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Abstract

This paper studies estimation of conditional mean squared error of
prediction, conditional on what is known at the time of prediction. The
particular problem considered is the assessment of actuarial reserving
methods given data in the form of runoff triangles (trapezoids), where
the use of prediction assessment based on out-of-sample performance is
not an option. The prediction assessment principle advocated here can
be viewed as a generalization of Akaike’s final prediction error. A direct
application of this simple principle in the setting of a data generating
process given in terms of a sequence of general linear models yields an
estimator of conditional mean square error of prediction that can be
computed explicitly for a wide range of models within this model class.
Mack’s distribution-free chain ladder model and the corresponding es-
timator of the prediction error for the ultimate claim amount is shown
to be a special case. It is demonstrated that the prediction assessment
principle easily applies to quite different data generating processes and
results in estimators that have been studied in the literature.
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1 Introduction

Actuarial reserving amounts to forecasting future claim costs from incurred
claims that the insurer is unaware of and from claims known to the insurer
that may lead to future claim costs. The predictor commonly used is an
expectation of future claim costs computed with respect to a parametric
model, conditional on the currently observed data, where the unknown pa-
rameter vector is replaced by a parameter estimator. A natural question
is how to calculate an estimate of the conditional mean squared error of
prediction, MSEP, given the observed data, so that this estimate is a fair
assessment of the accuracy of the predictor. The main question is how the
variability of the predictor due to estimation error should be accounted for
and quantified.

Mack’s seminal paper Mack (1993) addressed this question for the chain
ladder reserving method. Given a set of model assumptions, referred to
as Mack’s distribution-free chain ladder model, Mack justified the use of
the chain ladder reserve predictor and, more importantly, provided an es-
timator of the conditional MSEP for the chain ladder predictor. Another
significant contribution to measuring variability in reserve estimation is the
paper England and Verrall (1999) which introduced bootstrap techniques
to actuarial science. For more on other approaches to assess the effect of
estimation error in claims reserving, see e.g. Buchwalder et al. (2006); Gisler
(2006); Wüthrich and Merz (2008b); Röhr (2016); Diers et al. (2016) and
the references therein.

Even though Mack (1993) provided an estimator of conditional MSEP
for the chain ladder predictor of the ultimate claim amount, the motivation
for the approximations in the derivation of the conditional MSEP estimator
is somewhat opaque – something commented upon in e.g. Buchwalder et al.
(2006). Moreover, by inspecting the above references it is clear that there is
no general agreement on how estimation error should be accounted for when
assessing prediction error.

Many of the models underlying commonly encountered reserving meth-
ods, such as Mack’s distribution-free chain ladder model, have an inherent
conditional or autoregressive structure. This conditional structure will make
the observed data not only a basis for parameter estimation, but also a basis
for prediction. More precisely, expected future claim amounts are functions,
expressed in terms of observed claim amounts, of the unknown model pa-
rameters. These functions form the basis for prediction. Predictors are
obtained by replacing the unknown model parameters by their estimators.
In particular, the same data are used for the basis for prediction and param-
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eter estimation. In order to estimate prediction error in terms of conditional
MSEP it is necessary to account for the fact that the parameter estimates
differ from the unknown parameter values. As demonstrated in Mack (1993),
not doing so will make the effect of estimation error vanish in the conditional
MSEP estimation.

We start by considering assessment of a prediction method without ref-
erence to a specific model. Given a random variable X to be predicted and
a predictor X̂, the conditional MSEP, conditional on the available observa-
tions, is defined as

MSEPF0(X, X̂) : = E
[
(X − X̂)2 | F0

]
(1)

= Var(X | F0) + E
[
(X̂ − E[X | F0])

2 | F0
]
.

The variance term is usually referred to as the process variance and the ex-
pected value is referred to as the estimation error. Notice that MSEPF0(X, X̂)
is the optimal predictor of the squared prediction error (X−X̂)2 in the sense
that it minimizes E[((X − X̂)2 − V )2] over all F0-measurable random vari-
ables V having finite variance. However, MSEPF0(X, X̂) typically depends
on unknown parameters.

Typically, the predictor X̂ is taken as the plug-in estimator of the con-
ditional expectation E[X | F0]: if X has a probability distribution with a
parameter vector θ, then we may write

h(θ;F0) := E[X | F0], X̂ := h(θ̂;F0),

where z 7→ h(z;F0) is an F0-measurable function and θ̂ is an F0-measurable
estimator of θ. (Note that this definition of a plug-in estimator, i.e. the
estimator obtained by replacing an unknown parameter θ with an estimator
θ̂ of the parameter, is not to be confused with the so-called plug-in principle,
see e.g. (Efron and Tibshirani, 1994, Ch. 4.3).) Since the plug-in estimator
of

E
[
(X̂ − E[X | F0])

2 | F0
]

= (h(θ̂;F0)− h(θ;F0))
2 ≥ 0, (2)

is equal to 0, it is clear that the plug-in estimator of MSEPF0(X, X̂) coincides
with the plug-in estimator of Var(X | F0),

MSEPF0(X, X̂)(θ̂) = Var(X | F0)(θ̂),

which fails to account for estimation error and underestimates MSEPF0(X, X̂).
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In the present paper we suggest a simple general approach to estimate
conditional mean squared error of prediction. The basis of this approach is
as follows. Notice that (1) may be written as

MSEPF0(X, X̂) : = E
[
(X − h(θ̂;F0))

2 | F0
]

whose plug-in estimator, as demonstrated above, is flawed. Consider a ran-
dom variable θ̂

∗
such that θ̂

∗
and X are conditionally independent, given

F0. Let

MSEP∗F0
(X, X̂) : = E

[
(X − h(θ̂

∗
;F0)

2 | F0
]

= Var(X | F0) + E
[
(h(θ̂

∗
;F0)− h(θ;F0)

2 | F0
]
.

The definition of MSEP∗F0
(X, X̂) is about disentangling the basis of pre-

diction z 7→ h(z;F0) and the parameter estimator θ̂ that together form
the predictor X̂. Both are expressions in terms of the available noisy data
generating F0, the “statistical basis” in the terminology of Norberg (1986).

The purpose of this paper is to demonstrate that a straightforward esti-
mator of MSEP∗F0

(X, X̂) is a good estimator of MSEPF0(X, X̂) that coin-
cides with estimators that have been proposed in the literature for specific
models and methods, with Mack’s distribution-free chain ladder method as

the canonical example. If θ̂
∗

is chosen as θ̂
⊥

, an independent copy of θ̂, inde-
pendent of F0, then MSEP∗F0

(X, X̂) coincides with Akaike’s final prediction
error (FPE) in the conditional setting, see e.g. Remark 1 below for details.
Akaike’s FPE is a well-studied quantity used for model selection in time
series analysis, see Akaike (1969), Akaike (1970), and further elaborations
and analysis in Bhansali and Downham (1977) and Speed and Yu (1993).

θ̂
∗

should be chosen to reflect the variability of the parameter estimator θ̂.
Different choices of θ̂

∗
may be justified and we will in particular consider

choices that make the quantity MSEP∗F0
(X, X̂) computationally tractable.

In Diers et al. (2016), “pseudo-estimators” are introduced as a key step in
the analysis of prediction error in the setting of the distribution-free chain
ladder model. Upon identifying the vector of “pseudo-estimators” with θ̂

∗
,

the approach in Diers et al. (2016) and the one presented in the present
paper coincide in the setting of the distribution-free chain ladder model.
Moreover, the approaches considered in Buchwalder et al. (2006) are com-
patible with the general approach of the present paper for the special case of
the distribution-free chain ladder model when assessing the prediction error
of the ultimate claim amount.

When considering so-called distribution-free models, i.e. models only de-
fined in terms of a set of (conditional) moments, analytical calculation of
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MSEP∗F0
(X, X̂) requires the first order approximation

h(θ̂
∗
;F0) ≈ h(θ;F0) +∇h(θ;F0)

′(θ̂
∗ − θ),

where ∇h(θ;F0) denotes the gradient of z 7→ h(z;F0) evaluated at θ. How-
ever, this is the only approximation needed. The use of this kind of linear
approximation is very common in the literature analyzing prediction error.
For instance, it appears naturally in the error propagation argument used
for assessing prediction error in the setting of the distribution-free chain
ladder model in Röhr (2016), although the general approach taken in Röhr
(2016) is different from the one presented here.

Before proceeding with the general exposition, one can note that, as
pointed out above, Akaike’s original motivation for introducing FPE was as a
device for model selection in autoregressive time series modelling. In Section
4 a class of conditional, autoregressive, reserving models is introduced for
which the question of model selection is relevant. This topic will not be
pursued any further, but it is worth noting that the techniques and methods
discussed in the present paper allow for “distribution-free” model selection.

In Section 2 we present in detail the general approach to estimation
of conditional mean squared error of prediction briefly summarized above.
Moreover, in Section 2 we illustrate how the approach applies to the situation
with runoff triangle based reserving when we are interested in calculating
conditional MSEP for the ultimate claim amount and the claims develop-
ment result (CDR). We emphasize the fact that the conditional MSEP given
by (1) is the standard (conditional) L2 distance between a random variable
and its predictor. The MSEP quantities considered in Wüthrich et al. (2009)
in the setting of the distribution-free chain ladder model are not all condi-
tional MSEP in the sense of (1).

In Section 3 we put the quantities introduced in the general setting in
Section 2 in the specific setting where data emerging during a particular
time period (calendar year) form a diagonal in a runoff triangle (trapezoid).

In Section 4, development-year dynamics for the claim amounts are given
by a sequence of general linear models. Mack’s distribution-free chain lad-
der model is a special case but the model structure is more general and
include e.g. development-year dynamics given by sequences of autoregres-
sive models. Given the close connection between our proposed estimator of
conditional MSEP and Akaike’s FPE, our approach naturally lends itself to
model selection within a set of models.

In Section 5 we show that we retrieve Mack’s famous conditional MSEP
estimator for the ultimate claim amount and demonstrate that our approach
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coincides with the approach in Diers et al. (2016) to estimation of conditional
MSEP for the ultimate claim amount for Mack’s distribution-free chain lad-
der model. We also argue that conditional MSEP for the CDR is simply a
special case, choosing CDR as the random variable of interest instead of e.g.
the ultimate claim amount. In Section 5 we show agreement with certain
CDR-expressions obtained in Wüthrich et al. (2009) for the distribution-free
chain ladder model, while noting that the estimation procedure is different
from those used in e.g. Wüthrich et al. (2009); Diers et al. (2016).

Although Mack’s distribution-free chain ladder model and the associ-
ated estimators/predictors provide canonical examples of the claim amount
dynamics and estimators/predictors of the kind considered in Section 4,
analysis of the chain ladder method is not the purpose of the present pa-
per. In Section 6 we demonstrate that the general approach to estimation of
conditional MSEP presented here applies naturally to non-sequential mod-
els such as the overdispersed Poisson chain ladder model. Moreover, for
the overdispersed Poisson chain ladder model we derive a (semi-) analyti-
cal MSEP-approximation which turns out to coincide with the well-known
estimator from Renshaw (1994).

2 Estimation of conditional MSEP in a general
setting

We will now formalize the procedure briefly described in Section 1. All
random objects are defined on a probability space (Ω,F ,P). Let T =
{t, t + 1, . . . , t} be an increasing sequence of integer times with t < 0 < t
and 0 ∈ T representing current time. Let ((St, S

⊥
t ))t∈T be a stochastic

process generating the relevant data. (St)t∈T and (S⊥t )t∈T are independent
and identically distributed stochastic processes, where the former represents
outcomes over time in the real world and the latter represents outcomes in
an imaginary parallel universe. Let (Ft)t∈T denote the filtration generated
by (St)t∈T . It is assumed that the probability distribution of (St)t∈T is
parametrized by an unknown parameter vector θ. Consequently, the same
applies to (S⊥t )t∈T . The problem considered in this paper is the assessment
of the accuracy of the prediction of a random variable X, that may be ex-
pressed as some functional applied to (St)t∈T , given the currently available
information represented by F0. The natural object to consider as the basis
for predicting X is

h(θ;F0) := E[X | F0], (3)
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which is an F0-measurable function evaluated at θ. The corresponding
predictor is then obtained as the plug-in estimator

X̂ := h(θ̂;F0), (4)

where θ̂ is an F0-measurable estimator of θ. We define

MSEPF0(X, X̂) : = E
[
(X − X̂)2 | F0

]
= Var(X | F0) + E

[
(X̂ − E[X | F0])

2 | F0
]
.

and notice that

MSEPF0(X, X̂) = Var(X | F0) + E
[
(h(θ̂;F0)− h(θ;F0))

2 | F0
]

(5)

= Var(X | F0)(θ) + (h(θ̂;F0)− h(θ;F0))
2.

