risk measure, the CVoR portfolio exists only if k21−α2
> s, and under VaR

replacing k1−α2 with d1−α2 . The same inequality is presented in Bodnar et al. (2012)

to ensure the existence of the minimum CVaR portfolio. Alexander and Baptista

(2002) showed that the inequality d21−α2
> s is the criteria for existence of the

minimum VaR portfolio. Also, the CVoR portfolio puts a constraint on the constant

v0 in order for it to exist. This has many interesting economical interpretations. We

12



are never limited to small confidence levels α2, but we are limited in the choice of v0

given that confidence level. This is intuitively pleasing. If an investor want to pick

a large confidence level then he or she must be comitted to place more capital at

risk, i.e. a larger v0. The following proposition explains the behaviour of η through

the choice of v0 and α2.

Proposition 1. Let RCV oR > RGMV , α2 ∈ (1/2, 1), k1−α2 > s and v0 ≥ CVaRα2(XwGMV
).

Then η is increasing in v0. If additionally k21−α2
> max{s, 2}, then η is decreasing

in α2.

The proof is presented in the appendix. Note that the constraint k21−α2
>

max{s, 2} is equally restrictive as k21−α2
> s for all practical purposes. If α2 ≥ 0.95

then k21−α2
≥ d21−α2

and if the normal distribution is assumed (which is among the

least fat tailed in the EC class) then d21−α2
≥ (1.96)2 > 2. This proposition implies

that the characteristics of the CVoR portfolio is a strictly increasing function of v0

through their dependence of η. An investor will accept more return and risk by in-

creasing the value of v0. In the context of the CVoR portfolio, a risk-averse investor

might choose v0 to be equal to the CVaR (or VaR) for the GMV portfolio for a given

α2. He or she might even be interested in placing less money at risk, thus decreasing

their v0.The constraint on the constant v0 in Theorem 4 can be replaced by a more

tight one. We can choose smaller values of v0 and still have that the CVoR portfolio

exists. This is displayed in the remark below.

Remark 2. Assume that X ∼ ECDp(µ,Σ, φ(·)), where rank(Σ) = p, and assume

that w>CV oRµ > RGMV together with α2 ∈ (1/2, 1) such that k21−α2
> s. If

v0 ≥ −RGMV +
√

(k21−α2
− s)

√
VGMV (13)

then the CVoR portfolio exists.

The inequality follows immediately from the proof of Theorem 4. The CVoR

portfolio exists under a tighter constraint on v0, but the economical implications are

somewhat lost. There is a possibility to choose less capital at risk when constructing

the CVoR portfolio. Note that the constraint k21−α2
> s appears once again. We can

now show that if equality holds in (13) then under this assumption, the constant η

takes on the explicit form of
√
VGMV /(k21−α2

− s)s and the weights and the charac-

teristics of the CVoR portfolio change thereafter. Under this assumption, increasing

the confidence level α2 towards one implies that the CVoR portfolio tends towards

the GMV portfolio for both CVaR and VaR as a risk measure.

13



4 Financial application

In this section we perform an empirical illustration where we investigate the char-

acteristics of the CVoR portfolio under different circumstances. In this section we

assume that Xw = w>X. We will present their numerical differences and also in-

vestigate their inherent location in the mean-variance space. The data used in this

illustration consists of 29 stocks from the Dow Jones Index. There are a total of

317 weekly log returns of the closing prices. The data covers the period mars of

2008 to mars of 2016 . We will use a hold out period of 100 weeks to observe the

out-of-sample performance of the portfolios.

In Figure 1 we display a boxplot of the weekly log returns for each stock. For

illustrational purposes we have chosen to display both data-sets on the same scale.

In the out-of-sample period there exists a large loss in AAPL equal to −1.956 not

shown in the figure. There is no reason for it to be an outliers and is therefore not re-

moved. It is noted that the univariate return distributions of the asset returns seem

to be roughly symmetric. This observation motivates the application of elliptically

contoured distributions as a model of asset return distributions, although it does not

provide any strong statistical argument to conclude that the elliptical distributions

are the best model for the considered data. Later on, we compare the performance of

the optimal portfolio constructed under the assumption of elliptically contoured dis-

tribution to those obtained by the nonparametric portfolio described in Section 2.1.

