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Abstract

The current survey paper concerns stochastic mathematical models for
the spread of infectious diseases. It starts with the simplest setting of a
homogeneous population in which a transmittable disease spreads during a
short outbreak. Assuming a large population some important features are
presented: branching process approximation, basic reproduction number
R0, and final size of an outbreak. Some extensions towards realism are
then discussed: models for endemicity, various heterogeneities, and prior
immmunity. The focus is then shifted to statistical inference. What can
be estimated for these models for various levels of detailed data and with
what precision? The paper ends by describing how the inference results may
be used for determining successful vaccination strategies. This paper will
appear as a chapter of a forthcoming book entitled Handbook of Infectious
Disease Epidemiology.

1 Introduction

The current chapter aims at presenting some basic stochastic models for the spread
of infectious diseases in human (or animal) populations, and to also describe how
to perform inference about important model parameters, such as the basic repro-
duction number R0 and the critical vaccination coverage vC . Naturally, there is
some overlap, but also differences, with the current chapter and other overview
papers, in particular two by the same author. However, [4] has more focus on the
stochastic analysis of models and only briefly touches upon inference procedures,
and [5] describe briefly many different inferential aspects with extensive references
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to the literature. In the current paper we focus on basic models and try to be more
self-contained, more complex and realistic models are treated in later chapters of
the book. There are of course numerous papers dealing with this type of infer-
ence. Two recent books on the topic are [2] and [7], the latter also doing extensive
modelling and being more theoretical.

The mathematical/statistical models describe the spread of a transmittable
disease. What makes such diseases different from other diseases, both regarding the
mathematical analysis but also in reality, is that transmittability implies that the
health status of different individuals will be dependent, as opposed to other diseases
where the occurence of diseases in different individuals happen independently.
These dependencies make the mathematical treatment, as well as the statistical
analysis, more involved, as we will see. We will present some simple models and
only briefly discuss extensions towards more realistic models, and the presented
inference procedures will focus on estimation of basic parameters.

The rest of this chapter is structured as follows. In Section 2 we define the basic
models to be used, and in the next section we discuss some model extensions. In
Section 4 we present the main inference procedures, for a couple of different types
of data. In Section 5 we study effects of preventive measures put in place before or
during an outbreak, and how such effects may be estimated from previous outbreak
data.

2 The standard stochastic SIR epidemic model

The class of models we analyse are where individuals may be classified into three
classes: Susceptibles (individuals who have not experienced the disease but who
are susceptible to infection), Infectives (individuals who have been infected and
may transmit the disease onwards), and Recovered (who can no longer transmit
the disease and who are immune to the disease). Such models are called SIR
models from the three classes and how individuals may move between the three
states. If individuals who get infected first enter a latent state before becoming
infectious, the models are called SEIR model where ”E” stands for Exposed but
not yet infectious. If immunity is not permanent but wanes, the model would be
called an SIRS model indicating the non-transient nature of such a model.

We consider a population of size n, where approximations/limit results rely
on n being large. When we look at short term outbreaks we consider a fixed
population of size n, whereas later, when considering endemic diseases, we let n
denote the average population size in a community in which individuals die and
new are born.

2



2.1 Definition: the Standard stochastic SIR epidemic

We now define what we call the Standard stochastic SIR epidemic in a fixed and
closed community. Consider a comunity of size n in which an SIR epidemic spreads.
Initially all individuals are susceptible except one index case who is infectious. In-
dividuals who get infected remain infectious for a random period I, having mean
E(I) = ι, and then recover. Infectious individuals have infectious contacts at rate
β, each time with a uniformly chosen individual in the community. An infectious
contact with a susceptible individual implies that the latter gets infected whereas
other contacts have no effect. The epidemic goes on (infectious individuals hav-
ing infectious contacts until they recover) until the first time T when no one is
infectious. Then the epidemic stops.

We let S(t), I(t) and R(t) respectively denote the number of susceptible, in-
fectious and recovered, at time t measured from the start of the epidemic. Since
the population is fixed and closed we have S(t) + I(t) + R(t) = n for all t. The
corresponding fractions are denoted S̄(t) = S(t)/n and similarly. Whenever the
dependence on n is important we equip the quantities with an n-index. As re-
gards to parameters, we have the infectious contact rate β and the duration of
the infectious period I being a random variable. Of fundamental importance is
R0 := βE(I) = βι, and called the basic reproduction number. This is hence the
average number of infectious contacts an infectious individual has during his/her
infectious period. In the beginning of the outbreak and assuming a large commu-
nity, all such contacts will be with distinct and susceptible individuals with high
probability, so R0 is the expected number of individuals an infected person infects
in the beginning. It should hence not come as a surprise that a big (or major)
outbreak can only happen if R0 > 1.

2.2 The general stochastic epidemic

Two specific choices of infectious periods I have received special attention in the
literature. The first is where I ∼ Exp(γ) (so ι = 1/γ). This model is often called
the General stochastic epidemic (or the Markovian epidemic) and its main reason
for receiving attention is that the model then becomes Markovian thus having
mathematically tractable properties. In the limit as n→∞ this model corresponds
to the (deterministic) general epidemic model defined by the differential equations:

s′(t) = −βs(t)i(t)
i′(t) = βs(t)i(t)− γi(t) (1)

r′(t) = γi(t).

