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Abstract

We couple a multi-type stochastic epidemic process with a directed ran-
dom graph, where edges have random lengths. This random graph repre-
sentation is used to characterise the fractions of individuals infected by the
different types of vertices among all infected individuals in the large popula-
tion limit. For this characterisation we rely on theory of multi-type real-time
branching processes. We identify a special case of the two-type model, in
which the fraction of individuals of a certain type infected by individuals
of the same type, is maximised among all two-type epidemics approximated
by branching processes with the same mean offspring matrix.

Keywords: Epidemics, Multi-type branching process approximation, Suscepti-
bility processes, Directed random graphs

2010 Math. Subj. Classification: Primary 92D30; 60K35; Secondary 05C80; 60J80

1 Introduction

Mathematical models have proven to be successful in understanding infectious
disease dynamics. Often, the focus is on (controlling) the beginning of an epidemic.
In many of those models branching process approximations and the concept of the
basic reproduction number R0 (which corresponds to the offspring mean of the
approximating branching process) play an important role. In the current paper
we consider the entire epidemic outbreak instead. We do so in a setting where there
are multiple types of infected individuals. Suppose that a large epidemic outbreak
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has taken place in the population. Then a certain fraction of the population will
have become infected. The question that we concern ourselves with is: what
fraction of the infected population of a certain type j was infected by individuals
of type i? Here i, j = 1, . . . K, where K is the number of types in the population.
In other words, who is the infector?

This question is not so straightforward to answer. Timing of events plays an
essential role. We approach this question using an epidemic graph construction,
which is used as a tool in proving the two main theorems of this paper. But, the
construction proves to be interesting in itself, and a substantial part of this paper
is devoted to this construction. Using the graph representation of the epidemic, we
consider susceptibility processes. Susceptibility sets were introduced in infectious
disease modelling by Ball and co-authors [4, 5]. The susceptibility set of a vertex
v consists of all vertices u in the vertex set from which there is a path from
u to v in the (restricted) epidemic random graph. The epidemic process and
epidemic random graph can be coupled in such a way that u is in the susceptibility
set of v if and only if v is infected during the epidemic conditioned on u being
initially infectious. Susceptibility sets have proven to be important tools in proving
results concerning e.g. the final size of different epidemic models [5, 6] (see also
[2]). However, for the research question in this paper we need to consider the
susceptibility process instead, i.e. we need to take timing into account.

In this paper, we also consider a multi-type (backward) branching process. This
branching process is constructed in such a way that the distribution of the tree-
like graph corresponding to it, is the same as the susceptibility process (up to a
certain time). The coupling between the susceptibility process and the branching
process enables us to prove the main results of this paper formulated in Theo-
rems 2.7 and 2.8. Using existing theory for branching processes we find an answer
in Theorem 2.7 for the question “who is the infector?” by means of an expression
for the expected fraction ρij of infected individuals of type j that are infected by
individuals of type i, conditioned on that there is a large outbreak in a population
(as the population size tends to infinity), i, j = 1, . . . K. In general, this expres-
sion remains rather implicit. However, for a special class of models, we are able to
obtain upper and lower bounds for the quantities ρij of interest (Theorem 2.8) if
we keep the fractions of individuals of the different types and the expected number
of infectious contacts between different types of individuals fixed. As the ρij of
Theorem 2.8 are rather implicit, these bounds allow us to gain more insights in the
importance of different types of infected individuals in the transmission dynamics
in the population.

The class of models that allows for identifying upper and lower bounds are the
topic of interest of our twin paper [16]. This paper [16] is motivated by infectious
diseases, such as influenza and chlamydia, for which we can categorise infected
individuals as symptomatic or asymptomatic (showing no apparent signs of the
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disease) giving rise to two types of infected individuals. Asymptomatically infected
individuals are generally hard to detect by public health authorities. Therefore, we
would like to gain insights in their role in the transmission process and determine
whether asymptomatically infected individuals often play the role of the infector.

The structure of this paper is as follows. In Section 2 we introduce the model,
the notation and the two main theorems of the paper. Next, in Section 3, we
discuss the construction that enables us to prove the desired results. The proofs
are then presented in Section 4. We end with a short discussion in Section 5.

2 Model, notation and main results

2.1 Model and notation

We denote the number of elements in a set A by |A|. For k ∈ N we use the notation
[k] = {1, 2, · · · , k}. We use N for the strictly positive integers and N0 = N ∪ {0}
for the non-negative integers.

Unless specified otherwise, limits are for population size n → ∞. We say
that an event happens with high probability (w.h.p.) if the probability of the
event converges to 1 as n → ∞. We adhere to the usual order notation, i.e.
f = O(g) means that lim supn→∞ |f(n)/g(n)| < ∞ and f = o(g) means that
limn→∞ |f(n)/g(n)| = 0. In addition, for a sequence of random variables {X(n);n ∈
N}, we write X(n) = Op(g) if |X(n)/g(n)| is bounded in probability and X(n) =
op(g) if X(n)/g(n)→ 0 in probability. See [15, Section 1.2] for a discussion of this
notation.

We consider a population of n individuals where V (n) denotes the set of all
individuals. For some of our results we consider a sequence of models in growing
populations, i.e. for n → ∞. If no confusion is possible we write V = V (n). We
assume that there are K types of individuals. For i ∈ [K], let Vi = V

(n)
i be the set

of vertices of type i and ni = |Vi| the number of vertices of type i.
Within this sequence of populations we consider the spread of an infectious

disease in which individuals are either susceptible or infected. When individual
v ∈ V (n)

i is infected it makes contacts to different individuals of type j (i, j ∈ [K])
according to a point process ξjv = {ξjv(t); t ≥ 0} on the interval [0,∞). If there
are more than nj points in the process, then only the first nj points represent
contacts. The time parameter in the definition of ξjv represents the time since
infection of individual v. The processes ξ1

v , ξ
2
v , · · · and ξKv may be dependent,

and their joint distribution may depend on the type i of v. However, the point
processes associated to different individuals are independent, i.e. the vectors of
processes {(ξ1

v , · · · ξKv ); v ∈ V } are independent. For convenience we introduce the
vector of stochastic process (ξi1, ξi2, · · · , ξiK), which is distributed as (ξ1

v , · · · ξKv )
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for v ∈ Vi, i ∈ [K]. We make the following assumptions.

Assumption 2.1. n−1ni → pi > 0 for all i ∈ [K]. Furthermore,

max
i,j∈[K]

∣∣∣∣∣pipj − ni
nj

∣∣∣∣∣ = O(1/n).

Assumption 2.2. For all i ∈ [K], the distribution of (ξi1, ξi2, · · · , ξiK) is inde-
pendent of population size n and for all i, j ∈ [K],

mij = E[ξij(∞)] <∞, (1)

i.e. the expected number mij of contacts that an individual of type i makes with
individuals of type j is finite, for all i, j ∈ [K]. Furthermore, we assume that
|(ξi1, ξi2, · · · , ξiK)| does a.s. only contain jumps of size 1 and its distribution has
no atoms.

Assumption 2.3. There exists a constant κ < 1 such that for all i ∈ [K],

P
(

max
v∈V

ξiv(∞) < nκ
)
→ 1 as n→∞.

For future reference, we let M = {mij}i,j∈[K] denote the matrix with the mij

(as defined in Assumption 2.2) as elements. Assumption 2.2 guarantees that w.h.p.
all non-trivial paths in the epidemic graph defined below have different lengths.
Note that Assumption 2.3 is easily met, e.g. if for all v ∈ V and i ∈ [K] there
exists ε > 0 and `0 ∈ (0,∞), for which P[ξiv(∞) > `] < `−(1+ε) for all ` > `0, then
for κ ∈ (1/(1 + ε), 1)

P
(

max
v∈V

ξiv(∞) < nκ
)

=
∏
v∈V

[1− P
(
ξiv(∞) > nκ

)
]

≥ 1−
∑
v∈V

P
(
ξiv(∞) > nκ

)
≥ 1− nmax

j∈[K]
P (ξji(∞) > nκ)

> 1− n× n−(1+ε)κ

→ 1.

At the points of ξjv (j ∈ [K]), v contacts an individual from Vj. The individuals
that are contacted are uniformly chosen without replacement. If v is of type j, we
allow for v to be among the contacted individuals in ξjv. If the individual that is
contacted is still susceptible at the time of the contact then it becomes infected.

