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1. Introduction

The paper presents results of complete analysis and classification of in-
dividual ergodic theorems for perturbed alternating regenerative processes
with semi-Markov modulation.

The alternating regenerative processes and related alternating renewal
processes are popular models of stochastic processes, which have diverse ap-
plications to queuing, reliability, control and many other types of stochastic
processes and systems. We refer here to papers and books, which contain ba-
sic materials about regenerative processes including their alternating variants
and applications [4, 7, 9, 15, 17, 23, 28 – 32, 40, 53, 57].

Standard alternating models are constructed from sequences of “random
blocks” of two types, say, 1 and 2. Each block consists of a “piece” of
stochastic process of random duration. All blocks are independent. Blocks
of each type have the same probabilistic characteristics. The corresponding
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alternating regenerative process is constructed by sequential in time alter-
nate connection of blocks of types 1 and 2 taken from the above mentioned
sequences.

In the present paper, more general alternating regenerative processes are
studied, where sequential alternate connection of the blocks is controlled by
some binary switching random variables. The piece of stochastic process cre-
ating every block, its duration and the binary random variable, controlling
the decision about switching/non-switching of block type at the end of time
interval corresponding to this block, may be dependent. This let us speak
about semi-Markov modulation for the corresponding alternating regenera-
tive process.

If the above alternating regeneration process ξε(t), t ≥ 0 describes func-
tioning of some stochastic system, it is naturally to interpret ξε(t) as the state
of this system at instant t and the corresponding modulating semi-Markov
process ηε(t) as the stochastic index, which shows that the system is in one
of two possible regimes (for example, “working” or “not working”) at instant
t if, respectively, ηε(t) = 1 or ηε(t) = 2.

It is assumed that joint probabilistic characteristics of the alternating
regenerative process ξε(t) and the corresponding semi-Markov process ηε(t)
controlling switching of types depend on some perturbation parameter ε ∈
[0, 1] and converge to the corresponding joint characteristics of the pro-
cesses ξ0(t) and η0(t), as ε → 0. This makes it possible to consider process
(ξε(t), ηε(t)), for ε ∈ (0, 1], as a perturbed version of the process (ξ0(t), η0(t)).

The object of our interest are individual ergodic theorems about asymp-
totic behaviour of joint distributions Pε,ij(t, A) = Pi{ξε(t) ∈ A, ηε(t) = j}
for perturbed alternating regenerative process ξε(t) and modulating semi-
Markov processes ηε(t), as time t → ∞ and the perturbation parameter
ε→ 0.

Models with tree different types of perturbation are considered. These
types are determined by the asymptotic behaviour of transition probabili-
ties pε,ij, i, j = 1, 2 of the embedded Markov chain ηε,n for the semi-Markov
process ηε(t). These transition probabilities converge, as ε → 0, to the cor-
responding transition probabilities of the limiting Markov chain η0,n.

The first class constitutes regularly perturbed models, where the limiting
embedded Markov chain η0,n is ergodic that, in this case, is equivalent to the
assumption that max(p0,12, p0,21) > 0.

In the case of regularly perturbed models, the corresponding individual
ergodic theorems take forms of asymptotic relations Pε,ij(tε, A) → πj(A) as
ε→ 0, which holds for any 0 ≤ tε →∞ as ε→ 0. The corresponding limiting
probabilities πj(A) do not depend on an initial state i of the modulating
semi-Markov process.
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Such theorems resemble well known ergodic theorems for unperturbed
alternating regenerative processes and more general stochastic processes with
semi-Markov modulation.

Here, works [4, 7, 9, 12, 17, 23, 24, 29, 30, 35, 36, 40 – 45, 53, 57] can be
referred, where one can find the corresponding ergodic theorems for unper-
turbed regenerative and alternating regenerative processes (ξ0(t), η0(t)), and
[1, 10, 11, 13, 14, 23, 25 – 27, 33, 34, 37 – 39, 41 – 46, 48 – 50, 58], where
such theorems are given for some classes of regularly perturbed regenerative
and alternating regenerative processes (ξε(t), ηε(t)).

The second and third classes constitute singularly and super-singularly
perturbed models, where the limiting embedded Markov chain η0,n is not
ergodic that is equivalent to the assumption that max(p0,12, p0,21) = 0.

The individual ergodic theorems for such models are the main objects of
studies in the present paper. They take much more interesting and complex
forms, if to compare them with individual ergodic theorems for regularly
perturbed alternating regenerative processes. In particular, the correspond-
ing individual ergodic theorems for singularly and super-singularly perturbed
models take forms of asymptotic relations Pε,ij(tε, A) → πij(t, A) as ε → 0,
which hold for any 0 ≤ tε → ∞ as ε → 0, which satisfy some time scaling
relation, tε/vε → t ∈ [0,∞] or tε/wε → t ∈ [0,∞] as ε → 0, with time
scaling factors vε = p−1

ε,12 + p−1
ε,21 > wε = (pε,12 + pε,21)−1 → ∞ as ε → 0.

The corresponding limiting probabilities πij(t, A) may depend on parameter
t and an initial state i of the modulating semi-Markov process. They take
essentially different forms, for cases t = 0, t ∈ (0,∞) and t =∞. We classify
the corresponding theorems, respectively, as short, long and super-long time
individual ergodic theorems.

Individual ergodic theorems for singularly and super-singularly perturbed
alternating regenerative processes presented in the paper were not known
before.

The main analytic tool used for obtaining ergodic theorems is based on
results concerned generalisation of the renewal theorem to the model of per-
turbed renewal equation given in works [14, 37 – 39] and quasi-ergodic the-
orems for perturbed regenerative processes with regenerative lifetimes given
in works [13, 14, 48, 49].

Here, works [2, 3, 5, 6, 8, 14, 16, 18 – 22, 51, 52, 54 – 56, 59, 60] can also
be mentioned, where one can find results and bibliographies of works on limit
and ergodic type theorems for singularly perturbed Markov type processes.
The difference with some related results presented in these works, is that we
operate, in general, with non-Markov regenerative type processes and do not
exploit additive accumulation or phase merging phenomena.

We do prefer to use for getting individual ergodic type theorems, as we
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think, the most effective methods based on generalisations of the classical
renewal theorem to model of perturbed renewal equation developed in the
above mentioned works [13, 14, 37 – 39, 48, 49]. This let us get the cor-
responding ergodic theorems under minimal conditions. In the case of un-
perturbed and non-alternating regenerative processes, these conditions just
reduce to the minimal conditions of the classical individual ergodic theo-
rem for unperturbed regenerative processes yielded by the famous renewal
theorem, which is given in its final form in [12].

The paper includes 7 sections. In Section 2, so-called quasi-ergodic theo-
rems for perturbed regenerative processes with regenerative lifetimes, which
play the role of basic analytical tool in our studies, and the model of per-
turbed alternating regenerative processes are presented, and comments con-
cerning regularly, singularly and super-singularly perturbed alternating re-
generative processes are given. In Section 3 – 6, short, long and super-long
individual ergodic theorems for regularly, singularly and super-singularly per-
turbed alternating regenerative processes are presented. Section 7, contains
a short summary of the results and a list of some directions for future devel-
opment and improvement of results presented in the paper.

2. Perturbed regenerative and alternating regenerative
processes

In this section, we present so-called quasi-ergodic theorems for perturbed
regenerative processes with regenerative lifetimes, which play the role of basic
analytical tool in our studies, introduce alternating regenerative processes,
comment and compare models of regularly, singularly and super-singularly
perturbed alternating regenerative processes and forms of the correspond-
ing ergodic theorems, and describe the special procedure of aggregation for
regeneration times, which play an important role in ergodic theorems for
perturbed alternating regenerative processes.

2.1. Quasi-ergodic theorems for perturbed regenerative pro-
cesses with regenerative lifetimes. The main tool, which we are going
to use are ergodic theorems for perturbed regenerative processes with regen-
erative lifetimes, given in the book [14].

Let 〈Ωε,Fε,Pε〉 be, for every ε ∈ [0, 1], a probability space. We assume
that all stochastic processes and random variables introduced below and
indexed by parameter ε are defined on this probability space.

Let also, for every n = 1, 2, . . .: (a) ξ̄ε,n = 〈ξε,n(t), t ≥ 0〉 be a stochastic
process with a phase space X (with the corresponding σ-algebra of measurable
subsets BX), measurable in the sense that ξε,n(t, ω), (t, ω) ∈ [0,∞) × Ω is
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measurable function of (t, ω) (this means that {(t;ω) ∈ A} ∈ B+ × Fε, A ∈
BX, where B+ × Fε is the minimal σ-algebra containing all products B ×
C,B ∈ B+, C ∈ Fε, B+ is the σ-algebra of Borel subsets of [0,∞)); (b)
κε,n be a non-negative random variable; (c) µε,n is a non-negative random
variable. Further, we assume that: (d) random triplets 〈ξ̄ε,n = 〈ξε,n(t), t ≥
0〉, κε,n, µε,n〉, are mutually independent; (e) the joint distributions of random
variables ξε,n(tk), k = 1, . . . , r and κε,n, µε,n do not depend on n ≥ 1, for every
tk ∈ [0,∞), k = 1, . . . , r, r ≥ 1.

Let us define regeneration times, τε,n = κε,1+· · ·+κε,n, n = 1, 2, . . . , τε,0 =
0, a standard regenerative process,

ξε(t) = ξε,n(t− τε,n−1), for t ∈ [τε,n−1, τε,n), n = 1, 2, . . . , (1)

and a regenerative lifetime,

µε =
νε−1∑
k=1

κε,k + µε,νεI(νε <∞), (2)

where
νε = min(n ≥ 1 : µε,n < κε,n).