The CVoR portfolio will be constructed for two elliptically contoured distributions;

the Laplace distribution and the t-distribution with a number of different degrees of

freedom. On occasions we will restrict ourselves to the t-distribution with a certain

value of degrees of freedom to keep the combinations of visualisations short.

The estimated parameters of the efficient frontier from the first sub-sample are

equal to R̂GMV = 0.0013, V̂GMV = 3× 10−4 and ŝ = 0.0396. In the following we set

α2 = 0.999. By plugging in the estimated quantities we have that the CVaR for the

GMV portfolio is equal to −0.0012 for a t-distribution with 5 degrees of freedom and

−0.0011 for a Laplace. Thus choosing any v0 above that will suffice when assuming

an elliptically contoured distribution for the portfolio returns. Given the confidence

level 0.999, the inequality k21−α2
> ŝ holds as well.

In Figure 2 the CVoR portfolio weights are displayed for different portfolio con-

figurations. Notice the scale of the y-axis. Figure 2 we have restricted ourselves

to the use of the t-distribution but the result are similar for the Laplace distribu-

tion. From Figure 2a we can see that increasing the confidence level α2 we take less

aggressive positions. This is in line with the portfolio weights given in (8) where

increasing α2 will essentially imply convergence towards the GMV portfolio. On the
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Figure 1: Boxplot of the weekly log returns of the in-sample dataset as well as the
out-of-sample dataset. In sample data range from 2008-03-24 to 2014-04-14 while
the out-of-sample data ranges from 2014-04-21 to 2016-03-14.

other hand, from Figure 2b we can see that increasing v0 we take more aggressive

positions in each stock. Further, from Figure 2a it is clear that the optimal portfolio

consists of heavily leveraged and short sold positions.

Under the assumption of elliptical returns, we are able to connect the portfolios

to the efficient frontier. In Figure 3 we display a number of different configurations

for the Laplace distribution and a t-distribution with 5 degrees of freedom denoted

by t(5). We can see that they lie on the efficient frontier. When assuming the t(5)

distribution we traverse quickly along the efficient frontier beacause of its fat tails.

The difference between the configurations becomes more apparent when increasing

v0 and decreasing the confidence level α2. When v0 is chosen small and α2 is large

we can see that the distributional assumption matters less. This is in line with the

discussion presented on convergence to the GMV portfolio.

Next, we apply the new portfolio on the hold out period of 100 weeks. We fix

v0 equal to 0.5. The out-of-sample metrics will be calculated in the following way:

estimate the portfolio weights for a configuration of the CVoR portfolio using the in-

sample data. We then construct the out-of-sample portfolio returns by using these
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Figure 2: Illustration of the portfolio weights for different portfolio configurations
(v0, α2).

portfolio weights. We aggregate the out-of-sample portfolio returns by a number

of performance metrics such as the average return, variance and the Sharpe ratio.

All performance metrics will be calculated using the empirical cumulative distri-

bution function. The performance of the portfolios are displayed in Table 1. The

table displays both nonparametric portfolios, obtained by the solution to the lin-

ear programming problem 3, and portfolios assuming elliptically contoured returns.

The nonparametric portfolios are denoted by ECDF. In Table 1 we see that the

portfolios obtained by assuming that the asset returns follow elliptically contoured

distributions performs better than the nonparametric portfolios in terms of the out-

of-sample expected return. The same holds true for the out-of-sample CVoR. The

nonparametric portfolios produces lower out-of-sample CVaR, VaR and variance in

comparison to the portfolios constructed using a t-distribution. It can be noted that

the nonparametric portfolio results in the same value for each performance metric

for each consequtive configuration (α1, α2). The value of α2 seems to have no im-

plication on the construction of the portfolio weight which can be described by the

extreme quantile we are trying to approximate.

In connection to Figure 1 we previously noted that there exists a large loss in the

AAPL stock in the out-of-sample period. If the same analysis is performed without

that specific loss then the results for all portfolios are very different. These results
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Figure 3: Illustrating the location of the CVoR portfolio on the efficient frontier
for different portfolio configurations and distribution. Here results for the Laplace
distribution are displayed together with the results for a t distribution with 5 degrees
of freedom.

can be seen in Table 2. In this situation the nonparametric portfolios outperform

the elliptically contoured ones, regardsless of performance measure.

5 Summary

In this paper we analyse an entirely quantile-based optimal portfolio choice problem.