We write

H(θ;F0) := MSEPF0(X, X̂)

to emphasize that MSEPF0(X, X̂) can be seen as an F0-measurable function
of θ. Consequently, the plug-in estimator of MSEPF0(X, X̂) is given by

H(θ̂;F0) = Var(X | F0)(θ̂) + 0,

which coincides with the plug-in estimator of the process variance leading to
a likely underestimation of MSEPF0(X, X̂). This problem was highlighted
already in Mack (1993) in the context of prediction/reserving using the
distribution-free chain ladder model. The analytical MSEP approximation
suggested for the chain ladder model in Mack (1993) is, in essence, based on
replacing the second term on the right-hand side in (5), relating to estimation
error, by another term based on certain conditional moments, conditioning
on σ-fields strictly smaller than F0. These conditional moments are natural
objects and straightforward to calculate due to the conditional structure of
the distribution-free chain-ladder claim-amount dynamics. This approach
to estimate conditional MSEP was motivated heuristically as ”average over
as little as possible”, see (Mack, 1993, p. 219). In the present paper, we
present a conceptually clear approach to quantifying the variability due to
estimation error that is not model specific. The resulting conditional MSEP
estimator for the ultimate claim amount is found to coincide with that found
in Mack (1993) for the distribution-free chain ladder model, see Section 5.
This is further illustrated by applying the same approach to non-sequential,
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unconditional, models, see Section 6, where it is shown that the introduced
method can provide an alternative motivation of the estimator from Ren-
shaw (1994) for the overdispersed Poisson chain ladder model.

With the aim of finding a suitable estimator of MSEPF0(X, X̂), no-
tice that the predictor X̂ := h(θ̂,F0) is obtained by evaluating the F0-
measurable function z 7→ h(z,F0) at θ̂. The chosen model and the stochas-
tic quantity of interest, X, together form the function z 7→ h(z,F0) that
is held fixed. This function may be referred to as the basis of prediction.
However, the estimator θ̂ is a random variable whose observed outcome
may differ substantially from the unknown true parameter value θ. In order
to obtain a meaningful estimator of the MSEPF0(X, X̂), the variability in
θ̂ should be taken into account. Towards this end, consider the random
variable θ̂

∗
which is not F0-measurable, which is constructed to share key

properties with θ̂. Based on X̂∗ := h(θ̂
∗
;F0) we will introduce versions of

conditional MSEP from which estimators of conditional MSEP in (5) will
follow naturally.

Assumption 2.1. θ̂
∗

and X are conditionally independent, given F0.

Definition 2.1. Define MSEP∗F0
(X, X̂) by

MSEP∗F0
(X, X̂) := E[(X − h(θ̂

∗
;F0))

2 | F0].

Definition 2.1 and Assumption 2.1 together immediately yield

MSEP∗F0
(X, X̂) = Var(X | F0)(θ) + E[(h(θ̂

∗
;F0)− h(θ;F0))

2 | F0].

In general, evaluation of the second term on the right-hand side above re-
quires full knowledge about the model. Typically, we want only to make
weaker moment assumptions. The price paid is the necessity to consider the
approximation

h(θ̂
∗
;F0) ≈ h(θ;F0) +∇h(θ;F0)

′(θ̂
∗ − θ) =: h∇(θ̂

∗
;F0),

where ∇h(θ;F0) denotes the gradient of z 7→ h(z;F0) evaluated at θ.

Notice that if E[θ̂
∗ | F0] = θ and Cov(θ̂

∗ | F0) exists finitely a.s., then

E[(h∇(θ̂
∗
;F0)− h(θ;F0))

2 | F0]

= ∇h(θ;F0)
′E[(θ̂

∗ − θ)(θ̂
∗ − θ)′ | F0]∇h(θ;F0)

= ∇h(θ;F0)
′Cov(θ̂

∗ | F0)∇h(θ;F0).

Assumption 2.2. E[θ̂
∗ | F0] = θ, Cov(θ̂

∗ | F0) exists finitely a.s.
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Definition 2.2. Define MSEP∗,∇F0
(X, X̂) by

MSEP∗,∇F0
(X, X̂) := Var(X | F0)(θ) +∇h(θ;F0)

′Cov(θ̂
∗ | F0)∇h(θ;F0).

Notice that MSEP∗F0
(X, X̂) = MSEP∗,∇F0

(X, X̂) if h∇(θ̂
∗
;F0) = h(θ̂

∗
;F0).

Remark 1. Akaike presented, in Akaike (1969, 1970), the quantity FPE (fi-
nal prediction error) for assessment of the accuracy of a predictor, intended
for model selection by rewarding models that give rise to small prediction er-
rors. Akaike demonstrated the merits of FPE when used for order selection
among autoregressive processes.

Akaike’s FPE assumes a stochastic process (St)t∈T of interest and an
independent copy (S⊥t )t∈T of that process. Let F0 be the σ-field generated
by (St)t∈T ,t≤0 and let X be the result of applying some functional to (St)t∈T
such that X is not F0-measurable. If (St)t∈T is 1-dimensional, then X = St,
for some t > 0, is a natural example. Let h(θ;F0) := E[X | F0] and let
h(θ̂;F0) be the corresponding predictor of X based on the F0-measurable

parameter estimator θ̂. Let F⊥0 , X⊥, h(θ;F⊥0 ) and θ̂
⊥

be the corresponding
quantities based on (S⊥t )t∈T . FPE is defined as

FPE(X, X̂) := E
[
(X⊥ − h(θ̂;F⊥0 ))2

]
and it is clear that the roles of (St)t∈T and (S⊥t )t∈T may be interchanged to
get

FPE(X, X̂) = E
[
(X⊥ − h(θ̂;F⊥0 ))2

]
= E

[
(X − h(θ̂

⊥
;F0))

2].
Naturally, we may consider the conditional version of FPE which gives

FPEF0(X, X̂) = E
[
(X⊥ − h(θ̂;F⊥0 ))2 | F⊥0

]
= E

[
(X − h(θ̂

⊥
;F0))

2 | F0
]
.

Clearly, θ̂
∗

= θ̂
⊥

gives

MSEP∗F0
(X, X̂) := E

[
(X − h(θ̂

∗
;F0))

2 | F0
]

= FPEF0(X, X̂).

If h∇(θ̂
∗
;F0) = h(θ̂

∗
;F0), then choosing θ̂

∗
= θ̂

⊥
gives

MSEP∗,∇F0
(X, X̂) = FPEF0(X, X̂)

= Var(X | F0)(θ) +∇h(θ;F0)
′Cov(θ̂)∇h(θ;F0).
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Since Cov(θ̂
∗ | F0) is a F0-measurable function of θ we may write

MSEP∗,∇F0
(X, X̂) = Var(X | F0) +∇h(θ;F0)

′Λ(θ;F0)∇h(θ;F0), (6)

where

Λ(θ;F0) := Cov(θ̂
∗ | F0).

We write

H∗(θ;F0) := MSEP∗F0
(X, X̂), H∗,∇(θ;F0) := MSEP∗,∇F0

(X, X̂)

to emphasize that MSEP∗F0
(X, X̂) and MSEP∗,∇F0

(X, X̂) are F0-measurable
functions of θ.

The plug-in estimator H∗(θ̂;F0) of MSEP∗F0
(X, X̂) may appear to be a

natural estimator of MSEPF0(X, X̂). However, in most situations there will
not be sufficient statistical evidence to motivate specifying the full distribu-
tion of θ̂

∗
. Therefore, H∗(θ̂;F0) is not likely to be an attractive estimator

of MSEPF0(X, X̂). The plug-in estimator H∗,∇(θ̂;F0) of MSEP∗,∇F0
(X, X̂) is

more likely to be a computable estimator of MSEPF0(X, X̂), requiring only

the covariance matrix Λ(θ;F0) := Cov(θ̂
∗ | F0) as a matrix-valued function

of the parameter θ instead of the full distribution of θ̂
∗
. We will henceforth

focus solely on the estimator H∗,∇(θ̂;F0).

Definition 2.3. The estimator of the conditional mean squared error of
prediction is given by

M̂SEPF0(X, X̂) := Var(X | F0)(θ̂) +∇h(θ̂;F0)
′Λ(θ̂;F0)∇h(θ̂;F0). (7)

We emphasize that the estimator we suggest in Definition 2.3 relies on
one approximation and one modeling choice. The approximation refers to

h(z;F0) ≈ h(θ;F0) +∇h(θ;F0)
′(z − θ)

and no other approximations will appear. The modeling choice refers
to deciding on how the estimation error should be accounted for in terms
of the conditional covariance structure Cov(θ̂

∗ | F0), where θ̂
∗

satisfies the

requirement E[θ̂
∗ | F0] = θ.

Before proceeding further with the specification of θ̂
∗
, one can note that

in many situations it will be natural to structure data according to e.g.
accident year. In these situation it will be possible to express X as X =∑
i∈I Xi and consequently also h(θ;F0) =

∑
i∈I hi(θ;F0). This immediately

implies that the estimator (7) of conditional MSEP can be expressed in a
way that simplifies computations.
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Lemma 2.1. Given that X =
∑
i∈I Xi and h(θ;F0) =

∑
i∈I hi(θ;F0), the

estimator (7) takes the form

M̂SEPF0(X, X̂) =
∑
i∈I

M̂SEPF0(Xi, X̂i)

+ 2
∑

i,j∈I,i<j

(
Cov(Xi, Xj | F0)(θ̂) +Qi,j(θ̂;F0)

)
,

where

M̂SEPF0(Xi, X̂i) := Var(Xi | F0)(θ̂) +Qi,i(θ̂;F0),

Qi,j(θ̂;F0) := ∇hi(θ̂;F0)
′Λ(θ̂;F0)∇hj(θ̂;F0).

The proof of Lemma 2.1 follows from expanding the original quadratic
form in the obvious way, see Appendix C. Even though Lemma 2.1 is trivial,
it will be used repeatedly in later sections when the introduced methods are
illustrated using e.g. different models for the data generating process.

Assumption 2.3. E[θ̂] = θ, Cov(θ̂) exists finitely.

Given Assumption 2.3, one choice of θ̂
∗

is to choose θ̂
∗

as an independent

copy θ̂
⊥

, based entirely on (S⊥t )t∈τ , of θ̂, independent of F0. An immediate
consequence of this choice is

E[θ̂
∗ | F0] = θ, Cov(θ̂

∗ | F0) = Cov(θ̂) =: Λ(θ), θ̂
∗

:= θ̂
⊥
.

Since the specification θ̂
∗

:= θ̂
⊥

implies that Cov(θ̂
∗ | F0) does not depend

on F0 we refer to θ̂
⊥

as the unconditional specification of θ̂
∗
. In this case,

as described in Remark 1, MSEP∗F0
(X, X̂) coincides with Akaike’s FPE in

the conditional setting. Moreover,

M̂SEPF0(X, X̂) = Var(X | F0)(θ̂) +∇h(θ̂;F0)
′Λ(θ̂)∇h(θ̂;F0).

For some models for the data generating process (St)t∈T , such as the
conditional linear models investigated in Section 4 below, computation of
the unconditional covariance matrix Cov(θ̂) is not feasible. Moreover, it may
be argued that observed data should be considered also in the specification
of θ̂

∗
although there is no statistical principle justifying this argument. The

models investigated in Section 4 are such that θ = (θ1, . . . ,θp) and there

exist nested σ-fields G1 ⊆ . . .Gp ⊆ F0 such that E[θ̂k | Gk] = θk for k =

1, . . . , p and θ̂k is Gk+1-measurable for k = 1, . . . , p − 1. Consequently,
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Cov(θ̂j , θ̂k | Gj ,Gk) = 0 for j 6= k. If further the covariance matrices

Cov(θ̂k | Gk) can be computed explicitly, as demonstrated in Section 4, then

we may choose θ̂
∗

:= θ̂
∗,c

such that E[θ̂
∗
k | F0] = E[θ̂k | Gk], Cov(θ̂

∗
k | F0) =

Cov(θ̂k | Gk) for k = 1, . . . , p and Cov(θ̂
∗
j , θ̂
∗
k | F0) = 0 for j 6= k. Since the

specification θ̂
∗

:= θ̂
∗,c

implies that Cov(θ̂
∗ | F0) depends on F0 we refer to

θ̂
∗,c

as the conditional specification of θ̂
∗
. In this case,

M̂SEPF0(X, X̂) = Var(X | F0)(θ̂) +∇h(θ̂;F0)
′Λ(θ̂;F0)∇h(θ̂;F0).

