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Abstract

We introduce a weighted configuration model graph, where edge
weights correspond to the probability of infection in an epidemic on
the graph, focusing on two different weights. We study the basic re-
production number R0, the probability of a large outbreak and the
relative final size of a large outbreak, using discrete time and Marko-
vian continuous time settings. Results are compared with those for
a calibrated unweighted graph. The degree distributions are based
both on empirical network data and on theoretical constructs. Using
copulas to model the dependence between the degrees of the differ-
ent edge types allows for modeling the correlation over a wide range.
The weighted model produces much richer results than the unweighted
model. Also, while R0 always increases with increasing correlation be-
tween the two degrees, this is not necessarily true for the probability
of an epidemic nor for the relative final size of it. The copula model
can produce results that are similar to those of the empirical degree
distributions, indicating that it is a viable alternative to using the full
empirical data.

Keywords - epidemics, basic reproduction number, weighted graph, config-
uration model, final size, large outbreak, copula.
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1 Introduction

The configuration model is a well known graph model where each vertex is
assigned a number of half-edges which are then connected uniformly at ran-
dom (Molloy & Reed, 1995; Bollobás, 2001). This model is often used when
a specific degree distribution or degree sequence is desired. The development
of epidemics can then be studied on these graphs. Three important quanti-
ties derived from such epidemics are the basic reproduction number R0, the
probability of a large outbreak and the relative final size of a large outbreak,
see e.g. (Britton, 2010). Often all edges are treated as identical and for in-
stance the transmission risk (of the infection) is assumed to be the same for
all edges, which is not true for many real world networks.

In some recent models edges have been divided into different types with
different epidemic properties for each edge type. E.g. in (Britton et al.,
2011) a degree is assigned to each vertex and for each half-edge a weight
is assigned independently from a weight distribution that is only allowed
to depend on the degree of the vertex. Half-edges of identical weight are
then connected to each other as in the configuration model. In (Kamp et
al., 2013) vertices are assigned a degree and a number of interactions from a
simultaneous distribution. Each interaction is then distributed independently
and uniformly among all edges of the vertex. The number of interactions
constitute the weight of the edge. Half-edges having the same (or similar)
weight are then connected according to the configuration model. Both of
these models place restrictions on the allowed degree distributions.

One possible generalization is a model with an arbitrary number of edge
types, each with its own weight, allowing for an arbitrary dependence between
the degrees of the different edge types. Each vertex is assigned a multivariate
degree which specifies how many half-edges of each type it has. The degree
can be assigned from a given degree sequence (such as from an empirical
graph) or from a given degree distribution. Half-edges of the same type are
then paired just as in the normal configuration model to create a multilayer
configuration model, where two layers are only connected at vertices which
have edges of both types. In this paper we study this a model, but for
simplicity restrict it to two types of edges and thus two weights, and the
development of SIR epidemics (explained in Section 2.4) on it. Even then
it is possible to study some interesting configurations - e.g. we can assume
that each person has two different types of contacts with other people and
that the probability of infection differs on these types. Examples of such
situations are family relations vs job relations, or casual vs more permanent
sexual relationships. The theoretical foundations for the model, including
the graph model and the epidemic model, are presented in Section 2.
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Important questions are if the quantities of interest (described above) dif-
fer on the weighted model versus a calibrated unweighted model and also how
these quantities are affected by the level of correlation between the degrees
of the different types of edges. We construct the unweighted model from the
weighted model by ignoring edge type and create a single configuration model
network from all edges, but without doing any other changes to the degree
distribution. We calibrate the weighted and unweighted models such that
both have the same mean infectious activity (see Section 2.5). We then com-
pare the development of SIR epidemics on the weighted and the unweighted
models. For the weighted model we also vary the correlation between the two
degrees of an individual and study the effect on the quantities of interest.
We see that the weighted model produces much richer results, in that all
the studied parameters typically show much more variation over the allowed
range of the parameters that we can vary, compared with the unweighted
model. Results also indicate that a model, where the dependence structure
between the two degrees has been defined through a standard normal copula,
often works equally well as a model where the dependence structure is taken
from the empirical degree distribution. The copula model allows for varying
the correlation through a wide range that is only limited by the marginal
degree distributions (for the different edge types). Some theoretical results
are given in Section 3 while numerical results are shown in Section 4. A
discussion can be found in Section 5.

2 The Model

In this section we briefly discuss graphs in Section 2.1 and then present the
unweighted and the weighted graph models in Section 2.2 and Section 2.3.
Specific examples are discussed in Section 2.6. The use of copulas to model
the correlation between the degrees of the two edge types is mainly discussed
in Appendix B. The modeling of SIR epidemics on such graphs in discrete
and continuous time is discussed in Section 2.4.

2.1 Graphs

In this paper we use the words graph and network interchangeably. The
number of vertices n is given and (typically) the case n → ∞ is studied,
although we do not always mention this explicitly. In the context of epi-
demics on graphs, vertices represent people and edges represent some type
of relationship making transmission of an infection possible. We work with
undirected graphs, so if two vertices are connected by an edge they can both
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infect each other. Edges can be of different type and with different proper-
ties. We use ξ as an index to indicate the edge type, whenever appropriate.
In this paper we limit the analysis to two edge types, so ξ ∈ {1, 2}.

The degrees of all vertices in the graph is called a degree sequence. Graphs
and degree sequences can e.g. be obtained from empirical data or from more
theoretical constructs. Graphs that are created by random processes are
called random graphs. One such random graph model is the configuration
model which is discussed in Section 2.2 and Section 2.3.

2.2 Unweighted Configuration Model

The configuration model has already been thoroughly investigated (see e.g
(Molloy & Reed, 1995) or (Britton et al., 2006)) and here we just briefly
recapitulate how a configuration model graph is created and some properties
of it.