We exclude instant regenerations and, thus, assume that the following
condition holds:

A: P{κε,1 > 0} = 1, for every ε ∈ [0, 1].

Condition A obviously implies that random variables τε,n
P−→∞ as n→

∞, for every ε ∈ [0, 1], and, thus, the regenerative process ξε(t) is well defined
on the time interval [0,∞).

Let us introduce distribution functions Fε(t) = P{τε,1 ≤ t, µε ≥ τε,1} =
P{κε,1 ≤ t, µε,1 ≥ κε,1}, t ≥ 0 and stopping probabilities fε = 1 − Fε(∞) =
P{µε < τε,1} = P{µε,1 < κε,1}. We also assume that the following condition
holds:

B: (a) Fε(·) ⇒ F0(·) as ε → 0, (b) F0(t) is a proper non-arithmetic
distribution function.

Here and henceforth symbol ε→ 0 is used to show that 0 < ε→ 0.
Condition B obviously implies that the stopping probabilities,

fε → f0 = 0 as ε→ 0. (3)

Let us introduce expectations eε =
∫∞
0 sFε(ds). We also assume that the

following condition holds:
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C: (a) eε <∞, for ε ∈ [0, 1], (b) eε → e0 as ε→ 0.

The object of our interest are probabilities Pε(t, A) = P{ξε(t) ∈ A, µε > t},
A ∈ BX, t ≥ 0. These probabilities are, for every A ∈ BX, a measurable func-
tion of t ≥ 0, which is the unique bounded solution for the following renewal
equation,

Pε(t, A) = qε(t, A) +
∫ t

0
Pε(t− s, A)Fε(ds), t ≥ 0, (4)

where qε(t, A) = P{ξε(t) ∈ A, τε,1 ∧ µε > t} = P{ξε,1(t) ∈ A, τε,1 ∧ µε,1 > t},
A ∈ BX, t ≥ 0.

We also impose the following condition on the functions qε(t, A):

D: There exist a non-empty class of sets Γ ⊆ BX such that, for every
A ∈ Γ, the asymptotic relation, limu→0 lim0≤ε→0 sup−(u∧s)≤v≤u |qε(s +
v, A) − q0(s, A)| = 0, holds almost everywhere with respect to the
Lebesgue measure m(ds) on [0,∞).

The class Γ appearing in condition D contains the phase space X and is
closed with respect to the operation of union for not intersecting sets, the
operation of difference for sets connected by relation of inclusion, and the
complement operation. The detailed comments are given in Subsection 2.5.

Conditions A – D imply that process ξ0(t), t ≥ 0 is ergodic and the
following asymptotic relation holds, for A ∈ Γ,

P0(t, A)→ π0(A) as t→∞, (5)

where π0(A) is the corresponding stationary distribution given by the follow-
ing relation,

π0(A) =
1

e0

∫ ∞
0

q0(s, A)m(ds), A ∈ BX. (6)

Now we are prepared to formulate the basic, so-called quasy-ergodic the-
orem, for the perturbed regenerative processes with regenerative lifetimes
given in book [14]. It is also worth to note that this theorem is the direct
corollary of the version renewal theorem for perturbed renewal equation given
in papers [37 – 39].

Theorem 1. Let conditions A – D hold. Then, for every A ∈ Γ, and
any 0 ≤ tε →∞ as ε→ 0 such that fεtε → t ∈ [0,∞] as ε→ 0,

Pε(tε, A)→ e−t/e0π0(A) as ε→ 0. (7)

Let us now assume that the model assumption (e) formulated above holds
only for n ≥ 2. In this case, the process ξε(t), t ≥ 0 is usually referred as a
regenerative process with transition period [0, τε,1).
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We also shall use the extension of Theorem 1 on the model of perturbed
regenerative processes with transition period. In this case, the shifted process
ξ(1)
ε (t) = ξε(τε,1 + t), t ≥ 0 is a standard regenerative process, with regenera-

tion times τ (1)
ε,n = κε,2 + · · · + κε,n+1, n = 1, 2, . . . , τ

(1)
ε,0 = 0 and the the corre-

sponding shifted regenerative lifetime µ(1)
ε =

∑ν
(1)
ε −1
k=1 κε,1+k + µ

ε,1+ν
(1)
ε

I(ν(1)
ε <

∞), where ν(1)
ε = min(n ≥ 1 : µε,1+n < κε,1+n).

All quantities appearing in conditions A – D, the renewal equation (4)
and relation (6) should be defined using shifted sequence of triplets 〈ξ̄ε,2 =
〈ξε,2(t), t ≥ 0〉, κε,2, µε,2〉. It is also natural to index the above mentioned
quantities by the upper index (1), for example, to use notation P (1)

ε (t, A) =
P{ξ(1)

ε (t) ∈ A, µ(1)
ε > t}, etc. Probabilities P (1)

ε (t, A) satisfy the renewal
equation (4). Theorem 1 presents, in this case, the corresponding ergodic
relation for these probabilities.

Probabilities Pε(t, A) = P{ξε(t) ∈ A, µε > t}, defined for the initial regen-
erative process with transition period, are, for every A ∈ BX, connected with
probabilities P (1)

ε (tε, A) by the following renewal type transition relation,

Pε(t, A) = q̃ε(t, A) +
∫ t

0
P (1)
ε (t− s, A)F̃ε(ds), t ≥ 0, (8)

where q̃ε(t, A) = P{ξε(t) ∈ A, τε,1 ∧ µε > t} = P{ξε,1(t) ∈ A, τε,1 ∧ µε,1 > t},
A ∈ BX, t ≥ 0 and F̃ε(t) = P{τε,1 ≤ t, µε,1 ≥ τε,1}, t ≥ 0 are the corresponding
characteristics related to the transition period.

We admit that the transition period can be of zero duration and, thus,
the distribution function F̃ε(t) can possess an atom in zero or even be con-
centrated at zero, for ε ∈ [0, 1].

Let us additionally assume that the following condition holds:

E: F̃ε(·)⇒ F̃0(·) as ε→ 0, where F̃0(t) is a proper distribution function.

Let also f̃ε = P{µε,1 < τε,1} = 1− F̃ε(∞). Condition E obviously implies
that the stopping probabilities for transition period, f̃ε → f̃0 = 0 as ε→ 0.

It is also useful to note that q̃ε(t, A) ≤ P{τε,1 ∧ µε,1 > t} = P{τε,1 >
t, µε,1 ≥ τε,1} + P{τε,1 ∧ µε,1 > t, µε,1 < τε,1} ≤ P{µε,1 ≥ τε,1} − P{τε,1 ≤
t, µε,1 ≥ τε,1} + P{µε,1 < τε,1} = F̃ε(∞) − F̃ε(t) + f̃ε. This relation and
condition E imply that q̃ε(tε, A) → 0 as ε → 0, for any 0 ≤ tε → ∞ as
ε→ 0.

The following quasi-ergodic theorem for perturbed regenerative processes
with transition period, is also given in book [14].

Theorem 2. Let conditions A – E hold. Then, for every A ∈ Γ, and
any 0 ≤ tε →∞ as ε→ 0 such that fεtε → t ∈ [0,∞] as ε→ 0,

Pε(tε, A)→ e−t/e0π0(A) as ε→ 0. (9)
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In the case of standard regenerative processes, Theorem 2 just reduces
to Theorem 1. Indeed, condition E can be omitted since it is implied by
condition B. The ergodic relation (9) reduces to the ergodic relation (7).

Let us also introduce modified regenerative lifetimes µε,− =
∑νε−1
k=1 κε,k,

and µε,+ =
∑νε
k=1 κε,k and consider probabilities Pε,±(t, A) = P{ξε(t) ∈

A, µε,± > t}, A ∈ BX, t ≥ 0.
Obviously, µε,− ≤ µε ≤ µε,+ and, thus, Pε,−(t, A) ≤ Pε(t, A) ≤ Pε,+(t, A),

for any A ∈ BX, t ≥ 0.
The following theorem is a useful modification of Theorem 2.

Theorem 3. Let conditions A – E hold. Then, for every A ∈ Γ, and
any 0 ≤ tε →∞ as ε→ 0 such that fεtε → t ∈ [0,∞] as ε→ 0,

Pε,±(tε, A)→ e−t/e0π0(A) as ε→ 0. (10)

Proof. Conditions A – C imply that the asymptotic relation, fεκε,νεI(νε <

∞)
P−→ 0 as ε→ 0, holds. The asymptotic relation (10) is an obvious corol-

lary of this asymptotic relation and the ergodic relation (9) given in Theorem
2. �

2.2. One- and multi-dimensional distributions for perturbed
regenerative processes. Individual ergodic theorems formulated in Theo-
rems 1 – 3 present ergodic relations for one-dimensional distributions Pε(t, A)
= P{ξε(t) ∈ A, µε > t} for regenerative processes with regenerative lifetimes.

It possible to weaken the model assumption (e) formulated in Subsec-
tion 2.1. This assumption concerns multi-dimensional joint distributions of
random variables ξε,n(tk), k = 1, . . . , r, κε,n and µε,n.

It can be replaced by the weaker assumption that the joint distributions
of random variables ξε,n(t), κε,n and µε,n do not depend on n ≥ 1, for every
t ≥ 0.

The process ξε(t), t ≥ 0 will still process the corresponding weaken,
say, one-dimensional regenerative property, which, in fact, means that one-
dimensional distributions Pε(t, A) = P{ξε(t) ∈ A, µε > t}, t ≥ 0 satisfy the
renewal equations (4).

