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Abstract

In this research report we consider SIR (Susceptible → Infectious
→ Recovered) epidemics on random graphs with clustering. To in-
corporate group structure of the underlying social network, we use a
generalized version of the configuration model in which each node is
a member of a specified number of triangles. SIR epidemics on this
type of graph have earlier been investigated under the assumption
of homogeneous infectivity and also under the assumption of Poisson
transmission and recovery rates.

We extend known results from literature by relaxing the assump-
tion of homogeneous infectivity. An important special case of the epi-
demic model analyzed in this paper is epidemics in continuous time
with arbitrary infectious period distribution. We use branching pro-
cess approximations of the spread of the disease to provide expressions
for the basic reproduction number R0, the probability of a major out-
break and the expected final size. In addition, the impact of random
vaccination with a perfect vaccine on the final outcome of the epidemic
is investigated. We find that, for this particular model, R0 equals the
perfect vaccine-associated reproduction number.

Generalizations to groups larger than three are discussed briefly.

Keywords: SIR epidemics, Configuration model, Clustering, Branch-
ing processes, Vaccination.

∗Stockholm University, Sweden; carolina.fransson@math.su.se
†Stockholm University, Sweden; ptrapman@math.su.se



1 Introduction

One of the most important factors that determine the fate of an outbreak of
an infectious disease is the contact pattern of individuals in the population.
The frequency and duration of the contacts between individuals typically
depend on the nature of their relationship. For this reason, recent interest
has focused on the impact of the underlying social network on the spread of
the disease. The social network is typically represented by a random graph
(Newman et al. 2002), in which the nodes or vertices represent individuals
and the edges represent social contacts between the individuals. Two nodes
that share an edge are called “neighbors”.

A popular choice when generating random graphs with a specified de-
gree distribution is the configuration model (CM). It was introduced by Bol-
lobás (1980) for the special case where the degree distribution is degenerate
(i.e. every node of the graph has the same degree) and extended to more
general degree distributions by Molloy and Reed (1995, 1998). There is a
vast literature on epidemics on configuration model graphs (see e.g. Anders-
son (1999); Britton et al. (2007); Janson et al. (2014); Barbour and Reinert
(2013); Bhamidi et al. (2014)).

An important feature of the configuration model is that, under mild regu-
larity conditions on the degrees, this type of graph is asymptotically unclus-
tered. That is to say, it contains virtually no groups and short circuits. Real
world networks do, however, typically exhibit clustering (Newman 2003), and
there are a number of graph models that do allow for group structure (Bol-
lobás et al. 2011; Karoński et al. 1999; Newman 2002). Epidemics on graphs
with group structure were studied by Trapman (2007); Ball et al. (2009, 2010,
2014); Coupechoux and Lelarge (2015); Britton et al. (2008).

In this paper, we use a generalized version of the configuration model to
incorporate clustering of the social network in the analysis of the spread of
an infectious disease. The configuration model with clustering (CMC) was
independently introduced by Miller (2009) and Newman (2009). It is an
extension of the CM in the sense that, for each node u, in addition to the
degree of u one also specifies the number of pairs of neighbors of u that are
in turn neighbors of each others. In other words, one specifies the number of
triangles (with non-overlapping edges) of which u is a member (see section
2.1 for a precise definition of the graph model). This allows for graphs with
non-negligible clustering and a specified degree distribution. That is to say,
the CMC deviates from the classical Erdős-Rényi graph model (Erdős and
Rényi 1959) in two fundamental ways: it allows for for a non-Poissonian
degree distributions and is asymptoticly clustered. Epidemics on this type of
graph have previously been studied by Miller (2009) and Volz et al. (2011).
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Miller (2009) investigated the impact of clustering on the epidemic threshold,
formulated as a bond percolation problem. This means that the infectivity
of infected individuals is assumed to be homogeneous; an infected individual
transmits the disease to each of its neighbors independently with some fixed
probability T . Volz et al. (2011) investigated the time evolution and final
size of epidemics on CMC graphs under the assumption of exponentially
distributed infectious periods during which individuals contact neighbors at
a constant rate.

The main contribution of our research is that we extend the results of
Miller (2009) and Volz et al. (2011) by allowing for heterogeneous infectivity,
i.e. by allowing for some infected individuals to be more contagious than
others. Such heterogeneity may, for instance, reflect variability in the infec-
tious period. We provide expressions for the probability of a major outbreak
and the final size of an major outbreak. A key tool in our analysis is the ap-
proximation of the epidemic seen from a “generation of infection” or “rank”
perspective by a multitype Galton Watson branching process. This approx-
imation, which is interesting in its own right, gives rise to the rank based
reproduction number R0 (see e.g. Pellis et al. (2008, 2012)).

The second contribution of this paper concerns vaccination. We inves-
tigate the impact of uniform vaccination (i.e. vaccinated individuals are
selected uniformly at random) with a perfect vaccine (i.e. a vaccine that
provides full and permanent immunity to the disease). We find that it is
necessary to vaccinate a fraction 1− 1/R0 of the population in order to pre-
vent a major outbreak of the disease, as in the case of homogeneous mixing.
We illustrate our findings with numerical examples.

This paper is structured as follows. In Section 2 we provide the prelim-
inaries for the model. In Section 2.1 we give a more detailed description
of how graphs are generated in the CMC and investigate the asymptotic
clustering of such graphs and in Section 2.2 the epidemic model is specified.
Section 2.3- 2.4 contains an overview of the concept of reproduction numbers
and the necessary branching process background. In Section 3, we derive ex-
pressions for the probability of a major outbreak and the expected final size
under the assumption of an unvaccinated and fully susceptible population,
and in Section 4 the analysis is repeated under the assumption of uniform
vaccination with a perfect vaccine. We illustrate our findings with numerical
examples presented in Section 5 and discuss possible extensions in Section 6.
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2 Preliminaries

2.1 The configuration model with clustering

A configuration model with clustering CMC graph is constructed as follows.
Let {p(ks, k∆)}ks,k∆∈N0 be a prescribed joint degree distribution, where ks
denotes the number of single edges attached to a node, and k∆ denotes the
number of pairs of triangle edges. Throughout, (S,∆) is assumed to be a
generic random vector distributed according to p. Let {(Si,∆i)}Ni=1 be a
sequence of independent copies of (S,∆). Analogously to the CM, a graph
GN = GN(p) of size N is constructed by first assigning the single degree Si
and the triangle degree ∆i to the node vi, i = 1, 2, . . . , N . One may think of
this step in terms of half-edges; to each node vi, we attach Si single half-edges
and ∆i pairs of triangle half-edges. The single half-edges are then matched
in pairs and the triangle half-edge pairs in threes by choosing a matching
uniformly at random among all possible such matchings. The process of
joining half-edges is illustrated in Figure 1. As described in Miller (2009),
the matching may be carried out as follows. Two lists of nodes, one single
degree list and one triangle degree list are created. A node with joint degree
(ks, k∆) appears ks times in the single list and k∆ times in the triangle list.
The lists are then shuffled uniformly, and the nodes on positions 2m+ 1 and
2m+ 2 in the single degree list and positions 3m+ 1, 3m+ 2 and 3m+ 3 in
the triangle degree list are matched, m ∈ N0.

v1 v2 v3

v4 v5 v6

v1 v2 v3

v4 v5 v6

Figure 1: Schematic illustration of the construction of a CMC graph. Trian-
gle half-edges (marked with a triangle) and single half-edges (marked with a
perpendicular line) are assigned to the nodes of the graph (left). The half-
edges are then matched uniformly at random (right). Note that two of the
half-edges attached to v3 are paired with each other and so form a self-loop.
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We define the total single degree as

D
(N)
S :=

N∑
i=1

Si

and the total triangle degree as

D
(N)
∆ :=

N∑
i=1

∆i.