A configuration model graph is always finite, having n vertices, but
asymptotic results are obtained by letting n → ∞. Initially each vertex
is assigned a number of yet unconnected half-edges that can e.g. be drawn
from some given degree distribution, D. Then half-edges are paired uniformly
at random. Parallel edges (several edges going between the same vertices)
and self loops (edges with both ends going to the same vertex) can occur, but
with suitable restrictions on the degree sequence or the degree distribution
the number of such edges is small compared with the total number of edges
in the graph and thus (asymptotically) do not affect the properties of the
graph. A finite first moment is needed in order for the configuration model
to converge in distribution as n→∞ and a finite second moment is needed
in order to obtain a finite first moment for the size-biased distribution (see
below).

The degree distribution is defined by

pi = P(D=i).

This is the degree of a vertex that is chosen uniformly at random from the
graph. The important properties of the graph that we return to later in this
paper are the mean and the variance:

µ = E(D),

σ2 = Var(D).

If a vertex is instead chosen by first selecting an edge and then selecting
one of the vertices connected to the edge with the same probability we obtain
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the size-biased distribution D̃. The size-biased distribution has the following
(asymptotic) properties:

p̃i = P(D̃=i) =
ipi
µ
, (1)

µ̃ = E(D̃) =
E(D2)

µ
= µ+

σ2

µ
. (2)

2.3 Weighted Configuration Model

In the weighted model we have two types of edges (labeled 1 and 2 in this
paper). Starting with a given number of vertices, each vertex is assigned
a number of half-edges drawn independently for each vertex from a given
degree distribution D = (D1, D2). Half-edges of the same type are then
connected uniformly at random, effectively creating two configuration model
graphs that are connected only at vertices that have both types of edges.

The properties of this graph are given by the degree distribution D =
(D1, D2). The distribution is defined by the probabilities

pij = P(D1=i,D2=j).

We only place a minimum set of requirements on this distribution. First we
require that at least one pij > 0 for some i, j > 0. Otherwise we effectively
have two different vertex types, one with only type 1 edges and another with
only type 2 edges and these never interact - creating two separate configu-
ration models. Secondly we require that the first and second moments are
finite, so that E(Dξ) <∞ and Var(Dξ) <∞, where ξ ∈ {1, 2} indicates the
edge type. This ensures that the parallel edges and self loops can be ignored
in the resulting configuration model graphs (Britton et al., 2006) and that
the first moment of the size-biased distribution are finite (just as for the
unweighted configuration model).

When studying this distribution the following definitions are useful:

µξ = E(Dξ),

σ2
ξ = Var(Dξ),

σ12 = Cov(D1, D2),

ρ =
σ12
σ1σ2

, if σ1, σ2 > 0

where the last one is the correlation coefficient between D1 and D2.
The degree of a vertex selected uniformly at random from the graph is

distributed according to D. If we instead select a vertex by following an
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edge of specified type, selected uniformly at random, the resulting degree
distribution is different and also depends on the type of the edge that we
follow. Given that we follow a uniformly selected edge of type ξ ∈ {1, 2}
the size-biased degree distribution is D̃ξ = (D̃1|ξ, D̃2|ξ). The tilde above the
symbols indicates quantities obtained from the size-biased distribution. The
probability mass function p̃ξ(i, j) = P(D̃1|ξ = i, D̃2|ξ = j) distribution is then

p̃1(i, j) =
ipij
µ1

, (3)

p̃2(i, j) =
jpij
µ2

, (4)

when following an edge of type 1 and 2, respectively. Eq. (3) can be under-
stood intuitively by realizing that when following an edge selected uniformly
at random the probability of connecting to a vertex with degree i is propor-
tional to i (thus the name size-biased distribution). This probability must
also be proportional to the relative occurrence of vertices with this degree
(quantified by pij). Finally the 1/µ1 is a norming constant needed to make
p̃1(i, j) a proper probability mass function. Eq. (4) can be in the same way.

When following an edge of type 1 we now obtain (using Eq. 3 and 4 )

µ̃1|1 = E(D̃1|1) =
E(D2

1)

µ1

= µ1 +
σ2
1

µ1

,

µ̃2|1 = E(D̃2|1) =
E(D1D2)

µ1

= µ2 +
σ12
µ1

.

The corresponding equations are valid when starting with an edge of type
2 - just switch 1 and 2 in the equations. We return to these equations in
Section 2.4.

In later sections we compare epidemics on the weighted model with epi-
demics on the corresponding unweighted model where we simply neglect the
weights so D = D1 + D2. Expressions for the mean, the variance and the
probability mass function in the unweighted model are

µ = µ1 + µ2,

σ2 = σ2
1 + σ2

2 + 2σ12,

pi = P(D=i) =
i∑

k=0

pk,i−k.

These quantities can be used directly in the results for the size-biased distri-
bution for the unweighted configuration model in Section 2.2.
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2.4 SIR Epidemics

We work with the SIR (Susceptible - Infectious - Recovered) model in dis-
crete and in continuous time, see e.g. (Lefèvre, 1990). In this model vertices
represent people and edges represent paths by which people can infect each
other. Initially only one vertex (the index case) is infected. An infected
vertex is infectious (can infect susceptible neighbors) until it has recovered.
After recovering the vertex is immune forever and cannot ever infect any
other vertex. The epidemic stops when there are no more infected vertices.
At this time typically some portion of all vertices are recovered and some are
still susceptible. The proportion of recovered vertices we call the relative final
size of the epidemic. The expected number of vertices that a typical infected
vertex infects early on in the epidemic, when the population is almost com-
pletely susceptible, is called the basic reproduction number (denoted R0). We
are also interested in the probability of a large outbreak. All quantities are
derived in the limit n→∞, although this is not always mentioned explicitly
and the derivations are not formal.

In discrete time in each time step each infected vertex tries to infect
its susceptible neighbors after which the vertex recovers. Thus in the next
time step only newly infected vertices continue to spread the infection. We
assume that for each edge (among the susceptible neighbors) infection occurs
independently with probability πξ that is allowed to depend only on the edge
type ξ ∈ {1, 2}. This is called the Reed-Frost model (see e.g. (Bailey et al.,
1975), Section 8).