Formulations of conditions A – E as well as propositions of Theorems 1
– 3 still remain to be valid.

2.3. Ergodic theorems for standard regenerative processes. We
would like to mention the important case, where stopping probability fε =
0, ε ∈ [0, 1]. In this case, the regenerative stopping time µε = ∞ with
probability 1. Also, fεtε → 0 as ε→ 0, for any 0 ≤ tε →∞ as ε→ 0.

Probability Pε(t, A) = P{ξε(t) ∈ A} is a one-dimensional distribution for
process ξε(t). Theorems 1 – 3 present in this case usual individual ergodic
theorems for perturbed regenerative processes ξε(t).
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It is also worth to mention the case of unperturbed regenerative process
ξ0(t), t ≥ 0. Conditions A – D reduce in this case to the the minimal
conditions of the individual ergodic theorem for regenerative processes, which
directly follows from the renewal theorem given in its final form in [12]: (a)
F0(·) is a non-arithmetic distribution function without an atom in zero; (b)
e0 =

∫∞
0 sF0(ds) < ∞; (c) function q0(s, A), s ≥ 0 is, for A ∈ Γ, continuous

almost everywhere with respect to the Lebesgue measure m(ds) on [0,∞).
Note that q0(s, A) ≤ 1 − F0(s), s ≥ 0 and, thus, under the above con-

dition (b), condition (c) is equivalent to the assumption of direct Riemann
integrability of the free term in the renewal equation (4), imposed on this
term in the renewal theorem given in [12].

Also, condition E just reduces to the assumption that (d) F̃0(·) is a proper
distribution function.

The corresponding individual ergodic theorem takes in this case the form
of the asymptotic relation (5), i.e., P0(t, A)→ π0(A) as t→∞, for A ∈ Γ.

2.4. Perturbed alternating regenerative processes. Let, for every
i = 1, 2, n = 1, 2, . . .: (f) ξ̄ε,i,n = 〈ξε,i,n(t), t ≥ 0〉 be a measurable stochastic
process with a phase space X; (g) κε,i,n be a non-negative random variable;
(h) ηε,i,n and ηε are binary random variables taking values in the space
Y = {1, 2}. Further, we assume that: (i) triplets 〈ξ̄ε,i,n = 〈ξε,i,n(t), t ≥
0〉, κε,i,n, ηε,i,n〉, i = 1, 2, n = 1, 2, . . . and the random variable ηε are mutually
independent; (j) the joint distributions of random variables ξε,i,n(tk), k =
1, . . . , r and κε,i,n, ηε,i,n do not depend on n ≥ 1, for every i = 1, 2 and
tk ∈ [0,∞), k = 1, . . . , r, r ≥ 1.

Here, the measurability assumption for processes ξ̄ε,i,n is absolutely anal-
ogous to those formulated in the model assumption (a) for processes ξ̄ε,n.

Let us define recurrently stochastic sequences of switching binary random
indices ηε,n, n = 0, 1, . . . and regeneration times τε,n, n = 0, 1, . . . by the
following recurrent relations, ηε,n = ηε,ηε,n−1,n, n = 1, 2, . . . , ηε,0 = ηε and
τε,n = κε,ηε,0,1 + · · · + κε,ηε,n−1,n, n = 1, 2, . . . , τε,0 = 0, and the modulated
alternating regenerative process (ξε(t), ηε(t)), t ≥ 0 by the following recurrent
relations,

ξε(t) = ξε,ηε,n−1,n(t− τε,n−1) and ηε(t) = ηε,n−1,

for t ∈ [τε,n−1, τε,n), n = 1, 2, . . . . (11)

We exclude instant regenerations and, thus, assume that the following
condition holds:

F: P{κε,i,1 > 0} = 1, i = 1, 2, for every ε ∈ [0, 1].
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This condition obviously implies that τε,n
P−→ ∞ as n → ∞, for every

ε ∈ [0, 1], and thus, the above alternating regenerative process is well defined
on the time interval [0,∞).

Now, let us formulate conditions, which make it possible to consider
(ξ0(t), η0(t)), t ≥ 0 as an unperturbed process and (ξε(t), ηε(t)), t ≥ 0 as
its perturbed version, for ε ∈ (0, 1].

The above model assumptions (f) – (j) imply that the modulating index
sequence ηε,n, n = 0, 1, . . . is a homogeneous Markov chain with the phase
space Y = {1, 2}, the initial distribution p̄ε = 〈pε,i = P{ηε,0 = i}, i =
1, 2〉, and transition probabilities, pε,ij = P{ηε,1 = j/ηε,0 = i} = P{ηε,i,1 =
j}, i, j = 1, 2. We assume that the following condition holds:

G: (a) pε,ij = 0, ε ∈ (0, 1] or pε,ij > 0, ε ∈ (0, 1], for i, j = 1, 2; (b)
pε,ij → p0,ij as ε→ 0, for i, j = 1, 2.

The above model assumptions (f) – (j) also imply that the modulating
index process ηε(t), t ≥ 0 is a semi-Markov process with the phase space
Y and transition probabilities, Qε,ij(t) = P{τε,1 ≤ t, ηε,1 = j/ηε,0 = i} =
P{κε,i,1 ≤ t, ηε,i,1 = j}, t ≥ 0, i, j = 1, 2. Also, let us introduce conditional
distribution functions Fε,ij(t) = Qε,ij(t)/pε,ij, t ≥ 0 defined for i, j ∈ Y such
that pε,ij > 0, ε ∈ (0, 1].

We also assume that the following condition holds:

H: (a) Qε,ij(·)⇒ Q0,ij(·) as ε→ 0, for i, j = 1, 2, (b) Q0,ij(t) = 0, t ≥ 0 if
p0,ij = 0 or F0,ij(t) = Q0,ij(t)/p0,ij, t ≥ 0 is a non-arithmetic distribu-
tion function if p0,ij > 0.

Remark 1. Conditions of convergence G (b) and H (a) can be reformu-
lated in terms of Laplace transforms φε,ij(s) =

∫∞
0 e−stQε,ij(dt), s ≥ 0, i, j =

1, 2. These conditions are equivalent to the assumption that φε,ij(s) →
φ0,ij(s) as ε→ 0, for s ≥ 0 and i, j = 1, 2.

Let us introduce expectations, eε,ij = Eiτε,1I(ηε,1 = j) = Eκε,i,1I(ηε,i,1 = j)
=
∫∞

0 sQε,ij(ds), i, j = 1, 2 and eε,i = Eiτε,1 = Eκε,i,1 = eε,i1 + eε,i2, i = 1, 2.
Here and henceforth, we use notations Pi and Ei for conditional proba-

bilities and expectations under condition ηε(0) = ηε = i.
We also impose the following condition of convergence for the above ex-

pectations:

I: (a) eε,ij < ∞, for every ε ∈ [0, 1] and i = 1, 2; (b) eε,ij → e0,ij as
ε→ 0, for i = 1, 2.

The object of our interest is the joint distributions,

Pε,ij(t, A) = Pi{ξε(t) ∈ A, ηε(t) = j}, A ∈ BX, i, j = 1, 2, t ≥ 0. (12)
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Probabilities Pε,ij(t, A) are, for every A ∈ BX, j = 1, 2, a measurable
functions of t ≥ 0, which are the unique bounded solution for the following
system of renewal type equations,

Pε,ij(t, A) = δ(i, j)qε,i(t, A)

+
2∑

k=1

∫ t

0
Pε,kj(t− s, A)Qε,ik(ds), t ≥ 0, i = 1, 2. (13)

where qε,i(t, A) = Pi{ξε(t) ∈ A, ηε(t) = i, τε,1 > t} = P{ξε,i,1(t) ∈ A, κε,i,1 >
t}, A ∈ BX, t ≥ 0, i, j = 1, 2.

Finally, we also impose the following condition on functions qε,i(t, A):

J: There exists a non-empty class of sets Γ ⊆ BX such that, for every
A ∈ Γ, the asymptotic relations, limu→0 lim0≤ε→0 sup−(u∧s)≤v≤u |qε,i(s+
v, A)− q0,i(s, A)| = 0, i = 1, 2, hold almost everywhere with respect to
the Lebesgue measure m(ds) on [0,∞).

As for condition D, the class Γ appearing in condition J contains the
phase space X and is closed with respect to the operation of union for not
intersecting sets, the operation of difference for sets connected by relation of
inclusion, and the complement operation. The corresponding comments are
given below, in Subsection 2.5.

Let us also consider, for i = 1, 2, the standard regenerative process
ξε,i(t), t ≥ 0 with regeneration times τε,i,n = κε,i,1 + · · · + κε,i,n, n = 1, 2, . . .,
τε,i,0 = 0, defined by the following recurrent relations, ξε,i(t) = ξε,i,n(t −
τε,i,n−1), for t ∈ [τε,i,n−1, τε,in), n = 1, 2, . . ..

Conditions F – J imply that, for every i = 1, 2, all conditions of Theo-
rem 1 hold for regenerative process ξε,i(t), with the corresponding stopping
probabilities fε,i = 0, ε ∈ [0, 1].

Thus, for every i = 1, 2, the following ergodic relation holds, for A ∈ Γ
and any 0 ≤ tε →∞ as ε→ 0,

P{ξε,i(tε) ∈ A} → π0,i(A) as ε→ 0, (14)

where the probabilities π0,i(A) are corresponding stationary probabilities for
the regenerative process ξ0,i(t) given by the following relation,

π0,i(A) =
1

e0,i

∫ ∞
0

q0,i(s, A)m(ds), A ∈ BX. (15)

2.5. Stricture of class Γ. Note that functions qε(s, A) and qε,i(s, A)
appearing, respectively, in conditions D and J are finite measures as functions
of A ∈ BX.
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This, in obvious way, implies that the class Γ appearing in condition D
or J is closed with respect to the operation of union for non-intersecting sets,
i.e., if the convergence relation given in condition D or J holds for sets A′ and
A′′ such that A′ ∩ A′′ = ∅, then this relation also holds for set A = A′ ∪ A′′.