For this model R0 = β/γ and it is seen that, starting with s(0) = 1−ε, i(0) = ε and
r(0) = 0 for some small ε > 0, i(t) is initially increasing if and only if R0 > 1. One
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difference between this deterministic general epidemic and the stochastic general
epidemic is that the deterministic model will surely have an outbreak infecting a
substantial community fraction when R0 > 1, whereas in the stochastic setting
starting with a small number of infectives, a major epidemic can happen, but the
epidemic may as an alternative still die out infecting only few individuals. So, in
the stochastic setting there could be a minor outbreak with a certain probability
and a major outbreak with the remaining probability.

In Figure 1 we have plotted Īn(t) for a few different n, and its deterministic
counterpart i(t), starting with 5% infectives thus assuring a major outbreak also
in the stochastic setting. It is seen that the stochastic curve agrees better with
the deterministic counterpart the larger n is.
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Figure 1: Plot of Īn(t) (for n = 100, 1000 and 10 000) and its deterministic limit i(t)
against t. Parameters are β = 2, γ = 1 (e.g. weeks as time unit and average infectious
periods of one week), so R0 = 2.

2.3 The Reed-Frost epidemic and chain-binomial models

The second choice of infectious period which has received specific attention is
where I ≡ ι, i.e. where the infectious period is non-random and the same for all
individuals, a model called the continuous time Reed-Frost epidemic. This model
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has received special attention also for mathematical rather than epidemiological
reasons. One probabilistic advantage with this model is that when the infectious
period is non-random, then the events for an infectious individual to infect different
other individuals become independent. When the infectious period is random this
does not hold: if the infective infects another individual this indicates that most
likely the infectious period was long, and this increases the risk to infect another
individual. But in the Reed-Frost epidemic these events are independent, so an
infective has independent infectious contacts with each other individual, and these
contact probabilities all equal p = 1− e−βι/n ≈ βι/n (the contact rate to a specific
other individual equals β/n).

If individuals are latent for a period prior to the constant infectious period,
and assuming the the latent period is long and the infectious period is short,
then the new infected people will appear in ”generations”, something which can
actually even be observed during early stages of outbreaks. This is then called
the discrete-time version of the Reed-Frost epidemic. Anyway, then a susceptible
individual escapes infection in generation k + 1 if he/she avoids getting infected
from each of the infected people of the previous generation, so this happens with
probability (1− p)ik , where ik denotes the number of individuals who got infected
in generation k. The probability to get infected is the complimentary probability
1− (1− p)ik . This is true for all individuals who were susceptible after generation
k and the infection events are independent between different pairs of individuals
(due to constant infectious period). As a consequence, if there are ik individuals
getting infected in generation k and sk remaining susceptible, then it follows that

Ik+1 ∼ Bin(sk, 1− (1− p)ik) and Sk+1 = sk − Ik+1,

where Bin(n, p) denotes the binomial distribution with parameters n and p.
We can use this iteratively over different generations to compute the probability

of an entire outbreak in terms of generations. As a samll example, suppose that we
want to compute the probability that in a community of 10 individuals and starting
with one infectious and nine susceptibles, we want to compute the probability that
first 2 got infected, then 3 followed by 1, and then noone more. This means that we
have (i0 = 1, s0 = 9) followed by (i1 = 2, s1 = 7), (i2 = 3, s2 = 4), (i3 = 1, s1 = 3)
and (i4 = 0, s4 = 3). The probability for this outbreak chain is given by(

9

2
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(1−(1−p)2)3((1−p)2)4
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1

)
(1−(1−p)3)1((1−p)3)3

(
3

0

)
p0(1−p)3.

This should explain why the discrete time version of the Reed-Frost model is often
referred to as a chain binomial model. It is possible to think of other chain binomial
models (e.g. where the infection probabilities are different or there are different
types of individuals) but the discrete time Reed-Frost model is by far the most

5



well studied chain binomial model. The final size probabilities can in principle be
determined by summing the different chains given a specified final size, but for
more than, say 5, infected people there are to many chains giving such a final size
thus making this approach of less practical use.

It is worth pointing out that the time-continuous Reed-Frost model that we
started with in fact gives the same final outcome probabilities as the discrete time
Reed-Frost (having the same p). The order in which individuals get infected,
and by whom, differ in the two models, but the same number of individuals will
ultimately get infected. For this reason the two models are sometimes used inter-
changeably.

2.4 Asymptotic results

We now present some results for the standard stochastic SIR epidemic valid for
large n. All the results can be proven to hold as limit results when n→∞.

As mentioned earlier, in the beginning of an outbreak in a large community, an
infectious individual will have all its infectious contacts with distinct individuals
who are susceptible. An infective will hence infect new individuals at constant rate
β during the infectious period I, and people he/she infects will do the same and
independently. This then satisifies the definition of a continuous-time branching
process, where individuals give birth (i.e. infect) at rate β during their life-span
(infectious period) I.