In continuous time we restrict the analysis to Markovian models where an
infected vertex has an infectious period that is exponentially distributed with
recovery rate γ. An infectious vertex has infectious contacts with each sus-
ceptible neighbor independently according to a Poisson process with intensity
βξ that depends only on the edge type. The probability of an arbitrary edge
of an infected vertex passing on the infection to a susceptible edge before the
end of the infectious period is then

πξ =
βξ

βξ + γ
.

When comparing the discrete time and the continuous time models we choose
βξ such that πξ are the same in both models. We must, however, keep in
mind that the infectious period affects all neighbors of a vertex and thus in
the Markovian case, the events that an infection is propagated along different
edges of the same vertex are no longer independent. This must be taken into
account when determining the probability of a large outbreak.

In the next section we analyze both the weighted and the unweighted
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models in discrete and in real time, to obtain explicit expressions or algo-
rithms for calculating R0, the probability of a large outbreak and the relative
final size of the epidemic. First we discuss the choice of πξ.

2.5 The Mean Infectious Activity

We calibrate the weighted and unweighted epidemics by setting

π1µ1 + π2µ2 = C = πµ (5)

in the weighted (left side) and the unweighted model (right side). C is a
measure of the the mean infectious activity in the graph, as it is the ex-
pected number of secondary infections caused by a single infected vertex,
selected uniformly, when all other vertices are susceptible. If we increase
the mean infectious activity (without changing anything else) the epidemic
spreads more easily, resulting in a larger R0, an increased relative final size
and an increased probability of a large outbreak. Remembering that in the
unweighted model D = D1 +D2, we thus have

π =
π1µ1 + π2µ2

µ1 + µ1

,

since µ = µ1 + µ2.
If we divide Eq. (5) by C we obtain

r1 + r2 = 1,

where rξ =
πξµξ
C

determines how the mean infectious activity is distributed
between the different edge types - we call it the relative infectious activity. We
use the mean infectious activity together with the relative infectious activity
in the theoretical results (Section 3) and in the numerical results (Section 4)
where they allow for a consistent way of plotting the figures.

2.6 Theoretical and Empirical Distributions

To illustrate the weighted configuration model we numerically analyze some
theoretical and empirical degree distributions. Two empirical bivariate de-
gree distributions are modeled using the weighted configuration model, as-
signing different weights to the two edge types. To further increase the
distributions that we can analyze we use copulas (see Appendix B) to map
one dimensional (marginal) degree distributions into bivariate degree distri-
butions. This allows us to vary the correlation between the degrees of the two
edge types, given only two marginal degree distributions. We also compare
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the copula model with a model based on the original empirical data. Below
we briefly describe the different theoretical distributions and the empirical
datasets.

2.6.1 Theoretical Distributions

• A bivariate binomial distribution where the marginal distributions are
both binomial regardless of the correlation between D1 and D2 was
defined in (Biswas & Hwang, 2002). For a more complete description
see Appendix A. Here we only mention that it has five parameters,
n1, p1, n2, p2 and ρ (the correlation). The mean and the variance of the
marginal distributions are

E(Dξ) = nξpξ, (6)

Var(Dξ) = nξpξ (1− pξ) , (7)

for ξ ∈ {1, 2}. These can thus be varied separately, although Var(Dξ) is
restricted to the range [0,E(Dξ)]. The correlation can be varied within
the full range [−1, 1] only when n1 = n2 and p1 = p2. This distribution
can also be used to approximate a bivariate Poisson distribution if {nξ}
are chosen to be large and {pξ} are chosen to be small.

• A heavy tailed distribution that is based on typical empirical distribu-
tions, e.g. distributions that appear for various preferential attachment
models. Such distributions often have a tail that goes as k−α, where
α is a parameter that is often in the range 2 − 4 for empirical net-
works. For low degrees the empirical distributions often do not decay
as rapidly. We choose a distribution that approximates the described
properties. Let

pk =
1

c
(k + k0)

−α, k = 0, 1, ...

where c is a norming constant (the Hurwitz zeta function) and k0 essen-
tially determines the shape of the probability mass function for lower
degrees.

2.6.2 Empirical Distributions

• Sexual relationships for a heterosexual population1. People have stated
how many casual and how many stable sexual relationships they have

1Data kindly supplied by Veronika Fridlund, Department of Sociology, Stockholm Uni-
versity
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had during the last year, see (Hansson et al., 2018) for details. The
dataset analyzed here consists of 645 individuals. This information is
treated as a bivariate edge distribution where the transmission prob-
ability of the two types of edges is allowed to differ. It is important
to note that this is not a valid model for the actual sexual interac-
tions within this group of people since the two sexes interact (mainly)
with someone of the other sex, while in our model we treat all in-
dividuals as identical (apart from the bivariate degree). Also, this
is not a random subset of the general population. Here we use the
dataset only as an example of an empirical dataset. Letting 1 repre-
sent casual relationships and 2 represent stable relationships we have
µ1 ≈ 1.42, µ2 ≈ 1.70, σ1 ≈ 0.99, σ2 ≈ 1.73 and ρ ≈ −0.0652.

• The Swedish population2 is a large network that is based on data con-
taining only the workplace and family affiliation of people in Sweden,
see (Holm et al., 2006) for details. Edges to family members and within
workplaces are treated as different types. Some workplaces are very
large and to reduce computational workload and make the model some-
what more realistic people are randomly assigned to work groups within
each workplace. Letting 1 represent family edges and 2 represent com-
pany edges we have µ1 ≈ 2.00, µ2 ≈ 20.98, σ1 ≈ 1.44, σ2 ≈ 27.8 and
ρ ≈ −0.241.

In both cases people completely without edges have been excluded. This
needs to be remembered when comparing different models, since in some
models vertices without edges are included.