The resulting optimal portfolios are obtained under general distributional assump-

tions on the asset returns. Both sufficient and necessary conditions for the existence

of the optimal portfolio, called the CvoR portfolio, are provided under different

risk measures. A special emphasis is placed on the use of risk measures which are

demanded by todays Basel and Solvency regulations. The portfolio is shown to

be very flexible and provide good theoretical results as well as a straight forward

implementation of numerical procedures.

Our empirical illustration shows an application of the CVoR portfolio when the

asset return distribution are assumed (probably misleading) to be elliptically con-
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toured as well as in a general case without imposing specific distributional assump-

tion on the asset returns. The results of our application relies on the true underlying

return distribution which we do not know. The process parameters are estimated

by applying the empirical cumulative distribution function and imputing the un-

kown parameters. In doing so, we introduce estimation uncertainty which is not

accounted for in the derived theoretical results. Also, the investigation of temporal

independence in the underlying data-generating process has been neglected in the

empirical application. This was done in order to keep the financial application short.

In our application the nonparametric portfolio results in the same weights for

different configurations. A possible explanation to this observation could be the dis-

crete space that we construct by using the empirical cumulative distribution function

and that we use very large confidence values. The out-of-sample performance of the

nonparametric portfolios are also in line with the discussion on purely data-driven

portfolios presented in Lim et al. (2011), where the fragility of nonparametric port-

folios using CVaR was discussed. That extends to a fragility of the nonparametric

CVoR portfolio.

This paper provides an introduction and foundation of quantile-based portfolios.

Surely, other quantile-based return measures except the CVoR could be used which

we will consider for future research. As the CVoR is a modification of the CVaR

and the CVaR is a special case of spectral risk measures we could consider any one

on these forms. The use of these would imply a great deal of flexibility for investors

which can then also rely on nice theoretical properties of the optimization problem.

6 Appendix

Proof of Lemma 1. By using equation (2) together with some abuse of notation we

may rewrite (1) to

max
w

min
γ

{
γ +

1

(1− α1)N

N∑
k=1

[w>Xk − γ]+
}

s.t. w>1 = 1

min
ξ

{
ξ +

1

(1− α2)N

N∑
k=1

[−w>Xk − ξ]+
}
≤ v0.

(14)
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By Theorem 16 of Rockafellar and Uryasev (2002) we can rewrite (14) according to

max
w

min
γ,ξ

{
γ +

1

(1− α1)N

N∑
k=1

[w>Xk − γ]+
}

s.t. w>1 = 1{
ξ +

1

(1− α2)N

N∑
k=1

[−w>Xk − ξ]+
}
≤ v0,

(15)

We start by optimizing over −w instead of w such that the objective only contains

minimization procedures. Since all linear programming problems assume that the

elements of the decision vector have positive support we also introduce the following

variables. Let w = u − v where u take care of the positive part and v takes care

of the negative if ui, vi ≥ 0, i = 1, 2, ..., p. We perform the same operation for q

and ξ by introducing q = q1 − q2 and ξ = ξ1 − ξ2 where q1, q2, ξ1, ξ2 ≥ 0. For

each observation k = 1, ..., N , introduce the auxilary variables ηk, θk ≥ 0 such that

−(u − v)>Xk − (q1 − q2) − ηk ≤ 0 and (u − v)>Xk − (ξ1 − ξ2) − θk ≤ 0. We then

have that

min
z

{
q1 − q2 +

1

(1− α1)N

N∑
k=1

ηk

}

s.t. (u− v)>1 + 1 ≤ 0

− (u− v)>1− 1 ≤ 0

ξ1 − ξ2 +
1

(1− α2)N

N∑
k=1

θk ≤ v0,

− (u− v)>Xk − (γ1 − γ2)− ηk ≤ 0

(u− v)>Xk − (ξ1 − ξ2)− θk ≤ 0

u1, u2, ...up, v1, v2, ..., vp, γ1, γ2, ξ1, ξ2 ≥ 0

(16)

where z = (u1, u2, ...up, v1, v2, ..., vp, q1, q2, ξ1, ξ2, η1, η2, ..., ηN , θ1, θ2, ..., θN). Note that

we rewrote the constraint that the weights should sum to one into two inequalities.

By introducing the matrix and vectors A,b and c, the lemma follows.