Notice that if θ̂
∗,u

:= θ̂
⊥

and θ̂
∗,c

denote the unconditional and conditional
specifications of θ̂

∗
, respectively, then covariance decomposition yields

Cov(θ̂
∗,u
k | F0) = Cov(θ̂k)

= E[Cov(θ̂k | Gk)] + Cov(E[θ̂k | Gk])
= E[Cov(θ̂k | Gk)]

= E[Cov(θ̂
∗,c
k | F0)]

and therefore

Cov(θ̂
∗,u | F0) = E[Cov(θ̂

∗,c | F0)]. (8)

Cov(θ̂
∗,c | F0) is thus an unbiased estimator of Cov(θ̂

∗,u | F0).
The estimators of conditional MSEP for the distribution-free chain-ladder

model given in Buchwalder et al. (2006) and, more explicitly, in Diers et al.

(2016) are essentially based on the conditional specification of θ̂
∗
. We refer

to Section 5 below for details.

2.1 Selection of estimators of conditional MSEP

As noted in the introduction, MSEPF0(X, X̂) is the optimal predictor of the
squared prediction error (X − X̂)2 in the sense that it minimizes E[((X −
X̂)2−V )2] over all F0-measurable random variables V having finite variance.
Therefore, given a set of estimators V̂ of MSEPF0(X, X̂), the best estimator
is the one minimizing E[((X − X̂)2 − V̂ )2]. Write V := MSEPF0(X, X̂) and
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V̂ := V + ∆V and notice that

E[((X−X̂)2 − V̂ )2]

= Var((X − X̂)2) + E[(X − X̂)2]2 − 2E[(X − X̂)2(V + ∆V )]

+ E[(V + ∆V )2]

= Var((X − X̂)2) + E[V ]2 − 2
(
E[V 2] + E[(X − X̂)2∆V ]

)
+ E[V 2] + E[∆V 2] + 2E[V∆V ]

= Var((X − X̂)2)−Var(V ) + E[∆V 2]. (9)

In our setting,

V = Var(X | F0) +
(
h(θ̂;F0)− h(θ;F0)

)2
and, from Definition 2.3,

V̂ = Var(X | F0)(θ̂) +∇h(θ̂;F0)
′Λ(θ̂;F0)∇h(θ̂;F0).

Recall that Λ(θ;F0) = Cov(θ̂
∗ | F0) depends on the specification of θ̂

∗
.

Therefore we may in principle search for the optimal specification of θ̂
∗
.

However, it is unlikely that any specifications will enable explicit computa-
tion of E[∆V 2]. Moreover, for so-called distribution-free models defined only
in terms of certain (conditional) moments, the required moments appearing
in the computation of E[∆V 2] may be unspecified.

We may consider the approximations

V = MSEPF0(X, X̂) ≈ Var(X | F0) +∇h(θ;F0)
′(θ̂ − θ)(θ̂ − θ)′∇h(θ;F0),

V̂ ≈ MSEPF0(X, X̂)∗,∇ = Var(X | F0) +∇h(θ;F0)
′Λ(θ;F0)∇h(θ;F0)

which yield

E[∆V 2] ≈ E
[(
∇h(θ;F0)

′
(
(θ̂ − θ)(θ̂ − θ)′ −Λ(θ;F0)

)
∇h(θ;F0)

)2]
.

Therefore, the specification of θ̂
∗

should be such that

• (θ̂ − θ)(θ̂ − θ)′ and Λ(θ;F0) are close, and

• Λ(θ̂;F0) is computable.

Appendix D compares the two estimators of conditional MSEP based on
unconditional and conditional, respectively, specification of θ̂

∗
, in the set-

ting of Mack’s distribution-free chain ladder model. No significant difference
between the two estimators can be found. However, in the setting of Mack’s
distribution-free chain ladder model, only the estimator based on the con-
ditional specification of θ̂

∗
is computable.
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3 Data in the form of runoff triangles

One of the main objectives of this paper is the estimation of the precision of
reserving methods when the data in the form of runoff triangles (trapezoids),
explained below, have conditional development-year dynamics of a certain
form. Mack’s chain ladder model, see e.g. Mack (1993), will serve as the
canonical example.

Let Ii,j denote the incremental claims payments during development
year j ∈ {1, . . . , J} =: J and from accidents during accident year i ∈
{i0, . . . , J} =: I, where i0 ≤ 1. This corresponds to the indexation used in
Mack (1993), i.e. j = 1 corresponds to the payments that are made during
a particular accident year. Clearly, the standard terminology accident- and
development year used here could refer to any other appropriate time unit.
The observed payments as of today, at time 0, is what is called a runoff
triangle or runoff trapezoid:

D0 := {Ii,j : (i, j) ∈ I × J , i+ j ≤ J + 1},

and let F0 := σ(D0). Notice that accident years i ≤ 1 are fully developed.
Notice also that in the often considered special case i0 = 1, the runoff
trapezoid takes the form of a triangle. Instead of incremental payments
Ii,j we may of course equivalently consider cumulative payments Ci,j :=∑j
k=1 Ii,k, noticing that F0 = σ({Ci,j : (i, j) ∈ I × J , i+ j ≤ J + 1}).

The incremental payments that occur between (calendar) time t− 1 and
t corresponds to the following diagonal in the runoff triangle of incremental
payments:

St = {Ii,j : (i, j) ∈ I × J , i+ j = J + 1 + t}.

Consequently the filtration (Ft)t∈T is given by

Ft = σ(Dt), Dt := {Ii,j : (i, j) ∈ I × J , i+ j ≤ J + 1 + t}.

Let

Bk := {Ii,j : (i, j) ∈ I × J , j ≤ k, i+ j ≤ J + 1},

i.e. the subset of D0 corresponding to claim amounts up to and including
development year k, and notice that Gk := σ(Bk) ⊂ F0, k = 1, . . . , J , form
an increasing sequence of σ-fields. Conditional expectations and covariances
with respect to these σ-fields appear naturally when estimating conditional
MSEP in the distribution-free chain ladder model, see Mack (1993), and also

in the more general setting considered here when θ̂
∗

is chosen according to
the conditional specification. We refer to Section 4 for details.
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3.1 Conditional MSEP for the ultimate claim amount

The outstanding claims reserve Ri for accident year i that is not yet fully
developed, i.e. the future payments stemming from claims incurred during
accident year i, and the total outstanding claims reserve R are given by

Ri :=
J∑

j=J−i+2

Ii,j = Ci,J − Ci,J−i+1, R :=
J∑
i=2

Ri.

The ultimate claim amount Ui for accident year i that is not yet fully de-
veloped, i.e. the future and past payments stemming from claims incurred
during accident year i, and the ultimate claim amount U are given by

Ui :=
J∑
j=1

Ii,j = Ci,J , U :=
J∑
i=2

Ui.

Similarly, the amount of paid claims Pi for accident year i that is not yet
fully developed, i.e. the past payments stemming from claims incurred during
accident year i, and the total amount of paid claims P are given by

Pi :=
J−i+1∑
j=1

Ii,j = Ci,J−i+1, P :=
J∑
i=2

Pi.

Obviously, Ui = Pi +Ri and U = P +R.
We are interested in calculating the conditional MSEP of U and we can

start by noticing that if the F0-measurable random variable P is added to
the random variable R to be predicted, then the same applies to its predictor:
Û = P + R̂. Therefore,

MSEPF0(U, Û) = MSEPF0(R, R̂).

Further, in order to be able compute the conditional MSEP estimators from
Definition 2.1, and in particular the final plug-in estimator given by (7), we
need to specify the basis of prediction, i.e. z 7→ h(z,F0), which is given by

h(θ,F0) := E[U | F0],

as well as specify the choice of θ̂
∗
. Neither of this is meaningful to pursue

any further, without specifying the underlying model structure. In Sections
4, 5 and 6 we discuss how this can be done for specific models using Lemma
2.1.
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3.2 Conditional MSEP for the claims development result

Above we have described an approach for calculating MSEP for the ultimate
claim amount. Another quantity which has received considerable attention
is MSEP for the claims development result, CDR, which is the difference
between the ultimate claim amount predictor and its update based on one
more year of observations. For the chain ladder method, an estimator of the
variability of CDR is provided in Wüthrich and Merz (2008a). We will now
describe how this may be done consistently in terms of MSEP∗. As will be
seen, there is no conceptual difference compared to the calculations for the
ultimate claim amount – all steps will follow verbatim from Section 2. For
more on the estimator in Wüthrich and Merz (2008a) for the distribution-
free chain ladder model, see Section 5.

Let

CDR := h(0)(θ̂
(0)

;F0)− h(1)(θ̂
(1)

;F1),

where

h(0)(θ;F0) := E[U | F0], h(1)(θ;F1) := E[U | F1],

and θ̂
(0)

and θ̂
(1)

are F0- and F1-measurable estimators of θ, based on
the observations at times 0 and 1, respectively. Hence, CDR is simply the
difference between the predictor at time 0 of the ultimate claim amount and
that at time 1. Thus, given the above it follows by choosing

h(θ;F0) := E[CDR | F0] = h(0)(θ̂
(0)

;F0)− E[h(1)(θ̂
(1)

;F1) | F0]

that we may again estimate MSEPF0(CDR, ĈDR) using Definitions 2.1 and
2.2 – in particular we may calculate the plug-in estimator given by (7).

Note, from the definition of CDR, regardless of the specification of θ̂
∗
, that

it directly follows that

MSEPF0(CDR, ĈDR)

= MSEPF0

(
E[U | F1](θ̂

(1)
),E[E[U | F1](θ̂

(1)
) | F0](θ̂

(0)
)
)

= MSEPF0

(
h(1)(θ̂

(1)
;F1),E[h(1)(θ̂

(1)
;F1) | F0](θ̂

(0)
)
)
, (10)

where the F0-measurable term h(0)(θ̂
(0)

;F0) appearing both in CDR and

ĈDR has canceled out. Thus, from the above definition of h(θ;F0), together
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with the definition of MSEP∗, Definition 2.1, it is clear that the estimation

error will only correspond to the effect of perturbing θ in E[h(1)(θ̂
(1)

;F1) |
F0](θ). Moreover, the notion of conditional MSEP and the suggested es-
timation procedure for the CDR is in complete analogy with that for the
ultimate claim amount. This estimation procedure is however different from
the ones used in e.g. Wüthrich and Merz (2008a); Wüthrich et al. (2009);
Röhr (2016); Diers et al. (2016) for the distribution-free chain ladder model.
For Mack’s distribution-free chain ladder model,

E[h(1)(θ̂
(1)

;F1) | F0](θ̂
(0)

) = h(0)(θ̂
(0)

;F0)

and therefore MSEPF0(CDR, ĈDR) = MSEPF0(CDR, 0). This is however
not true in general for other models. More details on CDR-calculations for
the distribution-free chain ladder model are found in Section 5.

Moreover, by introducing

h(k)(θ;Fk) := E[U | Fk],

we can, of course, repeat the above steps to obtain the conditional MSEP
for the k-year CDR by using the following definition

CDR(k) := h(0)(θ̂
(0)

;F0)− h(k)(θ̂
(k)

;Fk),

together with the obvious changes.
We want to stress that we have no particular interest in these CDR-

calculations, one-year or k-year, but merely want to illustrate the applica-
bility and transparency of the suggested approach. As an illustration, in
Section 5 calculations for the ultimate claim amount and one-year CDR are
carried out in more detail for the distribution-free chain ladder model. This
is, again, based on using Lemma 2.1.

4 Dynamics in the form of sequential conditional
linear models

We will now describe how the theory introduced in Section 2 applies to spe-
cific models. We will first introduce a class of sequential conditional linear
models to which the distribution-free chain ladder model is a special case,
but also contains more general autoregressive reserving models investigated
in e.g. Kremer (1984) and Lindholm et al. (2017). Since this class of models
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has a natural conditional structure it is interesting to discuss the specifica-
tion of θ̂

∗
as being either conditional or unconditional.

As concluded in Section 2, the parameter estimator θ̂ and Λ(θ;F0) are
needed in order to obtain a computable estimator of MSEPF0(X, X̂) follow-
ing (7). In the present section we will present rather general development-
year dynamics for claim amounts that immediately give the estimator θ̂ and
we will discuss how θ̂

∗
can be specified which gives us Λ(θ;F0).