If the total single degree (that is, the length of the single degree list) is
not even or if the total triangle edge degree (the length of the triangle degree
list) is not a multiple of three we erase a single half-edge and/or one or two
triangle half-edge pairs chosen uniformly at random. Similarly, we erase self-
loops and merge multiple edges, so that the resulting graph is simple. Under
assumption A1 (stated below) on p it holds that the number of single self-
loops and single double edges converge in distribution to independent Poisson
random variables with finite means (cf. Van der Hofstad (2016, Prop. 7.13)).

For this reason, self-loops and multiple edges are negligible in the limit as
N → ∞. In the remainder of this paper, we ignore the small differences in
the topology of the graph that arise from erasing multiple edges or self-loops.
In addition, we ignore the small differences in effective degree distribution
that arise from erasing half-edges so that the number of single and triangle
half-edges are multiples of two and three, respectively.

We make the following assumptions on p.

A1) E(∆2) <∞ and E(S2) <∞.

A2) P (max(∆, S) ≥ 2) > 0 and E(∆S) > 0.

Note that the assumption A1 implies E(∆S) < ∞. Assumption A2
ensures that the mean matrices of the approximating branching processes
(presented below) are positively regular (we say that an r × r matrix M is
positively regular if it has finite non-negative entries and for some n ∈ N all
entries of Mn are strictly positive).

2.1.1 Clustering coefficient of GN

For any undirected graph we can measure the ammount of clustering in the
network using the so-called clustering coefficient, which is defined as follows.
Let G = (V,E) be an undirected graph with node set V and edge set E.
Define

WG
∧ = {(u, v, w) ∈ V 3 : (u, v), (v, w) ∈ E}
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the set of all ordered wedges (i.e. directed paths consisting of precisely two
edges) of G and

WG
∆ = {(u, v, w) ∈ V 3 : (u, v), (v, w), (w, u) ∈ E} ⊂ WG

∧

the set of all ordered triangles of G. The clustering coefficient C(G) of G is
a measure of the degree of clustering of G and is defined as the fraction of
the ordered wedges of G that are also triangles:

C(G) =
|WG

∆ |
|WG
∧ |
.

As stated in the following proposition, CMC graphs have asymptotically
non-zero clustering as N → ∞. An analogous result for fixed degree se-

quences was presented in Newman (2009). Let
P−→ denote convergence in

probability.

Proposition 1. Let {GN}N be a sequence of CMC graphs with independent
degrees drawn from p. If p satisfies assumption A1 then

C(GN)
P−→ E(2∆)

E((2∆ + S)2)− E(2∆ + S)
. (1)

The proof is presented in the Appendix.

2.1.2 Downshifted size-biased degrees

The graph GN may be constructed by joining the half-edges in a random
order. In particular, GN may be constructed as the epidemic progresses;
starting with the initial infected case we sequentially match the half-edges
along which the disease is transmitted. Since half-edges are chosen uniformly
at random in the matching procedure, the probability to choose a specific
node is proportional to the number of free half-edges attached to the node in
question. That is, if we pair a single half-edge, the probability of choosing a
specific node with ks unpaired single half-edges is proportional to ks. For this
reason, the degree distribution a node explored by joining a single half-edge
in the early phase of the epidemic can be approximated by the single size
biased degree distribution p(s)

p(s)(ks, k∆) =
ksp(ks, k∆)

E(S)
. (2)
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Similarly, the degree distribution of the nodes explored by joining three
triangle half-edge pairs in the early phase of the epidemic can be approxi-
mated by the triangle size biased degree distribution p(∆)

p(∆)(ks, k∆) =
k∆p(ks, k∆)

E(∆)
. (3)

In the epidemic process, we need to account for the fact that an infected
individual has at least one non-susceptible neighbor (namely the direct source
of its infection). For this reason, we introduce the downshifted size biased
degree distributions p(s)

• and p(∆)
• , given by

p(s)
• (ks, k∆) = p(s)(ks + 1, k∆)

p(∆)
• (ks, k∆) = p(∆)(ks, k∆ + 1).

(4)

Throughout, we will make frequent reference to the following random
vectors

(S(s)
• ,∆(s)

• ) ∼ p(s)
•

(S(∆)
• ,∆(∆)

• ) ∼ p(∆)
•

(5)

and the expected values

E(S(s)
• ) =

E(S2)

E(S)
− 1

E(S(∆)
• ) =

E(S∆)

E(∆)
.

E(∆(s)
• ) =

E(S∆)

E(S)

E(∆(∆)
• ) =

E(∆2)

E(∆)
− 1

(6)

2.2 The epidemic model

We use an SIR model to investigate the dynamics of the spread of the dis-
ease. At any given time point, the population is divided into three groups,
depending on health status. The groups are susceptible (S), infectious (I)
and recovered (R) (see e.g. Britton (2010)). Individuals of the population
make contact with other individuals at (possibly random) points in time.
If, at some time point, an infectious individual contacts a susceptible indi-
vidual then the susceptible individual instantaneously becomes infectious.
An infectious individual will cease to be contagious after a period of time,
which we call the infectious period of the individual in question, and is then
transferred to the recovered group. Recovered individuals are those that are
immune to the disease. Individuals belonging to this group play no further
role in the spread of the disease. Because of this last observation, we can
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treat individuals that die because of the disease as “recovered”. In summary,
we allow only the transitions S → I and I → R. Note that the population
is assumed to be closed; we ignore births, deaths and migration.

More specifically, we consider an SIR epidemic in a generation framework
on the clustered graph GN and assume heterogeneity in infectivity. That is,
some infected individuals are more contagious than others. Such heterogene-
ity may, for instance, arise from variability in the infectious period. To this
end, let T be a random variable with support in [0, 1], and let {Ti}Ni=1 be a
sequence of independent copies of T . Each node vi of GN is equipped with a
transmission weight Ti. If vi gets infected, then each susceptible neighbor of
vi gets infected by vi independently in the next generation with probability
Ti (conditioned on {Ti}i). Node vi thereafter becomes recovered, playing no
further role in the epidemic. An infected node transmits the disease inde-
pendently of the transmissions from other infected nodes. An infected node
does not, however, transmit the disease to its neighbors independently, unless
the distribution of T is degenerate. Conditioned on the transmission weights
{Ti}i and the structure of GN , the number of neighbors that an infected node
vi makes (potentially infectious) contact with while infectious has a binomial
distribution with parameters di and Ti, where di is the degree of vi.

The spread of this epidemic can be fully captured by a directed graph
(see e.g. (Pellis et al. 2012)). To construct such directed graph from an
undirected CMC graph GN , we replace each undirected edge of GN by two
parallel directed edges, pointing in the opposite direction. The weight of an
edge (vi, vj), which represents the (potential) transmission time from vi to vj,
is taken to be 1 if vi would make infectious contact with vj if infected, and∞
otherwise. The individuals ultimately infected are then the individuals that
can be reached from an initial case by following a path consisting of directed
edges with finite edge weights.