2.6.3 Network Models using Copulas

Given two marginal distributions a bivariate distribution can be obtained
by using a copula, see e.g. (Nelsen, 2007). The property of the copula is to
maintain the marginal distributions, while varying how the variables depend
on each other. Within this constraint, different copulas are possible and these
will result in different properties for the resulting bivariate distribution. For
this paper we choose to use a copula based on the bivariate standard normal
distribution. It is simple to simulate and it allows for modeling the correlation
between the degrees of the two edge types through a large range. We obtain
the bivariate distribution function

F (i, j) = Cρ(F1(i), F2(j)),

2Data kindly supplied by Fredrik Liljeros, Department of Sociology, Stockholm Uni-
versity

10



where Cρ(·, ·) denotes the bivariate standard normal copula with correlation
ρ and Fξ(·) represents the marginal distribution function for edge type ξ.
The marginal distributions for each edge type can be taken from empirical
networks or from theoretical distributions. In this paper we do both. Note
that the correlation derived from F (i, j) will depend not only on the copula,
but also on the marginal distributions and will thus typically be different
from the ρ that is used in the equation above. More information on copulas
can be found in Appendix B.

3 Theoretical Results

3.1 Basic Reproduction Number

In the configuration model the expected degree of a vertex that is reached
by following an edge from an infected vertex is determined by the size-biased
distribution (see Section 2.3 and Eq. (2)). When looking at the number
of edges that can spread an infection in a mostly susceptible population
we must deduct one edge, since the infection cannot spread back along the
infecting edge, and must also multiply by the probability that an edge infects
a susceptible vertex.

3.1.1 Unweighted Model

In the unweighted model we obtain

R0 = π (µ̃− 1) = π

(
µ+

σ2

µ
− 1

)
= C

1 +

(
σ

µ

)2

− 1

µ

 ,
remembering that the mean infectious activity C = πµ in the final step.
We want to compare the unweighted model with the weighted model, where
simultaneous degree distribution D = (D1, D2) is given, and set D = D1+D2,
counting only the total number of edges, regardless of type. Using results
from Section 2.5 we obtain:

R0 = C

(
1 +

σ2
1 + σ2

2 + 2ρσ1σ2
(µ1 + µ2)2

− 1

µ1 + µ2

)
. (8)

This is strictly increasing in ρ (all other parameters being fixed) and ob-
tains its minimum and maximum values when ρ obtains its minimum and
maximum values, respectively. The allowed range of ρ is obtained from the
weighted model, see below.
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A special case is when µξ = σ2
ξ (such as for the Poisson distribution) and

then

R0 = C

(
1 + 2ρ

σ1σ2
σ2
1 + σ2

2

)
.

If, in addition, ρ = 0 we obtain R0 = C.

3.1.2 Weighted Model

In the weighted model we need to take into account which type of edge that
infected the vertex since the size-biased distribution depends on this. We
must remove one edge of the type that infected the vertex, since a vertex
cannot reinfect its infector. This results in the next generation matrix

K =

 π1
(
µ̃1|1 − 1

)
π2 µ̃2|1

π1 µ̃1|2 π2
(
µ̃2|2 − 1

)


(see also Section 2.3 for definitions). This matrix consists of the expected
number of infecting edges of each type (column 1 and column 2) in the next
generation when a vertex is infected through an edge of type 1 (row 1) and
type 2 (row 2). R0 is given by the largest eigenvalue of this matrix. The
eigenvalue λ is obtained as a solution to the characteristic equation

det(K− λI) = 0.

The solution can be written in relatively compact form using some definitions
from Section 2.5 and some additional definitions, including the coefficient of
variation CVξ:

C = π1µ1 + π2µ2,

rξ =
πξµξ
C

,

CVξ =
σξ
µξ
,

νξ = CVξ2 −
1

µξ

remembering that ξ ∈ {1, 2} indicates the edge type. The full solution is

R0 =
C

2

(
1+r1ν1+r2ν2 + (9)√

(1+r1ν1+r2ν2)
2 + 4r1r2

(
(ρ CV1 CV2+1)2 − (ν1+1) (ν2+1)

))
.
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The allowed range of ρ depends on the marginal distributions of the degrees
of the two edge types as well as on the correlation structure between them.
An important observation is that R0 increases when ρ increases. Thus the
minimum and maximum must be obtained for the minimum and maximum
value of ρ, respectively.

The full solution simplifies in some cases, e.g. if µξ = σ2
ξ (such as for the

Poisson distribution). Then νξ = 0 and we have

R0 =
C

2

(
1 +

√
1 + 4r1r2

(
(ρ CV1 CV2+1)2 − 1

)
,

)

If we, in addition, require that ρ = 0 this gives that R0 = C, just as for
the unweighted model. An example is when {Dξ} are independent Poisson
distributed variables.

3.2 Probability of a Large Outbreak

In the configuration model (in the limit of an infinite population) the prob-
ability of a large outbreak can be calculated as the probability of survival
of a Galton-Watson branching process where the offspring is the number of
new infected vertices in each generation, see e.g. (Britton et al., 2007) and
also Appendix C. In our application infection starts with the index case and
then spreads through one type of edge (the unweighted configuration model)
or two types of edges (the weighted configuration model). In the weighted
model the degree distribution of a newly infected vertex depends on the type
of edge through which the vertex was infected. The distribution of the num-
ber of vertices that are actually infected is different in discrete time and
in continuous time (both in the unweighted and the weighted models). In
discrete time each edge from an infected vertex independently infects a new
vertex with probability π or πξ (depending on model), while in the contin-
uous time Markovian model edges are dependent since the infectious period
of a vertex applies to all edges simultaneously. We thus need to treat dis-
crete and continuous time slightly differently. The difference, in some sense,
is subtle since it only affects a mapping function that we introduce. Other
models than the discrete time and continuous models that we treat here can
be dealt with by just changing the mapping function.

3.2.1 Unweighted Model

Let {p∗i } define the distribution of the number of infecting edges (edges that
do spread the infection ) of the index case. Let {p̃∗i } define the distribution
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of the number of infecting edges of a vertex infected after the index case (cor-
responding to following an edge in the configuration model, see Section 2.2).
Define the probability generating functions

f ∗(s) =
∞∑
i=0

sip∗i

f̃ ∗(s) =
∞∑
i=0

sip̃∗i

The probability q that the branching process dies out, given that we start
with an infecting edge, is the solution to the fixed-point equation

q = f̃ ∗(q),

as discussed in Appendix C. We then apply this solution to each edge of the
index case, giving the probability τ of a large outbreak (the probability that
the process does not die out)

τ = 1− f ∗(q).