For the remainder of the current section we will focus on the following
development-year dynamics for claim amounts:

Y j+1 = Ajβj + σjDjej+1, j = 1, . . . , J − 1. (11)

Here Y j+1 is a |I| × 1 vector that may represent incremental or cumula-
tive claim amounts, corresponding to either Y j+1 = (Ii,j+1)i∈I or Y j+1 =
(Ci,j+1)i∈I , respectively, Aj is a |I| × pj matrix, βj is a pj × 1 parameter
vector, σj is a positive scalar parameter, Dj is a diagonal |I| × |I| matrix
with positive diagonal elements and ej+1 is a |I| × 1 vector. The random
matrices Aj and Dj and the random vector ej+1 all have independent rows.
This requirement ensures that claim amounts stemming from different ac-
cident years are independent. Moreover, the components of ej+1 all have,
conditional on Aj and Dj , mean zero and variance one. Therefore, the same
holds for the unconditional first two moments:

E[ej+1,k] = E[E[ej+1,k | Aj ,Dj ]] = 0,

E[e2j+1,k] = E[E[e2j+1,k | Aj ,Dj ]] = 1.

Notice, however, that variables e2,k, . . . , eJ,k are not required to be indepen-
dent. In fact if the variables Y2,k, . . . , YJ,k are required to be positive, then
e2,k, . . . , eJ,k cannot be independent. See Remark 2 in Section 5 for an ex-
ample, and Mack et al. (2006) for further comments in the setting of Mack’s
distribution-free chain ladder model.

The development-year dynamics (11) with the above dimensions of Aj ,
Dj and ej+1 do not correspond to the dynamics of data observed at time
0. For runoff triangle data, observations come in the form of a diagonal. In
particular, at time 0 only the first nj := J − j − i0 + 1 components of Y j+1

are observed. The development-year dynamics of claim amounts that are
observed at time 0 are therefore of the form

Ỹ j+1 = Ãjβj + σjD̃j ẽj+1, j = 1, . . . , J − 1, (12)

where Ỹ j+1 is a nj × 1 vector, Ãj is a nj × pj matrix, D̃j is a diagonal
nj × nj matrix and ẽj+1 is a nj × 1. We will throughout assume that
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nj ≥ pj . Hence, we will in what follows consider a sequence of conditional
linear models where the dimension of the parameters is fixed whereas the
dimension of the random objects vary with the development year. Notice
that Ỹ j+1, Ãj , D̃j and ẽj+1 are the sub-vectors/matrices of Y j+1, Aj , Dj

and ej+1 obtained by considering only the first nj rows.
Recall the following notation introduced in Section 2

Bk := {Ii,j : (i, j) ∈ I × J , j ≤ k, i+ j ≤ J + 1},

i.e. the subset of D0 corresponding to claim amounts up to and including
development year k, Ãj and D̃j are both σ(Bj)-measurable with indepen-
dent rows. Moreover, by the independence between the rows in ej+1, the

components of ẽj+1 all have, conditional on Ãj and D̃j , mean zero and
variance one. These observations form the basis of parameter estimation
since it allows βj to be estimated by the standard weighted least squares
estimator from the theory of general linear models:

β̂j =
(
Ã
′
jΣ̃
−1
j Ãj

)−1
Ã
′
jΣ̃
−1
j Ỹ j+1, Σ̃j := D̃

2

j , (13)

which is independent of σj . Notice in particular that

E
[
β̂j | Ãj , Σ̃j

]
= E

[
β̂j | Bj

]
= βj . (14)

Moreover,

Cov
(
β̂j | Bj

)
= σ2j

(
Ã
′
jΣ̃
−1
j Ãj

)−1
. (15)

The estimator of the dispersion parameter σ2j is, for j = 1, . . . , J − 1, given
by

σ̂2j =
1

nj − pj
(Ỹ j+1 − Ãjβ̂j)

′Σ̃
−1
j (Ỹ j+1 − Ãjβ̂j), (16)

given that nj − pj > 0, i.e. given that i0 ≤ J − j − pj . If i0 = 1, then
σ̂2J−1 has to be defined by an ad hoc choice. The weighted least squares
estimator in (13) is the best linear unbiased estimator of βj in the sense

that, for any a ∈ Rpj , β̂j is such that a′β̂j has minimum variance among
all unbiased linear estimators. Similarly the estimator in (16) is the best
unbiased estimator of σ2j . For further details on weighted (generalized) least
squares see e.g. (Seber and Lee, 2003, Sec. 3.10).

Basic properties of the estimators are presented next. The essential
properties are that, for each j, β̂j is unbiased and, for j 6= k, β̂j and β̂k are
uncorrelated.
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Proposition 4.1. For each j,

(i) E
[
β̂j
]

= βj and, for j 6= k, Cov
(
β̂j , β̂k

)
= 0.

(ii) E[σ̂2j | Bj ] = σ2j given that i0 ≤ J − j − pj.

The proof of Proposition 4.1 is given in the appendix.
Recall that the overall aim is estimation of MSEPF0(X, X̂), where X is

a stochastic quantity of interest, e.g. the ultimate claim amount U or the
claims development result CDR, whose distribution depends on an unknown
parameter θ. Here,

θ = (β,σ), β := (β1, . . . ,βJ−1), σ := (σ1, . . . , σJ−1).

Considering the similarities of the model considered here and general linear
models, it is clear that there are conditions ensuring that h(θ;F0) = E[X |
F0] depends on θ = (β,σ) only through β and not σ, e.g. h(β;F0) = E[U |
F0]. In what follows we hence make the following assumption:

Assumption 4.1. h((β,σ);F0) = E[X | F0] is independent of σ.

Assumption 4.1 is fulfilled by e.g. the distribution-free chain ladder model,
see Section 5, as well as the models stated in Appendix A, which cover e.g.
Kremer (1984); Lindholm et al. (2017).

Given Assumption 4.1 we write h(β;F0) for h((β, z);F0) for an arbitrary
z.

Recall from Section 2 that MSEPF0(X, X̂) is approximated by (6) which
in turn has a computable estimator (7). Under Assumption 4.1,

∇h(θ;F0)
′Λ(θ;F0)∇h(θ;F0) = ∇βh(β;F0)

′Λ(θ;F0)∇βh(β;F0)

and therefore (6) simplifies as follows:

MSEP∗,∇F0
(X, X̂) = Var(X | F0) +∇βh(β;F0)

′Λ(θ;F0)∇βh(β;F0). (17)

4.1 Specification of θ̂
∗

Recall from Section 2 that we introduced the two independent and identically
distributed stochastic processes (St)t∈T and (S⊥t )t∈T , where the former is
the one generating data that can be observed. In the current setting we have
a parallell universe (another independent runoff triangle) with development
year dynamics

Y ⊥j+1 = A⊥j βj + σjD
⊥
j e
⊥
j+1, j = 1, . . . , J − 1.
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If the unconditional specification of θ̂
∗

is chosen, i.e. θ̂
∗,u

= θ̂
⊥

, then

β̂
∗,u
j =

(
{Ã⊥j }′{Σ̃

⊥
j }−1Ã

⊥
j

)−1
{Ã⊥j }′{Σ̃

⊥
j }−1Ỹ

⊥
j+1

= βj + σj
(
{Ã⊥j }′{Σ̃

⊥
j }−1Ã

⊥
j

)−1
{Ã⊥j }′{D̃

⊥
j }−1ẽ⊥j+1,

i.e. simply the weighted least squares estimator applied to the data in the
independent triangle with identical features as the observable one. It follows
directly from Proposition 4.1 that

Cov(β̂
∗ | F0) = Cov(β̂) = Λ(β,σ), β̂

∗
:= β̂

∗,u
,

is a block-diagonal covariance matrix with blocks Cov(β̂j) of dimension pj×
pj . It is also clear that these unconditional covariances Cov(β̂j) are not
possible to compute analytically.

On the other hand, if we specify θ̂
∗

conditionally, then

β̂
∗,c
j :=

(
Ã
′
jΣ̃
−1
j Ãj

)−1
Ã
′
jΣ̃
−1
j

(
Ãjβj + σjD̃j ẽ

⊥
j+1

)
= βj + σj

(
Ã
′
jΣ̃
−1
j Ãj

)−1
Ã
′
jD̃
−1
j ẽ

⊥
j+1,

which is identical to β̂j except that ẽ⊥j+1 appears instead of ẽj+1. Notice

that this definition of β̂
∗
j satisfies Assumption 2.1. Notice also that

Cov(β̂
∗,c
j | F0) = Cov(β̂j | Bj) = σ2j

(
Ã
′
jΣ̃
−1
j Ãj

)−1
.

Hence,

Cov(β̂
∗ | F0) = Λ(σ;F0), β̂

∗
:= β̂

∗,c
,

where

Λ(σ;F0) =


Cov(β̂1 | B1) 0 . . . 0

0
. . .

...

0 Cov(β̂J−1 | BJ−1)

 .
Further, in Section 2 arguments were given for when the conditional speci-
fication of θ̂

∗
resulting in Λ(σ;F0) may be seen as an unbiased estimator of

Λ(β,σ), given by the corresponding unconditional θ̂
∗
, see (8). Within the

class of models given by (11) this relation may be strengthened: Proposition
4.2 below tells us that Λ(σ̂;F0) is an unbiased estimator of Cov(β̂) and an
empirical estimator of Cov(β̂) based on a single claims trapezoid.
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Proposition 4.2. E
[
Λ(σ̂;F0)

]
= Cov

(
β̂
)

given that i0 ≤ J − j − pj for all
j.

The proof of Proposition 4.2 is given in the appendix.
Moreover, in Appendix B we have collected a number of asymptotic re-

sults where it is shown that, given suitable regularity conditions, Cov(β̂)
and Cov(β̂j | Bj) will converge to the same limit as the number of acci-
dent years tends to infinity, see Proposition B.1. This implies that given a
sufficient amount of data the two views on estimation error will result in
conditional MSEP estimates that are close. In Section 5 this is shown to be
the case in an illustration based on real data.

5 Mack’s distribution-free chain ladder

The classical chain ladder reserving method is a prediction algorithm for
predicting the ultimate claim amount. In order to justify the use of this
method and in order to measure the prediction accuracy, Mack introduced,
in Mack (1993), conditions that should be satisfied by the underlying model.
The chain ladder method with Mack’s conditions is referred to as Mack’s
distribution-free chain ladder model. We will see that this setting is compat-
ible with the development-year dynamics (11) in Section 4 and we will show
in Proposition 5.1 that the estimator of MSEPF0(U, Û) from Section 3.1 cal-
culated according to Definition 2.3 coincides with the celebrated estimator
of MSEPF0(U, Û) provided by Mack in Mack (1993).

In accordance with Mack’s distribution-free chain ladder model, assume
that, for j = 1, . . . , J − 1, there exist constants fj > 0, called development
factors, and constants σ2j ≥ 0 such that

E
[
Ci,j+1 | Ci,j , . . . , Ci,1

]
= fjCi,j , (18)

Var(Ci,j+1 | Ci,j , . . . , Ci,1) = σ2jCi,j , (19)

where i = i0, . . . , J . Moreover, assume that,

{Ci0,1, . . . , Ci0,J}, . . . , {CJ,1, . . . , CJ,J} are independent. (20)

Notice that the claim amounts during the first development year Ii0,1, . . . , IJ,1
are independent but not necessarily identically distributed.

Mack’s distribution-free chain ladder fits into the development-year dy-
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namics (11) in Section 4 as follows: for j = 1, . . . , J −1, set pj = 1, βj = fj ,

Ỹ j+1 =


Ci0,j+1

Ci0+1,j+1
...
CJ−j,j+1

 , Ãj =


Ci0,j
Ci0+1,j
...
CJ−j,j

 , Σ̃j = diag


Ci0,j
Ci0+1,j
...
CJ−j,j

 ,
where diag[a] denotes a diagonal matrix with diagonal [a]. Notice that this
choice of (Y j+1,Aj ,Σj) corresponds to a special case of (38) of Assumption
A.1. Therefore, the statement of Assumption 4.1 holds.

Remark 2. For the elements of Σj to have positive diagonal elements we

need the additional condition {ej+1}i > −fjC1/2
i,j /σj. This somewhat odd

requirement is easily satisfied. For instance, set Wi,j := fjC
1/2
i,j /σj, let Zi,j

be standard normal independent of Wi,j and set

{ej+1}i := exp
{
µ(Wi,j) + σ(Wi,j)Zi,j

}
−Wi,j ,

σ(Wi,j) :=
√

log(1 +W−2i,j ), µ(Wi,j) := log(Wi,j)− σ2(Wi,j)/2.

In this case, conditional on Ci,j, {ej+1}i is simply a translated lognormal

random variable, translated by −fjC1/2
i,j /σj, with zero mean and unit vari-

ance.