2.3 Reproduction numbers

A key quantity in the study of epidemics is the basic reproduction num-
ber, often denoted by R0. It is usually defined as the expected number of
infected cases caused by a “typical” infected individual in an otherwise sus-
ceptible population. For most stochastic epidemic models (including SIR
epidemics in homogeneous mixing propulations (Britton 2010), populations
with households (Ball et al. 2016) and epidemics on networks (Britton et al.
2007)) it has the threshold property that a major outbreak is possible if and
only if R0 > 1. For models where a suitable generation based branching
process approximation is available, R0 is usually defined as the Perron root
(the dominant eigenvalue, which exists and is real-valued by assumptions A1
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and A2, see for instance Varga (2009, Chapter 2)) of the mean matrix of the
approximating Galton Watson branching process. This is the definition used
in this article. By standard branching process theory, the interpretation of
R0 as the expected number of cases caused by the typical individual in the
early phase of the epidemic and its threshold properties are retained by this
definition. The threshold property of R0 is made precise in Theorem 1 below.

In Section 4, we investigate the spread of an epidemic in a population with
vaccination. To this end, in addition to the basic reproduction number R0, we
consider the perfect vaccine-associated reproduction number RV . A vaccine
is perfect if it provides full and permanent immunity. That is, an individual
vaccinated with a perfect vaccine cannot contract the disease. The perfect
vaccine-associated reproduction number RV is defined as (Ball et al. 2016)

RV =
1

1− f (c)
v

, (7)

where the critical vaccination coverage f (c)
v is the fraction of the population

that has to be vaccinated with a perfect vaccine in order to reduce R0 to
unity, if the vaccinated individuals are chosen uniformly at random. That is
to say, f (c)

v = 1− 1/RV is the fraction necessary to vaccinate in order to be
guaranteed to prevent a major outbreak (Britton 2010). Note that if R0 ≤ 1
then f (c)

v = 0.
For many models, including epidemics on graphs generated by the CM

(Britton et al. 2007) and the standard stochastic SIR epidemic model (i.e.
individuals mix homogeneously, see for instance Britton (2010)), RV = R0.
That is, vaccinating a fraction 1−1/R0 of the population with a perfect vac-
cine is sufficient to surely prevent a major outbreak. On the other hand, for
the households and households-workplaces model with uniform vaccination,
RV ≥ R0 (Ball et al. 2016) with strict inequality possible. In Section 4.1 we
show that for the model analyzed in this report, RV = R0.

2.3.1 Epidemics in continuous time - the rank based approach

As mentioned above, heterogeneity in infectivity might arise from heterogene-
ity in the infectious period; an important special case of the above described
model is epidemics in continuous time with random infectious periods where
contacts between individuals take place according to point processes on R≥0.
Ignoring the real time-dynamics of an epidemic does not impact results that
concern the final outcome of the epidemic. This result was first presented
by Ludwig (1975), see also Pellis et al. (2008) for a more recent discussion.
This leads us to the often more tractable rank based approach.
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In order to define the rank of a vertex, denote the initial case by v∗. The
rank of a node v in GN is the distance from v∗ to v, if every edge along
which the disease would be transmitted is assigned the edge weight 1, and
every other edge is assigned the edge weight ∞. That is, the rank of v is
the smallest number of directed edges that have to be traversed in order to
follow a path of (potential) transmission from v∗ to v. We may then analyze
the spread of the disease by letting generation n of the epidemic process
consist of the individuals of rank n. If, for instance, v1 is the first node in
a triangle consisting of the nodes v1, v2, v3 to be infected, and v1 infects v2

and thereafter attempts to infect v3, then v3 is attributed to v1 regardless of
whether v1 or v2 infected v3. This is illustrated in Figure 2.

Consider a continuous time epidemic formulated as follows. Suppose that
each infected individual remains infectious for a (random) period of time.
The infectious periods are distributed as the random variable τ , τ ∼ F , and
independent (but identically distributed) for different nodes. Suppose further
that a node makes contact with each neighbor independently at a Poisson
rate β while infected, and that susceptible individuals are fully susceptible,
so that each infectious-susceptible contact results in transmission. Without
loss of generality we may assume β = 1, since we may rescale time (and F
accordingly). The transmission weight T is then distributed as 1− e−τ , and
E(T ) = 1−L(1) and E(T (1−T )) = L(1)−L(2) where L(z) =

∫
R+
e−zxdF (x)

is the Laplace transform of the infectious period.

u

w

v2

v1

v3

4.892.22

1.64

∞1.21

2.25

u

w

v1

v2 v3

Figure 2: The difference between rank based generations and true genera-
tions. Left: The length of the path v1 → v3 (i.e. the transmission time from
v1 to v3) is 4.89 and exceeds the length 2.22 + 1.64 of the path v1 → v2 → v3.
Therefore, the true path of transmission is u → w → v1 → v2 → v3. In the
rank based approach, however, v3 is attributed to v1. Right: The resulting
rank generation tree.
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2.4 Branching process approximations

To analyze the spread of the disease in the early stages of the epidemic, we
employ a multi-type branching process approximation. The graph GN may
be constructed by joining the half-edges in any suitable (possibly random)
order. In particular, the graph GN may be constructed (or explored) as the
epidemic progresses; starting with the initial infected case u∗ we sequentially
match the half-edges along which the disease is transmitted. In the early
phase of the epidemic, short cycles (except for the triangles formed by triangle
edges) are unlikely to occur. For these reasons, the early spread of the disease
is well approximated by a suitably chosen branching process.

Similarly, a branching process approximation can be used to approximate
the expected final size of the epidemic (Ball et al. 2009, 2010, 2014). In the
graph representation of an epidemic, an individual contracts the disease if
and only if there is a path of directed edges with finite edge weights from the
initial case to the node representing the individual in question.

Define the susceptibility set S(v) = SN(v) of a node v as the collection
of nodes of GN that can be reached from v by tracing a path of finite length
backwards. That is, the individuals that contract the disease are precisely
the individuals with susceptibility sets that contain an initial case. Hence,
if the initial case is chosen uniformly at random then the probability that a
node v contracts the disease is proportional to the size of its susceptibility
set S(v) and this probability can be approximated by exploring S(v). Figure
(3) shows a schematic illustration of a susceptibility set.

v1

v2

v3

v4 v5 v6

v7

v8

v9

Figure 3: Graph representation of an epidemic in a small (N = 9) population.
The gray dashed and black solid edges have infinite and finite edge weights
(transmission times), respectively. The nodes in the susceptibility set of v5,
S(v5) = {v1.v2, v3, v5, v7}, are enclosed by the blue dotted line. The nodes
that v5 would infect if infected, directly or through other nodes, are enclosed
by the orange dashed line.
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By reversing the direction of the edges of the graph representation of an
epidemic, but keeping the weights, the expected final fraction of the popula-
tion infected in a major outbreak and the probability of a major outbreak are
interchanged (Miller 2008), provided that the initial case is chosen uniformly
at random. The process so obtained is called the backward epidemic process
of the node v. If the underlying epidemic model is such that the backward
epidemic process can be well approximated by a branching process, then we
can use this branching process to compute the asymptotic distribution of the
proportion of the population that ultimately escapes infection. This is made
precise in the following theorem, due to Ball et al. (2014, Theorem 3.5), who
proved the theorem for the related model of random intersection graphs. The
statement of Theorem 1 carries over to the forward and backward branching
processes considered in this paper. We omit the proof, which is analogous to

the proof presented in Ball et al. (2014), see also Ball et al. (2009). Let
d→

denote convergence in distribution.