What remains is to obtain expressions for the probability mass functions
p∗i and p̃∗i . These can be derived from the distributions pi and p̃i (see Sec-
tion 2.2 and Section 2.3). Study a given infected vertex that has exactly k
edges that could spread the infection. Then the actual number of edges that
do spread the infection is between 0 and k. Let φ(i | k) denote the probabil-
ity that exactly i edges out of the k available spread the infection. Clearly
φ(i | k) depends on the model for spreading the infection - e.g. we can expect
it to be different in discrete time and in continuous time. However, if φ(i | k)
is known we can easily obtain p∗i and p̃∗i through

p∗i =
∞∑
k=i

φ(i | k)pk and (10)

p̃∗i =
∞∑
k=i

φ(i | k)p̃k+1, (11)

remembering that k+1 is required for the size-biased distribution since the
infection cannot spread back on the edge that infected the current vertex.

In discrete time infecting edges are independent and, given the probability
π that an edge spreads an infection, the number of edges that spread the
infection is distributed as Bin(k, π) so that

φ(i | k) =

(
k

i

)
πi(1− π)k−i.
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When this result is inserted into Eq. (10) and Eq. (11) typically further
simplification is not possible except in some special cases, like when D is
Poisson or binomially distributed.

In continuous time the derivation of p̃∗i is slightly more complicated. If
we fix the duration of the infectious period T=t, the edges become indepen-
dent and each edge infects another vertex with probability π(t) = 1−e−βt,
independently of the other edges. Let D∗ denote the number of edges that
pass on the infection. Then (when k ≥ i)

P (D∗=i | k, T = t) =

(
k

i

)
π(t)i(1−π(t))k−i, and so

φ(i | k) =
∫ ∞
0

(
k

i

)
π(t)i(1−π(t))k−ifT (t)dt

=
∫ ∞
0

(
k

i

)
(1−e−βt)i(e−βt)k−iγe−γtdt

When this result is inserted into Eq. (10) and Eq. (11) typically further
simplification is not possible.

3.2.2 Weighted Model

Results for the weighted model follow the same method as for the unweighted
model, taking into account the two different edge types. Let p∗(i, j) define
the distribution of infecting edges of the index case. Let p̃∗ξ(i, j) define the
distribution of the number of infecting edges of a vertex that were infected
after the index case (through a type ξ ∈ {1, 2} edge, see Section 2.3). Let
s = (s1, s2) and define the probability generating functions

f ∗(s) =
∞∑
i=0

∞∑
j=0

si1s
j
2p
∗(i, j)

f̃ ∗ξ (s) =
∞∑
i=0

∞∑
j=0

si1s
j
2p̃
∗
ξ(i, j)

The probabilities {qξ} that the branching process dies out, given that we
start with an infecting edge of type ξ ∈ {1, 2}, are given by the solution to
the fixed-point equation

q = (f̃ ∗1 (q), f̃ ∗2 (q)),

where q = (q1, q2), as discussed in Appendix C. Just as in the unweighted
case, we then apply this solution to each edge of the index case, giving the
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probability τ of a large outbreak (the probability that the process does not
die out)

τ = 1− f ∗(q).

The probability mass functions p∗(i, j) and p̃∗ξ(i, j) can be derived from
the distributions pij and p̃ij (see Section 2.2 and Section 2.3). Study a given
infected vertex that has k edges of type 1 and l edges of type 2 that could
spread the infection. Let φ(i, j | k, l) denote the probability that (i, j) edges
out of the (k, l) available spread the infection. Then

p∗(i, j) =
∞∑
k=i

∞∑
l=j

φ(i, j | k, l)pk,l, (12)

p̃∗1(i, j) =
∞∑
k=i

∞∑
l=j

φ(i, j | k, l)p̃k+1,l and (13)

p̃∗2(i, j) =
∞∑
k=i

∞∑
l=j

φ(i, j | k, l)p̃k,l+1, (14)

again remembering that the infection cannot spread back on the edge that
infected the current vertex.

In discrete time edges are independent and if the probability than an edge
spreads an infection is πξ then the number of edges that spread the infection
are distributed independently as Bin(k, π1) and Bin(l, π2) so that

φ(i, j | k, l) =

(
k

i

)
πi1(1− π1)k−i

(
l

j

)
πj2(1− π2)l−j.

When this result is inserted into Eq. (12), Eq. (13) and Eq. (14) then typi-
cally further simplification is not possible except in some special cases, e.g.
when Dξ are independently Poisson distributed.

In continuous time, given that the duration of the infectious period T = t,
each edge infects another vertex with probability πξ(t) = 1−e−βξt, indepen-
dently of the other edges. Let D∗ξ denote the number of edges of type ξ that
pass the infection on. Then (when k ≥ i and l ≥ j)

P (D∗1=i,D
∗
2=j | k, l, T=t) =

(
k

i

)
π1(t)

i(1−π1(t))k−i
(
l

j

)
π2(t)

j(1−π2(t))l−j,

and so

φ(i, j | k, l) =
∫ ∞
0

(
k

i

)
π1(t)

i(1−π1(t))k−i
(
l

j

)
π2(t)

j(1−π2(t))l−jfT (t)dt

=
∫ ∞
0

(
k

i

)(
1−e−β1t

)i (
e−β1t

)k−i (l
j

)(
1−e−β2t

)j (
e−β2t

)l−j
γe−γtdt
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When this is inserted into Eq. (12), Eq. (13) and Eq. (14) typically further
simplification is not possible.

3.3 Final Size of a Large Outbreak

In discrete time (when edges are undirected and independent) the relative
final size of the epidemic is equal to the probability of a large outbreak, see
(Britton et al., 2007). This has already been calculated in Section 3.2.