Note that we may assign the point processes {ξjv; v ∈ V, j ∈ [K]} and decorate
the points with the labels of the individuals these points represent contacts to,
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already before the epidemic starts. This allows us to create a new set of random
variables {η(u, v);u, v ∈ V }. Assume that individual v is of type j ∈ [K]. If
there is a point in ξju with label v, then η(u, v) takes the value of this point. If
there is no such point in ξju, set η(u, v) = ∞. Observe that the distribution of
{η(u, v);u, v ∈ V } depends on n in this construction, because the probability that
v is chosen as a label is decreasing in n. Note that there is a broad class of models
that satisfy Assumptions 2.1-2.3, see Remark 2.6 for an example of a specific class
of epidemic models.

This construction provides us with a graph representation of the population
and the epidemic on it. We construct the weighted random graph G = (V,E) as
follows. The edge set E consists of all directed pairs (u, v) ∈ V × V , with u 6= v.
For edge (u, v) ∈ V × V , we say that u is the tail of (u, v) and v is its head.
The weight of edge (u, v) is given by η(u, v) for all (u, v) ∈ E. For some of our
arguments we restrict to the weighted edge set E ′ ⊂ E of all edges (u, v) ∈ E
with finite weight, i.e. (u, v) ∈ E ′ if and only if η(u, v) < ∞. The corresponding
random graph is denoted by G′ = (V,E ′). For i, j ∈ [K], u ∈ Vi and v ∈ Vj, we
also introduce the random variable ηij, which is distributed as η(u, v) conditioned
on η(u, v) <∞ (i.e. conditioned on (u, v) ∈ E ′). Observe that

P(ηij ≤ t) = P(η(u, v) ≤ t|η(u, v) <∞)

=
P(η(u, v) ≤ t)

P(η(u, v) <∞)
=

1
nj
E[ξij(t)]

1
nj
E[ξij(∞)]

=
E[ξij(t)]

mij

,
(2)

which is independent of n. We mainly consider the random graph G′ = (V,E ′).
See Figure 1 for an example of G′.

An ordered set of distinct vertices π = (v1, v2, · · · , vm) is a path in G′ if
(vi, vi+1) ∈ E ′ for all integers i ∈ [m−1]. With some abuse of terminology, we some-
times refer to the set of edges connecting the vertices of π as the path π and speak of
a path in E ′. The length of a path π = (v1, v2, · · · , vm) is `(π) =

∑m−1
i=1 η(vi, vi+1).

Assumption 2.2 implies that all non-zero paths in E ′ have different lengths with
probability 1. Let Πuv be the set of all paths from u to v in E ′ and define the
(quasi) distance from u to v as d(u, v) = minπ∈Πuv `(π). As an example, in Figure
1 the distance from a to d is given by

d(a, d) = min (η(a, b) + η(b, d), η(a, c) + η(c, d)) = 1.8.

In general, d(u, v) 6= d(v, u) if u 6= v since the graph G′ is directed. Therefore d
is actually a quasi-distance. We say that d(u, v) = ∞ if Πuv = ∅. Furthermore,
d(v, v) = 0 for all v ∈ V .

Next we formulate an “irreducibility” assumption:

Assumption 2.4. For every i, j ∈ [K], there is w.h.p. a path from a vertex in Vi
to a vertex in Vj in E ′.
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Figure 1: An example of G′ = (V,E′) with n = 8 and K = 2. The vertices are labeled
a, b, · · · , h. Vertices of type 1 are represented by circles and vertices of type 2 by boxes.
Contacts made by vertices of type 1 are represented by solid directed edges and contacts
made by vertices of type 2 by dashed directed edges. The numeric values next to the
edges reflect the time since infection η(u, v) of the tail u of the edge until a contact with
the head v takes place, u, v ∈ {a, b, · · · , h}.

An epidemic process is reproduced from G′ as follows. Let Vinit = V
(n)

init be
the set of vertices that are initially infected. This set may be predetermined or
randomly selected and satisfies the following assumption.

Assumption 2.5. The set V
(n)
init of vertices that are initially infected satisfies

|V (n)
init | = Op(1).

We set σv to be the time between the start of an epidemic until v becomes
infected, v ∈ V , i.e. σv = inf{d(u, v);u ∈ Vinit}. In particular, σv = 0 for v ∈ Vinit.
So, suppose we let Vinit = {a} in Figure 1, then σa = 0, σb = 0.3, σc = 1.3, σd = 1.8
etc. Moreover, if σv =∞, then v will never become infected. Note that G′ contains
some redundant information regarding the epidemic: (i) there are edges with finite
weights with infection time of the tail being ∞, i.e. the tails of those edges will
never get infected, (ii) if σv < σu+η(u, v), then the edge (u, v) represents a contact
between two already infected individuals.

Remark 2.6 (The SEIR epidemic model). The framework of this section includes
the SEIR (Susceptible → Exposed → Infectious → Recovered) epidemics as fol-
lows. In the SEIR framework, exposed, infectious and recovered individuals are
all counted as infected. Assign to every vertex v ∈ V a random latent period Lv
and a random infectious period ιv, which might be dependent on Lv. The vectors
{(Lv, ιv); v ∈ V } are independent and their distribution functions only depend on
the type of the vertex. Suppose that v is of type i. Conditioned on (Lv, ιv), let the
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processes {ξ̂jv; j ∈ [K]} be independent homogeneous Poisson processes on the in-
terval (Lv, Lv+ιv) with intensity pjλij. At the points of this point process, v makes
contacts to vertices in Vj chosen uniformly with replacement. By keeping only the

points in {ξ̂jv; j ∈ [K]} whose label did not appear before in this process, we obtain
{ξjv; j ∈ [K]}. If Lv and ιv are exponentially distributed, then the SEIR epidemic
is a Markov process that is often referred to as the Markov SEIR epidemic.

At time t, a vertex v is susceptible if t < σv, Exposed if t ∈ [σv, σv+Lv), while it
is Infectious if t ∈ [σv +Lv, σv +Lv + ιv). Finally v is Recovered if t ≥ σv +Lv + ιv.

If P(Lv = 0) = 1, then we are in the so-called SIR (Susceptible → Infectious
→ Recovered) epidemics framework. In addition, if ιv is exponentially distributed
then the process is called a Markov SIR epidemic.

Finally, to conclude this section, we introduce the basic reproduction number
R0. As this is possibly the most studied quantity in mathematical modelling of
the spread of infectious diseases, no epidemic modelling paper would be complete
without at least mentioning R0. In a single-type epidemic model R0 is defined as
the expected number of infectious contacts made by a newly infected individual
in an otherwise susceptible population. The multi-type equivalent of R0 is given
by the dominant eigenvalue of the K ×K matrix M = {mij}i,j∈[K] (see Assump-
tion 2.2). R0 is always real and strictly positive [14, Chapter 4],[10, Chapter 7].
We say that the epidemic process is supercritical (resp. critical, resp. subcritical) if
R0 > 1 (resp. R0 = 1, resp. R0 < 1). As n→∞, the epidemic becomes large with
positive probability if and only if the process is supercritical [10]. In the remainder
of the paper we assume that R0 > 1.

2.2 Main results

Because we assume that R0 > 1, a large outbreak occurs with positive probability
and at the end of such a large outbreak, a fraction of the infected individuals is
of type j w.h.p. However, the question that we are interested in is: what frac-
tion of those individuals was infected by individuals of type i, for i, j ∈ [K]? So,
if we denote set of infected individuals of type j by Ij, and the subset of those
individuals, which are infected by individuals of type i by I ij, then we are inter-
ested in |I ij|/|Ij|. For example, in Figure 1, if a represents the initially infectious
individual, then there are two individuals of type 1 that are infected by an in-
dividual of type i (namely the individuals represented by vertices c and g) and
one individual of type 1 that is infected by an individual of type 2 (namely the
individual represented by vertex d). So, the fraction of individuals infected by an
individual of type 1 among all infected individuals of type 1 is 2/3 (we exclude
vertex a because it was initially infected, and not infected by another individual
in the population). The question posed above leads to the main results that are
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formulated in Theorems 2.7 and 2.8 below. For our results, we need to define a
multi-type branching process {Z(t); t ≥ 0}. The branching process is defined as
follows. Let Zi(t) be the number of particles in the branching process at time t
if the process is started by a single particle of type i, i ∈ [K]. For i, j ∈ [K],
particles of type j in Z(t) give birth to particles of type i according to a Poisson
process with intensity pi

pj
E[ξij(da)], where a is the age of the particle of type j. All

of these Poisson processes are independent.
The definition of the branching process Z(t) is such that we can apply theory

from [13]. In particular, there exists a Malthusian parameter α > 0 and a random
variable W i, such that

e−αtZi(t)→ W i a.s. as t→∞

and
P(W i ∈ (0,∞)) = 1− P(W i = 0) = P(Zi(t)→∞).