Notice that

β̂j =
(
Ã
′
jΣ̃
−1
j Ãj

)−1
Ã
′
jΣ̃
−1
j Ỹ j+1 =

∑J−j
i=i0

Ci,j+1∑J−j
i=i0

Ci,j
= f̂j ,

which coincides with the classical chain ladder development factor estimator,
hence, being a standard weighted least-squares estimator for the model (11).
Furthermore,

σ̂2j =
1

nj − pj
(Ỹ j+1 − Ãjβ̂j)

′Σ̃
−1
j (Ỹ j+1 − Ãjβ̂j)

=
1

J − j − i0

J−j∑
i=i0

Ci,j
(Ci,j+1

Ci,j
− f̂j

)2
, j = 1, . . . , J − 2,

and similarly for σ̂2J−1 if i0 ≤ 0. Notice also that

Cov(β̂j | Bj) = σ2j

(
Ã
′
jΣ̃
−1
j Ãj

)−1
=

σ2j∑J−j
i=i0

Ci,j
= Var(f̂j | Bj).
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Using the tower property of conditional expectations together with (18) and
(20) it is straightforward to verify that

hi(f ;F0) := E[Ui | F0] = Ci,J−i+1

J−1∏
j=J−i+1

fj ,

h(f ;F0) := E[U | F0] =
J∑
i=2

hi(f ;F0) =
J∑
i=2

Ci,J−i+1

J−1∏
j=J−i+1

fj . (21)

In order to calculate MSEP for the ultimate claim amount following Lemma
2.1, we need to obtain expressions for process (co)variances and the Qi,js
given by

Qi,j(θ̂;F0) = ∇hi(θ̂;F0)
′Λ(θ̂;F0)∇hj(θ̂;F0).

The process variances are given in (Mack, 1993, Thm. 3, Cor.) and follows
by using variance decomposition, the tower property of conditional expec-
tations, (18), (19) and (20), and may, after simplifications, be expressed
as

Var(U | F0) =
J∑
i=2

Var(Ui | F0)

=
J∑
i=2

Ci,J+1−i

J−1∑
k=J+1−i

fJ+1−i . . . fk−1σ
2
kf

2
k+1 . . . f

2
J−1. (22)

For detailed calculations, see (Mack, 1993, Thm. 3, Cor.). Further, letting

Ûi := hi(f̂ ;F0) = Ĉi,J , Ĉi,j := Ci,J−j+1

j−1∏
k=J−i+1

f̂k,

it follows that

Var(U | F0)(f̂ , σ̂
2) =

J∑
i=2

Û2
i

J−1∑
k=J−i+1

σ̂2k
f̂2k Ĉi,k

. (23)

Thus, if we set

Γ̂Ui,J :=
J−1∑

k=J−i+1

σ̂2k
f̂2k Ĉi,k

, (24)
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we see that

Var(U | F0)(f̂ , σ̂
2) =

J∑
i=2

Û2
i Γ̂Ui,J .

If we turn to the calculation of Qi,j(θ̂;F0) we see that

{∇fhi(f ;F0)}j =
∂

∂fj
hi(f ;F0) = 1{J−i+1≤j}Ci,J−i+1

1

fj

J−1∏
l=J−i+1

fl,

for i = 2, . . . , J and j = 1, . . . , J − 1 and that

{Λ(σ;F0)}j,j = Var(f̂j | Bj) =
σ2j∑J−j

i=i0
Ci,j

, (25)

where {Λ(σ;F0)}i,j = 0 for all i 6= j. Hence,

{∇fhi(f̂ ;F0)}j = 1{J−i+1≤j}
Ûi

f̂j
, (26)

and it follows by direct calculations that

Qi,i(θ̂;F0) = ∇fhi(f̂ ;F0)
′Λ(σ̂;F0)∇fhi(f̂ ;F0)

=
J−1∑

k=J−i+1

Û2
i σ̂

2
k

f̂2k
∑J−k
l=i0

Cl,k

= Û2
i ∆̂U

i,J ,

where

∆̂U
i,J :=

J−1∑
k=J−i+1

σ̂2k
f̂2k
∑J−k
l=i0

Cl,k
. (27)

Thus, from Lemma 2.1 it follows that for a single accident year i,

M̂SEPF0(Ui, Ûi) = Var(Ui | F0)(f̂ , σ̂
2) +∇fhi(f̂ ;F0)

′Λ(σ̂;F0)∇fhi(f̂ ;F0)

= Û2
i (Γ̂Ui,J + ∆̂U

i,J)

= Û2
i

J−1∑
k=J−i+1

σ̂2k
f̂2k

( 1

Ĉi,k
+

1∑J−k
l=i0

Cl,k

)
,

which is equivalent to (Mack, 1993, Thm. 3). We state this result together
with the corresponding result for the total ultimate claim amount in the
following proposition:
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Proposition 5.1. In the setting of Mack’s distribution-free chain ladder,

M̂SEPF0(Ui, Ûi) = Û2
i (Γ̂Ui,J + ∆̂U

i,J)

= Û2
i

J−1∑
k=J−i+1

σ̂2k
f̂2k

( 1

Ĉi,k
+

1∑J−k
l=i0

Cl,k

)
,

M̂SEPF0(U, Û) =
J∑
i=2

M̂SEPF0(Ui, Ûi) + 2
∑

2≤i<k≤J
ÛiÛk∆̂

U
i,J ,

where Γ̂Ui,J is given by (24) and ∆̂U
i,J is given by (27).

The remaining part of the proof is given in Appendix C and amounts,
due to Lemma 2.1, to identifying Qi,k(θ̂;F0) = ÛiÛk∆̂

U
i,J and noting that

all covariances are 0.
By comparing Proposition 5.1 with Mack’s estimator in (Mack, 1993,

Thm. 3, Cor.) for the chain ladder model it is clear that the formulas
coincide. Moreover, following the discussion in Section 4.1 it is clear from
Propositions 4.2 and B.1 that

(i) the conditional specification of f̂
∗

provides an unbiased estimator of
the computationally intractable unconditional (co)variances of the pa-
rameter estimators,

(ii) the two covariance specifications are asymptotically equal.

The figures in Appendix D illustrate the differences between conditional
MSEP estimates when using the conditional specification and when using the
unconditional specification of f̂

∗
. The illustrations are based on simulations

and data from Mack (1993). It is seen that the disfferences are essentially
indistinguishable.

Before ending the discussion of conditional MSEP estimation for the
ultimate claim amount, recall that the conditional MSEP can be split into
one process variance part and one estimation error part. In Mack (1993)
all process variances are calculated without using any approximations, and
the estimation error is calculated exactly up until a final step where, p. 219
in Mack (1993), “...we replace S2

k with E(S2
k | Bk) and SjSk, j < k, with

E(SjSk | Bk)”. This last step may, as noted already in Buchwalder et al.

(2006), be seen as a specific choice of f̂
∗
, following the general approach in

the present paper. Given this specific choice of f̂
∗
, the calculations carried

out in Mack (1993) are exact. However, the implicit choice of f̂
∗

used
in Mack (1993) is different from the one used in the present paper, since
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Proposition 5.1 relies on a certain Taylor approximation. In Buchwalder
et al. (2006) an exact MSEP calculation for the ultimate claim amount is

carried out using a choice of f̂
∗

which is identical with that used in the
present paper. Moreover, from the calculations in Buchwalder et al. (2006)
it is clear that the Taylor approximation used in Proposition 5.1 will result
in under estimation, w.r.t. the specific choice of f̂

∗
used in the current paper.

For further details, see Buchwalder et al. (2006) as well as the discussion in
Mack et al. (2006).

We will now provide the necessary building blocks needed in order to be
able to arrive at the estimator of conditional MSEP for the CDR following
Section 3.2 using Definition 2.3. This will be done using the same notion of
conditional MSEP for both the ultimate claim amount and for CDR which,
as introduced in Section 2, is the F0-conditional expectation of the squared
distance between a random variable and its F0-measurable predictor, as well
as the same estimation procedures.

We now proceed with the derivation of the estimator of conditional
MSEP for the CDR in the chain ladder setting, in complete analogy with
the corresponding derivation of the estimator of conditional MSEP for the
ultimate claim amount. Note that many of the partial results needed for the
computation of our suggested estimator of conditional MSEP for the CDR
can be found in Merz and Wüthrich (2007); Wüthrich and Merz (2008a);
Wüthrich et al. (2009). The results in the mentioned papers do, however,
use a different indexation than that used in Mack (1993), which is the index-
ation used in the present paper. Due to this, we have rephrased all results
for the CDR-calculations in terms of the indexation used in Mack (1993).

As before, let h(θ;F0) denote the theoretical predictor, but now w.r.t.
CDR:

hi(f ;F0) := E[CDRi | F0], h(f ;F0) := E[CDR | F0] =
J∑
i=2

hi(f ;F0).

It follows from Lemma 3.3 in Wüthrich and Merz (2008a) that

hi(f ;F0) = Ci,J−i+1

( J−1∏
j=J−i+1

f̂j − fJ−i+1

J−1∏
j=J−i+2

(S0
j

S1
j

f̂j + fj
CJ−j+1,j

S1
j

))
,

(28)

where Skj =
∑J−j+k
i=i0

Ci,j for k = 0, 1. Notice that, h(f̂ ;F0) = 0 and conse-
quently it follows that

MSEPF0(CDR, ĈDR) = MSEPF0(CDR, 0),
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which is referred to as the “observable” CDR in e.g. Wüthrich et al. (2009).
In order to calculate conditional MSEP for the CDR, we again make use

of Lemma 2.1. The plug-in estimator of the process variance for a single
accident year, one of the two terms of the estimator of conditional MSEP,
is derived in Wüthrich et al. (2009), see (Wüthrich and Merz, 2008b, Result
3.3, Eq. (3.17)):

Var(CDRi | F0)(f̂ , σ̂
2) := Û2

i Γ̂CDR
i,J , (29)

where

Γ̂CDR
i,J :=

((
1 +

σ̂2J−i+1

f̂2J−i+1Ci,J−i+1

) J−1∏
j=J−i+2

(
1 +

σ̂2j

f̂2j CJ−j+1,j

(CJ−j+1,j

S1
j

)2))
− 1.

(30)

The process variance for all accident years is given by

Var(CDR | F0)(f̂ , σ̂
2) :=

J∑
i=2

Var(CDRi | F0)(f̂ , σ̂
2)

+ 2
∑

2≤i<k≤J
ÛiÛkΞ̂

CDR
i,J , (31)

where

Ξ̂CDR
i,J :=

((
1 +

σ̂2J−i+1

f̂2J−i+1S
1
J−i+1

) J−1∏
j=J−i+2

(
1 +

σ̂2j

f̂2j CJ−j+1,j

(CJ−j+1,j

S1
j

)2))
− 1

(32)

which follows from (Wüthrich et al., 2009, Result 3.3, Eq. (3.18)). Notice
that ÛiÛkΞ̂

CDR
i,J corresponds to covariance terms, which did not appear in

the calculation of the process variance for the ultimate claim amount due to
independence between accident years.

Further, based on Lemma 2.1, what remains to be determined are the
Qi,j(θ̂;F0)s. From the definition of h(f ;F0) above, it immediately follows
that

{∇fhi(f̂ ;F0)}j =

 −Ci,J−i+1
CJ−j+1,j

f̂jS1
j

∏J−1
l=J−i+2 f̂l, j > J − i+ 1,

−Ci,J−i+1
∏J−1
l=J−i+2 f̂l, j = J − i+ 1,

which may be written as

{∇fhi(f̂ ;F0)}j =


−Ûi

CJ−j+1,j

f̂jS1
j

, j > J − i+ 1,

−Ûi 1

f̂J−i+1

, j = J − i+ 1.
(33)
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Hence, it follows that

Qi,i(θ̂;F0) = ∇hi(f̂ ;F0)
′Λ(σ̂;F0)∇hi(f̂ ;F0)

= Û2
i

( σ̂2J−i+1

f̂2J−i+1S
0
J−i+1

+
J−1∑

j=J−i+2

σ̂2j

f̂2j S
0
j

(CJ−j+1,j

S1
j

)2)
,

where

Var(f̂j | Bj) =
σ2j
S0
j

.

and Λ(σ̂;F0) is diagonal with jth diagonal element σ̂2j /S
0
j . If we set

∆̂CDR
i,J :=

σ̂2J−i+1

f̂2J−i+1S
0
J−i+1

+
J−1∑

j=J−i+2

σ̂2j

f̂2j S
0
j

(CJ−j+1,j

S1
j

)2
, (34)

which corresponds to (Wüthrich and Merz, 2008a, Eq. (3.4)), then

∇hi(f̂ ;F0)
′Λ(σ̂;F0)∇hi(f̂ ;F0) = Û2

i ∆̂CDR
i,J .