The class Γ appearing in condition D or J also is closed with respect to
the operation of differences for sets connected by relation of inclusion, i.e., if
the convergence relation given in condition D or J holds for sets A′ and A′′

such that A′ ⊆ A′′, then this relation also holds for set A = A′′ \ A′.
Also, the class of sets Γ appearing in condition D or J includes the phase

space X under assumption that, respectively, condition B holds or conditions
G and H hold.

Let us check this, for example, for the case of condition D. Indeed,
qε(t,X) = P{τε,1∧µε,1 > t} = P{τε,1 > t, µε,1 ≥ τε,1}+P{τε,1∧µε,1 > t, µε,1 <
τε,1}. Probability P{τε,1 > t, µε,1 ≥ τε,1} = P{µε,1 ≥ τε,1} − P{τε,1 ≤ t, µε,1 ≥
τε,1} = Fε(∞)−Fε(t). Condition B implies that Fε(∞)−Fε(tε)→ 1−F0(t)
as ε → 0, for any tε → t as ε → 0 and t ∈ C(F0), where C(F0) is the set
of continuity points for the distribution function F0(·). Also, P{τε,1 ∧ µε,1 >
tε, µε,1 < τε,1} ≤ P{µε,1 < τε,1} = fε → 0 as ε → 0. The above relations
imply that qε(tε,X) → q0(t,X) = 1 − F0(t) as ε → 0, for any tε → t ∈
C(F0) as ε → 0. Since C(F0) = [0,∞) \ C(F0) is at most a countable set,
m(C(F0)) = 0. These relations imply, by Lemma 1 given in Subsection 4.3,
that the asymptotic relation appearing in condition D holds for Γ = X.

Finally, the above remarks imply that class Γ appearing in condition D
or J is also closed with respect to the complement operation, i.e., if the
convergence relation given in condition D holds for set A, then it also holds
for set A.

Let us, for example, consider the model, where the phase space X =
{1, 2, . . . ,m} is a finite set and BX is the σ-algebra of all subsets of X. In
this case, it is natural to assume that the corresponding locally uniform
convergence relation appearing in condition J holds for all one-point sets
A = {j}, j ∈ X. This will obviously imply that this convergence relation also
holds for any subset A ⊆ X that means that, in this case, class Γ = BX.

2.6. Regularly, singularly and super-singularly perturbed alter-
nating regenerative processes. The aim of the present paper is to give
a detailed analysis of individual ergodic theorems for probabilities Pε,ij(t, A)
that is to describe possible variants of their asymptotic behaviour as t→∞
and ε→ 0.

We shall see that the asymptotic behaviour of transition probabilities
pε,ij, i, j = 1, 2 for the Markov chains ηε,n plays an important role in these
ergodic theorems. Note that, according to condition G, these transition
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probabilities converge to the corresponding transition probabilities p0,ij, i, j =
1, 2 of the Markov chain η0,n, as ε→ 0.

There are three classes of perturbed alternating regenerative processes,
with essentially different ergodic properties.

The first class includes so-called “regularly” perturbed alternating regen-
erative processes, for which the limiting Markov chain η0,n is ergodic that, in
this case, is equivalent to the assumption that at least one of its transition
probabilities p0,12 and p0,21 is positive.

Here, parameter β = p0,12/p0,21 plays the key role. Obviously, (a) β ∈
(0,∞), if p0,12, p0,21 > 0, (b) β = 0, if p0,12 = 0, p0,21 > 0, and (c) we should
count β = ∞, if p0,12 > 0, p0,21 = 0. In case (a), the phase space Y is one
class of communicative states and the corresponding stationary probabilities
α1(β) = p0,21

p0,12+p0,21
= 1

1+β
and α2(β) = p0,12

p0,12+p0,21
= 1

1+β−1 . In case (b), the

phase space Y consists of the absorbing state 1 and the transient state 2. In
this case, α1(0) = 1 and α2(0) = 0. Analogously, in case (c), the phase space
Y consists of the absorbing state 2 and the transient state 1. In this case
α1(∞) = 0 and α2(∞) = 1.

In ergodic theorems for perturbed alternating regenerative processes, the
asymptotic stability of stationary probabilities for Markov chains ηε,n play
the key role. In the case of regularly perturbed models, condition G ob-
viously implies that the Markov chain ηε,n is ergodic, for every ε ∈ [0, 1].
Its stationary probabilities are determined by parameter βε = pε,12/pε,21,
namely, α1(βε) = pε,21

pε,12+pε,21
= 1

1+βε
and α2(βε) = pε,12

pε,12+pε,21
= 1

1+β−1
ε

. Condi-

tion G implies that βε → β as ε → 0 and, in sequel, α1(βε) → α1(β) and
α2(βε)→ α2(β) as ε→ 0.

We shall see that ergodic theorems for regularly perturbed alternating
processes have a form of asymptotic relation, Pε,ij(tε, A)→ π

(β)
0,j (A) as ε→ 0,

which holds for A ∈ Γ, i, j = 1, 2 and any 0 ≤ tε →∞ as ε→ 0,
The limiting probabilities π

(β)
0,j (A) depend on parameter β ∈ [0,∞], but

they do not depend on an initial state i ∈ Y. The forms of ergodic theo-
rems are analogous to those, which are known for unperturbed alternating
regenerative processes.

The second and the third classes include so-called “singularly” and “super-
singularly” perturbed alternating regenerative processes, for which the lim-
iting Markov chain η0,n is not ergodic that is equivalent to the assumption
that both transition probabilities p0,12 and p0,21 equal 0.

According condition G, four cases are possible. The case (d) 0 < pε,12, pε,21

→ 0 as ε → 0, corresponds to singularly perturbed alternating regenerative
processes. Three cases, where (e) pε,12 = 0, ε ∈ [0, 1] and 0 < pε,21 → 0
as ε → 0, or (f) 0 < pε,12 → 0 as ε → 0 and pε,21 = 0, ε ∈ [0, 1], or (g)
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pε,12, pε,21 = 0, ε ∈ [0, 1], correspond to super-singularly perturbed alternat-
ing regenerative processes.

In case (d), the asymptotic stability for stationary probabilities αj(βε), j =
1, 2 is provided by the following additional condition that should be assumed
to hold for some β ∈ [0,∞]:

Kβ: βε = pε,12/pε,21 → β as ε→ 0.

Condition G implies that the Markov chain ηε,n is ergodic, for ε ∈ (0, 1].
Its stationary probabilities are determined by parameter βε = pε,12/pε,21,
namely, α1(βε) = pε,21

pε,12+pε,21
= 1

1+βε
and α2(βε) = pε,12

pε,12+pε,21
= 1

1+β−1
ε

. Condi-

tions G and Kβ imply that βε → β and, in sequel, α1(βε) → α1(β) = 1
1+β

and α2(βε)→ α2(β) = 1
1+β−1 as ε→ 0.

In case (e), βε = pε,12/pε,21 = 0, for ε ∈ [0, 1], and, thus, condition
K0 holds. Condition G implies that the Markov chain ηε,n is ergodic, for
ε ∈ (0, 1] and its stationary probabilities αε,1(0) = 1, αε,2(0) = 0, for ε ∈
(0, 1]. Obviously, relations αε,1(0) → α1(0) = 1 and αε,2(0) → α2(0) = 0
as ε → 0 also hold. Analogously, In the case (f), βε = pε,12/pε,21 = ∞,
for ε ∈ [0, 1], and, thus, condition K∞ holds. Condition G implies that the
Markov chain ηε,n is ergodic, for ε ∈ (0, 1] and its stationary probabilities
αε,1(∞) = 0, αε,2(∞) = 1, for ε ∈ (0, 1]. Obviously, relations αε,1(∞) →
α1(∞) = 0 and αε,2(∞)→ α2(∞) = 1 as ε→ 0 also hold.

Ergodic theorems for singularly and super-singularly perturbed alternat-
ing processes have much more complex and interesting forms than for regu-
larly perturbed alternating regenerative processes.

Functions vε = p−1
ε,12 + p−1

ε,21, ε ∈ (0, 1] and wε = (pε,12 + pε,21)−1, ε ∈
(0, 1] play important roles of so-called “time scaling” factor, respectively, for
singularly and super-singularly perturbed models. In the case (d), 0 < wε <
vε < ∞, for ε ∈ (0, 1] and wε, vε → ∞ as ε → 0. In the cases (e) and (f),
0 < wε < vε =∞, for ε ∈ (0, 1] and wε →∞ as ε→ 0.

The main individual ergodic theorems for singularly perturbed alternat-
ing regenerative processes have forms of asymptotic relations, Pε,ij(tε, A)→
π

(β)
0,ij(t, A) as ε → 0, holding under assumption that condition Kβ holds for

some β ∈ [0,∞], for A ∈ Γ, i, j = 1, 2, and any 0 ≤ tε → ∞ as ε → 0 such
that tε/vε → t ∈ [0,∞] as ε→ 0.