Let W i(r) for r ∈ N be independent copies of W i. We now state our first main
result.

Theorem 2.7. Conditioned on the occurrence of a large outbreak, the fraction of
infected individuals of type j that are infected by an individual of type i during an
outbreak in a population of size n converges in probability to ρij. Here

∑K
i=1 ρij = 1,

and

ρij =
1

P(Zj(t)→∞)
E

 ∑Xij

r=1 e
−ατijrW i(r)∑K

k=1

∑Xkj

r=1 e
−ατkjrW k(r)

11

 K∑
k=1

Xkj∑
r=1

W k(r) > 0

 , (3)

where, for k ∈ [K] and r ∈ N, the random variables τkjr are independent with
distribution function P(τkjr < a) = E[ξkj(a)]/mkj and Xkj is Poisson distributed
with expectation pk

pj
mkj.

Note that, in general, it is hard to give a more explicit expression for ρij
than (3). Often, there is no explicit description of the distribution of W k(r). We
are able to obtain bounds for (3) for the important special case discussed in [16],
leading to Theorem 2.8.

The model of [16] is as follows. We consider K = 2, and (ξ1
v , ξ

2
v), v ∈ V ,

obtained from a single marked point process ξv. In this process ξv the points
get independently mark 1 with probability p1 and mark 2 otherwise. Then the
process ξ1

v consists of the points with mark 1, while ξ2
v consists of the points

with mark 2. By construction of the process, the probability that an ultimately
infected vertex of type i is infected by a vertex of type 1 is the same for i = 1
and i = 2, i.e. ρ11 = ρ12 = ρ1. With some abuse of notation we write ξi for
a point process distributed as ξv for v ∈ Vi, i ∈ [2]. Furthermore, note that
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mij = E[ξij(∞)] = pjE[ξi(∞)], i.e. we can write mij = pjm̃i with m̃i = E[ξi(∞)].
Here m̃i can be interpreted as the expected number of secondary cases caused by
a newly infected individual of type i in an otherwise susceptible population (one
can think of the m̃i as the type-specific reproduction numbers). Then the basic
reproduction number is R0 = p1m̃1 + p2m̃2, with p2 = 1 − p1. Indeed, a newly
infected individual is of type i with probability pi and the expected number of
secondary cases it produces is m̃i, i = 1, 2.

For this model we can compute ρ−1 and ρ+
1 , the minimum and maximum fraction

of the infected vertices that are infected by type 1 vertices, if the matrix M and
pi are held fixed for i ∈ [K]. We let q̃1 be the smallest positive solution in (0, 1] of

x = e−p1m̃1(1−x) (4)

and q̃2 the smallest positive solution in (0, 1] of

x = e−p2m̃2(1−x). (5)

Furthermore, we let q be the unique solution in (0, 1) of

x = e−(1−x)(p1m̃1+p2m̃2) = e−(1−x)R0 . (6)

Note that we assume that R0 = p1m̃1 +p2m̃2 > 1, so the unique solution q ∈ (0, 1)
exists. We can interpret 1− q̃1 (resp. 1− q̃2) as the final fraction of the population
that ultimately gets infected when only individuals of type 1 (resp. type 2) are able
to transmit, conditional on a large outbreak. Furthermore, 1−q can be interpreted
as the final fraction of the population that ultimately gets infected, conditional on
a large outbreak (or conversely, q is the fraction of the population that remains
susceptible throughout the epidemic).

Theorem 2.8. Consider the two-type model described above. In the limit as popu-
lation size n→∞ and for fixed p1, m̃1 and m̃2, the fraction of ultimately infected
vertices that is infected by type 1 vertices is bounded from above by

ρ+
1 =

(
1− p1m̃1(q̃1 + q)

2

)
q̃1 − q
1− q

.

By interchanging the role of the types 1 and 2, we also obtain the lower bound
ρ−1 . Indeed, note that ρ−1 = 1− ρ+

2 , where

ρ+
2 =

(
1− p2m̃2(q̃2 + q)

2

)
q̃2 − q
1− q

.

In other words, for any point process {(ξ1
v , ξ

2
v); v ∈ V } that satisfies the assump-

tions of Section 2.1 and that can be obtained from independently marking points
of a one-dimensional point process, the fraction ρ1 of infected individuals that are
infected by individuals of type 1 is bounded by ρ−1 and ρ+

1 , i.e. ρ−1 ≤ ρ1 ≤ ρ+
1 .
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Remark 2.9. In Section 4.3 we consider a more general setting than the one in
Theorem 2.8. Instead of assuming a single marked process ξi, one can consider
general distributions (ξi1, ξi2) and obtain bounds (37) for ρ−21 and (38) for ρ+

11 (and,
by interchanging the roles of types 1 and 2, bounds ρ−12 and ρ+

22). As this is some-
what more involved, we choose to present the bounds in the form of Theorem 2.8
instead.

3 Susceptibility process, backward branching

process and the coupling

Throughout we assume that all random variables and processes are defined on a
suitable rich enough probability space, which we do not specify.

3.1 The susceptibility process

In this subsection we use the idea of susceptibility sets [4, 5, 6], and construct this
set through a stochastic process: the susceptibility process.

We define the susceptibility process {S(n)
v (t); t ≥ 0} as

S(n)
v (t) = {u ∈ V ; d(u, v) ≤ t}.

Note that S(n)
v (t) is non-decreasing in t. The susceptibility set of vertex v is

defined as S(n)
v = limt→∞ S(n)

v (t), i.e. the susceptibility set S(n)
v of v consists of all

vertices u ∈ V for which there is a path from u to v in G′. As an illustration,
in Figure 1, the susceptibility set of vertex f is given by S(n)

f = {a, b, c, d}, while

S(n)
f (t = 1.1) = {c, d}. Note that S(n)

v ∩Vinit = ∅ if and only if v remains uninfected
throughout the epidemic, i.e. if and only if there is no path in G′ from Vinit to v.
Also note that the susceptibility set may contain vertices of different types.

Define for a ≥ 0 and j ∈ [K],

S(n)
v (t; a, j) = {u ∈ S(n)

v (t) ∩ Vj; d(u, v) > t− a}.

That is, Sv(t; a, j) consists of the vertices of type j in S(n)
v (t), that are not yet part

of S(n)
v (t− a).
Let v ∈ V \ Vinit be a randomly chosen vertex. We derive the susceptibility

process {S(n)
v (t); t ∈ (0, t∗)} by constructing part of the random graph G′ around

vertex v by means of an exploration process {Ĝ(`)} = {Ĝ(`); ` ∈ N0} in which
vertices in the susceptibility process are explored one at a time. We note that
{Ĝ(`)} depends on v. Here t∗ = t∗(n) is a given time (we defer the specification
of t∗ until (12) below). The process {Ĝ(`)} allows us to couple {S(n)

v (t)} with an
appropriate branching process. In this way, we can make the coupling between the
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susceptibility process and the backward branching process that is needed to prove
Theorems 2.7 and 2.8 in Section 4.

Before we define the exploration process {Ĝ(`)} around vertex v, we introduce
some additional variables and terminology. Ĝ(`) is a 4-tuple:

{Ĝ(`) = (V̂ a(`), V̂ p(`), V̂ e(`), Ê(`)); ` ∈ N0}.

Here Ê(`) denotes the edge set of Ĝ(`). Vertices in Ĝ(`) can be ‘active’, ‘passive’,
or ‘explored’. The sets of these vertices are denoted by V̂ a(`), V̂ p(`), and V̂ e(`),
respectively. The sets V̂ a(`), V̂ p(`), V̂ e(`), and Ê(`) are defined in the construction
below (where also their names will become apparent). Finally, before we explain
the construction, we mention that throughout the process we may ‘flag’ the process
(see step 4). This flagging plays a role when coupling the exploration process with
a branching process to represent the susceptibility process. The construction is as
follows.