Theorem 1. Let q and qb be the extinction probabilities of the forward
and backward approximating branching processes respectively, and let SN
be the proportion of the population that ultimately escapes an epidemic in
a population of size N . Then

SN
d→ S

as N →∞ where P (S = 1) = 1− P (S = qb) = q.

In other words, in the limit of large population sizes, the epidemic “takes
off” with probability 1 − q, and if this happens a fraction 1 − qb of the
population is ultimately infected (with probability converging to 1 as N →
∞). Note that since R0 is defined as the Perron root of the mean matrix of
the forward branching process, q < 1 if and only if R0 > 1.

3 An epidemic in a fully susceptible popula-

tion

We now have the tools to analyze the spread of an infectious disease on a
graph generated by the CMC. In the present section, the population is as-
sumed to be fully susceptible to the disease, apart from the initially infectious
individuals.

12



3.1 Forward process

Before analyzing the forward process, we need to set some terminology. For a
given triangle u, v, w, where u is the first individual to be infected in the tri-
angle u, v, w, we refer to v and w as twins. We approximate the spread of the
disease during the early phase by a multi-type branching process consisting
of the following three types (except for the initial case):

Type 1: A node infected along a triangle whose twin is infected at the same
time step or earlier

Type 2: A node infected along a triangle edge that is not of type 1

Type 3: A node infected along a single edge

Figure 4 shows three examples of possible paths of transmission within a
triangle giving rise to type 1 and 2 individuals in the approximating branching
process.

v2

v1

v3 v2

v1

v3 v2

v1

v3

Figure 4: Three examples of possible paths of transmission in a triangle
v1, v2, v3, where v1 is the first node to be infected. Left: v1 infects both v2 and
v3. Both v2 and v3 are represented by type 1 individuals in the approximating
branching process. Center: v1 infects v2 and v2 infects v3. Then v3 and v2 are
represented by type 1 and type 2 individuals, respectively. Right: v1 infects
v2. Then v2 is represented by a type 2 individual.

Denote by

Mf = (mij)
3
i,j=1 =

m11 m12 m13

m21 m22 m23

m31 m32 m33


the mean matrix of the above described branching process. Suppose that v1

is the first individual to be infected in the triangle v1, v2, v3. The probability
that v1 transmits the disease both to v2 and v3 is E(T 2). Similarly, the
probability that v1 transmits the disease to either v2 or v3, but not to both,
is 2E(T (1− T )).

Thus, by linearity of expectation and because the distribution of the
susceptible neighbors of infected nodes in the early phase of the epidemic is
given by the downshifted degree distributions in (4), we obtain
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Mf =



2E(T 2)E(∆(∆)
• ) 2E(T (1− T ))E(∆(∆)

• ) E(T )E(S(∆)
• )

2E(T 2)E(∆(∆)
• ) + E(T ) 2E(T (1− T ))E(∆(∆)

• ) E(T )E(S(∆)
• )

2E(T 2)E(∆(S)
• ) 2E(T (1− T ))E(∆(S)

• ) E(T )E(S(S)
• )


.

(8)
(Recall that the random variables ∆(∆)

• , ∆(s)
• , S(∆)

• and S(s)
• defined in (5)

have the downshifted size biased distributions). Note that all entries of Mf

are finite and that S and ∆ both have finite second moments by assumption
A1.

If Mf is positively regular (see the last paragraph in Section 2.1) then R0

is given by the Perron root of Mf . With little effort, one can use the expected
values provided in (6) to show that necessary and sufficient conditions for
Mf to be positively regular are that assumptions A1-A2 hold and that 0 <
E(T ) < 1. If some of these conditions are not satisfied, we may analyze the
spread of the disease by reducing the number of types of the approximating
forward branching process.

3.1.1 Probability of a major outbreak

For two s-dimensional vectors ā = (a1, . . . , as)
T and b̄ = (b1, . . . , bs)

T, we
define

ā b̄ := ab11 · . . . · abss .
Let f : [0, 1]3 → R3 be the probability generating function of the offspring
distribution of the three types in the approximating branching process. That
is, for z̄ = (z1, z2, z3)T ∈ [0, 1]3 the ith component of f(z̄) is given by

f(z̄)i = E
(
z̄ ξ̄i
)

(9)

where ξ̄i = (ξi,1, ξi,2, ξi,3) is distributed as the offspring of a type i individual,
i = 1, 2, 3.

Similarly, let f∗ : [0, 1]3 → R be the probability generating function of the
offspring distribution of the initial case. If ξ̄ = (ξ∗,1, ξ∗,2, ξ∗,3)T is distributed
as the offspring of the initial case, then f∗ is given by

f∗(z̄) = E
(
z̄ ξ̄
)
.
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For i = 1, 2, 3, let (S(i),∆(i)) be the joint degree of a type i case with
offspring (ξi,1, ξi,2, ξi,3) and transmission weight T . That is,

(S(1),∆(1))
d
= (S(2),∆(2))

d
= (S(∆),∆(∆))

and
(S(3),∆(3))

d
= (S(s),∆(s)).

Here
d
= denotes equality in distribution. By conditional independence we

have

E(z
ξi,1
1 z

ξi,2
2 z

ξi,3
3 ) = E

(
E(z

ξi,3
3 |T, S(i),∆(i))E(z

ξi,1
1 z

ξi,2
2 |T, S(i),∆(i))

)
.

Conditioned on the transmission weight T and the single degree S(1), ξ1,3 has
a binomial distribution with parameters S(1) and T . Thus

E(z
ξ1,3
3 |T, S(1),∆(1)) =

∑
k0+k1=S(1)

(
S(1)

k1

)
(Tz3)k1(1− T )k0

=(Tz3 + 1− T )S
(1)

.

Similarly

E(z
ξ1,1
1 z

ξ1,2
2 |T, S(1),∆(1))

=
∑

k0+k1+k2=∆(1)−1

(
∆(1) − 1

k0, k1, k2

)
(1− T )2k0(2(1− T )Tz2)k1(Tz1)2k2

= ((1− T )2 + 2T (1− T )z2 + T 2z2
1)∆(1)−1.

Thus

E(z
ξ1,1
1 z

ξ1,2
2 z

ξ1,3
3 )

= E((Tz3 + 1− T )S
(∆)
• ((1− T )2 + 2T (1− T )z2 + T 2z2

1)∆
(∆)
• )

(10)

where (∆(∆)
• , S(∆)

• ) is independent of T .
Since the conditional offspring distribution of a type 2 individual is iden-

tical to the offspring distribution of a type 1 individual except that a type 2
individual may give birth to one additional type 1 individual with probability
T , we have

E(z
ξ2,1
1 z

ξ2,2
2 z

ξ2,3
3 )

= E((Tz3 + 1− T )S
(∆)
• ((1− T )2 + 2T (1− T )z2 + T 2z2

1)∆
(∆)
• (Tz1 + 1− T )).

(11)
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Similarly,

E(z
ξ3,1
1 z

ξ3,2
2 z

ξ3,3
3 )

= E((Tz3 + 1− T )S
(s)
• ((1− T )2 + 2T (1− T )z2 + T 2z2

1)∆
(s)
• ).