The asymptotic behaviour of probabilities Pε,ij(tε, A) can differ for dif-
ferent asymptotic time zones determined by the asymptotic relation tε/vε →
t ∈ [0,∞]. The corresponding limiting probabilities π

(β)
0,ij(t, A) may depend

on t ∈ [0,∞], parameter β ∈ 0,∞], appearing in condition Kβ, and, also, on
the initial state i ∈ Y, if t ∈ [0,∞). It is natural to classify the corresponding
theorems as super-long, long and short time ergodic theorem, respectively,
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for cases t = ∞, t ∈ (0,∞) and t = 0, for which the corresponding limiting
probabilities take different analytical forms.

The corresponding ergodic theorems for super-singularly perturbed alter-
nating regenerative processes have forms of analogous asymptotic relations,
Pε,ij(tε, A) → π̇

(β)
0,ij(t, A) as ε → 0, holding under assumption that condition

K0 or K∞ holds, for A ∈ Γ, i, j = 1, 2 and any 0 ≤ tε → ∞ as ε → 0 such
that tε/wε → t ∈ [0,∞] as ε→ 0.

In this case, the asymptotic behaviour of probabilities Pε,ij(tε, A) also can
differ for different asymptotic time zones determined by the asymptotic rela-
tion tε/wε → t ∈ [0,∞]. The corresponding limiting probabilities π̇

(β)
0,ij(t, A)

may depend on t ∈ [0,∞], parameter β, taking in this case one of two values
0 or ∞, and, also, on the initial state i ∈ Y, if t ∈ [0,∞). As for singu-
larly perturbed models, it is natural to classify the corresponding theorems
as super-long, long and short time ergodic theorem, respectively, for cases
t =∞, t ∈ (0,∞) and t = 0, for which the corresponding limiting probabili-
ties take different analytical forms.

Ergodic theorems for singularly perturbed models for the cases, where
condition K0 or K∞ is assumed to hold, can be compared with ergodic
theorems for super-singularly perturbed models, respectively, for the cases
(e) or (f). Indeed, as was mentioned above, condition K0 or K∞ holds,
respectively, in the case (e) or (f).

In cases (e) and (f), i.e., for super-singularly perturbed models, vε =∞,
while 0 < wε < ∞, for ε ∈ (0, 1]. The only factor wε can be used as a time
scaling factor. In the case (d), i.e., for singularly perturbed models, 0 < wε <
vε <∞, for ε ∈ (0, 1]. The question arises if wε can be used as a time scaling
factor instead of vε. The answer is in some sense affirmative, if condition Kβ

holds for some β ∈ (0,∞). Indeed, in this case, wε/vε → β(1+β)−2 ∈ (0,∞)
as ε → 0. The asymptotic relations, tε/vε → t as ε → 0, and, tε/wε → t
as ε→ 0, generate, in fact, in some sense equivalent asymptotic time zones.
However, the answer for the above question is negative, if condition K0 or
K∞ holds. Indeed, in this case, wε/vε → 0 as ε → 0. The asymptotic
relations, tε/vε → t as ε → 0, and, tε/wε → t as ε → 0, generate essentially
different asymptotic time zones, in the corresponding ergodic theorems. This,
actually, makes it possible to get, under the assumption that condition K0

or K∞ holds, additional ergodic relations for singularly perturbed processes,
similar to those given above for super-singularly perturbed processes, for
asymptotic time zones generated by relation tε/wε → t as ε→ 0,

The extremal case, (g) pε,12, pε,21 = 0, ε ∈ [0, 1], corresponds to abso-
lutely singular perturbed alternating regenerative processes. This case is
not covered by condition Kβ. However, in this case the modulating process
ηε(t) = ηε(0), t ≥ 0. Respectively, the process ξε(t), t ≥ 0 coincides with the
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standard regenerative process ξε,i(t), t ≥ 0, if ηε(0) = i. The corresponding
ergodic theorem for process ξε,i(t) is given by Theorem 1 for its particular
case described in Subsection 2.3.

In conclusion, let us make some comments concerning ergodic theorems
for probabilities Pε,p̄ε,j(t, A) = P{ξε(t) ∈ A, ηε(t) = j} = pε,1Pε,1j(t, A) +
pε,2Pε,2j(t, A).

In models, where the corresponding limits for probabilities Pε,ij(tε, A)
do not depend of the initial state i, for example, for regularly perturbed
alternating regenerative processes, probabilities Pε,p̄ε,j(tε, A) converge to the
same limits for any initial distributions p̄ε = 〈pε,1, pε,2〉.

However, in models, where the corresponding limits for the probabilities
Pε,ij(tε, A) may depend of the initial state i, for example, for some singularly
or super-singularly perturbed alternating regenerative processes, probabil-
ities Pε,p̄ε,j(t, A) converge to some limits under an additional condition of
asymptotic stability for initial distributions:

L: pε,i → p0,i as ε→ 0, for i = 1, 2.

If, for example, condition L holds and, Pε,ij(tε, A)→ π
(β)
0,ij(t, A) as ε→ 0,

for i = 1, 2, then,

Pε,p̄ε,j(tε, A)→ π
(β)
0,p̄0,j(t, A) = p0,1π

(β)
0,1j(t, A) + p0,2π

(β)
0,2j(t, A) as ε→ 0. (16)

2.7. Aggregation of regeneration times. The alternating regen-
erative process (ξε(t), ηε(t)), t ≥ 0 is a standard regenerative process with
regeneration times τε,0, τε,1, τε,2, . . . if and only if the joint distributions of
random variables ξε,i,n(tk), k = 1, . . . , r and κε,i,n, ηε,i,n do not depend on
n ≥ 1, for every tk ∈ [0,∞), k = 1, . . . , r, r ≥, i = 1, 2.

However, it is possible to construct new aggregated regeneration times
such that the process (ξε(t), ηε(t)), t ≥ 0 becomes a standard regenerative
process with these new regeneration times.

Let us define stopping times for Markov chain ηε,n that are, θ̂ε[r] =
min(k > r : ηε,k = ηε,r), which is the first after r return time to the state
ηε,r, θ̃ε[r] = min(k > r : ηε,k 6= ηε,r), which is the first after r time of change
of state ηε,r, and θ̌ε[r] = min(k > θ̃ε[r] : ηε,k = ηε,r), which is the first after
θ̃ε[r] return time to the state ηε,r. Obviously, the above return times are

connected by the inequality r < θ̂ε[r] < θ̌ε[r], for r = 0, 1, . . ..
Let us also ν̂ε,0 = 0, ν̂ε,n = θ̂[ν̂ε,n−1], n = 1, 2, . . ., and ν̌ε,0 = 0, ν̌ε,n =

θ̌[ν̌ε,n−1], n = 1, 2, . . . be the corresponding sequential return times to the
state ηε,0 by the Markov chain ηε,n.

Let also us consider sequential return times τ̂ε,n = τε,ν̂ε,n , n = 0, 1, . . . and
τ̌ε,n = τε,ν̌ε,n , n = 0, 1, . . . to the state ηε(0) by the semi-Markov process ηε(t).
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Process (ξε(t), ηε(t)), t ≥ 0 is a regenerative process with regeneration
times τ̂ε,n, n = 0, 1, . . .. It also is a regenerative process with regeneration
times τ̌ε,n, n = 0, 1, . . ..

We can also consider shifted sequences of stopping times ν̂ ′ε,0 = 0, ν̂ ′ε,1 =

θ̃ε[0], ν̂ ′ε,n = θ̂[ν̂ ′ε,n−1], n = 2, 3, . . . and ν̌ ′ε,0 = 0, ν̌ ′ε,1 = θ̃ε[0], ν̌ ′ε,n = θ̌[ν̌ ′ε,n−1],
n = 2, 3, . . ., and the corresponding continuous time stopping times τ̂ ′ε,n =
τε,ν̂′ε,n , n = 0, 1, . . . and τ̌ ′ε,n = τε,ν̌′ε,n , n = 0, 1, . . ..

If ηε(0) = 1, then the stopping times τ̂ε,n, n = 1, 2, . . . and τ̌ε,n, n = 1, 2, . . .
are return times to the state 1 for the semi-Markov process ηε(t). As far as
the shifted stopping times τ̂ ′ε,n and τ̌ ′ε,n are concerned, τ̂ ′ε,1 = τ̌ ′ε,1 is the first
hitting time to state 2, while τ̂ε,n, n = 2, 3, . . . and τ̌ε,n, n = 2, 3, . . . are return
times to the state 2 for the semi-Markov process ηε(t).

If ηε(0) = 2, then the stopping times τ̂ε,n, n = 1, 2, . . . and τ̌ε,n, n = 1, 2, . . .
are return times to the state 2 for the semi-Markov process ηε(t). As far as
the shifted stopping times τ̂ ′ε,n and τ̌ ′ε,n are concerned, τ̂ ′ε,1 = τ̌ ′ε,1 is the first
hitting time to state 1, while τ̂ε,n, n = 2, 3, . . . and τ̌ε,n, n = 2, 3, . . . are return
times to the state 1 for the semi-Markov process ηε(t).

Process (ξε(t), ηε(t)), t ≥ 0 is a regenerative process with the transition
period [0, τ̂ ′ε,1) and the regeneration times τ̂ ′ε,n, n = 0, 1, . . .. It also is a
regenerative process with the transition period [0, τ̌ε,1) and the regeneration
times τ̌ ′ε,n, n = 0, 1, . . ..

We shall see that regeneration times τ̂ε,n and τ̂ ′ε,n work well for models
with regular perturbations. However, these regeneration times do not work
well for the models with singular and super-singular perturbations. Here, the
regeneration times τ̌ε,n and τ̌ ′ε,n should be used.