1) To set the initial conditions of the construction, let V̂ a(0) = v, V̂ e(0) = ∅,
and Ê(0) be the set of all edges in E ′ for which v is the tail, whereas V̂ p(0)
is the set of all heads of edges in Ê(0) that are in V \ v.

2) For ` ∈ N0, assume that V̂ a(`) 6= ∅ and that there exists a vertex in V̂ a(`)
from which there is a path in Ĝ(`) to v of length at most t∗. In step `+1 pick
(according to some rule) one of the vertices from V̂ a(`), from which there
is a path in Ĝ(`) to v of length at most t∗. Say that this vertex is v′ ∈ Vj.
Move v′ to the set of explored vertices, i.e. V̂ e(`+ 1) = V̂ e(`)∪ v′. Assign to
v′ independently a binomial random number x(v′; i) with parameters ni and
mij/nj.

3) The remainder of step ` + 1 is split up in
∑K
i=1 x(v′; i) sub-steps as follows.

We introduce {
G∗(`, `′); ` ∈ N0, `

′ ∈ {0, 1, · · · ,
K∑
i=1

x(v′; i)}
}
,

where
G∗(`, `′) = (V ∗,a(`, `′), V̂ ∗,p(`, `′), V̂ ∗,e(`, `′), Ê∗(`, `′)).

Furthermore, set G∗(`, 0) = Ĝ(`). Next, let `′ ∈(∑i−1
i′=1 x(v′; i′),

∑i
i′=1 x(v′; i′)

]
, where the empty sum is 0.

4) In the `′-th sub-step of step `+ 1 pick uniformly a vertex from Vi. If we pick
a vertex we have picked in one of the `′− 1 sub-steps before we say that the
exploration process is flagged. In that case we choose new vertices from Vi
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until we obtain a vertex that was not chosen in the previous `′−1 sub-steps.
This step is equivalent to picking the vertices without replacement. Say that
the vertex that is picked is v′′.

4a) If v′′ ∈ V̂ a(`) ∪ V̂ e(`), then nothing changes in the exploration graph,
i.e. G∗(`+1, `′) = G∗(`+1, `′−1). This is because if v′′ ∈ V̂ a(`)∪ V̂ e(`),
then we already have explored the edges with tail v′′.

4b) If v′′ ∈ V \
(
V̂ a(`) ∪ V̂ e(`)

)
, assign to v′′ the vector of point processes

(ξj
′

v′′ , j
′ ∈ [K]). The distribution of (ξj

′

v′′ , j
′ ∈ [K]) is equal to the distri-

bution of (ξij′ , j
′ ∈ [K]), given that ξij contains a vertex with label v′.

Assign label v′ to a uniformly chosen point in ξjv′′ , and assign uniform
labels without replacement from Vj \ v′ to the other points in ξjv′′ and

uniform labels from Vj′ to the points in ξj
′

v′′ for j′ ∈ [K] \ j.
If none of the newly assigned labels correspond to vertices in V̂ e(`) then
E∗(`+1, `′) contains all edges in E∗(`+1, `′−1) plus the edges with tail

v′′ and heads corresponding to the labels of the points in (ξj
′

v′′ , j
′ ∈ [K]),

with the obvious edge lengths. In addition, all heads of those edges
which were not in V ∗,a(`+ 1, `′− 1) move to V ∗,p(`+ 1, `′) (if they were
not in that set already). Furthermore, v′′ ∈ V ∗,a(`+ 1, `′).

If any of the newly assigned labels correspond to vertices in V̂ e(`) then
we flag the process and we return to the start of step 4). This last part
of step 4b) is equivalent to conditioning on the event that there are no
edges with tail v′′ and an already explored vertex as head.

4c) Set Ĝ(`+ 1) = Ĝ
(
`+ 1,

∑K
i=1 x(v′, i)

)
.

5) Continue this process by increasing ` until there are no active vertices having
a path of length less than t∗ towards v in Ĝ(`). Say that `∗ is the smallest `
for which this is the case.

We note the following:

• The edge set Ê(`) is a subset of E ′ and contains all edges in Ĝ(`).

• All edges in E ′ with tails in V̂ a(`) are in Ê(`), but there might still be edges
in E ′ with heads in V̂ a(`) that are not in Ê(`)).

• Every passive vertex is the head of an edge in Ê(`), but the passive vertices
themselves are not explored, and none of the edges in E ′ with tail in V̂ p(`)
are in Ê(`).

• All edges in E ′ with head or tail in V̂ e(`) are in Ê(`).
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• The tails of edges in Ê(`) are in V̂ a(`)∪ V̂ e(`) and their heads are in V̂ a(`)∪
V̂ p(`) ∪ V̂ e(`).

The construction of the exploration process yields V̂ e(`∗) = S(n)
v (t∗). Further-

more, if the process {Ĝ(`)} is not flagged until step `∗, then the construction of
V̂ e(`∗) (and the distances from the vertices in this set to v) is equivalent to con-
structing a branching process {Z̃(n)(t); t ≥ 0} up to time t∗. In this branching
process, particles of type j give birth to a binomial distributed number of parti-
cles of type i, i ∈ [K], where the parameters of the binomial distributed random
variable are ni and (nj)

−1mij. The number of children of the different types of
particles are independent. Furthermore, the ages of the mother particles of type j
at birth of a child of type i are independent and have density E[ξij(da)]/mij.

3.2 The (backward) branching process

We create a multi-type branching process {Z(t); t ≥ 0} that can be coupled to
{S(n)

v (t); t ≥ 0}. The coupling is performed in Section 3.3. The branching process
{Z(t); t ≥ 0} is constructed in such a way that the distribution of the correspond-
ing tree-like graph is the same as that of {S(n)

v (t); t ≥ 0} up to time t∗ with t∗

defined by (12). We leave out some of the details in the arguments. Those details
can be filled in analogous to [3, 7, 9] for related models.

Without loss of generality we assume that v ∈ V1. The multi-type (backward)
branching process is as follows. The (single) ancestor is of type 1. Particles of type
j give birth to particles of type i according to a Poisson process with intensity
pi
pj
E[ξij(da)], where a is the age of the type j particle, i, j ∈ [K]. All Poisson

processes are independent.
The branching process {Z(t); t ≥ 0} is analysed using existing theory from

[13]. First of all, the mean offspring measure of this backward branching process
is defined through

µ
(b)
ji (dt) =

pi
pj
E[ξij(dt)]. (7)

Note that
m

(b)
ji =

∫ ∞
0

µ
(b)
ji (dt) =

∫ ∞
0

pi
pj
E[ξij(dt)] =

pi
pj
mij

is the expected number of children of type i of a particle of type j. Here mij

is given by (1) (and the corresponding matrix is M). Let M (b) = {m(b)
ji }j,i∈[K].

Straightforward matrix theory gives that M and M (b) have the same dominant
eigenvalue R0, which by assumption is strictly larger than 1, i.e. the branching
process is supercritical). Define

m̂
(b)
ji (x) =

∫ ∞
0

e−xt
pi
pj
E[ξij(dt)] (8)
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and let M̂ (b)(x) be the matrix with elements m̂
(b)
ji (x). Finally, let α be such that

M̂
(b)
ji (α) = 1. (9)

Note that K <∞, all elements of M (b) are finite and the dominant eigenvalue R0

of M (b) is real and larger than 1. Therefore, α exists and is positive.
We define the random vector Zi(t) as Zi(t) = (Zi

1(t), Zi
2(t), · · · , Zi

K(t)), where
Zi
j(t) is the number of particles of type j ∈ [K] in Z(t) if the process starts with

one newborn particle of type i. With some abuse of notation, let σ(x) be the time
of birth of particle x in the branching process. Note that particles in the branching
process Z(t) never die.

We know that there exists an α > 0 such that

e−αtZi(t)→ W i = (W i
1,W

i
2, · · ·W i

K) a.s. as t→∞, (10)

where W i is a random vector that has, with probability 1, strictly positive elements
on the set

∑K
j=1 Z

i
j(t)→∞ as t→∞ [13].