The mean of the offspring distribution is given byR0 = βE(I) = βι. It is known
that if R0 ≤ 1, then the branching process (i.e. epidemic) can never take off, and
just a small number of individuals will ever get born (be infected). If however
R0 > 1, then the epidemic may take off infecting large number of individuals.
In the beginning of the outbreak, each individual infects a random number X
new individuals, and given the duration of the infectious period I = s, then the
number of infections is Poisson distributed with mean parameter βs (the infection
rate multiplied by the duration). Without conditioning on the infectious period,
the number of infections is henced what is called a mixed Poission distribution
X ∼ MixPoi(βI) where I is random following the distribution specified by the
model. For the continuous time Reed-Frost model X ∼ Poi(βι) since I ≡ ι is non-
random, and for the Markovian SIR where I ∼ Exp(γ) (having mean ι = 1/γ) it
is not hard to show that X ∼ Geo(γ/(β + γ)).

From branching process theory we conclude the following:

a) An epidemic can take off if and only if R0 = βE(I) > 1.

b) If R0 > 1, the probability π that the epidemic takes off equals the unique
strictly positive solution to the equation 1 − π = ρ(1 − π), where ρ(s) = E(sX)
and X ∼ MixPoi(βI) meaning that X given I = s is Poi(βs) and I follows the
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specified ditribution defined in the model. For the Reed-Frost model this equation
becomes 1 − π = e−R0π and for the Markovian SIR the solution is explicit and
equals π = 1− 1/R0.

c) If the epidemic takes off (hence assuming R0 > 1), then the number of infectives
I(t) at time t grows exponentially in t: I(t) ∼ eρt, where ρ is the so-called Malthu-
sian parameter being the unique solution to the equation

∫∞
0 e−ρtβP (I > t)dt = 1

(see Figure 2 for an illustration).
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Figure 2: Plot of I(t) during the initial epidemic stage for 10 simulations, original as
well as log-scale (for the ones that take off). The population size is n = 100 000 so
depletion of susceptibles have hardly started when at most 1000 individuals have been
infected. Five of the simulations die out quickly whereas the remaining take off, having
different initial delays before taking off. The original scale shows the exponential growth
which is made even more evident on the log-scale where the growth is linear. The model
parameters are β = 2 and γ = 1 (hence one week infectious period and R0 = 2). The
model predicts an exponential growth rate of ρ = β − γ = 1 which corresponds to a
linear growth with coefficient 1 on the log-scale (agreeing with the slopes of the lines).

If the epidemic takes off, the fraction of individuals being susceptible will start
decaying so someone who gets infected will then infect fewer individuals because
some of the infectious contacts will be ”wasted” on already infected people. This
explains why the branching process approximation, which assumes all individuals
infect according to the same rules, then breaks down. It is still possible to derive
approximately how many individuals that will get infected. One way to do this is
by analysing the differential equations defined in Equation (1). By manipulating
these equations it can be shown that when t→∞ and the initial fraction infectives
is small and the rest are susceptible, then r(∞) = 1 − s(∞), and s(∞), the
fraction avoiding infection during the outbreak, is given by the positive solution
to s(∞) = eR0(1−s(∞)). This equation may equivalently be expressed in terms of
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r(∞) = 1− s(∞):
1− r(∞) = eR0r(∞), (2)

the so-called final size equation. In Figure 3 we plot the final size r(∞) as a
function of R0, a solution which has to be obtained numerically.
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Figure 3: The final fraction getting infected in case of a major outbreak as a function
of R0 (for n→∞).

This result is true irrespective of the distribution of the infectious period I as
long as βE(I) = R0. From b) above we see that the outbreak probability for the
Reed-Frost model is the same as the final size equation, so for this particular model
the probability of a major outbreak (starting with one infective!) equals the final
fraction getting infected in case of a major outbreak. As two numerical examples,
if R0 = 1.5 we have r(∞) = 0.583 so approximately 60% will get infected if an
outbreak takes place in a community without any immunity, and r(∞) = 0.98 if
R0 = 3.

For any finite n in the stochastic setting, the ultimate fraction getting infected
will of course not be exactly identical to r(∞), there will be some random fluc-
tuations. These will however be of order 1/

√
n, so close to negligible in large

populations (in fact the randomness has been proven to be Gaussian with an ex-
plicit standard deviation which we make use of later).

In the next section we will discuss some extentions of this standard stochastic
epidemic model. Here we end by emphasizing that the most important parameter
R0 = βE(I) depends both on the disease agent but also on the community under
study. This can be made more explicit by writing β = c·p, so R0 = c·p·E(I), where
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c is the rate at which individuals have close contact with other individuals, p is the
transmission probability for such a contact given that one individual is infectious
and the other is susceptible, and E(I) is the mean infectious period. Then p and
E(I) depend on the disease agent whereas c depends on the community and how
frequently people have contact.

3 Model extensions

3.1 Including demography giving rise to endemicity

In the model defined in the previous section it was assumed that the community
was fixed and closed. Such an approximation works well if considering a short
term outbreak (e.g. influenza outbreak) taking place over a few months.