3. Ergodic theorems for regularly perturbed alternating
regenerative processes

In this section, we present individual ergodic theorems for regularly per-
turbed alternating regenerative processes. These theorems are, in fact, rather
simple examples illustrating applications of results generalising the renewal
theorem to the model of perturbed renewal equation [37 – 39] and individual
ergodic theorems for perturbed regenerative processes throughly presented
in [14]. Other related references are given in the introduction.

3.1. Perturbed standard alternating regenerative processes. Let
us consider regularly perturbed standard alternating regenerative processes,
where, additionally to F – J, the following condition holds:

M1: pε,12, pε,21 = 1, for ε ∈ [0, 1].
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In this case, the Markov chain η0,n is ergodic. Obviously, parameter β = 1,
and its stationary probabilities are, α1(1) = α2(1) = 1

2
.

Conditions F – I and M1 imply that the semi-Markov process η0(t) is
ergodic. Its stationary probabilities have the form,

ρ1(1) = e0,1/(e0,1 + e0,2), ρ2(1) = e0,2/(e0,1 + e0,2). (17)

The corresponding stationary probabilities for the alternating regenera-
tive process (ξ0(t), η0(t)) have the form,

π
(1)
0,j (A) = ρj(1)π0,j(A), A ∈ BX, j = 1, 2. (18)

The ergodic theorem for perturbed standard alternating regenerative pro-
cesses takes the following form.

Theorem 4. Let conditions F – J and M1 hold. Then, for every A ∈
Γ, i, j = 1, 2, and any 0 ≤ tε →∞ as ε→ 0,

Pε,ij(tε, A)→ π
(1)
0,j (A) as ε→ 0. (19)

Proof. In the case, where condition M1 holds, the stopping times θ̃[r] =
r + 1 and θ̂[r] = θ̌[r] = r + 2, for r = 0, 1, . . ..

Thus, the regenerations times τ̂ε,n = τ̌ε,n = τε,2n, n = 0, 1, . . . and τ̂ ′ε,0 =
τ̌ ′ε,0 = 0, τ̂ ′ε,1 = τ̌ ′ε,1 = τε,1, τ̂

′
ε,n = τ̌ ′ε,n = τε,2n−1, n = 2, 3, . . ..

Here and henceforth, we use the same symbol for equalities or inequalities
which hold for random variables, for all ω ∈ Ω or almost sure, since this
difference does not affect the corresponding probabilities and expectations.

Therefore, the standard alternating regenerative process (ξε(t), ηε(t)), t ≥
0 is a standard regenerative process with regeneration times τε,0, τε,2, τε,4, . . ..
It also can be considered as a regenerative process with transition period
[0, τε,1) and regenerative times τε,0, τε,1, τε,3, τε,5, . . ..

Regenerative lifetimes are not involved. We can use the Theorems 1 – 3,
for the model with stopping probabilities fε = 0, ε ∈ [0, 1].

First, let us analyse the asymptotic behaviour of probabilities Pε,11(t, A).
In this case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the standard
regenerative process with regeneration times τε,0, τε,2, . . ..

The renewal type equation (4) takes for probabilities Pε,11(t, A) the fol-
lowing form,

Pε,11(t, A) = q
(2)
ε,1(t, A) +

∫ t

0
Pε,11(t− s, A)Q

(2)
ε,11(ds), t ≥ 0, (20)

where q
(2)
ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τε,2 > t}, t ≥ 0 and Q

(2)
ε,11(t) =

P1{τε,2 ≤ t}, t ≥ 0.
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In this case, ηε(t) = 1, for t ∈ [0, τε,1), and ηε(t) = 2, for t ∈ [τε,1, τε,2).
Therefore, for every A ∈ BX, t ≥ 0,

q
(2)
ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τε,2 > t}

= P1{ξε(t) ∈ A, τε,1 > t} = qε,1(t, A), (21)

Also, for t ≥ 0,

Q
(2)
ε,11(t) = P1{τε,2 ≤ t} = Qε,12(t) ∗Qε,21(t), (22)

and, thus,
e

(2)
ε,11 = E1τε,2 = eε,12 + eε,21. (23)

Note that condition M1 implies that expectations eε,11, eε,22 = 0 and,
therefore, eε,12 + eε,21 = eε,1 + eε,2.

Condition F obviously implies that condition A holds. Relation (22) and
conditions G, H, and M1 imply that condition B (a) holds. Relation (22)
and condition H (b) implies that condition B (b) holds. Relation (23) and
condition I imply that condition C holds. Relation (21) and condition J
imply that condition D holds. As was mentioned above, in this case, fε ≡ 0.
Thus, all conditions of Theorem 1 holds, and the ergodic relation given in
this theorem takes place for probabilities Pε,11(tε, A). In this case, it takes
the form of relation (19), where one should choose i, j = 1.

Second, let us analyse the asymptotic behaviour of probabilities Pε,21(t, A).
In this case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the regenerative
process with transition period [0, τε,1) and regenerative times τε,0, τε,1, τε,3, . . ..

The shifted process (ξε(τε,1 + t), ηε(τε,1 + t)), t ≥ 0 is a standard regen-
erative process. If ηε(0) = 2, then ηε(τε,1) = 1. That is why, probabilities
Pε,11(t, A) play for the above shifted regenerative process the role of proba-
bilities P (1)

ε (t, A) defined in Subsection 2.1.
The distribution function for the duration of the transition period [0, τε,1)

has, in this case, the following form,

P2{τε,1 ≤ t} = Qε,21(t), t ≥ 0. (24)

Relation (24) and conditions H, M1 imply that condition E holds. Thus,
all conditions of Theorem 2 hold, and the corresponding ergodic relation for
probabilities Pε,11(tε, A) also holds for probabilities Pε,21(tε, A).

Due to the symmetricity of conditions F – J and M1 with respect to the
indices i, j = 1, 2, the ergodic relations, analogous to the mentioned above
ergodic relations for probabilities Pε,11(tε, A) and Pε,21(tε, A), also take place
for probabilities Pε,22(tε, A) and Pε,12(tε, A). The only, stationary probabil-

ities π
(1)
0,1(A) should be replaced by stationary probabilities π

(1)
0,2(A) in the

corresponding ergodic relations. �
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3.2. Regularly perturbed alternating regenerative processes. Let
us now consider alternating regenerative processes with a regular perturba-
tion model, where additionally to F – J, the following condition holds:

M2: p0,12, p0,21 > 0.

Note that condition M1 is a particular case of condition M2, and, thus,
any standard alternating regenerative process also is a regularly alternating
regenerative process.

In this case, the Markov chain η0,n is ergodic. Obviously, parameter β =
p0,12/p0,21 ∈ (0,∞), and the stationary probabilities for the above Markov
chain are, α1(β) = 1

1+β
and α2(β) = 1

1+β−1 .

Conditions F – I and M2 imply that the semi-Markov process η0(t) is
ergodic. Its stationary probabilities have the form,

ρ1(β) =
e0,1α1(β)

e0,1α1(β) + e0,2α2(β)
, ρ2(β) =

e0,2α2(β)

e0,1α1(β) + e0,2α2(β)
. (25)

The corresponding stationary probabilities for the alternating regenera-
tive process ξ0(t) has the form, for β ∈ (0,∞),

π
(β)
0,j (A) = ρj(β)π0,j(A), A ∈ BX, j = 1, 2. (26)

The ergodic theorem for perturbed alternating regenerative processes
takes the following form.

Theorem 5. Let conditions F – J hold and, also, condition M2 holds
and parameter p0,12/p0,21 = β ∈ (0,∞). Then, for every A ∈ Γ, i, j = 1, 2,
and any 0 ≤ tε →∞ as ε→ 0,

Pε,ij(tε, A)→ π
(β)
0,j (A) as ε→ 0. (27)

Proof. As was pointed out in Section 4, process (ξε(t), ηε(t)) is a regenera-
tive process with regeneration times with regeneration times τ̂ε,n, n = 0, 1, . . ..
It is also a regenerative process with the transition period [0, τ̂ ′ε,1) and the
regeneration times τ̂ ′ε,n, n = 0, 1, . . ..

Again, regenerative lifetimes are not involved. We can use the Theorems
1 – 3, for the model with stopping probabilities fε = 0, ε ∈ [0, 1].

First, let us analyse the asymptotic behaviour of probabilities Pε,11(t, A).
In this case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the standard
regenerative process with regeneration times τ̂ε,n, n = 0, 1, . . ..

The renewal type equation (4) for probabilities Pε,11(t, A) takes, in this
case, the following form,

Pε,11(t, A) = q̂ε,1(t, A) +
∫ t

0
Pε,11(t− s, A)Q̂ε,11(ds), t ≥ 0, (28)
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where q̂ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τ̂ε,1 > t}, t ≥ 0 and Q̂ε,11(t) =
P1{τ̂ε,1 ≤ t}, t ≥ 0.

If ηε(0) = 1, then ηε(t) = 1 for t ∈ [0, τε,1). Also, τ̂ε,1 = τε,1, if ηε,1 = 1, and
ηε(t) = 2, for t ∈ [τε,1, τ̂ε,1), if ηε,1 = 2. Therefore, for every A ∈ BX, t ≥ 0,

q̂ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τ̂ε,1 > t}
= P1{ξε(t) ∈ A, τε,1 > t, ηε,1 = 1}

+ P1{ξε(t) ∈ A, τε,1 > t, ηε,1 = 2}
= P1{ξε(t) ∈ A, τε,1 > t} = qε,1(t, A). (29)

In this case, Q̂ε,11(t) is the distribution function of the first return time
to state 1 for semi-Markov process ηε(t). It can be expressed in terms of
convolutions of transition probabilities for this semi-Markov process,

Q̂ε,11(t) = Qε,11(t) +Qε,12(t) ∗
∞∑
n=0

Q∗nε,22(t) ∗Qε,21(t), t ≥ 0. (30)

Relation (30) takes the following equivalent form in terms of Laplace
transforms,

φ̂ε,11(s) =
∫ ∞

0
e−stQ̂ε,11(dt)

= φε,11(s) + φε,12(s)
∞∑
n=0

φnε,22(s)φε,21(s)

= φε,11(s) + φε,12(s)
1

1− φε,22(s)
φε,21(s), s ≥ 0. (31)

Relation (30) also implies that random variable ν̂ε,1 has a so-called burned
geometric distribution that is,

ν̂ε,1 =

{
1 with probability pε,11,
n with probability pε,12 p

n−2
ε,22 pε,21, for n ≥ 2.