For particle x ∈ {Z(t); t ≥ 0}, define

ϕx(t) = ϕx(t; a) = 11(t− σ(x) < a).

Let Ẑi
j(t; a) =

∑
x ϕx(t; a), where the sum is taken over all particles of type j in

{Z(t); t ≥ 0}, i.e. Ẑi
j(t; a) is the number of particles of type j that have age less

than a in the branching process at time t. Note that Ẑi
j(t; a) is increasing in a.

If Zi
j(t) → ∞ for all j ∈ [K] (i.e. if new particles keep on being born in the

branching process), then

Ẑi
j(t; a)∑K

j=1 Z
i
j(t)
→ c(a, j) a.s. as t→∞, (11)

where c(a, j) is a constant independent of i (Theorem 2.7 of [13]). For our purposes
we do not need to specify c(a, j) further.

Although the branching process is not dependent on n, we want to have some
bound on the number of vertices born in the branching process as a function of n.
This is used in the coupling in Section 3.3. We set

t∗ =
1− κ

4
log[n]/α (12)

(where κ is as in Assumption 2.3). We obtain by (10) that, for all i, j ∈ [K],

e−αt
∗
Zi
j(t
∗) = n−(1−κ)/4Zi

j(t
∗)→ W i

j ∈ (0,∞) a.s. as n→∞ (13)

on the survival set of {Z(t); t ≥ 0}. In particular, this implies that

Zi
j(t
∗) = o

(
n(1−κ)/3

)
w.h.p. (14)
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3.3 The coupling

Note that the only difference between the branching process {Z̃(n)(t)} associated
to the susceptibility process of Section 3.1 and the multi-type branching process
{Z(t)} of Section 3.2 is the distribution of the number of particles of type i a
particle of type j gives birth to (binomially distributed with parameters ni and
mij/nj and Poisson distributed with expectation pj/pimij, resp.)

We know from [8, eq. (1.23)] (see also [9]) that the total variation distance
between a binomial distributed random variable with parameters ni and 1

ni

ni

nj
mij

and a Poisson random variable with parameter ni

nj
mij is O( 1

ni
). Moreover, the

total variation distance between a Poisson distributed random variable with pa-
rameter ni

nj
mij and a Poisson distributed random variable with parameter pi

pj
mij is

O(
√
| ni

nj
− pi

pj
|) = O( 1√

n
) [8, Theorem 1.C] (see also [9]). Here we have also used

Assumption 2.1. By the triangle inequality this implies that the total variation
distance between a Poisson distributed random variable with expectation pi

pj
mij

and a binomial distributed random variable with parameters ni and 1
ni

ni

nj
mij is

O( 1√
n
). Hence, as long as the number of particles born in any of the two branch-

ing processes is o(
√
n), the two processes can be perfectly coupled w.h.p. In the

remainder of this section we show that the coupling is w.h.p. perfect up to time t∗

with t∗ given by (12).
By construction, if the first |V̂ a(`∗)|+ |V̂ e(`∗)| vertices that we “try to include”

in {V̂ a(`) ∪ V̂ e(`); ` ∈ N0} are all different and none of the first |V̂ p(`∗)| that we
“try to include” in {V̂ p(`); ` ∈ N0} are in V̂ a(`∗) ∪ V̂ e(`∗), then the process is not
flagged.

The law of large numbers yields

|V̂ a(`∗)| ≤ 2 max
i,j∈[K]

ni
nj
mij|V̂ e(`∗)|, w.h.p. (15)

Here we use that the expected number of edges in E ′ with any given vertex in V ′

as head is bounded from above by maxi,j∈[K]
ni

nj
mij. Equation (15) implies that

|V̂ e(`∗)|+ |V̂ a(`∗)| = O(|V̂ e(`∗)|), w.h.p. (16)

Using Assumption 2.3 we obtain

|V̂ p(`∗)| ≤ nκ(|V̂ a(`∗)|+ |V̂ e(`∗)|), w.h.p. (17)

Combining inequalities (16) and (17) yields

|V̂ p(`∗)| = Op(n
κ|V̂ e(`∗)|), (18)
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Since {Z(t); t ≥ 0} can be perfectly coupled with {S(n)
v (t); t ≥ 0} w.h.p.

until o(
√
n) particles are born in {Z(t); t ≥ 0}, we obtain by using (14), that

|Z(t∗)| = op(n
(1−κ)/3). Therefore, we also know that |Z(t∗)| = o(n(1/2) and

|V̂ e(`∗)| = op(n
(1−κ)/3). Combined with (18) this gives

|V̂ e(`∗)|+ |V̂ a(`∗)| = op(n
(1−κ)/3) (19)

and
|V̂ p(`∗)| = o(n(1+2κ)/3) = op(n). (20)

Using birthday-problem-like arguments [12, p.24] the probability that the first
|V̂ e(`∗)| + |V̂ a(`∗)| activated vertices in {Ĝ(`); ` ∈ N0} are not all different is
bounded from above by(

min
j∈[K]

nj

)−1

(|V̂ e(`∗)|+ |V̂ a(`∗)|)2 = op(n
−(1+2κ)/3),

while the probability that among the first |V̂ p(`∗)| vertices that we “try to include”
in {V̂ p(`); ` ∈ N0} there are vertices in V̂ a(`∗) ∪ V̂ e(`∗) is bounded from above by

|V̂ p(`∗)| |V̂
e(`∗)|+ |V̂ a(`∗)|
minj∈[K] nj

= op(n
(1+2κ)/3)× op(n(1−κ)/3)×O(n−1)

= op(n
(κ−1)/3)

= op(1).

We conclude that the probability that the exploration process {Ĝ(`); ` ∈ N0} is
flagged up to and including step `∗ goes to 0 as n → ∞, as we desired. We
summarise the main result of this section in the following lemma.

Lemma 3.1. There exists a probability space on which we can define the branching
process {Z(t); t ≥ 0} and the susceptibility process {S(n)

v (t); t ≥ 0} for all n, such
that

P
(
|S(n)
v (t; a, j)| = Ẑi

j(t; a) for all t ≤ t∗, a ∈ (0, t∗) and j ∈ [K]
)
→ 1,

where t∗ = t∗(n) is given by (12).

4 Proofs

4.1 Proof of Theorem 2.7

We are interested in the expected fraction of vertices infected by vertices of type
i among the ultimately infected vertices of type j during a major outbreak. By
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exchangeability this expected fraction is given by

P (v is infected by a type i vertex|v is ultimately infected, v ∈ Vj) . (21)

Consider S(n)
v (t∗), where we assign to each vertex v′ ∈ S(n)

v (t∗) the value σ′v′ =
d(v′, v). In Section 3.1 we constructed part of the graph G′ by looking backward
in time. To analyse (21), we construct another part of the graph G′, by looking
forward in time and starting at Vinit. By Assumption 2.5, S(n)

v (t∗) does not overlap
with Vinit w.h.p. We condition on this event.

We construct the relevant part of G′ through a series of subgraphs {G̃(`); ` ∈
N0} as follows.

1) Construct S(n)
v (t∗) and the edges that connect these vertices in G′ as in

Section 3.1. Let G̃(0) be this graph together with (the isolated) vertices in
Vinit.

2) The vertices in Vinit are active in G̃(0).

3) Assume that we know G̃(`). Let σ̃v(`) be the distance from Vinit to v in G̃(`).
If there is no path from Vinit to v in G̃(`) then we set σ̃v(`) = ∞. If there
are no active vertices in G̃(`) with distance from Vinit less than σ̃v(`) − t∗,
then the shortest path from Vinit to v is the same in G′ as in G̃(`), and we
set G̃(k) = G̃(`), for all k ≥ `.

4) If there are active vertices in G̃(`) with distance from Vinit less than σ̃v(`)−
t∗, then we construct G̃(` + 1) as follows. Pick the active vertex with the
lowest distance from Vinit in G̃(`) (in case of a tie, which occurs if there
are still several active vertices in Vinit, make a uniform choice among those
vertices). Say that this vertex is u ∈ Vi. Then assign to u the point processes
(ξ1
u, · · · ξKu ), having the correct distribution (see Section 2) and label the

points of ξju (j ∈ [K]) with independent uniform vertices from Vj without
replacement.