Proof of Lemma 2. Let W = {w : w>1 = 1,−w>µ − k1−α2

√
w>Σw ≤ v0}, i.e.

the set of weights which fulfills the constraints of (5) and let Wv0 = {w : w>1 =

19



1,−w>µ− k1−α2

√
w>Σw = v0} denote its boundary. It holds that

wCV oR = arg max
w∈W

{
w>µ+ kα1

√
w>Σw

}
= arg max

w∈W

{
w>µ− kα1

k1−α2

(
−k1−α2

√
w>Σw −wTµ

)
− kα1

k1−α2

w>µ

}

= arg max
w∈W

{(
1− kα1

k1−α2

)
w>µ− kα1

k1−α2

− kα1

k1−α2

(
−k1−α2

√
w>Σw −wTµ

)}

where we − kα1
k1−α2

> 0 since α1, α2 ∈ (1/2, 1).

Assume that the statement of the lemma does not hold, i.e. there exists v1 < v0

such that for the solution w∗CV oR of the optimization problem

w∗CV oR = arg max
w∈W\Wv0

{
w>µ+ kα1

√
w>Σw

}
,

we have

−w∗ >CV oRµ− k1−α2

√
w∗ >CV oRΣw∗CV oR = v1.

Then, because − kα1
k1−α2

> 0 we get

(
1− kα1

k1−α2

)
w∗ >CV oRµ−

kα1

k1−α2

(
−k1−α2

√
w∗ >CV oRΣw∗CV oR −w∗ >CV oRµ

)

=

(
1− kα1

k1−α2

)
w∗ >CV oRµ−

kα1

k1−α2

v1 <

(
1− kα1

k1−α2

)
w∗ >CV oRµ−

kα1

k1−α2

v0

≤ max
w∈W

{(
1− kα1

k1−α2

)
w>µ− kα1

k1−α2

v0

}
=

(
1− kα1

k1−α2

)
max
w∈W

{
w>µ

}
− kα1

k1−α2

v0.

Since w>µ is a linear function and W is a bounded set, then maxw∈W
{
w>µ

}
is attained in the boundary of W , that is in Wv0 . Consequently, the solution of

maxw∈W
{
w>µ

}
satisfies the constraint −w>µ− k1−α2

√
w>Σw = v0 and

max
w∈W\Wv0

{
w>µ+ kα1

√
w>Σw

}
< max

w∈W

{
w>µ+ kα1

√
w>Σw

}

The last inequality contradicts that the statement that the solution of (5) is an

interior point of W .

Proof of Theorem 3. The Langragian of (6) is defined as

L(w, λ1, λ2) = w>µ+ λ1
(
−w>µ− k1−α2

√
w>Σw − v0

)
+ λ2(w

>1− 1). (17)
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Computing the gradient, necessary derivatives and thereafter setting these to zero

give us the following system of equations,


µ− λ1

(
µ− kα2

Σw√
w>Σw

)
+ λ21 = 0

−w>µ− k1−α2

√
w>Σw − v0 = 0

w>1− 1 = 0.

(18)

Since the Langrange parameters are arbitrary, let λ̃1 := λ1−1
λ1kα2

√
w>Σw and λ̃2 :=

−λ2
√

w>Σw
λ1kα2

, where kα2 = −k1−α2 by the symmetry of X. From the first equation of

(18) we have that

w = λ̃2Σ
−11 + λ̃1Σ

−1µ (19)

and by using the second and third equations of (18), equation (19) can be rewritten

as

λ̃21
>Σ−11 + λ̃11

>Σ−1µ = 1 (20)

λ̃2µ
>Σ−11 + λ̃1µ

>Σ−1µ = kα2

√
w>Σw − v0. (21)

Let µ0 = w>µ. Since µ0 = kα2

√
w>Σw − v0 we can rewrite (20) and (21) as

λ̃2
λ̃1

 =

1>Σ−11 1>Σ−1µ

µ>Σ−11 µ>Σ−1µ

−1 1

kα2

√
w>Σw − v0


=

1

1>Σ−11µ>Σ−1µ− (µ>Σ−11)2

 µ>Σ−1µ −1>Σ−1µ

−µ>Σ−11 1>Σ−11

 1

µ0


=

1

1>Σ−11µ>Σ−1µ− (µ>Σ−11)2

µ>Σ−1µ− µ01
>Σ−1µ

µ01
>Σ−11− 1>Σ−1µ


=

1

s

µ>Σ−1µ
1>Σ−11

− µ0RGMV

µ0 −RGMV

 (22)

where RGMV = µ>Σ−11/1>Σ−11 and s = µ>Σ−1µ − (µ>Σ−11)2/1>Σ−11. Let

VGMV = 1/1>Σ−11, then

µ>Σ−1µ

1>Σ−11
=
µ>Σ−1µ

1>Σ−11
−
(
µ>Σ−11

1>Σ−11

)2

+

(
µ>Σ−11

1>Σ−11

)2

=
1

1>Σ−11
s+R2

GMV = VGMV s+R2
GMV .
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Hence, λ̃2
λ̃1