This fact and conditions G, H, and M2 imply, in an obvious way, that
expectation êε,11 = E1τ̂ε,1 < ∞. It can be easily computed, for example,

using the derivative of the Laplace transform φ̂ε,11(s) at zero,

êε,11 = E1τ̂ε,1 = −φ̂′ε,11(0) = eε,11 + eε,12
1

1− pε,22

pε,21

+ pε,12
eε,22

(1− pε,22)2
pε,21 + pε,12

1

1− pε,22

eε,21

=
eε,1pε,21 + eε,2pε,12

pε,21

=
eε,1α1(βε) + eε,2α2(βε)

α1(βε)
. (32)
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Obviously, τ̂ε,n ≥ τε,n, for n = 0, 1, . . .. Thus, condition F implies that
condition A holds. Relations (30), (31) and conditions G, H, and M2 imply
that Laplace transforms φ̂ε,11(s) → φ̂0,11(s) as ε → 0, for s ≥ 0. Thus, by
Remark 1, condition B (a) holds. Also, relation (30) and condition H (b)
implies that condition B (b) holds. Relation (32) and conditions H and
I imply that condition C holds. Relation (29) and condition J imply that
condition D holds. As was mentioned above, in this case, fε ≡ 0. Thus, all
conditions of Theorem 1 hold, and the ergodic relation given in this theorem
takes place for probabilities Pε,11(tε, A). In this case, it takes the form of
relation (27), where one should choose i, j = 1, i.e., for every A ∈ Γ, and any
0 ≤ tε →∞ as ε→ 0,

Pε,11(tε, A)→ α1(β)

e0,1α1(β) + e0,2α2(β)

∫ ∞
0

q0,1(s, A)m(ds)

=
e0,1α1(β)

e0,1α1(β) + e0,2α2(β)

1

e0,1

∫ ∞
0

q0,1(s, A)m(ds)

= ρj(β)π0,j(A) = π
(β)
0,j (A) as ε→ 0. (33)

Second, let us analyse the asymptotic behaviour of probabilities Pε,21(t, A).
In this case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the regenera-
tive process with transition period [0, τ̂ ′ε,1) and regenerative times τ̂ ′ε,0, τ̂

′
ε,1 =

τ̃ε,1, τ̂
′
ε,2, τ̂

′
ε,3, . . ..

The shifted process (ξε(τ̂
′
ε,1 + t), ηε(τ̂

′
ε,1 + t)), t ≥ 0 is a standard regen-

erative process. If ηε(0) = 2, then ηε(τ̃ε,1) = 1. That is why, probabilities
Pε,11(t, A) play for this process the role of probabilities P (1)

ε (t, A) pointed out
in Subsection 2.1.

The distribution function for the duration of the transition period [0, τ̃ε,1)
has, in this case, the following form,

P2{τ̃ε,1 ≤ t} = Q̃ε,21(t) =
∞∑
n=0

Q∗nε,22(t) ∗Qε,21(t), t ≥ 0. (34)

This relation takes the following equivalent form in terms of Laplace trans-
forms,

φ̃ε,21(s) =
∫ ∞

0
e−stQ̃ε,21(dt)

=
∞∑
n=0

φnε,22(s)φε,21(s) =
φε,21(s)

1− φε,22(s)
, s ≥ 0. (35)

Relations (34), (35) and conditions G, H, and M2 imply that Laplace
transforms φ̃ε,21(s) → φ̃0,21(s) as ε → 0, for s ≥ 0. Thus, by Remark 1,
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condition E holds. All conditions of Theorem 2 hold, and the correspond-
ing ergodic relation for probabilities Pε,11(tε, A) also holds for probabilities
Pε,21(tε, A).

Due to the symmetricity of conditions F – J and M2 with respect to
the indices i, j = 1, 2, the ergodic relations, analogous to the mentioned
above ergodic relations for probabilities Pε,11(tε, A) and Pε,21(tε, A), also take
place for probabilities Pε,22(tε, A) and Pε,12(tε, A). The only, the stationary

probabilities π
(β)
0,1 (A) should be replaced by stationary probabilities π

(β)
0,2 (A)

in the corresponding ergodic relations. �

Remark 2. Theorem 4 is a particular case of Theorem 5. In this case,
the ergodic relation (27) takes the form of ergodic relation (19).

3.3. Semi-regularly perturbed alternating regenerative processes.
Let us now consider alternating regenerative processes with the semi-regular
perturbation model, where additionally to F – J, the following condition
holds:

M3: (a) p0,12 = 0, p0,21 > 0 or (b) p0,12 > 0, p0,21 = 0.

In this case, the Markov chain η0,n is ergodic. Obviously, parameter
β = p0,12/p0,21 = 0, and the stationary probabilities for the above Markov
chain are, α1(0) = 1, α2(0) = 0, if condition M3 (a) holds. While β =
p0,12/p0,21 =∞, and the stationary probabilities for the above Markov chain
are, α1(∞) = 0, α2(∞) = 1, if condition M3 (b) holds.

Conditions F – J and M3 imply that the semi-Markov process η0(t) is er-
godic. Its stationary probabilities have the form, ρ1(0) = e0,1α1(0)/(e0,1α1(0)+
e0,2α2(0)) = 1, ρ2(0) = ε0,2α2(0)/(e0,1α1(0) + e0,2α2(0)) = 0, if condition
M3 (a) holds. While, ρ1(∞) = e0,1α1(∞)/(e0,1α1(∞) + e0,2α2(∞)) = 0,
ρ2(∞) = e0,2α2(∞)/(e0,1α1(∞) + e0,2α2(∞)) = 1, if condition M3 (b) holds.

The corresponding stationary probabilities for the alternating regenera-
tive process (ξ0(t), η0(t)) have the form, π

(β)
0,j (A) = ρj(β)π0,j(A), A ∈ BX, j =

1, 2, for β = 0 and β =∞, i.e.,

π
(0)
0,j (A) =

 π0,1(A) for j = 1,

0 for j = 2,
(36)

and

π
(∞)
0,j (A) =

 0 for j = 1,

π0,2(A) for j = 2.
(37)

The ergodic theorems for perturbed alternating regenerative processes
take the following forms.
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Theorem 6. Let conditions F – J and M3 (a) hold. Then, for every
A ∈ Γ, i, j = 1, 2, and any 0 ≤ tε →∞ as ε→ 0,

Pε,ij(tε, A)→ π
(0)
0,j (A) as ε→ 0. (38)

Theorem 7. Let conditions F – J and M3 (b) hold. Then, for every
A ∈ Γ, i, j = 1, 2, and any 0 ≤ tε →∞ as ε→ 0,

Pε,ij(tε, A)→ π
(∞)
0,j (A) as ε→ 0. (39)

Proof. Process (ξε(t), ηε(t)) is a standard regenerative process with re-
generation times τ̂ε,n, n = 0, 1, . . .. It also is a regenerative process with
transition period [0, τ̂ ′ε,1) and regenerative times τ̂ ′ε,n, n = 0, 1, . . ..

Again, regenerative stopping is not involved. We can use the Theorems
1 – 3, for the model with stopping probabilities fε = 0, ε ∈ [0, 1].

Let us consider the case, where condition M3 (a) holds.
Let us analyse the asymptotic behaviour for probabilities Pε,1j(t, A), j =

1, 2. In this case, we prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the standard
regenerative process with regeneration times τ̂ε,0, τ̂ε,1, τ̂ε,2, . . ..

First, let us analyse the asymptotic behaviour of probabilities Pε,11(t, A).
The renewal type equation (4) takes for probabilities Pε,1j(t, A) the fol-

lowing form, for j = 1, 2,

Pε,1j(t, A) = q̂ε,1j(t, A) +
∫ t

0
Pε,1j(t− s, A)Q̂ε,11(ds), t ≥ 0, (40)

where q̂ε,1j(t, A) = P1{ξε(t) ∈ A, ηε(t) = j, τ̂ε,1 > t}, t ≥ 0, j = 1, 2 and

Q̂ε,11(t) = P1{τ̂ε,1 ≤ t}, t ≥ 0.
In the case of probabilities Pε,11(t, A), we can repeat all calculations made

in relations (28) – (32), given in the proof of Theorem 5. These relations, in
fact, take simpler forms.