First we check whether some of the labels chosen correspond to vertices in
S(n)
v (t∗). If there are such labels, we add “preliminary” edges with tail u and

heads equal to the respective vertices in S(n)
v (t∗) (whether the preliminary

edges become “actual” edges in the graph is determined in step 5 of the
construction). The lengths of such edges correspond to the points in the
point processes. Say that u′ ∈ S(n)

v (t∗) ∩ Vj is one of the labels chosen and
that u is chosen at “age” t′.

If u′ 6∈ S(n)
v (t∗; t′, j) for at least one of the vertices that u connects to, then the

distance from u to v becomes less than t∗ in the preliminary graph. We set
G̃(` + 1) = G̃(`). Note that we have identified all vertices from which there
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is a path of length at most t∗ to v in the exploration of S(n)
v (t∗). However,

since we know that u 6∈ S(n)
v (t∗), we have to condition on the event that no

edges with tail u and heads in the set S(n)
v (t∗ − t′) is shorter than t′.

5) Finally, in deciding whether the preliminary edges become edges in the graph
G̃(`), we consider the following. If the distance from u to v does not become
less than t∗ in the preliminary graph, then u becomes passive in G̃(` + 1),
and the edge set of G̃(`+ 1) consists of all edges in G̃(`) plus the edges with
tail u and heads corresponding to the labels of the points in (ξ1

u, · · · ξKu ). The
edges that are added have the obvious lengths. The heads of the edges in
G̃(`+1) are part of the vertex set of G̃(`+1). The active vertices in G̃(`+1)
are the active vertices in G̃(`) apart from u plus the newly added vertices in
G̃(`+ 1).

In the construction above, vertices of type j are added in an interchangeable
way, j ∈ [K]. If a preliminary edge of length a has a head in S(n)

v (t∗) ∩ Vj, then
every vertex in S(n)

v (t∗; a, j) has the same probability of being the head of this edge
and becoming part of the constructed graph.

Next, for the coupling, we analyse S(n)
v (t∗; a, j) even further. Denote the ver-

tices in {u ∈ Vi; (u, v) ∈ E ′}, i.e. the vertices in Vi, which are in the first generation
of the susceptibility set of v, by ui1, ui2, · · · , ui,Xi(v). Here

Xi(v) = |{u ∈ Vi; (u, v) ∈ E ′}|

is the number of vertices of type i in this first generation of the susceptibility
set. Note that Xi(v) is distributed as Xij where Xij is binomially distributed
with parameters ni and mij/pj. So, Xij converges in distribution to a Poisson
distributed random variable with expectation (pi/pj)mij. For r ∈ [Xi(v)], let
τir(v) = η(uir, v) be the length of edge (uir, v) ∈ E ′. Here τir(v) is distributed as
τijr with distribution function P(τijr ≤ a) = E[ξij(a)]/mij. For convenience, we let
Xi = Xi(v) and τir = τir(v).

We consider the susceptibility processes of the vertices in {uir; i ∈ [K], r ∈ [Xi]}
up to distance t∗ from v separately, i.e. we consider the susceptibility set of uir up to
time t∗− τir. Those susceptibility sets are (following the arguments in Section 3.2)
w.h.p. not overlapping and independent. Also note that

S(n)
v (t∗; a, j) = v ∪

K⋃
i=1

Xi⋃
r=1

S(n)
uir

(t∗ − τir; a, j). (22)

By Lemma 3.1, we know that

|S(n)
uir

(t∗ − τir, a, j)| = Ẑi
j(t
∗ − τir; a) w.h.p. (23)
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Furthermore, by equations (10) and (11), we obtain that

e−αtẐi
j(t; a)→ c(a, j)W i a.s. as t→∞ (24)

on {Ẑi(t) → ∞}. Since the sets S(n)
uir

(t∗ − τir) are w.h.p. not overlapping (and do
not contain v), it follows from (22) that

|S(n)
v (t∗; a, j) \ v| =

K∑
i=1

Xi∑
r=1

|S(n)
uir

(t∗ − τir; a, j)| w.h.p.

Then, by (23) and (24), for all i ∈ [K] and r ∈ [mi],

e−αt
∗|S(n)

uir
(t∗ − τir; a, j)| → e−ατirc(a, j)W i(r)

in probability on {Ẑi
j(t) → ∞} as n → ∞. Here, the random variables W i(1),

W i(2), . . . are independent copies of W i, i ∈ [K]. Let Ŵ i be distributed as
W i11(Ẑi(t) → ∞), and let Ŵ i(r) be defined analogously. Note that {Ẑi(t) → ∞}
implies that the branching process survives and new particles are born w.h.p. in
the interval [t∗/2, t∗]. If {Ẑi(t) 6→ ∞}, then there is a last birth in the process.
Because t∗/2 → ∞ as n → ∞, there is then no particle born in in the interval
[t∗/2, t∗] w.h.p. It follows from the coupling arguments above that, as n→∞,

P
(
S(n)
v (t∗) 6= S(n)

v (t∗/2)
)
→ P

(
Ẑi(t)→∞

)
.

We are interested in the fraction of vertices (possibly specified by type and age)
at time t∗ in S(n)

v (t∗) that are connected to v through a path of vertices in S(n)
v (t∗)

that include uir, i ∈ [K] and r ∈ [Xij]. That is, we want to analyse

|S(n)
uir

(t∗ − τ1r; a, j)|∑K
j=1

∑Xj

r=1 |S
(n)
ujr(t∗ − τjr; a, j)|

,

on the set
∑K
j=1

∑Xj

r=1 |S(n)
ujr

(t∗ − τjr; a, j)| 6= 0. Lemma 3.1 allows us to couple the
epidemic process with a branching processes {Z(t); t ≥ 0} such that w.h.p.

|S(n)
uir

(t∗ − τ1r; a, j)|∑K
j=1

∑Xj

r=1 |S
(n)
ujr(t∗ − τjr; a, j)|

=
Zi,r
j (t∗ − τ1r; a)∑K

k=1

∑Xkj

r=1 Z
k,r
j (t∗ − τkr; a)

, (25)

where Zi,r
j (t; a) are independent copies of Zi

j(t; a), r ∈ N. Multiplying numerator
and denominator of (25) by e−αt

∗
and using (24) we obtain that (25) is equal to

e−ατir(e−α(t∗−τir)Zi,r
j (t∗ − τ1r; a))∑K

k=1

∑Xkj

r=1 e
−ατkr(e−α(t∗−τkr)Zk,r

j (t∗ − τkr; a)
,
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which converges a.s. to

e−ατirc(a, j)Ŵ i(r)∑K
k=1

∑Xkj

r=1 e
−ατkrc(a, j)Ŵ k(r)

=
e−ατirŴ i(r)∑K

k=1

∑Xkj

r=1 e
−ατkrŴ k(r)

(26)

as n→∞ (i.e. as t∗ →∞). Note that the right hand side of (26) does not depend
on a or j. Since vertices of type j, j ∈ [K], are added in such a way that every
vertex in S(n)

v (t∗; a, j) has the same probability of being the head of this edge, every
vertex in S(n)

v (t∗; a, j) has the same probability of becoming part of the constructed
graph. So, P (v is infected by a type i vertex|v is ultimately infected) is equal to

1

P(S(n)
v (t∗) 6= S(n)

v ( t
∗

2
))
E
[ ∑Xi

r=1 |S(n)
uir

(t∗ − τir; a, j)|∑K
k=1

∑Xk
r=1 |S

(n)
ukr(t∗ − τkr; a, j)|

11
(
S(n)
v (t∗) 6= S(n)

v

(
t∗

2

))]

and converges to ρij, with ρij given by (3). This completes the proof for Theorem
2.7.

4.2 Towards to proof of Theorem 2.8: Bounds for the ρij

Theorem 2.7 provides us with an expression for the asymptotic fractions ρij of
infected individuals of type j that were infected by individuals of type i. However,
often there is no explicit description of the distribution of W k(r). In Theorem 2.8
we consider bounds for the ρij for a special class of models, as specified in Section 2.
In order to obtain those bounds, in this subsection and Section 4.3, we discuss, for
the general setting, how to obtain the bounds for ρij using the epidemic random
graph G′. In most of the subsequent analysis we analyse the graph G′ without
taking the lengths of edges in into account.