 =
1

s

VGMV s+R2
GMV − µ0RGMV

µ0 −RGMV


which implies that by using the Langrange parameters in (19) we have following

solution

w = λ̃2Σ
−11 + λ̃1Σ

−1µ (23)

= wGMV +
(
(λ̃2 − VGMV )Σ−11 + λ̃1Σ

−1µ
)

(24)

= wGMV +

(
R2
GMV − µ0RGMV

s
Σ−11 +

µ0 −RGMV

s
Σ−1µ

)
(25)

= wGMV +
µ0 −RGMV

s
Σ−1µ− µ0 −RGMV

s
RGMV Σ−11. (26)

Since Σ−11RGMV = Σ−111>Σ−1µ/1>Σ−11 we can further simplify the solution to

wCV oR = wGMV +
µ0 −RGMV

s
Qµ

where Q = Σ−1 − Σ−111>Σ−1/1>Σ−11. Given that µ0 > RGMV , the portfolio

wCV oR is mean-variance efficient.

Proof of Theorem 4. By Theorem 3 we have that the optimal portfolio has the fol-

lowing form

wCVoR = wGMV +
µ0 −RGMV

s
Qµ. (27)

The portfolio wCVoR satisfies the VaR constraint given by (6). By using the closed

form, we have that

− µ0 − k1−α2

√
w>CVoRΣwCVoR = v0

⇔
√

w>CVoRΣwCVoR = −v0 + µ0

k1−α2

⇔ w>CVoRΣwCVoR =

(
v0 + µ0

k1−α2

)2

. (28)

It holds that wGMVΣQµ = 0 and µ>QΣQµ = s. Therefore equation (28) can be

further simplified to

(
VGMV +

(µ0 −RGMV )2

s

)
=

(
v0 + µ0

k1−α2

)2

. (29)

To solve (29) for µ0, we need to solve a second degree polynom. Expand by the
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squares, we have that

VGMV +
1

s

(
µ2
0 − 2RGMV µ0 +R2

GMV

)
=

1

k21−α2

(
µ2
0 + 2v0µ0 + v20

)
⇔
(

1

s
− 1

k21−α2

)
µ2
0 − 2

(
RGMV

s
+

v0
k21−α2

)
µ0 +

(
VGMV +

R2
GMV

s
− v20
k21−α2

)
= 0.

Multiply by sk21−α2
leads to

a1µ
2
0 − 2a2µ0 + a3 = 0 (30)

where a1 =
(
k21−α2

− s
)
, a2 =

(
RGMV k

2
1−α2

+ sv0
)

and a3 =
(
VGMV k

2
1−α2

s+R2
GMV k

2
1−α2
− v20s

)
Assuming that k21−α2

> s, the solution to (30) is given by µ0 = (a2±
√
a22 − a3a1)/a1

where

a22 − a3a1 =
(
RGMV k

2
1−α2

+ sv0
)2
−
(
VGMV k

2
1−α2

s+R2
GMV k

2
1−α2
− v20s

) (
k21−α2

− s
)

= 2k21−α2
RGMV v0s− VGMV k

4
1−α2

s+ v20sk
2
1−α2

+ VGMV k
2
1−α2

s2 +R2
GMV k

2
1−α2

s

= k21−α2
s(2RGMV v0 − VGMV k

2
1−α2

+ v20 + VGMV s+R2
GMV )

= k21−α2
s
(
(RGMV + v0)

2 + (s− k21−α2
)VGMV

)
Therefore the roots are equal to

µ0 =
k21−α2

RGMV + sv0 ±
(
k21−α2

s
(
(RGMV + v0)

2 + (s− k21−α2
)VGMV

))1/2
k21−α2

− s
. (31)

Since we aim to maximize the expected return of the portfolio, the first root is

optimal. Also, if µ0 ∈ R then the following needs to hold

k21−α2
s
(
(RGMV + v0)

2 + (s− k21−α2
)VGMV

)
≥ 0.