In continuous time edges are dependent and so further analysis is needed.
Instead of studying how the epidemic develops forward in time (starting with
the index case), we instead select a vertex uniformly at random and study
which vertices that would infect it if they were infected. We continue this
process (in the limit of an infinite population) by following edges backwards
in time to create the susceptibility set, see (Ball & Neal, 2008). In the con-
figuration model this once again corresponds to a Galton-Watson branching
process and edges (by which a vertex may have been infected) are inde-
pendent since they are attached to different vertices which are independent.
The probability that the branching process (that creates the susceptibility
set) survives is equal to the relative final size of the epidemic. The proba-
bility of infection is the same as when calculating the probability of a large
outbreak in the discrete case in Section 3.2 and so the size of the outbreak
in continuous time is equal to the probability of a large outbreak in discrete
time! Note that, in continuous time, the relative final size of the epidemic
and the probability of a large outbreak are in general not equal.

4 Numerical Results

4.1 Sexual Network

Figure 1 shows R0 and the relative final size of the epidemic (for fixed C) for
the sexual relationship network modeled using the bivariate standard normal
copula so that ρ can be varied. In the figure the correlation is plotted on the
x-axis and r2 is plotted on the y-axis. Low or high values of r2 indicate that
the infection is spread mainly by type 1 or type 2 edges, respectively. The
horizontal red line indicates when the probability of infection is the same for
type 1 and type 2 edges. From the plot we see that both R0 and the final size
depend greatly on the correlation between the degrees and on the balance
between the probability of infection on type 1 and type 2 types.

While R0 must always increase with ρ (as can be seen from Eq. (8) and
Eq. (9)) this is not the case for the relative final size. When C = 1.6 we see
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that the relative final size achieves a maximum inside the plotted region both
for the weighted and for the unweighted model. To the right of the maximum
an increase of the correlation results in a decrease in the relative final size.
From the plot we note that changing the balance between type 1 and type
2 edges clearly affects the epidemics that develop on the graph. When the
balance is strongly shifted towards type 1 edges, large outbreaks tend to be
small (or not occur at all). When the balance is strongly shifted towards
type 2 edges epidemics are typically large. Results for the probability of a
large outbreak are similar (not shown here). Such plots thus give information
on which type of edge (which type of relationship) that should be targeted
in order to best best reduce the probability and the size of large outbreaks.
Clearly, the unweighted model does not provide this information.

We also compare the probability mass function generated using the stan-
dard normal copula with the empirical probability mass function. We do
this for C = 1 and fixed correlation, and vary only the balance between the
degrees of type 1 and type 2 edges. Results in Figure 2 show a very close
correspondence between empirical results and copula generated results. Note
that in the left figure, depicting R0, the curves match perfectly, which they
must. Somewhat more interesting is that the figures for the relative final size
(center) and the probability of a large outbreak in continuous time (right)
also match very well.

4.2 Sweden Network

Figure 3 shows R0 and the relative final size of the epidemic for the Swedish
population network modeled using the bivariate standard normal copula so
that ρ can be varied. The result depends greatly on both the correlation and
on the balance between the degrees of type 1 and type 2 edges. We do not
see the same variation when looking at the unweighted plots. As mentioned
before, R0 always increases with increasing ρ (see Section 3.1). However,
from the plot where C = 1.3 we observe that as ρ increases the relative final
size decreases in the weighted model for some values of the balance parameter
(e.g. follow the 0.5 balance line towards the right side of the figure). The
unweighted model shows a small, but steady decrease through the range of
ρ.

We again compare results for the copula generated probability mass func-
tion with the empirical probability mass function. We do this for C = 1 and
fixed correlation, and vary only the balance between the degrees of type 1
and type 2 edges. Results in Figure 4 show a good correspondence between
empirical results and copula generated results, just as was the case for the
sexual contact network (Figure 1). We also expect that the difference may be
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Figure 1: The figure shows contour plots of R0 (upper left) and the relative final size
(the remaining three) for different values of C for the sexual relationship network mod-
eled using the bivariate standard normal copula. Each plot consists of a larger (lower)
area corresponding to the weighted model and a smaller (upper) area corresponding to
the unweighted model. The horizontal axis represents the correlation and the vertical
axis represents the balance between the degrees of type 1 and type 2 edges (only in the
weighted model). Note that R0-results for other values of C can be obtained simply
by multiplying the values in the R0-plot with C, since this plot was based on C = 1
and R0 is directly proportional to C.
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Figure 2: For the sexual network the figure shows a comparison between results from
the empirical probability mass function (blue dotted lines) and results from the stan-
dard normal copula applied to the marginal distributions (solid black lines). All curves
use the same correlation coefficient ρ ≈ −0.0652 (from the empirical distribution) and
C = 1. Note that all three curves depict two curves, but because they are so similar
they appear almost as one curve. In the left figure the curves do coincide exactly.

larger if C is higher, since then more of the original probability mass function
is preserved. We test this by setting C = 1.3. Results in Figure 5 indeed
show a slight difference in the relative final size and in the probability of a
large outbreak.

4.3 Heavy Tail Network

Figure 6 shows R0 and the relative final size of the epidemic for a heavy-tailed
degree distribution (see Section 2.6) modeled using the bivariate standard
normal copula so that ρ can be varied. For type 1 edges the parameters
α = 10 and k0 = 20 were used and the distribution was truncated at 25
edges (allowing only degrees between 0 and 25 to have positive probability).
For type 2 edges the parameters α = 4 and k0 = 20 were used and the
distribution was truncated at 200 edges (allowing only degrees between 0 and
200 to have positive probability). Truncating the distributions is necessary
to be able to perform the simulation within reasonable time.

4.4 Binomial Network

Figure 7 shows R0, the relative final size and the probability of a large out-
break for a bivariate binomial distribution as described in Section 2.6 and also
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Figure 3: The figure shows contour plots of R0 (upper left) and the relative final size
(the remaining three) for different values of C for the Swedish population network
modeled using the bivariate standard normal copula. For additional information see
Figure 1.
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Figure 4: For the Swedish population network the figure shows a comparison between
results from the empirical probability mass function (blue dotted lines) and results
from the standard normal copula applied to the marginal distributions (solid black
lines). All curves use the same correlation coefficient ρ ≈ −0.241 (from the empirical
distribution) and C = 1.