Note that Assumption 2.2 guarantees that, with probability 1, all paths in
E ′ have different lengths. In order to obtain the maximum and minimum of
the probability ρij for fixed mean offspring matrix M , we first investigate the
susceptibility set of v∗ (v∗ ∈ Vj) restricted to the graph G′ij = (V,E ′ij). We denote
this susceptibility set by Sv∗,ij. Here E ′ij ⊂ E ′ is the subset of E ′ that consists of
the edges that either have tail vertex in Vi or head vertex not in Vj, i.e. E \ E ′ij
is the set of edges with tails in V \ Vi and heads in Vj. In Figure 2, the set Sv∗,11

consist of all vertices of type 1 (the circles).
Let Sjv∗,ij = Vj ∩ Sv∗,ij. If Sv∗,ij ∩ Vinit = ∅, i.e. if there is no path from Vinit to

v∗ in G′ij, then, by the definition of the epidemic process, every vertex of type j in
Sv∗,ij has the same probability to be the first one to be infected in the epidemic,
i.e. u∗ = argminu∈Sjv∗,ij

d(Vinit, u) is uniform in Sjv∗,ij.
Condition on Sv∗ ∩Vinit 6= ∅. If u∗ = v∗ and Sv∗,ij ∩Vinit = ∅, then v∗ is infected

by a vertex that is not of type i. On the other hand, if u∗ 6= v∗ or Sv∗,ij ∩Vinit 6= ∅,

20



v*

Figure 2: Illustration of (a part of) the susceptibility set of v∗ in G′ = (V,E′). Vertices
of type 1 are represented by circles and vertices of type 2 are represented by boxes. The
part of the susceptibility set illustrated in the figure is the set connected to v∗ through
paths of edges with heads of type 1.

then v∗ might be infected by a type i vertex. Hence

1− ρij = P(v∗ is not infected by a type i vertex|Sv∗ ∩ Vinit 6= ∅)
≥ P(u∗ = v∗|Sv∗ ∩ Vinit 6= ∅).

Now assume that P(ηi′,j′ > n−1) = 1, for i′ ∈ [K] \ i and j′ = j, with j the
type of v∗, and P(ηi′,j < n−2) = 1 otherwise. This implies that the lengths of any
path with only edges in E ′ij is less than any edge in E ′ \ E ′ij. The assumptions
guarantee that, for u∗ 6= v∗ or Sv∗,ij ∩ Vinit 6= ∅, conditioned on Sv∗ ∩ Vinit 6= ∅, v∗
is infected by a vertex of type i (the tail of the edge with head v∗ in the shortest
path in E ′ij from u∗ or Vinit to v∗). Therefore, for this model,

P(v∗ is not infected by a type i vertex|Sv∗ ∩Vinit 6= ∅) = P(u∗ = v∗|Sv∗ ∩Vinit 6= ∅).

Hence, for a given distribution of E ′, models with P(ηi′,j′ > n−1) = 1, for i′ ∈ [K]\i
and j′ = j and P(ηi′,j < n−2) = 1 otherwise, are among the models for which the
fraction of the ultimately infected vertices of type j, infected by a type i vertex is
maximised.

Using similar arguments we obtain that ρij, the fraction of ultimately infected
vertices of type j that are infected by vertices of type i, is minimal if the edge
lengths of vertices with tail in i and head in j are much longer than the other
edges. This will be used in Section 4.3.
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4.3 Proof of Theorem 2.8

We consider the so-called symptom-response SEIR epidemic model that is intro-
duced in detail in [16], see also Remark 2.6. That is, consider the model introduced
in Section 2 withK = 2 and consider general distributions (ξi1, ξi2). For this model,
using the arguments from Section 4.2, we can compute the maximal probabilities
ρ+

11, ρ+
22 (and minimal probabilities ρ−21 and ρ−11) explicitly. In this subsection we

consider the model in which edges from V1 to V1 are infinitesimally short and
all other edges in E ′ are relatively long. From Section 4.2 we know that this is
the model for which the fraction of vertices of type 1 infected by type 1 vertices
is maximised. For reasons of convenience we assume that v∗ is of type 1 with
Sv∗ ∩ Vinit 6= ∅. Note that Theorem 2.8 considers the special case that (ξi1, ξi2) is
obtained from the independent labelling of a one-dimensional point process ξi. In
this special case we have ρ11 = ρ1 = ρ12 and ρ21 = ρ2 = ρ22. We treat Theorem 2.8
in Remark 4.1 at the end of this section. First, we compute the upper bound ρ+

11

(and lower bound ρ−21) for the general setting. We note that it is harder (if not
impossible) to obtain an explicit expression for ρ+

12 or ρ+
21. As will become clear

in the computation below, the difficulty with ρ+
12 or ρ+

21 is that one would need to
consider paths in G′12 and G′21 that contain vertices of both type 1 and type 2. In
contrast, for computing ρ+

11, paths in G′11 that end in v∗ contain only vertices of
type 1.

If we ignore the lengths of edges inG′ in the general model introduced in Section
2, then the approximating (backward) branching process describing the generation-
based growth of Sv∗(t) is defined through the following offspring distributions. The
number of children of type i of a particle of type j is Poisson distributed with
expectation m

(b)
ji = pi

pj
mij, i, j ∈ [2]. For different i and j the distributions are

independent of each other.
Let Y = |Sv∗,11|. It is easily seen that Y is approximated by the size of a

branching process with Poisson offspring distribution that has expectation m
(b)
11 .

Then Y is Borel distributed with parameter m
(b)
11 , i.e. for ` ∈ {1, 2, · · · },

P(Y = `) =
(m

(b)
11 `)

`−1e−m
(b)
11 `

`!
(27)

(see [1]). If m
(b)
11 > 1, then P(Y =∞) > 0. Standard results on Borel distributions

[1] give that, for m
(b)
11 ≤ 1,

E[1/Y ] = 1−m(b)
11 /2. (28)

Define
ρ11 = P(v∗ is infected by by a type 1 vertex|Sv∗ ∩ Vinit 6= ∅),
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for v∗ ∈ V1. From the arguments in Section 4.2 we know that

ρ−21 = E[1/Y |Sv∗ ∩ Vinit 6= ∅.] (29)

Consistency then yields
ρ+

11 = 1− ρ−21. (30)

We use the following extinction probabilities in the backward branching pro-
cess:

q1: the probability that the backward branching process starting with a single
type 1 particle goes extinct,

q2: the probability that the backward branching process starting with a single
type 2 particle goes extinct,

q̃1: the probability that the backward branching process restricted to type 1
particles dies out, i.e. q̃1 = P(Y <∞).

From theory on multi-type supercritical branching processes [14, Chap. 4] we
know that (q1, q2) is the unique solution in (0, 1)2 of

x =
∞∑
k=0

(m
(b)
11 )k

k!
e−m

(b)
11 xk

∞∑
`=0

(m
(b)
12 )`

`!
e−m

(b)
12 y` = e−[m

(b)
11 (1−x)+m

(b)
12 (1−y)] (31)

y =
∞∑
k=0

(m
(b)
21 )k

k!
e−m

(b)
21 xk

∞∑
`=0

(m
(b)
22 )`

`!
e−m

(b)
22 y` = e−[m

(b)
21 (1−x)+m

(b)
22 (1−y)]. (32)

Furthermore, q̃1 is the smallest positive solution of (4) which might be 1 or strictly

smaller than 1, depending on whether or not p1m11 = m
(b)
11 ≤ 1.

We distinguish between m
(b)
11 ≤ 1 and m

(b)
11 > 1. This distinction is not nec-

essary, but we think the argument becomes clearer, by treating the case q̃1 = 1
separately.

4.3.1 The case m
(b)
11 ≤ 1

Assume that m
(b)
11 ≤ 1. Let A be the event that the backward branching process

with ancestor of type 1, involving both type 1 and type 2 individuals, survives.
We explore the backward branching process of a particle of type 1 on A as follows.

• Explore the backward process of particles of type 1. If we ignore the condi-
tioning on A, the process can be described by a subcritical branching pro-
cess with Poisson offspring distribution with expectation m

(b)
11 . The random

variable Y is the total size of this branching process, including the initial
individual. We know that Y is Borel(m

(b)
11 ) distributed.
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• Condition on event A: the probability that a particle of type 1 has infinitely
many descendants is P(A) = 1−q1, where q1 is defined through (31) and (32).
We also use the probability that a particle has infinite offspring, conditioned
on having no children of type 1. This probability is 1− q, where

q =
∞∑
`=0

(m
(b)
12 )`

`!
e−m

(b)
12 (q2)` = e−m

(b)
12 (1−q2) = q1e

m
(b)
11 (1−q1). (33)

Using Bayes’ rule we obtain

P(Y = `|A) =
P(A|Y = `)P(Y = `)

1− q1

=
1− q`

1− q1

(m
(b
11`)

`−1e−m
(b)
11 `

`!