The condition is equivalent to

v0 ≥ −RGMV +
√

(k21−α2
− s)

√
VGMV , (32)

and since
√

(k21−α2
− s) ≤

√
k21−α2

= −k1−α2 , the inequality v0 ≥ CVaRα2(XwGMV
)

holds if (32) does. The characteristics RCV oR, VCV oR can be easily calculated by

using the closed form of the portfolio weights.

Proof of Proposition 1. We first note that η is a composite function of the quantile

function k21−α2
= k2α2

which is increasing in α2. We look upon η as a function of
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k = k21−α2
where k has support {k > max{s, 2}} and the support of v is {v ≥

−RGMV +
√
kVGMV } given by

η(k, v) =
g1(v) +

√
g2(k, v)

g3(k)
,

where g1(v) = (RGMV + v)s ≥
√
kVGMV ≥ 0, g2(k, v) = ks((RGMV + v)2 − (k −

s)VGMV ) ≥ 0 and g3(k) = k − s ≥ 0 for all k and v from their supports.

First, we note that η is increasing in v, since both g1(v) and g2(k, v) are increasing

in v. To show that η is decreasing in k we compute g′3(k) = 1,

∂g2(k, v)

∂k
= s((RGMV + v)2 − (k − s)V )− ksV ≤ 0

and, hence,

∂η(k, v)

∂k
= − g′3(k)

(g3(k))2

(
g1(v) +

√
g2(k, v)

)
+

1

2g3(k)
√
g2(k, v)

∂g2(k, v)

∂k

= −
g1(v) +

√
g2(k, v)

g3(k)
+

1

2g3(k)
√
g2(k, v)

∂g2(k, v)

∂k

=
1

g3(k)

−g1(v)−
(

1− 1

2k

)√
g2(k, v)− ksVGMV

2
√
g2(k, v)

 < 0,

which proves the proposition.
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Shapiro, A., Dentcheva, D., and Ruszczyński, A. (2009). Lectures on stochastic

programming: modeling and theory. SIAM.

Yao, H., Li, Z., and Lai, Y. (2013). Mean-cvar portfolio selection: A nonparametric

estimation framework. Computers and Operations Research, 40(4):1014 – 1022.

26



Table 1: Returns of the portfolio configuration for a 100 week holdout period and
v0 was set to 0.5. Elliptically contoured portfolios are indicated by the use of a
distribution. All other are nonparametric portfolios.