If our interest instead concerns diseases staying in the community for longer
periods, like with many childhood diseases, then such an approximation is not
adequate. Then we should allow for new individuals entering the community and
old people leaving the community (e.g. by dying). Such a stochastic model can
be achieved by adding a random, but with constant average rate, influx of new
suscerptible individuals, and assuming that each individual dies at rate µ to the
Markovian SIR model defined earlier. If we want the population size to fluctuate
around n this is achieved by setting the rate at which new susceptible individuals
enter the community equal to µn. So, by adding influx at rate µn and that people
die at rate µ (independent of disease state) to the standard stochastic epidemic
we get a simplest possible model suitable for studying endemic diseases giving
life-long immunity. The corresponding defining set of differential equations for a
deterministic model is given by

s′(t) = µ− βs(t)i(t)− µs(t)
i′(t) = βs(t)i(t)− γi(t)− µi(t) (3)

r′(t) = γi(t)− µr(t).

For this model infectives have infectious contacts at rate β until they recover or
die, so now R0 = β/(γ+µ). As before, the disease will go extinct quickly if R0 ≤ 1
whereas an endemic level can be obtained if R0 > 1. This endemic level can be
obtained by setting all derivatives above equal to 0 and solving the equations. The
result is

(s̃, ĩ, r̃) =
(

1

R0

, ε
R0 − 1

R0

, 1− 1

R0

− εR0 − 1

R0

)
, (4)

where ε = γ−1/(µ−1 + γ−1) is the ratio of the (average) infectious period and
life-length; usually a very small number.
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It is worth pointing out that the stochastic model, as well as the limiting
deterministic model defined by Equation (3), assume that the infectious period and
also life-length distributions are exponentially distributed. There are extensions
to more realistic scenarios but we omit them here.

3.2 Heterogeneities

The stochastic epidemic models defined above, as well as the deterministic coun-
terparts, have all assumed a community consisting of identical individuals that
mix uniformly at random with each other. Reality is of course more complicated.
There are usually different types of individuals being different in terms of how
susceptible they are, how much contact they have with others, and how infectious
they become in case of infection. In what follows we refer to such differences
as individual heterogeneities. There is also another type of heterogeneity which
concerns whom individuals have contact with. This latter feature concerns the
social structure in the community and the fact that usually individual meet more
regularly with certain individuals and much less with the remaining majority.

The individual heterogeneities are often dealt with by dividing the popula-
tion into different types of individual and assuming homogeneity within each type,
meaning that individuals of the same type have the same susceptibility, total con-
tact rate and infectivity. A corresponding epidemic is called a multitype epidemic
model. Such a multitype epidemic model is similar to the original model defined
above, with the difference that now the rate of infecting someone depends on the
type of the infector and the type of the susceptible type. As a consequence, R0 is
now more complicated – the average number of individuals (of different types) an
infected individual (of a specified type) infects is now a matrix of numbers. The
basic reproduction number R0 is then the largest eigenvalue to this next generation
matrix (e.g. [7], Chapter 7).

When it comes to the social structure of a community it depends on what
type of disease is considered. For example, when considering influenza or related
diseases it is common to consider household epidemic models because spreading
is usually higher within households than between other individuals. Sometimes
also schools or day-care centers are included in the model. If interest is instead
on sexually transmitted infections (STIs), then the relevant social structure is the
sexual network in the community. Then so-called network epidemic models [11] are
often used, where the network obeys certain known characteristics of the empirical
network but otherwise treated as random, and where an epidemic model is defined
on the network.

A different type of heterogeneity is where the contact rates vary with calendar
time, often referred to as seasonality. The simplest way to include such hetero-
geneity into a model is to let the infectious contact rate β now depend on calendar
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time β(t). Usually som type of periodic function is assumed, having one year as
the natural period. Two such choices are β(t) = a + b sin(ω + 2πt) where a is
the mean contact rate, b is the amplitude of the seasonality and ω is the phase
shift defining the time location of the yearly peak. A second choice is β(t) = a for
t ∈ k + [t1, t2] for some integer k and β(t) = b otherwise. This means that β(t)
is a two step function, often reflecting school terms vs. summer break, the latter
having lower overall contact rate.

Finally we mention heterogeneity in terms of the infectivity varying with time
since infection. In the presented model it was assumed that individuals immedi-
ately become infectious upon infection and infect others at rate β until the end
of the infectious period when infectivity suddenly drops to 0. A more realistic
model is to assume that the infectivity depends on the time s since infection β(s).
For instance, there might be very low infectivity shortly after infection, then the
infectivity picks up after a few days and remains high for some time until it starts
decaying down to 0. It could also be that β(s) is random in the sense that different
individuals have different infectivity curves (this is actually the case also for the
original model since the end of the infectious period is random). One special case
of this more general model is where each individual is a first latent for a random
period having no infectivity, followed by an random infectious period I when the
individual has infectious contacts at constant rate β, and then the individual re-
covers, the difference from the original model hence being a latent period prior
to infectivity. Such models are called SEIR epidemic models, where ”E” stands
for exposed but not yet infectious. In terms of the epidemic, SEIR epidemics will
result in the same final size (assuming the same R0 of course) but the timing and
duration of the outbreak will differ. From an inference point of view this means
that extending the model in this direction is not important for final size data, but
e.g. when data comes from the beginning of an outbreak time varying infectivity
is often important to take into consideration.