(12)

Substituting (10)-(12) into (9) gives an expression for f .
By standard branching process theory, ifR0 > 0 the extinction probability

of a process descending from a type i individual, i = 1, 2, 3, is given by qi,
where q̄ = (q1, q2, q3)T is the unique solution of q̄ = f(q̄) in [0, 1)3. We also
have

q̄ = lim
n→∞

f ◦n(0̄), (13)

where f ◦n is the composition of f with itself n times.
Since the approximating branching process dies out if and only if each of

the processes started by the children of the initial case die out, the probability
of extinction is given by f ∗(q̄). After some calculations, analogous to the
calculations that led to (10)-(12), we find that the probability of extinction
is given by

f∗(q̄) = E
(
(Tq3 + 1− T )S((1− T )2 + 2T (1− T )q2 + T 2q2

1)∆
)

where (S,∆) is independent of T . We conclude that, by Theorem 1, the
probability of a major outbreak is given by 1− f ∗(q̄), where q̄ is the limit in
(13).

3.2 Backward process

Let w be a given node of GN , chosen uniformly at random. We use a back-
ward branching process to approximate the probability that w contracts the
disease, which by an exchangeability argument equals the expected final size
of a major outbreak. The offspring of an individual v in the backward pro-
cess are the individuals that would potentially have infected v, if they were
infected themselves.

The members of the susceptibility set are divided into the following two
groups. This gives rise to a two-type approximating backward branching
process.

Type 1: The vertex is included in the susceptibility set by virtue of potential
transmission along a single edge

Type 2: The vertex is included in the susceptibility set by virtue of potential
transmission along a triangle edge
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We assign kinship as follows. The children of type 1 of an individual v1 are
the individuals included in the susceptibility set due to potential transmission
along a single edge. The children of type 2 of v1 are the individuals included
in the susceptibility set due to potential transmission of the disease to v1,
within a triangle of which v1 is a member. We note that, given a triangle
v1, v2, v3 where v1 is the primary case, both v2 and v3 will be members of
the susceptibility set of v1 by virtue of transmissions within the triangle if at
least one of the following events happens:

E1) v2 and v3 both “infects” v1

E2) v2 infects v1 and v3 “infects” v2

E3) v3 infects v1 and v2 “infects” v3

Here “infects” is conditional on the “infector” being infected during the epi-
demic.

The events E1-E3 are illustrated in Figure (5).

v2

v1

v3 v2

v1

v3 v2

v1

v3

Figure 5: The individuals v2 and v3 are both in the susceptibility set S(v1)
of v1 by virtue of transmission within the triangle v1, v2, v3 if and only if at
least one of the events E1 (left), E2 (center) or E3 (right) happens.

Standard calculations give that the probability of the union of the events
E1-E3 is given by p2 = 3E(T )2−2E(T )E(T 2). Similarly, the probability that
neither v1 nor v2 will be members of the susceptibility set of v by transmis-
sions within the triangle is given by p0 = (1− E(T ))2. For later use, denote
1− p0 − p2 by p1.

3.2.1 Expected final size of a major outbreak

Let b be the probability generating function of the offspring distribution of the
two types of the approximating backward branching process. Furthermore,
let b∗ be the probability generating function of the offspring distribution of
the ancestor w. Analogously to the forward branching process, the probabil-
ity that the bloodline started by a type i, i = 1, 2, individual will become
extinct is given by qbi , where q̄b = (qb1, q

b
2)T is the unique solution of q̄b = b(q̄b)

in [0, 1)2 (recall R0 > 1). The probability of extinction is given by b∗(q̄b).
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Proceeding in the same manner as in Section 3.1.1 yields

b(z1, z2)1 = E
(

(E(T )z1 + 1− E(T ))S
(s)
• (p0 + p1z2 + p2z

2
2)∆

(s)
•

)
where p0, p1 and p2 are as in Section 3.2. Similarly

b(z1, z2)2 = E
(

(E(T )z1 + 1− E(T ))S
(∆)
• (p0 + p1z2 + p2z

2
2)∆

(∆)
•

)
,

and the probability of ultimate extinction of the backward process is given
by

b∗(q̄b) = E
(
(E(T )qb1 + 1− E(T ))S(p0 + p1q

b
2 + p2(qb2)2)∆

)
.

We conclude that the expected final size of a major outbreak is given by
1− b∗(q̄b).

4 Vaccination

4.1 Random vaccination with a perfect vaccine

Assume that a fraction fv < 1 of the population is vaccinated, and that the
vaccinated individuals are chosen uniformly at random (without replacement)
from the population. The vaccine is perfect, in the sense that a vaccinated
individual gains full and lasting immunity to the disease. If the population
size N is large, we may use a slightly different model, where each individual
is vaccinated with probability fv, independently of the vaccination status of
other individuals. By the law of large numbers, for our purposes the models
are equivalent in the limit as the population size N →∞.

As before, we may approximate the early phase of the epidemic by a multi-
type branching process. The individuals of the approximating branching
process are now of the following three types.

Type 1: Infected along a triangle edge and has a twin that is known not to
be susceptible

Type 2: Infected along a triangle edge and has a twin that might be suscep-
tible

Type 3: Infected along a single edge
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To clarify the types, assume that in the early phase of the epidemic v1

is the primary case in the triangle v1, v2, v3. If v1 attempts to transmit
the disease both to v2 and v3 and succeeds (that is, none of v2 and v3 are
vaccinated) then both v2 and v3 are represented by type 1 individuals in the
approximating branching process. This happens with probability

E(T 2)(1− fv)2. (14)

If v1 attempts to transmit the disease both to v2 and v3, but only succeeds to
transmit the disease to v3 (that is, v2 is vaccinated and v3 is not vaccinated),
then in the approximating branching process the individual representing v1

gives birth to one type 1 individual (representing v3) within the triangle
v1, v2, v3. This happens with probability

E(T 2)fv(1− fv). (15)

If v1 attempts to transmit the disease only to v2 and succeeds (that is, v2 is
not vaccinated) then in the approximating branching process, the individual
representing v1 gives birth to one type 2 individual (representing v2) within
the triangle v1, v2, v3. This happens with probability

E(T (1− T ))(1− fv). (16)

The above described events are illustrated in Figure 6.

v2

v1

v3 v2

v1

v3 v2

v1

v3

Figure 6: Three examples of transmission dynamics within a triangle
v1, v2, v3. An attempted transmission of the disease is represented by an
arrow, an attempted transmission to a vaccinated individual is represented
by an arrow and a blue bar. Left: v1 attempts to transmit the disease both
to v2 and v3, and succeeds. Both v2 and v3 are represented by type 1 in-
dividuals in the approximating branching process. Center: v1 attempts to
transmit the disease both to v2 and v3, the transmission to v2 is blocked since
v2 is vaccinated. Then v3 is represented by a type 1 individual. Right: v1

succeeds to transmit the disease to v2, but does not attempt to infect v3.
Then v2 is represented by a type 2 individual.

Denote the mean matrix of the approximating branching process byM
(v)
f =

(m
(v)
i,j )3

i,j=1. Using the expressions in (14) and (15) gives the expected number
of type 1 individuals produced by a type 1 individual
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m
(v)
1,1 =

(
2(1− fv)2E(T 2) + 2(1− fv)fvE(T 2)

)
E
(
∆(∆)
•

)
= (1− fv)2E(T 2)E(∆(∆)

• )

= (1− fv)m1,1

where m1,1 is an element of the mean matrix Mf of the forward branching
process presented in (8).