Combining the above, using Lemma 2.1, gives that M̂SEPF0(CDRi, ĈDRi),
given by Definition 2.3, simplifies to

M̂SEPF0(CDRi, ĈDRi) := Var(CDRi | F0)(f̂ , σ̂
2) +Qi,i(θ̂;F0)

= Û2
i

(
Γ̂CDR
i,J + ∆̂CDR

i,J

)
. (35)

Note that by using the linearisation of the process variance used in (Wüthrich
and Merz, 2008a, Eq. (A.1)) it follows that

Γ̂CDR
i,J ≈

σ̂2J−i+1

f̂2J−i+1Ci,J−i+1

+
J−1∑

j=J−i+2

σ̂2j

f̂2j CJ−j+1,j

(CJ−j+1,j

S1
j

)2
,

it in turn follows that (35) reduces to Result 3.1, Eq. (3.9), in Wüthrich
and Merz (2008a). Notice that our estimator of conditional MSEP coincides
with that in Wüthrich and Merz (2008a) despite the quite different logics
of the two approaches for deriving the estimator. The derivation of Result
3.1 in Wüthrich and Merz (2008a) is based on perturbing the initial f̂js,

i.e. the f̂
(0)
j , that in our setting are a part of the basis of prediction and

therefore may not be perturbed. That the two approaches give estimators
that coincide is due to the underlying symmetry M̂SEPF0(CDRi, ĈDRi) =
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M̂SEPF0(ĈDRi,CDRi) and the fact that the CDR-quantities are multilinear
in the model parameters.

Furthermore, the MSEP calculations for the CDR aggregated over all
accident years follow the same steps as those used for the derivation of the
corresponding MSEP calculations for the ultimate claim amount verbatim.
The only resulting difference is the necessity to keep track of covariance
terms across accident years. That is, we will get contributions of the form

Qi,k(θ̂;F0) = ∇hi(f̂ ;F0)
′Λ(σ̂;F0)∇hk(f̂ ;F0)

= ÛiÛk
( σ̂2J−i+1Ci,J−i+1

f̂2J−i+1S
0
J−i+1S

1
J−i+1

+
J−1∑

j=J−i+2

σ̂2j

f̂2j S
0
j

(CJ−j+1,j

S1
j

)2)
when i < k, which by introducing

χ̂CDR
i,J :=

σ̂2J−i+1Ci,J−i+1

f̂2J−i+1S
0
J−i+1S

1
J−i+1

+
J−1∑

j=J−i+2

σ̂2j

f̂2j S
0
j

(CJ−j+1,j

S1
j

)2
, (36)

allows us to summarize the results obtained in the following proposition:

Proposition 5.2. In the setting of Mack’s distribution-free chain ladder,

M̂SEPF0(CDRi, ĈDRi) := Û2
i

(
Γ̂CDR
i,J + ∆̂CDR

i,J

)
,

M̂SEPF0(CDR, ĈDR) :=
J∑
i=2

M̂SEPF0(CDRi, ĈDRi)

+ 2
∑

2≤i<k≤J
ÛiÛk

(
Ξ̂CDR
i,J + χ̂CDR

i,J

)
,

where Γ̂CDR
i,J , ∆̂CDR

i,J , Ξ̂CDR
i,J and χ̂CDR

i,J are given by (30), (34), (32) and (36),
respectively.

As noted in the discussion leading up to Proposition 5.2, the proof is
identical to that of Proposition 5.1 in all aspects, except for the covariance
terms, see Appendix C for details. Again, in analogy with the situation for
a single accident year, using the process (co)variance approximation follow-
ing (Wüthrich and Merz, 2008a, Eq. (A.1)), it is seen that Proposition 5.2
will coincide with Result 3.3 in Wüthrich and Merz (2008a). Even though
the results from Proposition 5.2, given the mentioned approximation, will
coincide with those obtained in (Wüthrich and Merz, 2008a, Result 3.3),
the underlying estimation procedures differ. The procedure advocated here
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for the CDR is consistent with that for the ultimate claim amount and is
straightforward to apply.

As mentioned in Section 3.2, the primary purpose with the current sec-
tion was to illustrate how the introduced methods can be applied to different
functions of the future development of the underlying stochastic process —
here the ultimate claim amount and the CDR. In the next, and final, sec-
tion, we illustrate how the general approach to calculate conditional MSEP
introduced in the present paper applies to other reserving methods.

6 Applications to non-sequential reserving models

We will now demonstrate that the general approach to estimation of con-
ditional MSEP presented in Section 2 also applies when the model is quite
different from the sequential conditional linear models considered in Section
4. We will show how to compute conditional MSEP estimates for the ulti-
mate claim amount for the over-dispersed Poisson chain ladder model, see
e.g. Mack (1991); England and Verrall (1999). The overdispersed Poisson
chain ladder model is based on the following assumptions:

E[Ii,j ] = µi,j , Var(Ii,j) = φµi,j , log(µi,j) = η + αi + βj ,

where i, j = 1, . . . , J and α1 = β1 = 0. The model parameters may be
estimated using standard quasi-likelihood theory and the natural predictor
for the ultimate claim amount for accident year i is given by

hi(θ;F0) = E[Ui | F0] = Ci,J−i +
J∑

j=J−i+1

µi,j = Ci,J−i + g(θ),

where θ = (η, {αi}, {βk}). We may use Lemma 2.1 to calculate conditional
MSEP for the ultimate claim amount. Firstly, due to independence across
all indices,

Var(Ui | F0) = Var(Ri) = φ
J∑

j=J−i+1

µi,j , Var(U | F0) =
J∑
i=2

Var(Ri).
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Secondly, in order to determine the Qi,j(θ̂;F0)s we need the partial deriva-
tives of hi(θ;F0) which are given by

∂

∂η
hi(θ;F0) =

∂

∂η
gi(θ) =

J∑
j=I−i+1

µi,j ,

∂

∂αk
hi(θ;F0) =

∂

∂αk
gi(θ) =

J∑
j=I−k+1

µk,j ,

∂

∂βk
hi(θ;F0) =

∂

∂βk
gi(θ) = 1{I−i+1≤k}µi,k.

Hence,

∇h(θ;F0) = ∇g(θ), ∇hi(θ;F0) = ∇gi(θ), i = 1, . . . , J

are independent of F0, and in particular

Qi,k(θ̂;F0) = Qi,k(θ̂) = ∇gi(θ̂)′Λ(θ̂)∇gk(θ̂).

By combining the above relations together with Lemma 2.1 it follows that
the estimator of conditional MSEP in Definition 2.3, applied to the ultimate
claim amount, is given by

M̂SEPF0(U, Û) = M̂SEP(R, R̂)

and takes the form

J∑
i=2

Var(Ri)(θ̂) +
J∑
i=2

∇gi(θ̂)′Λ(θ̂)∇gi(θ̂) + 2
∑

2≤i<k≤J
∇gi(θ̂)′Λ(θ̂)∇gk(θ̂).

(37)

What remains for having a computable estimator of conditional MSEP for
the ultimate claim amount is to compute the covariance matrix Λ(θ) =
Cov(θ̂). Notice that the estimator (37) corresponds to the general condi-

tional MSEP estimator upon choosing θ̂
∗

as an independent copy θ̂
⊥

of θ̂,
which gives

Λ(θ;F0) := Cov(θ̂
∗ | F0) = Cov(θ̂).

Notice also since the overdispersed Poisson chain ladder model relies on
quasi-likelihood theory we do not have access to an explicit expression for
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the covariance of the parameter estimators. However, no such explicit ex-
pression is needed since a numerical approximation is easily obtained as
output of a standard quasi-Poisson GLM-fit. That is, using standard numer-
ical procedures for approximating the covariance matrix, e.g. GLM-fitting
procedures, one obtains a non-simulation based procedure for estimation of
the conditional MSEP for the ultimate claim amount. Further, since quasi-
likelihood estimators are M-estimators, see e.g. (Van der Vaart, 2000, Ch. 5),
these can be shown to be consistent given certain regularity conditions. This
motivates neglecting possible bias when using Definition 2.3. Another alter-
native is, of course, to introduce a bias correction, see e.g. Lindholm et al.
(2017). Another observation concerning the conditional MSEP estimator
(37) for the overdispersed Poisson chain ladder model is the following:

Proposition 6.1. The estimator (37) of conditional MSEP for the ultimate
claim amount for the overdispersed Poisson chain ladder model coincides
with the one derived in (Renshaw, 1994, Sec. 4.4).

The proof follows by noting that all ∇gi(θ̂) are functions of ∇µi,j(θ̂)s
and

∇µi,j(θ̂)′Λ(θ̂)∇µk,l(θ̂) = µi,j(θ̂) Cov(η̂i,j , η̂k,l)µk,l(θ̂),

where ηi,j := log(µi,j). See also (England and Verrall, 1999, Eq. (3.4) &
(3.5)).

Notice that due to Lemma 2.1 the semi-analytical estimator (37) is valid
for any non-sequential GLM-based reserving model.

The above example of calculating a semi-analytical expression for the
estimator of conditional MSEP for the ultimate claim amount according to
Definition 2.3 for the overdispersed Poisson chain ladder model can of course
be extended to more complex models as long as it is possible to compute

(i) h(θ;F0) together with its partial derivatives,

(ii) (an approximation of) a suitable, conditional or unconditional, covari-
ance matrix of θ̂.

One example of a more complex GLM-based reserving model is the one in-
troduced in Verrall et al. (2010), which is based on one triangle for observed
counts and one triangle for incremental payments. In this model the counts
are modelled as an overdispersed Poisson chain ladder model, and the incre-
mental payments are modelled as a quasi-Poisson GLM model conditional
on counts. Due to the overall quasi-Poisson structure of the model it is pos-
sible to obtain explicit expressions for the predictor of the ultimate claim
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amount, together with the corresponding process variance, but where F0

now also contains information concerning observed counts. The conditional
MSEP for the ultimate claim amount can again be calculated using Lemma
2.1.

Furthermore, the general exposition of the methods introduced in the
present paper do not rely on that the data generating process is defined in
terms of runoff triangles. Examples of another type of models are the con-
tinuous time point process models treated in e.g. Norberg (1993); Antonio
and Plat (2014). These models rely on extensive stochastic simulations in
order to be used in practice. One simple example of a special case of a
point process model for which the quantities needed for the calculation of
a semi-analytical MSEP estimator for the ultimate claim amount according
to Definition 2.3 is possible is the model described in Section 8.A in Nor-
berg (1993). Hence, it is again possible to use Lemma 2.1 to calculate the
conditional MSEP of the ultimate claim amount.

The above examples provide semi-analytical MSEP estimators which
only rely on that we are able to calculate certain expected values and
(co)variances. One advantage of this approach is that there is no need
for simulation based techniques in order to carry out MSEP calculations.
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A Special cases of the model class from Section 4

Here we present assumptions that may be imposed on the structure of the
conditional mean values in the general development-year dynamics (11).
Model assumptions prescribing autoregressive structures for the conditional
means are commonly encountered and enable explicit calculations.
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Assumption A.1 (Cumulative model). For (i, j) ∈ I × J , Yi,j = Ci,j and

Ci,j+1 = βj,1Ci,j + · · ·+ βj,pjCi,j−pj+1 + σj{Σj}1/2i,i {ej}i, pj ≤ j, (38)

or

Ci,j+1 = βj,1 + βj,2Ci,j + · · ·+ βj,pjCi,j−pj+2 + σj{Σj}1/2i,i {ej}i, pj ≤ j + 1.

(39)

Assumption A.2 (Incremental model). For (i, j) ∈ I × J , Yi,j = Ii,j and

Ii,j+1 = βj,1Ii,j + · · ·+ βj,pjIi,j−pj+1 + σj{Σj}1/2i,i {ej}i, pj ≤ j, (40)

or

Ii,j+1 = βj,1 + βj,2Ii,j + · · ·+ βj,pjIi,j−pj+2 + σj{Σj}1/2i,i {ej}i, pj ≤ j + 1.

(41)

Remark 3. The models with intercepts defined by (39) and (41) require that
the payment data is normalized by an exposure measure before any statis-
tical analysis. The normalization may correspond to dividing all payments
stemming from a given accident year by the number of written insurance
contracts that accident year.

Remark 4. Under Assumption A.1, using the tower property of conditional
expectations,

E[U | F0] =
J∑
i=2

E[Ci,J | F0] =
J∑
i=2

(
ai,0 +

J−i+1∑
j=1

ai,jCi,j
)
,

where each coefficient ai,j is either 0 or a finite product of distinct β-parameters
βjk for j ∈ {1, . . . , J − 1} and k ∈ {1, . . . , pj}. In particular, E[U | F0] is
an F0-measurable multi-affine function in the parameters βjk, an expression
of the form c + dβjk. Under Assumption A.2, using the tower property of
conditional expectations,

E[U | F0] =
J∑
i=2

( J−i+1∑
j=1

Ii,j +
J∑

j=J−i+2

E[Ii,j | F0]
)

=
J∑
i=2

( J−i+1∑
j=1

Ii,j + bi,0 +
J−i+1∑
j=1

bi,jIi,j
)
,

37



where each coefficient bi,j is either 0 or a finite product of distinct β-parameters
βjk for j ∈ {1, . . . , J − 1} and k ∈ {1, . . . , pj}. In particular, E[U | F0] is
again an F0-measurable multi-affine function in the parameters βjk, an ex-
pression of the form c+ dβjk.