3.3 Prior immunity

In the model defined in Section 2 it was assumed that initially everyone was sus-
ceptible to the disease except for one or a few index cases. In empirical settings
there is often some natural immunity in the community due to prior history to the
disease (see Section 5 for immunity due to preventive vaccination).

Suppose as a simple illustration that a fraction s in the community are fully
susceptible and the remaining fraction 1−s are completely immune. If the disease
is then introduced by a few index cases the reproduction number is reduced from
R0 to RE = R0s since, early on in the outbreak, only a fraction s of all contacts will
result in infection. An outbreak is then possible only if the effective reproduction
number RE > 1. We hence see that an outbreak is only possible if s > 1/R0. How

11



many that get infected in case of an outbreak (as well as the probability for a major
outbreak) can be derived analougously to the case without natural immunity. The
result is that the fraction of the initially susceptible that ultimately get infected,
rs(∞), is the solution to the new final size equation

1− rs(∞) = e−R0srs(∞). (5)

The overall fraction that get infected is hence srs(∞). As a numerical illustration,
suppose R0 = 3 and s = 50%, so only half of the community are susceptible.
Then rs(∞) = 0.583 so the overall fraction getting infected will be about 29-
30%. Compare this with the situation where there is no prior immunity (so s =
100%) when we saw earlier that 98% get infected! These differences are also very
important when making inference as we shall see later: neglecting prior immunity
when estimating R0 can lead to dramatic underestimation of R0 if not taken into
account!

4 Statistical inference

In the previous sections we have introduced some basic epidemic models and dis-
cussed some extensions towards more realistic models. What follows now, which
is the main focus of the the whole book, concerns how to make inference about
model parameters after having observed an outbreak taking place.

Stochastic epidemic modelling is concerned with deriving likely outcomes given
some parameter set-up. Epidemic inference goes in the opposite direction: which
parameters are best in agreement with an observed outcome? This should explain
why knowing some results from stochastic epidemic modelling helps when making
inference.

How to make inference depends on two things: what model is considered, and
what type of data that is available for making inference. In the current section our
emphasis is the standard stochastic epidemic model, but we discuss two different
types of data: the final size, when we observe how many that were infected at
the end of the outbreak, and the situation where we also have some temporal
information. We start with the former.

4.1 Inference based on final size

Consider a community of size n and suppose that prior to the outbreak the fraction
s were susceptible to the disease and the rest were immune to the disease. After the
outbreak has taken place we observe that a fraction r̃s of the initally susceptibles
were infected during the outbreak. This means that we know the population size
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n and the initial fraction immune 1 − s, and our data observation is the fraction
r̃s among the susceptibles who got infected.

If we only observe the final size we cannot estimate any rates or durations, so
β and E(I) cannot be estimated separately, only their product R0 = βE(I).

From Equation (5) we know that r̃s should approximately equal the solution of
this equation. A very natural estimator is hence to rewrite (5) having R0 on one
side and to estimate R0 by inserting the observed fraction r̃s infected. This gives
the following estimator:

R̂0 =
− ln(1− r̃s)

sr̃s
. (6)

As mentioned earlier it has been shown that the final fraction infected is Gaussian
having mean as defined by (5) and with explicit standard deviation of order 1/

√
n.

This result together with the so-called δ-method (e.g. [12], Ch 4) can be used to
obtain a standard error for the estimate R̂0. The result is

s.e.(R̂0) =
1√
ns

√√√√1 + c2v(1− r̃s)R̂2
0s

2

s2r̃s(1− r̃s)
, (7)

where cv :=
√
V (I)/E(I) denotes the coefficient of variation of the infectious

period. For the Reed-Frost epidemic cv = 0 and for the Markovian SIR cv = 1
and most often when estimated cv lies somewhere inbetween these two values. If
unknown, a conservative estimate is hence to set cv = 1. Recall that s is the initial
fraction susceptible which is assumed to be known. If there is no natural immunity
s = 1.

The inference presented above assumes that all infected cases are observed,
meaning that there is no under-reporting. In reality there is of course under-
reporting in that only some fraction π of all cases are reported. However, if all we
observe is the fraction of reported cases among the initially susceptible, r(rep)s , it is
impossible to deduce how many unreported cases there were. As a consequence,
what fraction π of all cases that are reported has to be inferred in some other
way. Having done this we immediately have an estimated of the true fraction
infected among the initially susceptible: r̂s = r(rep)s /π̂. This estimate can then be
used in the above expression to obtain an estimate of R0. The uncertainty of the
estimate increases some, how much depends on the uncertainty of the estimate π̂
– a standard error can be obtained using the δ-method.