Return Variance CVoR CVaR VaR Sharpe ratio α2 α1 Distribution
0.00915 0.61714 0.31226 0.62715 0.48331 0.01482 0.950 0.500 t(5)
0.00915 0.61714 0.40286 0.62715 0.48331 0.01482 0.950 0.600 t(5)
0.00915 0.61714 0.52908 0.62715 0.48331 0.01482 0.950 0.700 t(5)
0.00514 0.22902 0.19217 0.62045 0.34146 0.02246 0.990 0.500 t(5)
0.00514 0.22902 0.24754 0.62045 0.34146 0.02246 0.990 0.600 t(5)
0.00514 0.22902 0.32559 0.62045 0.34146 0.02246 0.990 0.700 t(5)
0.00234 0.06951 0.10808 0.35787 0.34110 0.03365 0.999 0.500 t(5)
0.00234 0.06951 0.13899 0.35787 0.34110 0.03365 0.999 0.600 t(5)
0.00234 0.06951 0.18301 0.35787 0.34110 0.03365 0.999 0.700 t(5)
0.00797 0.48348 0.27693 0.55608 0.42479 0.01649 0.950 0.500 t(10)
0.00797 0.48348 0.35719 0.55608 0.42479 0.01649 0.950 0.600 t(10)
0.00797 0.48348 0.46927 0.55608 0.42479 0.01649 0.950 0.700 t(10)
0.00509 0.22533 0.19066 0.61572 0.33874 0.02260 0.990 0.500 t(10)
0.00509 0.22533 0.24559 0.61572 0.33874 0.02260 0.990 0.600 t(10)
0.00509 0.22533 0.32302 0.61572 0.33874 0.02260 0.990 0.700 t(10)
0.00302 0.09979 0.12854 0.42175 0.40227 0.03027 0.999 0.500 t(10)
0.00302 0.09979 0.16536 0.42175 0.40227 0.03027 0.999 0.600 t(10)
0.00302 0.09979 0.21770 0.42175 0.40227 0.03027 0.999 0.700 t(10)
0.00740 0.42462 0.25983 0.52167 0.39645 0.01743 0.950 0.500 t(50)
0.00740 0.42462 0.33508 0.52167 0.39645 0.01743 0.950 0.600 t(50)
0.00740 0.42462 0.44031 0.52167 0.39645 0.01743 0.950 0.700 t(50)
0.00515 0.22914 0.19222 0.62061 0.34155 0.02245 0.990 0.500 t(50)
0.00515 0.22914 0.24761 0.62061 0.34155 0.02245 0.990 0.600 t(50)
0.00515 0.22914 0.32568 0.62061 0.34155 0.02245 0.990 0.700 t(50)
0.00357 0.12833 0.14511 0.47349 0.45182 0.02785 0.999 0.500 t(50)
0.00357 0.12833 0.18676 0.47349 0.45182 0.02785 0.999 0.600 t(50)
0.00357 0.12833 0.24580 0.47349 0.45182 0.02785 0.999 0.700 t(50)
0.00109 0.02835 0.07071 0.14657 0.11257 0.03852 0.950 0.500 Laplace
0.00109 0.02835 0.09095 0.14657 0.11257 0.03852 0.950 0.600 Laplace
0.00109 0.02835 0.11976 0.14657 0.11257 0.03852 0.950 0.700 Laplace
0.00022 0.01041 0.04490 0.15939 0.09597 0.02098 0.990 0.500 Laplace
0.00022 0.01041 0.05783 0.15939 0.09597 0.02098 0.990 0.600 Laplace
0.00022 0.01041 0.07602 0.15939 0.09597 0.02098 0.990 0.700 Laplace

-0.00037 0.00339 0.02846 0.10431 0.10100 -0.10913 0.999 0.500 Laplace
-0.00037 0.00339 0.03641 0.10431 0.10100 -0.10913 0.999 0.600 Laplace
-0.00037 0.00339 0.04711 0.10431 0.10100 -0.10913 0.999 0.700 Laplace
-0.00029 0.00081 0.01559 0.07492 0.03094 -0.36537 0.950 0.500 ECDF
-0.00067 0.00074 0.01763 0.06909 0.02826 -0.90715 0.950 0.600 ECDF
-0.00131 0.00086 0.01990 0.07657 0.02678 -1.51799 0.950 0.700 ECDF
-0.00029 0.00081 0.01559 0.21372 0.05095 -0.36537 0.990 0.500 ECDF
-0.00067 0.00074 0.01763 0.20924 0.04046 -0.90715 0.990 0.600 ECDF
-0.00131 0.00086 0.01990 0.23624 0.04365 -1.51799 0.990 0.700 ECDF
-0.00029 0.00081 0.01559 0.21372 0.19744 -0.36537 0.999 0.500 ECDF
-0.00067 0.00074 0.01763 0.20924 0.19236 -0.90715 0.999 0.600 ECDF
-0.00131 0.00086 0.01990 0.23624 0.21698 -1.51799 0.999 0.700 ECDF
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Table 2: Returns of the portfolio configuration for a 99 week holdout period without
the large loss in AAPL. The parameter v0 was set to 0.5. Elliptically contoured
portfolios are indicated by the use of a distribution. All other are nonparametric
portfolios.