Proceeding in the same fashion, we obtain the elements of the mean
matrix M

(v)
f = (m

(v)
i,j )3

i,j=1 of the branching process with random vaccination.
It turns out that

M
(v)
f = (1− fv)Mf .

It is readily verified that the Perron root of M
(v)
f is

r
(v)
f = (1− fv)rf , (17)

where rf is the Perron root of Mf . Setting r
(v)
f to 1 in (17) and solving for

fv yields the critical vaccination coverage f (c)
v = 1− 1/rf .

We conclude that, for this particular graph model, equality holds be-
tween the basic reproduction number R0 and the perfect vaccine-associated
reproduction number RV as defined in (7).

4.1.1 Probability of a major outbreak

Let h be the probability generating function of the offspring distribution of
the three types in our model including vaccination. As in Section 3.1.1, we
use the probability generating function to approximate the probability of
extinction of the epidemic. To this end, let (ζi,1, ζi,2, ζi,3) be distributed as
the offspring of a type i individual with transmission weight T , i = 1, 2, 3,
and let (S(i),∆(i)) be distributed as the joint degree of this individual. That
is,

(S(1),∆(1))
d
= (S(2),∆(2))

d
= (S(∆)

◦ ,∆(∆)
◦ )

and
(S(3),∆(3))

d
= (S(s)

◦ ,∆(s)
◦ ).

Note that (S(i),∆(i)) and T are independent.
By conditional independence

E
(
z
ζ1,1
1 z

ζ1,2
2 z

ζ1,3
3

)
= E

(
E
(
z
ζ1,3
3 |S(1),∆(1), T

)
E
(
z
ζ1,1
1 z

ζ1,2
2 |S(1),∆(1), T

))
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for z̄ = (z1, z2, z3)T ∈ [0, 1]3.
Conditioned on the transmission weight T and the joint degree (S(1),∆(1)),

the number of attempted transmissions from a type 1 individual along sin-
gle edges has a binomial distribution with parameters S(1) and T , and each
attempted transmission succeeds with probability (1− fv). Thus,

E
(
z
ζ1,3
3 |S(1),∆(1), T

)
=

∑
k0+k1=S(1)

(
S(1)

k1

)
zk1

3

(
T (1− fv)

)k1
(
(1− T ) + Tfv

)k0

=
(
T (1− fv)z3 + 1− T + Tfv

)S(1)

.

(18)

Similarly, for a type 1 individual w with triangle degree ∆(1), by con-
ditioning on the number of attempted transmissions (in ki of the ∆(1) − 1
triangles that are not yet affected by the disease, w attempts to transmit
the disease to i individuals, i = 0, 1, 2) and the vaccination status of the
individuals contacted by w we obtain
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E(z
ζ1,1
1 z

ζ1,2
2 |S(1),∆(1), T )

=
∑

k0+k1+k2=∆(1)−1

(
∆(1) − 1

k0, k1, k2

)
(1− T )2k0

(
2T (1− T )

)k1

T 2k2

 ∑
k̃0+k̃1+k̃2=k2

(
k2

k̃0, k̃1, k̃2

)(
(1− fv)z1

)2k̃2
(
2fv(1− fv)z1

)k̃1

f 2k̃0
v


 ∑
k′0+k′1=k1

(
k1

k′0, k
′
1

)
(1− fv)k

′
1z
k′1
2 f

k′0
v



=
∑

k0+k1+k2=∆(1)−1

(
∆(1) − 1

k0, k1, k2

)
(1− T )2k0

(
2T (1− T )

)k1

T 2k2

((
(1− fv)z1

)2
+ 2fv(1− fv)z1 + f 2

v

)k2

(
(1− fv)z2 + fv

)k1

=
[
(1− T )2 + 2T (1− T )

[
(1− fv)z2 + fv

]
+ T 2

[(
(1− fv)z1)2 + 2fv(1− fv)z1 + f 2

v

]]∆(1)−1

.

(19)

Combining (18) and (19) yields

E
(
z
ζ1,1
1 z

ζ1,2
2 z

ζ1,3
3

)
= E

[(
T (1− fv)z3 + 1− T + Tfv

)S(∆)
•

(
(1− T )2 + 2T (1− T )

(
(1− fv)z2 + fv

)
+ T 2

((
(1− fv)z1

)2
+ 2fv(1− fv)z1 + f 2

v

))∆
(∆)
•
]
.

(20)

By noting that the offspring distribution of a type 2 individual is identical
to the offspring distribution of a type 1 individual, except that a type 2 may
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give birth to one additional type 1 individual with probability T (1− fv) we
obtain

E
(
z
ζ2,1
1 z

ζ2,2
2 z

ζ2,3
3

)
= E

[(
T (1− fv)z3 + 1− T + Tfv

)S(∆)
•

(
(1− T )2 + 2T (1− T )

(
(1− fv)z2 + fv

)

+ T 2
((

(1− fv)z1

)2
+ 2fv(1− fv)z1 + f 2

v

))∆
(∆)
•

(
z1T (1− fv) + 1− T (1− fv)

)]
.

(21)

Similarly,

E
(
z
ζ3,1
1 z

ζ3,2
2 z

ζ3,3
3

)
= E

[(
T (1− fv)z3 + 1− T + Tfv

)S(s)
•

(
(1− T )2 + 2T (1− T )

(
(1− fv)z2 + fv

)

+ T 2
(((

(1− fv)z1)2 + 2fv(1− fv)z1 + f 2
v

))∆
(s)
•
]
.

(22)

Combining these results yields the probability generating function h of
the offspring distribution of a type 1, 2, 3 individual respectively. That is,
h(z̄)1 is given by (20), h(z̄)2 is given by (21) and h(z̄)3 is given by (22).

The probability generating function h∗ of the initial case is given by

h∗(z̄) =E(z
ζ∗,1
1 z

ζ∗,2
2 z

ζ∗,3
3 )

=E

[(
T (1− fv)z3 + 1− T + Tfv

)S
(

(1− T )2 + 2T (1− T )
(
(1− fv)z2 + fv

)
+ T 2

((
(1− fv)z1

)2
+ 2fv(1− fv)z1 + f 2

v

))∆
]
.

(23)

for z̄ = (z1, z2, z3)T ∈ [0, 1]3, where (S,∆) is distributed as the joint degree
of the initial case and independent of T . The probability of extinction of the
approximating branching process is given by h∗(q̄ (v)), where q̄ (v) is given by
the point in [0, 1]3 closest to the origin that satisfies q̄ (v) = h(q̄ (v)). Thus,
by Theorem 1 the probability of a major outbreak is 1− h∗(q̄ (v)).
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4.1.2 The backward process

We now turn our attention to the backward process and final size of an epi-
demic in a population where a fraction fv is vaccinated with a perfect vaccine.
To this end, we introduce the following three types, where individuals are
classified by their vaccination status and the type of the edge along which
they would transmit the disease if infected.

Type 1: Transmits along triangle edge, no information on vaccination status
is available

Type 2: Transmits along triangle edge and is known not to be vaccinated
since it is successfully infected by its twin

Type 3: Transmits along single edge, no information on vaccination status
is available

To clarify the types a bit more, let v1, v2, v3 be a given triangle. At least
one of v2 and v3 belongs to the susceptibility set of v1 by virtue of potential
transmissions within the triangle if some the following events, illustrated in
Figure 7, happens. Note that all cases infected by virtue of transmission
within the triangle v1, v2, v3 are attributed to v1.