Figure 5: The same plot as in Figure 4, except for setting C = 1.3. Some differences
can be seen for this higher value of C.
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Figure 6: The figure shows contour plots of R0 (upper left) and relative final size for
the heavy tailed network modeled using the bivariate standard normal copula.

compared with a copula model. The parameters were n1 = 5 and p1 = 0.5
and n1 = 20 and p1 = 0.5 for edge type 1 and 2, respectively. The cop-
ula model uses the two marginal distributions and models the correlation
through the bivariate normal copula. The three left figures show the bivari-
ate binomial model and the three right figures show the copula model. We
note that the models produce almost identical results in the region where
both are defined, but that the copula model allows for a wider range of ρ.

5 Discussion

We have modeled weighted and unweighted configuration model networks
based on different empirical and theoretical distributions, and have studied
epidemics taking place on these networks. We show that the weighted net-
work model produces much richer results in terms of the variation of R0, the
probability of a large outbreak and the relative final size of an epidemic as
functions of ρ and the balance between the edge types.

We have used a parametrization that separates

(a) the mean infectious activity in the network,

(b) how the activity is distributed between the different edge types and

(c) the correlation between the degrees of the edge types.
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Figure 7: The figure shows contour plots of R0 (upper), the relative final size (middle)
and the probability of a large outbreak in continuous time (lower) for the bivariate
binomial model (left) and for the same marginal distributions modeled through the
bivariate normal copula (right).
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This parametrization simplifies visualization of results. This is especially
evident for R0 plotted for C = 1 as R0 can be obtained for other values of C
simply by multiplying the values in the plot by C. The plot gives immediate
information as to which combination of parameters that can produce large
outbreaks. The data needed can be obtained by only studying the so called
egocentric degree distribution of individuals sampled from the population
together with estimates of the activity on different types of edges. Modeling
of the network is then done through the configuration model.

The introduction of copulas allows for modeling situations outside the
range of the empirical data. As an example we can use the sexual network
analyzed in Section 4.1 for which we have a single sample with fixed correla-
tion. By applying a bivariate standard normal copula to the marginal edge
distributions we are able to model the network for other values of the cor-
relation ρ. Results indicate that the copula model can produce results that
are almost identical to those generated by the original network data model
(when setting the same correlation in both models). Thus, if the correlation
and the marginal distributions are known, the exact dependence between
the degrees of the different edge types may not always be so important. The
copula approach also gives some insight to what is possible for a specific
set of marginal distributions. For instance, the minimum and the maximum
copulas can be used to calculate which minimum and maximum correlation
that is possible for the given marginal distributions.

The disadvantage with the described modeling approach is that it is fairly
computer intensive, requiring some care when writing the software used to
calculate parameters from the model. Expanding the model to more than
two edge types may require some simplifications of the model. Such simplifi-
cations may indeed be possible when the infection probabilities πξ are low so
that the exact dependence structure in the empirical data is less important.

Future work could include an investigation of what simplifications of the
model that are possible, without affecting results significantly, and also how
well the model matches real world networks. E.g. if the relative final size of a
large outbreak on a finite empirical network is comparable to the asymptotic
relative final size in the configuration model.
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A The Bivariate Binomial Distribution

This bivariate binomial distribution was defined in (Biswas & Hwang, 2002).
The distribution has five parameters, where the first four (n1, p1, n2 and p2)
define the two marginal binomial distributions and the last parameter α is
directly related to the correlation coefficient ρ.

The distribution is defined so that Dξ =
∑nξ
i=1Xξ,i, for ξ ∈ {1, 2}. X1,i

are independent Bernoulli distributed variables with parameter p1. X2,i are
independent Bernoulli distributed variables, each with parameter

p2,i =


p2+α(p2−p1)+αX1,i

1+α
, if i ≤ n1,

p2 if i > n1

Thus, D2 depends on D1, but because of the specific choice of parameters, D2

is still distributed as Bin(n2, p2). For the analytical form of the simultaneous
probability mass function we refer the reader to (Biswas & Hwang, 2002).
Because the marginals are Binomially distributed

µξ = E(Dξ) = nξpξ,

σ2
ξ = Var(Dξ) = nξpξ(1− pξ),

The correlation ρ can be both positive and negative and α is closely related
to it through

ρ =

√√√√min(n1, n2)

max(n1, n2)

(
α

1 + α

)√√√√p1(1− p1)
p2(1− p2)

.

The allowed range for the correlation coefficient is a function of the first
four parameters. This range is not correctly given in (Biswas & Hwang,
2002) so we give it here (there are several cases). We assume that pξ > 0
and nξ > 0 for ξ ∈ {1, 2} to avoid a degenerate distribution.
The lower limit:

p1 + p2 < 1 =⇒


α ≥ − p2

1+p2−p1

ρ ≥ −
√

min(n1,n2)
max(n1,n2)

√
p1

1−p1 ·
p2

1−p2

,

p1 + p2 ≥ 1 =⇒


α ≥ − 1−p2

1+p1−p2

ρ ≥ −
√

min(n1,n2)
max(n1,n2)

√
1−p1
p1
· 1−p2

p2

.
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The upper limit:

p1 < p2 =⇒


α ≤ 1−p2

p2−p1

ρ ≤
√

min(n1,n2)
max(n1,n2)

√
p1

1−p1 ·
1−p2
p2

,

p1 > p2 =⇒


α ≤ p2

p1−p2

ρ ≤
√

min(n1,n2)
max(n1,n2)

√
1−p1
p1
· p2
1−p2

,

p1 = p2 =⇒


α no upper limit

ρ ≤
√

min(n1,n2)
max(n1,n2)

.

Only when n1=n2 and p1=p2 can ρ take on any value in the range [−1, 1].

B Modeling Distributions through Copulas

Copulas define the correlation structure between random variables with given
marginal distributions. They can be defined for any number of variables, but
we limit the scope to bivariate distributions. Let X and Y be two random
variables with given (marginal) distributions FX(x) and FY (y). We define the
simultaneous distribution FX,Y (x, y) = P(X ≤ x, Y ≤ y) through a copula
C(u, v) as

FX,Y (x, y) = C(FX(x), FY (y)).