Return Variance CVoR CVaR VaR Sharpe ratio α2 α1 Distribution
-0.06324 0.09410 0.16707 0.62715 0.48420 -0.67207 0.950 0.500 t(5)
-0.06324 0.09410 0.22287 0.62715 0.48420 -0.67207 0.950 0.600 t(5)
-0.06324 0.09410 0.29179 0.62715 0.48420 -0.67207 0.950 0.700 t(5)
-0.03882 0.03610 0.10402 0.62045 0.34427 -1.07537 0.990 0.500 t(5)
-0.03882 0.03610 0.13827 0.62045 0.34427 -1.07537 0.990 0.600 t(5)
-0.03882 0.03610 0.18141 0.62045 0.34427 -1.07537 0.990 0.700 t(5)
-0.02171 0.01179 0.05985 0.35787 0.34127 -1.84159 0.999 0.500 t(5)
-0.02171 0.01179 0.07935 0.35787 0.34127 -1.84159 0.999 0.600 t(5)
-0.02171 0.01179 0.10422 0.35787 0.34127 -1.84159 0.999 0.700 t(5)
-0.05606 0.07421 0.14854 0.55608 0.42587 -0.75549 0.950 0.500 t(10)
-0.05606 0.07421 0.19800 0.55608 0.42587 -0.75549 0.950 0.600 t(10)
-0.05606 0.07421 0.25935 0.55608 0.42587 -0.75549 0.950 0.700 t(10)
-0.03851 0.03554 0.10323 0.61572 0.34153 -1.08353 0.990 0.500 t(10)
-0.03851 0.03554 0.13721 0.61572 0.34153 -1.08353 0.990 0.600 t(10)
-0.03851 0.03554 0.18002 0.61572 0.34153 -1.08353 0.990 0.700 t(10)
-0.02587 0.01647 0.07059 0.42175 0.40247 -1.57137 0.999 0.500 t(10)
-0.02587 0.01647 0.09366 0.42175 0.40247 -1.57137 0.999 0.600 t(10)
-0.02587 0.01647 0.12297 0.42175 0.40247 -1.57137 0.999 0.700 t(10)
-0.05259 0.06543 0.13957 0.52167 0.39763 -0.80376 0.950 0.500 t(50)
-0.05259 0.06543 0.18596 0.52167 0.39763 -0.80376 0.950 0.600 t(50)
-0.05259 0.06543 0.24364 0.52167 0.39763 -0.80376 0.950 0.700 t(50)
-0.03883 0.03612 0.10405 0.62061 0.34437 -1.07509 0.990 0.500 t(50)
-0.03883 0.03612 0.13831 0.62061 0.34437 -1.07509 0.990 0.600 t(50)
-0.03883 0.03612 0.18146 0.62061 0.34437 -1.07509 0.990 0.700 t(50)
-0.02924 0.02084 0.07930 0.47349 0.45204 -1.40353 0.999 0.500 t(50)
-0.02924 0.02084 0.10525 0.47349 0.45204 -1.40353 0.999 0.600 t(50)
-0.02924 0.02084 0.13817 0.47349 0.45204 -1.40353 0.999 0.700 t(50)
-0.01411 0.00530 0.04022 0.14657 0.11264 -2.66058 0.950 0.500 Laplace
-0.01411 0.00530 0.05325 0.14657 0.11264 -2.66058 0.950 0.600 Laplace
-0.01411 0.00530 0.06997 0.14657 0.11264 -2.66058 0.950 0.700 Laplace
-0.00878 0.00234 0.02683 0.15939 0.09661 -3.75135 0.990 0.500 Laplace
-0.00878 0.00234 0.03545 0.15939 0.09661 -3.75135 0.990 0.600 Laplace
-0.00878 0.00234 0.04662 0.15939 0.09661 -3.75135 0.990 0.700 Laplace
-0.00519 0.00108 0.01879 0.10431 0.10104 -4.80453 0.999 0.500 Laplace
-0.00519 0.00108 0.02447 0.10431 0.10104 -4.80453 0.999 0.600 Laplace
-0.00519 0.00108 0.03144 0.10431 0.10104 -4.80453 0.999 0.700 Laplace
0.00186 0.00035 0.01559 0.03833 0.02630 5.38862 0.950 0.500 ECDF
0.00143 0.00030 0.01763 0.03288 0.02530 4.76118 0.950 0.600 ECDF
0.00107 0.00030 0.01990 0.03465 0.02599 3.53639 0.950 0.700 ECDF
0.00186 0.00035 0.01559 0.04930 0.04024 5.38862 0.990 0.500 ECDF
0.00143 0.00030 0.01763 0.03876 0.03589 4.76118 0.990 0.600 ECDF
0.00107 0.00030 0.01990 0.04171 0.03824 3.53639 0.990 0.700 ECDF
0.00186 0.00035 0.01559 0.04930 0.04840 5.38862 0.999 0.500 ECDF
0.00143 0.00030 0.01763 0.03876 0.03847 4.76118 0.999 0.600 ECDF
0.00107 0.00030 0.01990 0.04171 0.04136 3.53639 0.999 0.700 ECDF
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