E1) v2 attempts to infect v1 and v3 attempts to infect v2, both succeed,
and v3 does not attempt to infect v1. Or the same thing might
happen, with v2 and v3 interchanged. This results in one type 1
and one type 2 individual in the approximating branching process.
If v1 is represented by a type 1 or 3 individual this happens with
probability

2
(
1− fv

)2
E(T )E

(
T (1− T )

)
,

if v1 is represented by an individual of type 2 this happens with
probability

2(1− fv)E(T )E
(
T (1− T )

)
.

E2) Only one of v2 and v3 attempts to infect v1, and succeeds. The other
node does not attempt to infect any node within the triangle. This
results in one type 1 offspring. If v1 is represented by an individual
of type 1 or 3 this happens with probability

2(1− fv)E(T )E
(
T (1− T )

)
,
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if v1 is represented by an individual of type 2 this happens with
probability

2E(T )E
(
T (1− T )

)
.

E3) v2 and v3 both attempt to infect v1 and succeeds. This results in two
type 1 individuals born in the approximating branching process. If
v1 is represented by an individual of type 1 or 3 this happens with
probability

(1− fv)E(T 2),

if v1 is represented by an individual of type 2 this happens with
probability

E(T 2).

E4) v2 attempts to infect v1 and succeeds. The other node, v3, attempts
to infect v2, but fails due to v2 being vaccinated. The individual
v3 does not attempt to infect v1. In this scenario, v2 belongs to
the susceptibility set of v1. However, we do not include v2 is the
approximating branching process. This does not have any impact
on the result of our analysis, since we are only interested in the
probability of extinction of the backward process and v2 does not
produce any offspring in this process.

v2

v1

v3 v2

v1

v3 v2

v1

v3 v2

v1

v3

Figure 7: At least one of v2 and v3 will belong to the susceptibility set of
v1 by virtue of potential transmissions within the triangle if some of the
following types of scenarios (left to right in the picture) occur: E1, E2, E3,
E4. An attempted transmission of the disease is represented by an arrow,
an attempted transmission to a vaccinated individual is represented by an
arrow and a blue bar.
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4.1.3 Expected final size

Let b(v) and b
(v)
∗ be the probability generating function of the offspring distri-

bution of the three types of the approximating backward branching process
and of the ancestor, respectively. Furthermore, let ζ̄i = (ζbi,1, ζ

b
i,2, ζ

b
i,3) be dis-

tributed as the offspring of a type i, i = 1, 2, 3, individual and denote by Es
the conditional expectation given that the parent of ζbi,1, ζ

b
i,2, ζ

b
i,3 is suscep-

tible. Let further ζ̄∗ = (ζb∗,1, ζ
b
∗,2, ζ

b
∗,3) be distributed as the offspring of the

ancestor. Denote the extinction probability of a process descending from a
type i individual by qbi , i = 1, 2, 3 and let q̄b = (qb1, q

b
2, q

b
3)T.

To find an expression for b(v), we first note that for z̄ = (z1, z2, z3)T

E
(
z̄ ζ̄3
)

= fv + (1− fv)Es

(
Es

(
z
ζb3,3
3 |S(3),∆(3)

)
Es

(
z
ζb3,1
1 z

ζb3,2
2 |S(3),∆(3)

))
(24)

where, as before, (S(i),∆(i)) is distributed as the joint degree of a type i
individual, i = 1, 2, 3.

Now

Es
(
z
ζ3,3
3 |S(3),∆(3)

)
=

∑
k0+k1=S(3)−1

(
S(3) − 1

k0, k1

)
zk1

3 E(T )k1E(1− T )k0

=
(
E(T )z3 + 1− E(T )

)S(3)−1
.

(25)

By conditioning on the number of triangles k2 in which an event of type E3

occurs, the number of triangles ka1 in which an event of type E1 occurs, the
number of triangles kb1 in which an event of type E4 occurs and the number
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of triangles kc1 in which an event of type E2 occurs we obtain

Es(z
ζ3,1
1 z

ζ3,2
2 |S(3),∆(3))

=
∑

k0+ka1+kb1+kc1+k2=∆(3)

(
∆(3)

k0, ka1 , k
b
1, k

c
1, k2

)
E(1− T )2k0

(
2E(T )E

(
T (1− T )

)
(1− fv)

)ka1
(

2E(T )E
(
T (1− T )

)
fv

)kb1(
2E(T )E

(
(1− T )2

))kc1
E(T )2k2z

ka1
2 z

ka1+kc1+2k2

1

=
((
E(1− T )

)2
+ 2E

(
T
)
E
(
T (1− T )

)
(1− fv)z2z1 + 2E(T )E

(
T (1− T )

)
fv

+ 2E(T )E
(
(1− T )2

)
z1 + E(T )2z2

1

)∆(3)

.

(26)

Inserting the right hand sides of (25) and (26) in (24) gives

E(z
ζ3,1
1 z

ζ3,2
2 z

ζ3,3
3 )

= fv + (1− fv)E

[(
E(T )z3 + 1− E(T )

)S(s)
•

((
E(1− T )

)2
+ 2E(T )E

(
T (1− T )

)
(1− fv)z1z2

+ 2E(T )E
(
T (1− T )

)
fv

+ 2E(T )E
(
(1− T )2

)
z1 + E(T )2z2

1

)∆
(s)
•
]
.

(27)
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Similarly

E(z
ζ2,1
1 z

ζ2,2
2 z

ζ2,3
3 ) = E

[(
E(T )z3 + 1− E(T )

)S(∆)
•

((
E(1− T )

)2
+ 2E(T )E

(
T (1− T )

)
(1− fv)z1z2

+ 2E(T )E
(
T (1− T )

)
fv

+ 2E(T )E
(
(1− T )2

)
z1 + E(T )2z2

1

)∆
(∆)
•
]
.

(28)

and

E(z
ζ1,1
1 z

ζ1,2
2 z

ζ1,3
3 ) = fv + (1− fv)E(z

ζ2,1
1 z

ζ2,2
2 z

ζ2,3
3 ). (29)

Combining these results yields the probability generating function of the
offspring distribution of the three types; b(v)(z̄)3 is given by (27) and b(v)(z̄)2

is given by (28). By replacing (S(s)
• ,∆(s)

• ) in the right hand side of (27) by
(S(∆)
• ,∆(∆)

• ) we obtain b(v)(z̄)1.
Also by replacing (S(s)

• ,∆(s)
• ) in the right hand side of (27), but now by

(S,∆) we obtain the probability generating function b
(v)
∗ (z̄) of the offspring

of the initial case. The expected final size of the epidemic, conditioned on
that a major outbreak occurs, is given by

1− b(v)
∗ (q̄b).

5 Numerical example

Under very general assumptions, increasing the heterogeneity in infectious-
ness leads to a decrease in the the probability of a major outbreak, the ex-
pected final size and R0 (Kuulasmaa 1982; Meester and Trapman 2011; Miller
2008), see also Ball (1985); Kenah and Robins (2007); Miller (2007). In par-
ticular, for a fixed (marginal) transmission probability E(T ), the probability
of a major outbreak and the expected final size are maximized if T = E(T )
with probability 1 and minimized if P (T = 1) = E(T ) = 1 − P (T = 0).
Similarly, for given E(T ), R0 is maximized if T = E(T ) with probability 1
and minimized if P (T = 1) = E(T ) = 1− P (T = 0).