4.2 Inference based on temporal data

Quite often there is temporal information available from an outbreak, weekly re-
ported number of cases being the most common. The date at which an infected
individual is reported is typically when he or she starts showing symptoms, or
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rather a few days after this when a test is taken at a clinic (and later confirmed as
positive). It is not always clear how this time relates to the time of infection and
time of recovery, and this will depend on the disease in question. A common way
to proceed is to assume that the reporting date approximately equals the recov-
ery date (perhaps the individual receives some treatment reducing infectivity and
also the ilness usually have the effect of reducing social activity). With such an
assumption, and neglecting that the recovery time is often truncated to week, we
hence observe R(t) during some time interval [t0, t1], often the start and end of the
outbreak. There exists inference procedures for this type of data, here we simplify
the situation by assuming that we also observe the infection times of individuals,
thus saying that we observe (S(t), I(t), R(t)) for t ∈ [t1, t2] together with observ-
ing the infectious periods I1, . . . , Ik for all individuals who also recover during the
period. This is the data used for inference in this section. The more likely data,
observing times of diagnosis rounded to nearest week, is hence less informative but
on the other hand more informative as compared to final size data considered in
the previous section.

The parameters we want to make inference about are: R0 = βE(I), and pos-
sible also the infectious contact rate β and properties of the infectious period
separately. In fact, the main advantage from having temporal information lies in
the possibility to infer not only R0 but the the other parameters separately, and
also to be able to check model fit better.

To estimate R0 from this temporal data can be done by only using the final size
data and using methods of the previous section. This estimate can be improved
slightly by inserting the separate estimates obtained below: R̂0 = β̂Ê(I). For
standard errors we refer to [7], Sec. 5.4.2.

To infer parameters of the infectious period is straightforward, since we have
i.i.d. observations I1, . . . Ik of the infectious period. So, for example we can esti-
mate the mean nonparametrically by Ê(I) = Ī, the mean length of the infectious
periods.

With regards to the transmission parameter β, it should be clear from Equation
(1) that a sensible estimator for β is obtained by integrating both sides of the top
equation of (1), and replacing the deterministic fraction with the corresponding
observed fractions:

β̂ =
S̄(0)− S̄(t)∫ t
0 S̄(u)Ī(u)du

. (8)

In fact, S̄(0)− S̄(t)−
∫ t
0 βS̄(u)Ī(u)du is a so-called martingale which can be used

to show that the estimator β̂ is consistent and asymptotically normally distributed
with an explicit standard error. For details we again refer to [7], Sec. 5.4.2.

As mentioned above, another advantage with having temporal data is to check
model fit. For example, one could plot the deterministic curves of Equation 1 with
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β̂ and 1/Ī replacing β and γ and compare these curves with the corresponding
observed curves (S̄(t), Ī(t), R̄(t)). If there is big discrepancy it could be that some
heterogeneity has high influence on the observed epidemic which hance should be
investigated further.

Like always, the problem of underreporting is an issue also here. If it is antici-
pated that underreporting is substantial, then this should be estimated somehow,
preferably using other sources of information (there is ongoing research aiming at
estimating the underreporting fraction π using only reported data, e.g. [10], the
conclusion seems to be that it is problematic.

4.3 Inference from emerging outbreaks

In the previous section the focus was on observing a complete outbreak also having
some temporal information. As mentioned earlier, a complicating factor with in-
ference for infectious diseases are the strong dependencies between infection events
clearly manifested in that the rate of having infectious contact is β, but the rate of
infecting new people is βS̄(t), since only contacts with susceptibles (which happens
with probability S̄(t) at time t) result in infection.

During the early stage of an outbreak, say before 1% have been infected, this
dependence is close to negligible; so with good approximation we can assume that
individuals infect new people independently (remember that we consider a homo-
geneously mixing community; when spreading is high within households this does
not hold true). When individuals infect new people independently the epidemic
model behaves like a branching process, which we will make use of later. In the
current section we consider this type of simpler (but still hard!) situation, a suit-
able approximation when observing an emerging epidemic outbreak (during which
typically R(t) grows exponentially with rate ρ say, cf. Section 2.4). In Figure 4 the
reported number of Ebola cases during the beginning of the 2014-15 outbreak are
plotted, for each of the three countries separately and together (the latter showing
a clear exponentially growing behavior).

Suppose hence that we observe the number of reported cases R(t), also called
the reported incidence, from the start t = 0 up until some time t = t1. Using
previous notation we hence observe R(t), 0 ≤ t ≤ t1 during the beginning of an
outbreak meaning that the overall fraction infected R̄(t1) is still small (in Figure
4 much less than 1% have been infected). Questions of interest are: what is R0,
how fast does the epidemic grow, and how many will eventually get infected (with
or withour some specified preventive measures put in place)?

We start with the easiest question which concerns the exponential growth rate
ρ. Since growth is exponential and the depletion of susceptibles is still negligible,
taking logarithms of the incidence and performing regression gives a simple and
good estimate of ρ.
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Figure 4: Reported number of cases of Ebola during the 2014-15 outbreak.