The function C(u, v) can be viewed as the simultaneous distribution func-
tion for two uniformly distributed random variables on [0,1]. The Fréchet-
Hoeffding Bounds (see (Nelsen, 2007), page 9) are

M(u, v) ≤ C(u, v) ≤ W (u, v) ∀u, v, (15)

where

M(u, v) = min(u, v),

W (u, v) = max(u+v−1, 0).

In our application we are mainly interested in using the copula to vary
the correlation between the variables, while maintaining the marginal distri-
butions. We thus limit our study to copulas that are uniquely defined by the
correlation ρ and indicate this by writing Cρ(u, v).
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Noting that

ρ =
Cov(X, Y )√

Var(X)Var(Y )
,

using Hoeffding’s Identity (e.g. see (Nelsen, 2007), page 154)

Cov(X, Y ) =

+∞∫
−∞

+∞∫
−∞

(FX,Y (x, y)− FX(x)FY (y)) dx dy

and using Eq. (15) we see that Cov(X, Y ) has bounds that can be found by
applying W (u, v) (for the lower bound) and M(u, v) (for the upper bound).
We use these bounds when calculating and presenting results in Section 4. At
the bounds the copulas are unique and results obtained by using the copulas
are also unique. However, between the two extremes the copula that results
in a specific correlation coefficient is not unique and thus results obtained
from the simultaneous distribution function is also not necessarily unique.

In our application we want ρ to span as large a range as possible. Not all
copulas are able to span the maximum range, but one that is is the bivariate
normal copula. It is defined as

Cρ(u, v) = Nρ(Φ
−1(u),Φ−1(v)),

where Φ(x) and Nρ(x, y) are the univariate and the bivariate standard normal
distributions, respectively.

In our application we work with empirical bivariate degree distributions.
From these we can extract all parameters for the distribution, such as means,
variances and the correlation, but we are not able to vary the correlation co-
efficient. However, taking the marginal distributions and applying a copula,
such as the standard normal copula, enables us to vary the correlation coef-
ficient.

As is mentioned above the choice of copula will affect the results (except at
the boundaries of the maximum allowed range for ρ), so care is needed when
drawing conclusions based on results from the use of (arbitrary) copulas.

C Branching Processes

Here we only give a brief overview of the part of the theory that we need
for this paper. For a more thorough treatment of the theory of branching
processes subject we refer the reader to (Harris, 2002).
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Early on in the epidemic the growth of the number of infected vertices
can be modeled through a branching process. In our application the branch-
ing process starts with a single infected individual, the index case, and we
study how the number of new infected vertices develops in each generation.
Unfortunately, the degree distribution is different for the index case and for
the subsequent generations. In this section we deal with the most simple
form where we assume that the same degree distribution is valid through
the entire branching process. This is still applicable in our model for all
epidemic generations after the index case. Given that we understand how
the branching process develops for all future generations it is then an easy
task to include the index case in the model. In our application we only need
to obtain the probability that the branching process goes extinct. This same
quantity can be used to calculate both the asymptotic probability of a large
outbreak and the relative final size of it.

Below we will talk of the offspring of an individual and in our application
this corresponds to the number of people that the individual infects. We
start with the unweighted model where there is only one edge type. Then we
continue with the weighted model where we have two different types of edges
that the epidemic can spread through. Then we need to take into account
through which type of edge an individual was infected and also through how
many edges of each type the epidemic continues.

We begin with a model with only one type of individual (corresponding
to the unweighted configuration model. We study the number of individuals
Zi in each generation i = 0, 1, .... We start with a single individual so Z0 = 1.
Each new generation then consists of the offspring of the individuals in the
previous generation so that Zi =

∑Zi−1

j=1 Xi,j, where Xi,j (the offspring of
individual j in generation i) are all independent and identically distributed
Xi,j ∼ X. The offspring distribution is defined by pk = P(X=k). In the
following we will assume that E(X) < ∞ and that pk < 1 for k = 1, 2. One
important property of a branching process is the probability that it dies out,
i.e. that Zi = 0 for some i. Through the probability generating function

f(s) =
∞∑
i=0

sipk.

we obtain the probability of extinction q as the smallest non-negative solution
to the fixed point equation

q = f(q).

Note that there can be at most 1 solution q ∈ [0, 1) and that there is always
a solution q = 1.
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We now continue with a multi-type model which corresponds to the
weighted configuration model where there are different types of edges. We
restrict the analysis to two types of edges and in effect study how the number
of infections via each type of edge develops. Let pξ(i, j) be the probability
that an individual of type ξ ∈ {1, 2} has offspring i individuals of type 1 and
j individuals of type 2. Some assumptions are needed and these correspond
to the requirements for the single type branching process described above.
We assume that the expected number of offspring is finite. In addition we
assume that the process is not singular and that it is positively regular, for
definitions see (Harris, 2002). In our application positively regular means
that, regardless of which edge type we start with, at some time in the future
the process is able to produce the other edge type. In turn this means that at
least one pξ(i, j) > 0 for some i, j > 0. If this is not true then the graph can
be separated into subgraphs, each one consisting only of vertices connected
by a single edge type. Such separate configuration model graphs are not
within the scope of this paper.

Further, let s = (s1, s2) and define the probability generating functions

fξ(s) =
∞∑
i=0

∞∑
j=0

si1s
j
2pξ(i, j)

The probability qξ that the branching process dies out, given that we start
with an individual of type ξ, is a solution to the fixed-point equation

q = (f1(q), f2(q)), (16)

where q = (q1, q2). If there exists a solution q ∈ [0, 1)2 (and there can be
at most one such solution), then this is the correct solution. Otherwise the
solution is q = (1, 1). As above, Eq. (16) can be solved iteratively

1. Let q(0) = (0, 0).

2. Let q(k) = (f1(q
(k−1)), f2(q

(k−1))), for k = 1, 2, ...

3. The probability that the process dies out is q = limk→∞ q(k).

The quantities q and qξ are used in Section 3.3 and Section 3.2.
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