It is clear that each of Assumption A.1 and A.2 implies that the state-
ment in Assumption 4.1 holds.

B Asymptotic properties of conditional weighted
least squares estimators

The following result motivates the approximation of Cov(β̂j) by Cov(β̂j |
Bj), and hence also the approximation of Cov(β̂) by Λ(σ;F0), by asymp-
totic arguments, corresponding to letting the number of accident years in
the available data set tend to infinity.

Proposition B.1. Let |I| := J − i0 be the number of fully or partially
developed accident years. For j ∈ {1, . . . , J − 1}, suppose the following
statements hold:

(i) For i, k ∈ {1, . . . , pj}, {|I|{(A′jΣ−1j Aj)
−1}i,k}|I| is uniformly inte-

grable.

(ii) For i, k ∈ {1, . . . , pj},

lim
|I|→∞

sup
l≤|I|

Var
(
{Σ−1j }l,l{Aj}l,i{Aj}l,k

)
<∞.

(iii) There exists an invertible pj × pj matrix νj such that

lim
|I|→∞

1

|I|
E[A′jΣ

−1
j Aj ] = νj .

Then lim|I|→∞ |I|Cov(β̂j) = ν−1j and |I|Cov(β̂j | Bj)
a.s.→ ν−1j as |I| → ∞.

The proof of Proposition B.1 is given in the appendix and relies on that
the conditional covariance may be written in the form of weighted sums of
independent random variables.

Remark 5. Conditions (i)-(iii) are technical conditions that can be verified
given additional mild assumptions, essentially existence of higher order mo-
ments, on the development-year dynamics in (11). The conditions can be
simplified if it is assumed that the development-year dynamics for different
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accident years are identical, corresponding to identically distributed rows for
Aj and Σj. Condition (iii) is equivalent to the existence of an invertible
pj × pj matrix νj such that

lim
|I|→∞

1

|I|

|I|∑
l=1

E[{Σ−1j }ll{Aj}li{Aj}lk] = {νj}ik.

If the rows of Aj and Σj are identically distributed, then

1

|I|

|I|∑
l=1

E[{Σ−1j }ll{Aj}li{Aj}lk] = E[{Σ−1j }11{Aj}1i{Aj}1k]

so (iii) automatically holds if the pj × 1 vector {Σ−1/2j }11{Aj}′1· has an
invertible covariance matrix.

Remark 6. Proposition B.1 provides the asymptotic behavior of Cov(β̂)
and Λ(σ;F0) as the number of accident years in the available data set tends
to infinity. Proposition B.1 can be extended to also address the asymptotic
behavior of Λ(σ̂;F0) by considering conditions ensuring consistency and a
certain rate of convergence for the estimators σ̂2j . We will not analyze such
conditions in this paper.

Combining Markov’s inequality and Propositions 4.1 and B.1 immedi-
ately gives consistency of the weighted least-squares estimator β̂ as the num-
ber of fully or partially developed accident years tends to infinity: Moreover,
combining Proposition B.1 with either Assumption A.1 or A.2 allows the
asymptotic behavior of the term in Definition 2.3 accounting for estimation
error to be analyzed. We state these facts as a corollary to Proposition B.1:

Corollary B.1. Let |I| := J − i0 denote the number of fully or partially
developed accident years. If the conditions of Proposition B.1 hold, then

β̂
P→ β as |I| → ∞. Moreover, if in addition either Assumption A.1 or A.2

holds, and σ̂2j
P→ σ2j as |I| → ∞ for j = 1, . . . , J − 1, then

|I|∇βh(β̂;F0)
′Λ(σ̂;F0)∇βh(β̂;F0)

P→ c as |I| → ∞

for some constant c <∞.

C Proofs

Proof of Lemma 2.1. Recall from Definition 2.3 that it is possible to split
the conditional MSEP approximation into a process variance part and an
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estimation error part. Thus, given that X =
∑
i∈I Xi, it follows that the

process variance may be expressed as

Var(X | F0)(θ̂) =
∑
i∈I

Var(Xi | F0)(θ̂) + 2
∑

i,j∈I,i<j
Cov(Xi, Xj | F0)(θ̂),

and, if it in addition holds that h(θ;F0) =
∑
i∈I hi(θ;F0), the estimation

error part of (7) may be re-written according to

∇h(θ̂;F0)
′Λ(θ̂;F0)∇h(θ̂;F0) =

(∑
i∈I

hi(θ̂;F0)
)
Λ(θ̂;F0)

(∑
i∈I

hi(θ̂;F0)
)

=
∑
i∈I

hi(θ̂;F0)Λ(θ̂;F0)hi(θ̂;F0)

+ 2
∑

i,j∈I,i<j
hi(θ̂;F0)Λ(θ̂;F0)hj(θ̂;F0).

Lemma 2.1 follows by combining the above.

Proof of Proposition 4.1. Proof of Statement (i): By construction E[β̂j |
Bj ] = βj . For j < k,

Cov(β̂j , β̂k) = E
[

Cov
(
β̂j , β̂k | Bk

)]
+ Cov

(
E
[
β̂j | Bk

]
,E
[
β̂k | Bk

])
= E

[
Cov

(
β̂j , β̂k | Bk

)]
+ Cov

(
β̂j ,βk

)
= E

[
Cov

(
β̂j , β̂k | Bk

)]
and, since β̂j is σ(Bk)-measurable,

Cov
(
β̂j , β̂k | Bk

)
= E

[(
β̂j − E

[
β̂j | Bk

])(
β̂k −

[
β̂k | Bk

])′ | Bk] = 0.

Proof of Statement (ii): Let Zj+1 := Σ̃
−1/2
j Ỹ j+1 and Cj := Σ̃

−1/2
j Ãj and

rewrite the weighted linear model (12) as Zj+1 = Cjβj + σj ẽj . Notice that

σ̂2j =
1

nj − pj
(Ỹ j+1 − Ãjβ̂j)

′Σ̃
−1
j (Ỹ j+1 − Ãjβ̂j)

=
1

nj − pj
(Zj+1 −Cjβ̂j)

′(Zj+1 −Cjβ̂j).

It now follows from Theorem 3.3 in Seber and Lee (2003) that E[σ̂2j | Bj ] =
σ2j holds for j = 1 . . . , J − 1 given that i0 ≤ J − j − pj .

40



Proof of Proposition 4.2. Covariance decomposition together with (14) gives
on the one hand

Cov(β̂j) = E
[
Cov

(
β̂j | Bj

)]
+ Cov

(
E
[
β̂j | Bj

])
= E

[
Cov

(
β̂j | Bj

)]
.

On the other hand, using Proposition 4.1 (ii), i.e. that E[σ̂2j | Bj ] = σ2j ,

E
[
σ̂2j

(
Ã
′
jΣ̃
−1
j Ãj

)−1]
= E

[
E
[
σ̂2j

(
Ã
′
jΣ̃
−1
j Ãj

)−1
| Bj

]]
= E

[
Cov

(
β̂j | Bj

)]
.

Therefore, σ̂2j
(
Ã
′
jΣ̃
−1
j Ãj

)−1
is an unbiased estimator of Cov(β̂j) and, since

Cov(β̂) is block diagonal, Λ(σ̂;F0) is an unbiased estimator of Cov(β̂).

Proof of Proposition B.1. The constant parameter σj is irrelevant for the
argument of the proof and therefore here set to 1. Notice that, for i, k ∈
{1, . . . , pj},

{Ã′jΣ̃
−1
j Ãj}ik =

nj∑
l=1

{Σ̃−1j }ll{Ãj}li{Ãj}lk

where the terms are independent since Aj and Σj have independent rows.
Further, by assumption (ii) it follows that, for i, k ∈ {1, . . . , pj},∑

l

l−2 Var
(
{Σ̃−1j }ll{Ãj}li{Ãj}lk

)
<∞.

This allows us to use Corollary 4.22 in Kallenberg (2002), i.e. that, for
i, k ∈ {1, . . . , pj},

1

nj

nj∑
l=1

{Σ̃−1j }ll{Ãj}li{Ãj}lk
a.s.→ {νj}ik as nj →∞

which is equivalent to

1

nj
Ã
′
jΣ̃
−1
j Ãj

a.s.→ νj as nj →∞.

Since νj is invertible, the latter convergence implies nj(Ã
′
jΣ̃
−1
j Ãj)

−1 a.s.→ ν−1j
as nj →∞, i.e.

nj Cov(β̂j | Bj)
a.s.→ ν−1j as nj →∞.
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From the proof of Proposition 4.2 we know that Cov(β̂j) = E
[
Cov

(
β̂j |

Bj
)]

. The assumed uniform integrability and Proposition 4.12 Kallenberg
(2002) give

nj Cov(β̂j) = njE
[
Cov(β̂j | Bj)

]
→ ν−1j as nj →∞.

Proof of Corollary B.1. We start by proving that β̂
P→ β as |I| → ∞.

By Proposition 4.1, β̂ is an unbiased estimator of β. Now Markov’s in-
equality combined with Proposition B.1 immediately gives consistency: for
k ∈ {1, . . . , pj} and any ε > 0,

P
(∣∣{β̂j}k − {βj}k∣∣ > ε

)
≤

Var({β̂j}k)
ε2

→ 0 as nj →∞

since limnj→∞ nj Var({β̂j}k) = {νj}k,k. Since {β̂j}k
P→ {βj}k as nj → ∞

for every j = 1, . . . , J − 1 and k ∈ {1, . . . , pj} if and only if β̂
P→ β as

|I| := n1 →∞ the statement is proved.
We continue by showing that |I|Λ(σ;F0) converges in probability as

|I| → ∞. First, from Proposition B.1 we know that |I|Λ(σ;F0)
P→ C

as |I| → ∞, where C is block diagonal with blocks ν−1j . From this, (15)

and the assumption that σ̂2j
P→ σ2j as |I| → ∞ for all j = 1, . . . , J − 1,

an application of Slutsky’s theorem yields |I|Λ(σ̂;F0)
P→ C as |I| → ∞.

Further, h is only a function of elements in either (Iij)i≥2,j∈J or (Cij)i≥2,j∈J
and thus it follows that, for a fixed J , h is independent of |I|. Therefore
β 7→ ∇βh(β;F0) does not depend on |I|. Moreover, from Remark 4, each

component of ∇βh(β̂;F0) is either constant or a multi-affine function of the

components of β̂, i.e. a sum of products of the components of β̂. Therefore,

since β̂
P→ β as |I| → ∞, we can use the continuous mapping theorem to

conclude that

∇βh(β̂;F0)
P→ ∇βh(β;F0)

as |I| → ∞. Putting it all together we have

|I|∇βh(β̂;F0)
′Λ(σ̂;F0)∇βh(β̂;F0)

P→ ∇βh(β;F0)
′C∇βh(β;F0).
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Proof of Proposition 5.1. The proof of MSEP for the ultimate claim amount
for a single accident year is already given in Section 5 in the text leading up
to the statement of Proposition 5.1. We will now go through the remain-
ing steps needed in the derivation of MSEP for the ultimate claim amount
aggregated over all accident years.

In Section 5 we provided the process variance, see (23), hence, following
Lemma 2.1, what remains to determine are the Qi,k(θ̂;F0)s:

Qi,k(θ̂;F0) = ∇fhi(f̂ ;F0)
′Λ(σ̂;F0)∇fhk(f̂ ;F0),

where ∇fhi(f̂ ;F0) is given by (26), i.e.

{∇fhi(f̂ ;F0)}j = 1{J−i+1≤j}
Ûi

f̂j
,

and

{Λ(σ̂;F0)}j,j =
σ̂2j∑J−j

i=i0
Ci,j

,

where {Λ(σ̂;F0)}i,j = 0 for all i 6= j. By using the above, for i ≤ k, it
follows that

∇fhi(f̂ ;F0)
′Λ(σ̂;F0)∇fhk(f̂ ;F0) =

J−1∑
j=1

1{J−i+1≤j}1{J−k+1≤j}
Ûi

f̂j

Ûk

f̂j

σ̂2j∑J−j
l=i0

Cl,j

= ÛiÛk∆̂
U
i,J ,

where ∆̂U
i,J is given by (27). Given the above, the statement in Proposition

5.1 follows by using Lemma 2.1.