We illustrate this with the following example. Consider the three degree
distributions
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1. p(2, 1) = 1

2. p(4, 0) = 0.95 = 1− p(2, 1)

3. p(0, 2) = 0.95 = 1− p(2, 1).

That is, in all three degree distributions the total degree is 4 with prob-
ability 1. In addition, distribution 1 corresponds to a network where every
node is member of exactly one triangle. Distribution 2 corresponds to a net-
work where a node is not a member of any triangle with probability 0.95,
while with probability 0.05 a node is member of one triangle. Finally, distri-
bution 3 corresponds to a network where a node is a member of two triangles
with probability 0.95, while with probability 0.05 a node is member of one
triangle.

Furthermore, let T have distribution Beta(α, α) for some α > 0. That
is, T has density, Cαx

α−1(1 − x)α−1, on the interval (0, 1), where Cα is a
normalizing constant. Then E(T ) = 1/2 and we can tune the heterogeneity
of the infectivity of infected individuals by varying α. In particular

E(T 2) =
1

2

(
1− 1

2 + α−1

)
.

Note that α → ∞ corresponds to T being uniform on (0, 1), while α = 0
corresponds to P (T = 0) = P (T = 1) = 1/2. Figure 8 shows the probability
that a major outbreak does not occur, the expected final size, R0 and the
critical vaccination coverage f (c)

v as functions of α or E(T 2).
As can be seen in Figure 8, ignoring actual heterogeneity of infectivity in

this case leads to an overestimation of the probability of a major outbreak
(8a-8b). This effect is particularly evident in the presence of high cluster-
ing; the steeper slope of the curve corresponding to distribution 3 (8b) and
the relatively low probability of a major outbreak when α is small can be
explained by the fact that the approximating forward branching process is
close to being critical when α is small. Figure 8c-8d shows that heterogeneity
of infectivity has virtually no impact on the expected final size of a major
outbreak and R0 in the near absence of clustering. In the presence of clus-
tering, on the other hand, ignoring heterogeneity of infectivity leads to an
underestimation of the expected final size and a substantial overestimation
of the critical vaccination coverage f (c)

v . Note that R0 and f (c)
v depend on

the distribution of T only through the first and second moment of T .
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Figure 8: The impact of heterogeneity in infectivity for the three degree
distributions. (a) The probability that a major outbreak does not occur as
a function of α. (b) The probability that a major outbreak does not occur
as a function of E(T 2). (c) The expected final size of a major outbreak as a
function of α. (d) The expected final size of a major outbreak as a function
of E(T 2). (e) The basic reproduction number R0 as a function of E(T 2).
(f)The critical vaccination coverage f (c)

v as a function of E(T 2).

6 Discussion

In this paper, we have incorporated clustering in the spread of an infectious
disease by allowing for groups of size three with non-overlapping edges. It
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is, in principle, straightforward to extend the methods used in this paper
to larger group sizes. The CMC may, for instance, be generalized to larger
group sizes as follows. Let K = {k1, . . . , kr} ⊂ N≥2 be the set of possible
group sizes. In the matching procedure, each node is equipped with an
r-dimensional degree in Nr

0. The ith component (the ki-degree) of a degree
specifies the number of groups of size ki to which the node in question belongs.
Analogously to the construction of a CMC graph, groups are then formed by
creating one list for each group size; a node with ki-degree di appears precisely
di times in the list corresponding to groups of size ki. The lists are then
shuffled and half-edges of nodes in positions k+1, . . . , k+ki in the ki-list are
joined. The structure of a graph so obtained would be characterized by fully
connected cliques, and similar to that of a random intersection graph (Ball
et al. 2014). One possible approach to investigate epidemics on such graphs
would be to approximate the spread of the disease by a multitype Galton
Watson process where groups (or cliques) are represented by the particles of
the branching process. The types of the approximating branching process
would then be vectors in N2 of the form (m,n), where m represents the size
of the clique and n represents the number of members of the clique that the
primary case of the clique attempts to infect. Another possible approach
would be to use an infinite type branching process in the spirit of Ball et al.
(2014). We believe that the result would be analogous to the results obtained
in Ball et al. (2014).

Appendix: Proof of proposition 1

Let d̄ = {(Si,∆i)}i∈N be a given (i.e. non-random) degree sequence that
satisfies the following regularity assumptions.

A1)
∑N

i=1
1(Si=k1,∆i=k2)

N
→ p(k1, k2) for any k1, k2 ∈ Z≥0.

A2)
∑N

i=1
∆2

i

N
→ E(∆2) and

∑N

i=1
S2
i

N
→ E(S2)

where (S,∆) has distribution p, which is assumed to satisfy A1-A2 in
Section 2.1. Let further G = {GN}N∈N be a sequence of graphs generated by
the CMC, where the degree sequence of GN is given by d̄N = {(Si,∆i)}Ni=1

and denote D
(N)
S =

∑N
i=1 Si.

Under the assumptions A1-A2 the expected number of self-loops and the
expected number of multiple edges are borth of order O(1) (cf. Van der
Hofstad (2016, prop. 7.11)). Denote by AN the number of wedges of GN
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that are ”deleted” when merging multiple edges and erasing self-loops, that
is

AN =
N∑
i=1

(
Si + 2∆i

2

)
2− |WGN

∧ | =
N∑
i=1

(Si + 2∆i)(Si + 2∆i − 1)− |WGN
∧ |,

then E(AN) = O(1).
From the definition of AN , we deduce that the total number of ordered

triangles of GN is bounded from below by |WGN
∆ | ≥

∑N
i=1 2∆i − AN and the

total number of ordered wedges is bounded from above by

|WGN
∧ | ≤

N∑
i=1

(
Si + 2∆i

2

)
2 =

N∑
i=1

(Si + 2∆i)(Si + 2∆i − 1).

Therefore, by the definition of C(GN) and the assumptions above

C(GN) ≥

(∑N

i=1
2∆i

N

)
− AN(∑N

i=1
(Si+2∆i)(Si+2∆i−1)

N

) P→ E(2∆)

E((2∆ + S)2)− E(2∆ + S)
(30)

as N →∞.
This lower bound is tight in the limit as the number of nodes N → ∞.

Indeed, denote byWGN
s the set of ordered triangles of GN that consists solely

of single edges, i.e.

WGN
s = {(u, v, w) ∈ V 3

N : (u, v), (u,w) and (v, w) are single edges},

where VN is the node set of GN . Now, whenever D
(N)
S ≥ 6

E
(
|WGN

s |
)
≤
∑
i

(Si
2

)∑
j

Sj

D
(N)
S − 2

(∑
l

Sl

D
(N)
S − 3

(
(Sj − 1)(Sl − 1)

D
(N)
S − 5

))
(31)

where the sums run over the integers 1, . . . , N .
Dividing byN in (31) and lettingN approach infinity gives E(|WGN

S |)/N →
0 as N → ∞. Thus |WGN

S |/N→ 0 in probability. Repeating this procedure
for triangles formed by a combination of triangle and single edges gives

C(GN)
P−→ E(2∆)

E((2∆ + S)2)− E(2∆ + S)
. (32)

The assertion now follows by bounded convergence and the law of large num-
bers.
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