=
1

1− q1

(m
(b)
11 `)

`−1e−m
(b)
11 `

`!
− q

1− q1

(m
(b)
11 `q)

`−1e−m
(b)
11 `

`!

=
1

1− q1

(m
(b)
11 `)

`−1e−m
(b)
11 `

`!
− q1(m

(b)
11 q1`)

`−1e−m
(b)
11 q1`

`!

 . (34)

where we used (33) in the last equality.

• Using (28), (29) and (34) we find that

ρ−21 = E[Y −1|A]

=
1

1− q1

1− m
(b)
11

2
− q1

1− m
(b)
11 q1

2


=

1

1− q1

1− q1 − (1− (q1)2)
m

(b)
11

2


= 1− (1 + q1)

m
(b)
11

2
. (35)

• Using (30) we find the desired expression ρ+
11 for m

(b)
11 :

ρ+
11 = 1− (1 + q1)

m
(b)
11

2
. (36)

4.3.2 The case m
(b)
11 > 1

Assume that m
(b)
11 > 1. Then it is possible that the backward process restricted to

particles of type 1 is already large, i.e. the approximating branching process with
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Poisson(m
(b)
11 ) offspring distribution already survives (call this event A1). In that

case the probability that vertex v is infected by a vertex of type 1 approaches 1 as
the population size tends to infinity.

The other possibility is that the backward process restricted to particles of
type 1 stays small. Call this event AC1 , the complement of A1. The probability
of this event is P(AC1 ) = q̃1, where q̃1 is the unique solution in (0, 1) of equation

(4) (note that m
(b)
11 > 1 ensures that q̃1 exists). From the theory of branching

processes we know that, conditioned on AC1 , the approximating branching process
is still a branching process with Poisson distributed offspring distribution, but
now with offspring expectation m

(b)
11 q̃1. We still condition on the event that the

approximating branching process (including both types of particles) survives.
Conditioned onAC1 , the total size of the backward process restricted to particles

of type 1 is Borel distributed with parameter m
(b)
11 q̃1. We use Bayes’ rule,

P(Y = `|A,AC1 ) =
P(A|Y = `,AC1 )P(Y = `|AC1 )

P(A|AC1 )
.

Note that

P(A|AC1 ) =
P(A,AC1 )

P(AC1 )
=

P(AC1 )− P(AC ,AC1 )

P(AC1 )
=

P(AC1 )− P(AC)

P(AC1 )
=
q̃1 − q1

q̃1

.

Then, with the same arguments as those leading to (35) but with m
(b)
11 replaced by

m
(b)
11 q̃1, yield

P(A|Y = `,ACS ) = 1− q` = 1− (q1)`em
(b)
11 (1−q1)`.

and

P(Y = `|AC1 ) =
(m

(b)
11 q̃1`)

`−1e−m
(b)
11 q̃1`

`!
.

Combining these identities with (4) yields

P(Y = `|A,AC1 )

=
q̃1

q̃1 − q1

(
1− (q1)`em

(b)
11 (1−q1)`

)(m
(b)
11 q̃1`)

`−1e−m
(b)
11 q̃1`

`!


=

q̃1

q̃1 − q1

(m
(b)
11 q̃1`)

`−1e−m
(b)
11 q̃1`

`!

− q1(q̃1)`

q̃1 − q1

(m
(b)
11 q1`)

`−1e−m
(b)
11 (q̃1+q1−1)`

`!


=

q̃1

q̃1 − q1

(m
(b)
11 q̃1`)

`−1e−(m
(b)
11 q̃1`

`!

− q̃1

q̃1 − q1

(m
(b)
11 q1`)

`−1e−m
(b)
11 q1`

`!

 .

25



By standard results on Galton Watson branching processes we know that m
(b)
11 q̃1 ≤

1. Moreover, since q1 ≤ q̃1, also m
(b)
11 q1 ≤ 1 holds. Then, using (28), we obtain

E[Y −1|A,AC1 ] =
q̃1

q̃1 − q1

1− m
(b)
11 q̃1

2

− q1

q̃1 − q1

1− m
(b)
11 q1

2


= 1− m

(b)
11 (q̃1 + q1)

2
.

This leads to

ρ−21 = E[Y −1|A]

= E[Y −1|A,AC1 ]P[AC1 |A] + E[Y −1|A,A1]P[A1|A]

= E[Y −1|A,AC1 ]
P[AC1 ,A]

P[A]
+ 0

= E[Y −1|A,AC1 ]
P[AC1 ]− P[AC1 ,AC ]

P[A]

=

1− m
(b)
11 (q̃1 + q1)

2

 q̃1 − q1

1− q1

. (37)

Note that this expression (37) is consistent with the result (35) for m
(b)
11 ≤ 1, where

q̃1 = 1. Finally, using (30), we find the expression for ρ+
11:

ρ+
11 = 1−

1− m
(b)
11 (q̃1 + q1)

2

 q̃1 − q1

1− q1

. (38)

Remark 4.1 (Symptom-response SEIR epidemic model: proof of Theorem 2.8).
In [16] we interpret vertices of type 1 as individuals that show symptoms when
infectious, while vertices of type 2 are asymptomatic throughout their infectious
period. We assume that whether infected individuals become symptomatic or not,
does not depend on who infected them or when they were infected. So, we may
assign i.i.d. types to the vertices before the epidemic. Note that the type of a
vertex that does not become infected during the epidemic has no epidemiological
relevance. Type 1 and type 2 vertices are equally susceptible. This implies that
{(ξ1

v(t), ξ
2
v(t)); t ≥ 0} can be obtained by considering a one-dimensional point pro-

cess {ξv(t); t ≥ 0}, for all v ∈ V . One can assign the types (type 1 with probability
p1 or type 2 with probability p2 = 1 − p1) independently to the points of this pro-

cess. Then ρ11 = ρ1 = ρ12 and ρ22 = ρ2 = ρ21. Furthermore m
(b)
ji = pim̃j, with

m̃j = E[ξj(∞)] the expected number of secondary cases generated by a newly in-
fected type j individual in an otherwise susceptible population, i, j = 1, 2. Note
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that (38) reduces to the fraction ρ+
1 of the ultimately infected vertices, that are

infected by symptomatic vertices:

ρ+
1 = 1−

(
1− p1m̃1(q̃1 + q)

2

)
q̃1 − q
1− q

,

where q̃1 and q are solutions of (4) and (6). This proves Theorem 2.8.

5 Discussion

In this manuscript we couple a (fairly) general multi-type stochastic epidemic
process with a weighted random graph. We use this random graph to obtain
a characterisation of the (large population limit) fraction of individuals in the
population that had an infector of (say) type 1 given a large outbreak. The results
of this paper are applied (and in more detail in [16]) to a model where the types of
individuals represent whether the infected individual will show symptoms at some
moment if infected, or he or she stays asymptomatic if infected.

From a public health perspective, a relevant variant of the model would be to
consider a population with only one type of individuals, where infectious individ-
uals may start off asymptomatic after which they become symptomatic (see [11],
where the asymptomatic phase is also referred to as “presymptomatic”). The re-
lated question for this model would be: “what fraction of the infected population
had a symptomatic infector, given a large outbreak?”. In order to analyse this
model we need to assign types to the edges in the epidemic graph instead of to
the vertices. We can use the techniques of this paper to characterise the answer
to the above question. We can still define a susceptibility process from a vertex v.
The susceptibility process can be approximated by a multi-type branching process.
The type of a particle in the branching process should then corresponds to the type
of the edge through which the particle is added to the susceptibility process. That
is, the type of the particle (say u) in the branching process depends on whether
the first edge in the shortest path from u to v in the epidemic graph represents a
contact that was made while u was symptomatic or asymptomatic. As in Theorem
2.7 the answer will be implicit through its dependence on the distribution of the
martingale limits W .
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