Proof of Proposition 5.2. As in the proof of Proposition 5.1, the process
(co)variances are obtained from the references given in the text leading up
to the formulation of Proposition 5.2. Thus, given Lemma 2.1, what remains
to determine are the Qi,k(θ̂;F0)s:

Qi,k(θ̂;F0) = ∇fhi(f̂ ;F0)
′Λ(σ̂;F0)∇fhk(f̂ ;F0),

where ∇fhi(f̂ ;F0) is given by (33), which may be expressed as

{∇fhi(f̂ ;F0)}j =


−1{J−i+1<j}Ûi

CJ−j+1,j

f̂jS1
j

,

−1{J−i+1=j}Ûi
1

f̂J−i+1

,
(42)
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and

{Λ(σ̂;F0)}j,j = Var(f̂j | Bj) =
σ̂2j
S0
j

,

where {Λ(σ̂;F0)}i,j = 0 for all i 6= j. Thus, for all i ≤ k it holds that

∇fhi(f̂ ;F0)
′Λ(σ̂;F0)∇fhk(f̂ ;F0)

=
J−1∑
j=1

Ûi
(
1{J−i+1<j}

CJ−j+1,j

f̂jS1
j

+ 1{J−i+1=j}
1

f̂J−i+1

)

·
σ̂2j
S0
j

Ûk
(
1{J−k+1<j}

CJ−j+1,j

f̂jS1
j

+ 1{J−k+1=j}
1

f̂J−i+1

)

=

{
ÛiÛk∆̂

CDR
i,J , i = k,

ÛiÛkχ̂
CDR
i,J , i < k,

where ∆̂CDR
i,J is given by (34) and χ̂CDR

i,J is given by (36). Finally, Proposition
5.2 follows by combining the above together with the corresponding process
(co)variances and Lemma 2.1.

D Numerical Example

In this section a simulation study is presented whose purpose is to analyze
and compare the two estimators of conditional MSEP based on the condi-
tional and unconditional specification of θ̂

∗
. The data used is the runoff

triangle of Taylor and Ashe (1983), see Table 1, which has been widely used
and analyzed, e.g. in Mack (1993).

The performance of the two estimators of conditional MSEP, based on
this particular data set, is examined by estimating, through simulations,
E[∆V 2] as specified in Section 2.1. The practical relevance of computing
these estimators is investigated by comparing the size of the estimation
error to the size of the process variance.

The data generating process the simulation study is assumed to be a
sequence of general linear models of the form in (11) in Section 4. More
specifically, for each i ∈ I, it is assumed that

Ci,1 = α+ τei,1, Ci,j+1 = fjCij + σj
√
Cijei,j+1, j = 1, . . . , J − 1.

The error terms are given by Remark 2, i.e. by translated log-normal vari-
ables, which also holds for the first column by setting Ci0 := 1 for all i ∈ I.
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Table 1: Runoff triangle of aggregated payments of Taylor and Ashe (1983).

i
j

0 1 2 3 4 5 6 7 8 9

1 451,288 339,519 333,371 144,988 93,243 45,511 25,217 20,406 31,482 1,729
2 448,627 512,882 168,467 130,674 560,44 33,397 56,071 26,522 14,346
3 693,574 497,737 202,272 120,753 125,046 37,154 27,608 17,864
4 652,043 546,406 244,474 200,896 106,802 106,753 63,688
5 566,082 503,970 217,838 145,181 165,519 91,313
6 606,606 562,543 227,374 153,551 132,743
7 536,976 472,525 154,205 150,564
8 554,833 590,880 300,964
9 537,238 701,111
10 684,944

The parameter values used in the simulation study are the ones acquired
from fitting this model to the data in Table 1 following the weighted least
squares estimation introduced in Section 4, see (13) and (16). As seen in
Section 5, this is equivalent to fitting a chain ladder model to this triangle
together with estimating an intercept and a variance for the first column (us-
ing the sample mean and the unbiased sample variance of the first column).
The resulting parameter estimates are taken to be the true parameter values
in the simulation study, they are denoted by f ,σ2, α, and τ2, and referred
to jointly as θ. To be able to use the unbiased estimators of the σ2j s, the last
column of the triangle is removed. An alternative to this approach could
be to use maximum likelihood or some form of extrapolation of the σ2j s.
Since comparison of methods to estimating tail variances is not the purpose
of the simulation study, the former simpler approach is chosen. Based on
the above development-year dynamics and θ, N = 106 new triangles are

generated giving rise to {F (i)
0 }Ni=1. For each such triangle, a chain ladder

model is fitted together with an intercept and variance for the first column,

as described above, to get the parameter estimator θ̂
(i)

. For i = 1, . . . , N ,
the following quantities are computed:

• the (true) process variance Var(U (i) | F (i)
0 ), given in (22), and the

plug-in estimator Var(U (i) | F (i)
0 )(f̂

(i)
, (σ̂(i))2) given in (23),

• the (true) conditional expectation of the ultimate claim amount h(f ;F (i)
0 ),

given in (21), and the plug-in estimator h(f̂
(i)

;F (i)
0 ),
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• the plug-in estimator of the gradient ∇h(f̂
(i)

;F (i)
0 ), given in (26),

• the estimator of the conditional covariance of f̂
∗

using the conditional
specification,

Λ(σ̂(i);F (i)
0 ) = Ĉov(f̂

∗,c | F (i)
0 ),

the elements of which are given in (25),

• the estimator of the conditional covariance of f̂
∗

using the uncondi-
tional specification,

Ĉov(f̂) = Ĉov(f̂
∗,u | F (i)

0 ),

• the two estimators of the estimation error,

∇h(f̂
(i)

;F (i)
0 )′Λ(σ̂(i);F (i)

0 )∇h(f̂
(i)

;F (i)
0 ),

and

∇h(f̂
(i)

;F (i)
0 )′Ĉov(f̂)∇h(f̂

(i)
;F (i)

0 ),

• ∆V 2
i for the two resampling specifications as given in Section 2.1.

As already mentioned, Cov(f̂) is not analytically tractable and is therefore
estimated using simulations. Recall, from Proposition 4.2, that Cov(f̂) =
E[Λ(σ̂;F0)]. Therefore, for each i = 1, . . . , N , Mi new triangles are gen-

erated based on the parameters θ̂
(i)

yielding {F (i,j)
0 }Mi

j=1. For each i, the
unbiased estimator

Σi,Mi :=
1

Mi

Mi∑
j=1

Λ(σ̂(i);F (i,j)
0 ).

of Cov(f̂)(θ̂
(i)

) is chosen as an estimator of Cov(f̂)(θ̂
(i)

). The choice of Mi

is as follows. For a fixed n, consider the increasing sequence (2k−1n)k≥1.
Conditional on not having stopped for the value k, 2k+1n new triangles

are generated based on the parameters θ̂
(i)

yielding {F (i,j)
0 }2k+1n

j=1 and the
estimators

Σi,2kn :=
1

2kn

2kn∑
j=1

Λ(σ̂(i);F (i,j)
0 ), Σ̃i,2kn :=

1

2kn

2k+1n∑
j=2kn+1

Λ(σ̂(i);F (i,j)
0 )
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are computed as well as

xk := ∇h(f̂
(i)

;F (i)
0 )′Σi,2kn∇h(f̂

(i)
;F (i)

0 )

x̃k := ∇h(f̂
(i)

;F (i)
0 )′Σ̃i,2kn∇h(f̂

(i)
;F (i)

0 ).

The stopping criterion is

|xk − x̃k|
min(|xk|, |x̃k|)

< 0.001.

Upon stopping the two independent samples of size 2kn are merged. Conse-
quently Mi = 2k+1n, where k is the smallest number such that the stopping
criterion is satisfied.

The results of the simulation study are the following. In Figure 1 the
distribution of the difference between the simulated values of ∆V 2 for the
unconditional and the conditional specification of θ̂

∗
is illustrated. The dis-

tribution is leptokurtic, has a slight positive skewness and is approximately
centered at zero. The mean and the median of this distribution are small
relative the scale of the data (−0.94 · 1022 and 0.28 · 1022, respectively). To
quantify the uncertainty in these quantities 95% bootstrap confidence inter-
vals are computed based on the percentile method, see Efron and Tibshirani
(1994), yielding [−1.2,−0.7] ·1022 and [0.2, 0.3] ·1022, respectively, using 105

bootstrap samples. As a matter of fact, none of the bootstrap samples of
the mean are above 0 and none of the samples of the median are below 0.
This indicates that the unconditional specification is better on average (the
mean is negative), but the conditional specification is better more often (the
median is positive). The practical relevance of this is, however, questionable
since on the relative scale of the data, the mean and median are both ap-
proximately zero, indicating that the difference between the two estimators
is negligible and that one should therefore focus on the computability of the
estimators. In Figure 2 the ratio between the conditional and the uncon-
ditional estimators of the estimation error is shown. From this figure it is
clear that the two estimators are comparable and do not deviate from each
other by much.

The distribution of the difference between the ∆V 2s is heavy tailed,
and one is therefore led to question whether this is due to the log-normally
distributed error terms. Therefore, the marginal distributions of the com-
ponents of θ̂ are illustrated in Figure 3 (first column parameters), Figure 4
(development factors) and Figure 5 (chain ladder variances). The estima-
tors of the intercept of the first column and the development factors are, for
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Figure 1: Kernel density estimator of the difference between the simulated
values of ∆V 2 for the unconditional and the conditional specification of
θ̂
∗

(unconditional minus conditional). Position 0 is market by the orange
dashed middle line. The other dashed lines correspond to a chosen set of
reference sample quantiles of these differences.
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Figure 2: Kernel density estimator of the ratio between the conditional and
the unconditional estimators of the estimation error. Position 1 is marked
by the red dashed line.

all intents and purposes, marginally Gaussian. The variances, however, do
have heavier tails (the standard deviations are illustrated in Figure 5). This
can have a large effect on the estimated process variance, and thus in turn
on the ∆V 2s.

So far the relative performance of the two estimators has been presented.
It is of interest to also investigate the absolute performance. Figure 6 shows
the distributions of the true estimation error minus the estimated ones based
on the conditional and unconditional specification of θ̂

∗
. It is seen that there

is a tendency to overestimate the true estimation error, although there is
a tail to the right indicating that the estimation error will occasionally be
greatly underestimated. The mean estimation error in the simulations is 1.9·
1012 and the 95% quantiles of the two above distributions are approximately
5 ·1012. The estimated estimation error will therefore, in the 95% worst case
scenario, be underestimated on the scale of, approximately, 2.5 estimation
error means.

The practical relevance of estimating the estimation error requires that
it is of size comparable to the process variance. Figure 7 shows the distri-
butions of the estimated estimation errors divided by the estimated process
variances, together with dashed black vertical lines indicating some of the
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Figure 3: Kernel density estimators of the estimator α̂ of the mean of the
first column and the estimator τ̂2 of the variance of the first column.
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Figure 4: Kernel density estimators of the estimators of the development
factors. Some density curves are cut in order to make it easier to visually
discriminate between the development factors centered close to 1.
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Figure 5: Kernel density estimators of the square roots of the variance
estimators σ̂2j .
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Figure 6: Kernel density estimators of the true estimation error minus the es-
timated estimation error based on the conditional (blue solid curve) and the

unconditional (red dashed curve) specification of θ̂
∗
. Position 0 is marked

by the black dashed line.
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Figure 7: Kernel density estimator of the ratio of the estimation error and
the process variance. The blue solid curve is the density for the estimated
version of this ratio based on the conditional specification, the red dashed
curve is for the unconditional specification. The corresponding vertical lines
mark the means of the respective distributions. The black dashed vertical
lines mark quantiles and mean of the true distribution of this ratio.

quantiles of the distribution of the true estimation error divided by the true
process variance. On average the estimation error is half the size of the
process variance, which is also more or less the center of the distributions
of the estimated versions. The median, however, of the true distribution
lies approximately around 0.25. Therefore, it is as likely that the estimation
error is greater than a quarter of the process variance as that it would be
less than a quarter of the process variance.

Finally, to illustrate how plug-in estimation of the process variance per-
forms, Figure 8 shows the distribution of the ratio between the estimated
process variance (based on plug-in) and the true process variance. Both the
mean and the median of this distribution lie close to 1, indicating that on
average the estimator yields the correct variance and that we are more or
less equally likely to overestimate it as to underestimate it. It is also seen
that there are extreme cases where the variance is estimated to be either
half or double the true variance.
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Figure 8: Kernel density estimator of the ratio between the estimated pro-
cess variance based on plug-in estimation and the true process variance. The
red solid line marks the mean of this ratio and the blue dashed line marks
the median.
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