The remaining questions, what is R0 and how many will eventually get infected,
let’s say without preventive measures, is harder. From observing only the initial
growth (e.g. Figure 4) it is in fact impossible to say anything more than that
R0 > 1 and that a substantial fraction will get infected. This should be clear from
the following example. Consider two different diseases, both having R0 = 1.5 (and
assuming no prior immunity) but one having average infectious period 3 days and
the other having one week average infectious period and lower daily infectivity.
Since R0 = 1.5 we know from Section 2.4 that close to 60% will get infected for
both diseases. However, from the fact that the first disease has shorter infectious
period and hence shorter average generation time, this disease will have a quicker
initial growth. So, eventhough one has quicker growth that the other, they will
eventually result in the same final size (approximately of course).

The above example illustrates that some additional information, beside the
initial growth rate, is needed in order to infer R0 and the final fraction getting
infected r(∞). The needed quantity is the so called generation time distribution
g(s), which quantifies the distribution of the time between getting infected and
infecting a new individual (cf. [14] and [13]). Or, equivalently, an individual in-
fects new individuals at average rate R0g(s) s time units after infection. For the
standard stochastic SIR epidemic g(s) = P (I > s)/E(I) but the generation time
distribution can be computed for more realistic models allowing for latent peri-
ods and time varying infectivity. Using theory for branching processes (e.g. [9])
it is well-known that, given the generation time distribution g(s), the exponen-
tial growth ρ and the basic reproduction number R0 are connected to each other
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through the Lotka equation ∫ ∞
0

e−ρtg(t)dt =
1

R0

.

So, if we observe the emerging phase we can estimate ρ, which together with
knowledge about the generation time distribution will give us an estimate of R0,
and hence of the final size using the theory of Section 2.4. It remains to get an
estimate of the generation time distribution g(·).

To estimate the generation time distribution is however often quite hard, in
particular for an emerging outbreak for which there might not be much historical
information. Methods for doing this often rely on contact tracing and comparing
the onsets of symptom of cases and their likely infector. We refer to Team WER
et al. (2014 ??) for a recent treatize on such estimates for the Ebola outbreak. [6]
high-light some specific difficulties with such estimation problems, which could lead
to biased estimates of R0: early in an outbreak short generation times will be over
represented, if individuals having multiple potential infectors are neglected will
make remaining generation systematically shorter, and the random delay between
infection and onset of symptoms can make generation times estimated with too
high variance. All three effects lead to R0 being underestimated if not adjusted
for.

4.4 Inference based on endemic levels

In Section 3.1 the endemic levels (s̃, ĩ, r̃) of susceptibles, infectives and recovered
(=immune), for so-called childhood diseases giving life long immunity, were given
in Equation (4). If we observe a community at endemicity we can therefore esti-
mate R0 simply by

R̂
(endemic)
0 =

1

s̃
.

A probabilistic analysis of the endemic model is much harder than the model in
a fixed and closed community. For this reason there are currently no available
plug-in estimates of the standard error of this estimate. However, we can say a bit
more about the estimate itself.

At first it might not seem that easy to obtain the data observation s̃, the
fraction susceptible at endemicity. But, since we are considering diseases giving
life-long immunity, the length of the susceptible life-period of an individual is
identical to the age at which he/she gets infected. Since we are considering a com-
munity at equilibrium the fraction of individuals being susceptible will therefore
equal the average relative part of a life an individual is susceptible, and this is
simply the average age of infection a divided by the average life-length `: s̃ = a/`.
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Both these numbers are easily obtained: the former from the medical authorities
and the latter from national statistics data.

As an illustration, suppose the average life-length equals 75 years, and the
typical age of infection of some disease not currently vaccinated for, is 5 years.
Then s̃ = 5/75 = 1/15 which hence implies that R̂0 = 15.

4.5 Inference for extended models

In Section 3.2 several extensions of the standard stoachastic SIR epidemics were
discussed, bringing in realism in terms of various sorts of heterogeneities. These
were for example to acknowledge that individuals are of different types, having
different susceptibilities and infectivities between different types, for example due
to age, gender and/or prior history to the disease; models which are often referred
to as multitype epidemic models. Another heterogeneity lies in how people mix
with each other; if for example considering influenza, including household structure
into the model makes sense, whereas if considering STI’s, a network mimicking the
network of sex-contacts is more relevant. Finally, there might be heterogeneity in
infectivity over time, either calendar time because of seasonal differences and/or
time since infection where infectivity may first increase, then peak, followed by a
slow decay down to zero.

To make inference in such more complicated situations, including also other
aspects, is what most of the forthcoming chapters are dealing with. We hence
refer to later sections for such statistical analyses except giving a few qualitative
statements.

If observing the final outcome of a multitype epidemic the fraction infected
in each type is observed, and it is assumed that the community fraction of the
different types are known. If there are k types of individuals, the data vector
is hence k-dimensional. However, the number of parameters is greater than k,
whether assuming a completely general contact matrix between different types
(having dimesion k2) or assuming separable mixing where the contact rate between
two types is the infectivity of the infective type multiplied by the susceptibility of
the receiving type (dimension 2k). As a consequence, it is not possible to estimate
all model parameters consistently, and what is worse, it is not even possible to
estimate R0 consistently. Without additional knowledge, all that is possible to do
is to give a range of possible values of R0 (cf. [3]).

When it comes to household models, it is possible to estimate the transmission
rates both within and between households whether observing temporal or final
size data. Intuitively, the more cases are clustered in certain households the more
spreading there is within households. From these estimates it is possible estimate
R0, or rather another threshold parameter R∗ called the household reproduction
number, cf. [1].
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Network epidemic models, and inference for such, have received much attention
in the literature during the last two decades. From an inference point of view, the
statistical methodology differs whether the network is observed globally, locally or
not at all, beside observing infected individuals. If the complete network is ob-
served, inference is quite straightforward: susceptible individuals are exposed by
infectious neighbours, and by observing when infection takes place and how long
infectious periods last it is possible to infer disease model parameters. If the net-
work is only observed locally, e.g. the number of neighbours of infected individuals,
or the more common situation that the underlying network is not observed at all,
expect possibly some summary statistics such as mean degree and/or clustering,
then inference becomes much harder. Individuals that get infected are usually un-
representative in having many neighbours thus exposing themselves to higher risk
of transmission, and it is not observed which are the underlying links responsible
for infection, making estimation of R0 impossible without additional assumptions.

The final type of heterogeneity regards variation in either calendar time or
time since infection. Varying infectivity due to calendar time is often referred to
as seasonality and is usually modelled by a sinodal curve. It is possible to include
such a function and to estimate parameters using e.g. reported incidence over the
year. As for the infectivity function as a function of time since infection, denoted
the generation time distribution, is often estimated from contact tracing, see e.g.
[15]. But as mentioned in Section 4.3 this is often associated with potential risk
for biases.

5 Introducing prevention: modelling and infer-

ence

One of the main reasons for modelling and making inference for epidemics is to
better understand them, and in particular to understand what preventive measures
are needed to reduce or preferably completely stop an outbreak. In the current
section we focus on the preventive measures which make susceptible individual no
longer at risk of infection. This can be acheived in different ways depending on
the application: an individual may get vaccinated, isolated or for STIs stop being
sexually active or only having safe sex. In what follows we use the term vaccination
but bear in mind that this may have alternative meanings.

Suppose that a fraction v of the community is vaccinated prior to the arrival
of the outbreak, or, in the endemic setting, suppose that a fraction v of all new-
born individuals are vaccinated. Further, assume that the vaccine gives 100%
protection (there also exist model extensions allowing for partial vaccine efficacy).
The basic reproduction number is then reduced to Rv = R0(1− v), since only the
fraction 1− v of the infectious contacts are with non-vaccinated individuals. As a
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consequence, there will be no outbreak (or the disease will vanish in the endemic
setting) if Rv ≤ 1. But this is equivalent to v ≥ 1− 1/R0. The value giving exact
equality is known as the critical vaccination coverage and denoted vC = 1− 1/R0,
a very important quantity when aiming at preventing an outbreak or making an
endemic disease disappear.

Because we have estimates of R0 from final size data, an estimate of vC for the
same data is immediate:

v̂C = 1− 1

R̂0

= 1− sr̃s
− ln(1− r̃s)

. (9)

Recall that s denotes the initial fraction susceptible in the community in which
the outbreak took place, and r̃s the observed fraction infected among the initially
susceptibles. A standard error for v̂C can be obtained using similar methods as for
R̂0. The result says that

s.e.(v̂C) =
1√
ns

√√√√1 + c2v(1− r̃s)R̂2
0s

2

R̂4
0s

2r̃s(1− r̃s)
, (10)

where as before, cv denotes the coefficient of variation of the infectious period,
which can be conservatively estimated to 1 if unknown.

For endemic diseases having a fraction s̃ susceptible, the corresponding estimate
of vC equals

v̂
(endemic)
C = 1− s̃.

To obtain a standerd error for this estimate remains an open problem, but the
standard error should be of order 1/

√
n.

6 Discussion

Reality is often complicated, and more realistic models having more complicated
inference procedures are many times to be preferred as compared to the simple
models of the current chapter. However, a recommendation is to complement such
analyses with the simpler methods of the current chapter. If the estimates from
the simpler methods are close to the ones in the more complicated models this is
reassuring, and if not it is worth spending some time to understand why this is
not the case.

We again stress the importance of acknowledging that not all infected indi-
viduals are usually reported, often due to no or minor symptoms (asymptomatic
infections).

In the current chapter we did not consider estimation of vaccine efficacy, usually
inferred in a clinical trial in which certain individuals are vaccinated and others
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not. In fact there are several different vaccine efficacies: in terms of susceptibility,
symptoms, infectivity if infected, and others. This rather complicated inference
problem is investigsted in detail in [8]

One heterogeneous feature which was not considered in the current chapter
were spatial aspects, where most likely, the risk of transmitting someone decrease
with the distance between the steady locations of the two individuals (particularly
relevant in wild-life and plant populations).

We end by giving a general rule of thumb: various heterogeneities play a big-
ger role the less transmittable the disease is, So homogeneous mixing models often
work satisfactorily for measles and similar childhood diseases, but various hetero-
geneities need to be included when analysing e.g. STI outbreaks.
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