Analogously to relation (29), one can get, for every A ∈ BX, t ≥ 0,

q̂ε,11(t, A) = P1{ξε(t) ∈ A, τε,1 > t} = qε,1(t, A). (41)

Also, as was pointed out in comments related to relation (30), Q̂ε,11(t) is
the distribution function of the first return time to state 1 for semi-Markov
process ηε(t), and the following formula, analogous to (31), takes place for
its Laplace transform,

φ̂ε,11(s) =
∫ ∞

0
e−stQ̂ε,11(dt)

= φε,11(s) + φε,12(s)
1

1− φε,22(s)
φε,21(s), s ≥ 0. (42)
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Also, the following formula, analogous to (32), takes place for expecta-
tions,

êε,11 = E1τ̂ε,1 = −φ̂′ε,11(0) =
eε,1α1(βε) + eε,2α2(βε)

α1(βε)
. (43)

Conditions G, H, and M3 (a) imply that, in relation (42), either Laplace
transform φε,12(s) = 0, for s ≥ 0, if pε,12 = 0, for ε ∈ [0, 1], or φε,12(s) → 0
as ε → 0, for s ≥ 0, if 0 < pε,12 → 0 as ε → 0. This implies that the

Laplace transforms φ̂ε,11(s) → φ̂0,11(s) = φ0,11(s) as ε → 0, for s ≥ 0.
Thus, by Remark 1, condition B (a) holds, with the corresponding limiting
distribution function Q0,11(t). According to condition H, condition B (b)
holds for the distribution function Q0,11(t). Analogously, in relation (43),
either expectation eε,12 = 0, if pε,12 = 0, for ε ∈ [0, 1], or eε,12 → 0 as ε→ 0,
if 0 < pε,12 → 0 as ε → 0. It follows from this remark and conditions G
– I that the expectations êε,11 → ê0,11 = e0,11 as ε → 0. Note also that
condition M3 (a) implies that expectation e0,11 = e0,1. Thus, condition C
holds, with the corresponding limiting expectation e0,11 = e0,1. Relation (41)
and condition J imply that condition D holds. As was mentioned above,
in this case, fε ≡ 0. Thus, all conditions all conditions of Theorem 1 hold,
and the ergodic relation given in this theorem takes place for probabilities
Pε,11(tε, A). In this case, it takes the form of relation (38), where one should
choose i, j = 1.

Second, let us analyse the asymptotic behaviour of probabilities Pε,12(t, A).
Holding of conditions A – C was pointed above.
If ηε(0) = 1, then ηε(t) = 1 for t ∈ [0, τε,1), and τ̂ε,1 = τε,1, if ηε,1 = 1. Also,

ηε(t) = 2, for t ∈ [τε,1, τ̂ε,1), if ηε,1 = 2. Therefore, for every A ∈ BX, t ≥ 0,

q̂ε,12(t, A) = P1{ξε(t) ∈ A, ηε(t) = 2, τ̂ε,1 > t}
≤ P1{ξε(t) ∈ A, ηε(t) = 2, τ̂ε,1 > t, τε,1 ≤ t, ηε,1 = 2}
≤ P1{τε,1 ≤ t, ηε,1 = 2} ≤ pε,12. (44)

Since, pε,12 = 0, for ε ∈ [0, 1] or pε,12 → 0 as ε → 0, condition D holds
for function q̂ε,12(t, A) with the corresponding limiting function q̂0,12(t, A) =
0, t ≥ 0, for every A ∈ BX. Thus, all conditions of Theorem 1 hold, and the
ergodic relation given in this theorem takes place for probabilities Pε,12(tε, A).
In this case, it takes the form of relation (38), where one should choose
i = 1, j = 2.

Third, let us analyse asymptotic behaviour of probabilities Pε,2j(t, A), j =
1, 2. In this case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the regenera-
tive process with transition period [0, τ̂ ′ε,1) and regenerative times τ̂ ′ε,0, τ̂

′
ε,1 =

τ̃ε,1, τ̂
′
ε,2, τ̂

′
ε,3, . . ..
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The shifted process (ξε(τ̂
′
ε,1 + t), ηε(τ̂

′
ε,1 + t)), t ≥ 0 is a standard regen-

erative process. If ηε(0) = 2, then ηε(τ̃ε,1) = 1. That is why, probabilities
Pε,1j(t, A) play for this process the role of probabilities P (1)

ε (t, A) defined out
in Section 2.

The distribution function P2{τ̃ε,1 ≤ t} = Q̃ε,21(t) and the Laplace trans-
form φ̃ε,12(s) =

∫∞
0 e−stQ̃ε,12(dt) for the duration of the transition period

[0, τ̃ε,1) are given, respectively in relations (34) and (35). These relations
and conditions G, H and M3 (a) imply that Laplace transforms φ̃ε,12(s)→
φ̃0,12(s) as ε→ 0, for s ≥ 0. Thus, by Remark 1, condition E holds. All con-
ditions of Theorem 2 hold, and the corresponding ergodic relation for prob-
abilities Pε,1j(tε, A), j = 1, 2 also holds for probabilities Pε,2j(tε, A), j = 1, 2.

Due to symmetricity of conditions F – J with respect to the indices i, j =
1, 2 the corresponding asymptotic analysis for probabilities Pε,ij(tε, A), i, j =
1, 2 (under assumption of holding condition M3 (b)) is analogous to the
above asymptotic analysis for probabilities Pε,ij(tε, A), i.j = 1, 2 (under as-
sumption of holding condition M3 (a)). The corresponding ergodic relation
(39) takes place for the above probabilities, under assumption of holding con-
dition M3 (b). �

4. Super-long and long time ergodic theorems for singularly
perturbed alternating regenerative processes

In this section, we present super-long and long time individual ergodic
theorems for singularly perturbed alternating regenerative processes. We also
present in this section the special procedure of time scaling for perturbed
regenerative processes. It is essentially used in the corresponding proofs.

4.1. Time scaling for perturbed regenerative processes. Let re-
turn back to the model of perturbed regenerative processes with regenera-
tive lifetimes introduced in Subsection 2.1. So, let ξε(t), t ≥ 0 be, for every
ε ∈ [0, 1], a regeneration process with regeneration times τε,n, n = 0, 1, . . . and
a regenerative lifetime µε constructed using the triplets 〈ξ̄ε,n = 〈ξε,n(t), t ≥
0〉, κε,n, µε,n〉 introduced in Subsection 2.1.

Let also vε, ε ∈ (0, 1] be a positive function. We also choose some v0 ∈
[0,∞].

In some cases, it can be useful to replace, for every ε ∈ (0, 1], the
above triplet by new one, 〈ξ̄ε,vε,n = 〈ξε,vε,n(t) = ξε,n(tvε), t ≥ 0〉, κε,vε,n =
v−1
ε κε,n, µε,vε,n = v−1

ε µε,n〉.
Respectively, the above regenerative process ξε(t), t ≥ 0 will be, for every

ε ∈ (0, 1], transformed in the new process ξε,vε(t) = ξε(tvε), t ≥ 0. Obviously.
ξε,vε(t), t ≥ 0 is also a regenerative process, with new regenerative times
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τε,vε,n = v−1
ε τε,n, n = 0, 1, . . . and new lifetime µε,vε = v−1

ε µε.
We also should introduce some limiting triplet 〈ξ̄0,v0,n = 〈ξ0,v0,n(t), t ≥

0〉, κ0,v0,n, µ0,v0,n〉, which possess the corresponding properties described in
Subsection 2.1, and the corresponding limiting regenerative process ξ0,v0(t) =
ξ0,v0,n(t − τ0,v0,n−1) for t ∈ [τ0,v0,n−1, τ0,v0,n), n = 1, 2, . . ., regeneration times
τ0,v0,n = κ0,v0,1 + · · · + κ0,v0,n, n = 1, 2, . . . , τ0,v0,0 = 0, and a regenerative
lifetime, µ0,v0 = κ0,v0,1 + · · ·+ κ0,v0,ν0,v0−1 + µ0,v0,ν0,v0

, where ν0,v0 = min(n ≥
1 : µ0,v0,n < κ0,v0,n).

In such model, we can assume the the corresponding conditions A – D
hold for the transformed regenerative processes ξε,vε(t), t ≥ 0, their regener-
ation times τε,vε,n, n = 0, 1, . . . and lifetimes µε,vε .

It worth to note that the probabilities Pε,vε(t, A) = P{ξε,vε(t) ∈ A, µε,vε >
t} = Pε(tvε, A) = P{ξε(tvε) ∈ A, µε > tvε}, t ≥ 0, for ε ∈ (0, 1].

The basic renewal equation (4) for probabilities Pε,vε(t, A) takes, for ε ∈
(0, 1], the following form, for A ∈ BX,

Pε,vε(t, A) = qε,vε(t, A) +
∫ t

0
Pε,vε(t− s, A)Fε,vε(ds), t ≥ 0, (45)

where qε,vε(t, A) = P{ξε,vε(t) ∈ A, τε,vε,1∧µε,vε > t} = qε(tvε, A) = P{ξε(tvε) ∈
A, τε,1 ∧ µε > tvε} and Fε,vε(t) = P{τε,vε,1 ≤ t, µε,vε ≥ τε,vε,1} = P{τε,1 ≤
tvε, v

−1
ε µε ≥ v−1

ε τε,1}.
We shall see in the next section that the above scaling of time transfor-

mation can be effectively used in ergodic theorems for singularly perturbed
alternating regenerative processes, where aggregated regeneration times can
be stochastically unbounded as ε → 0. In such models, we shall use time
scaling factors 0 < vε → v0 = ∞ as ε → 0, and refer to vε as to time
compression factors.

4.2. Singularly perturbed alternating regenerative processes.
Let us now consider the alternating regenerative processes with the singular
perturbation model, where additionally to F – J, the following condition
holds:

N1: 0 < pε,12 → p0,12 = 0 as ε→ 0 and 0 < pε,21 → p0,21 = 0 as ε→ 0.

The case, where condition N1 holds, is the most interesting. Here, we
should also assume that probabilities pε,12 and pε,21 are asymptotically com-
parable in the sense that the condition Kβ holds for some β ∈ [0,∞].

Let us define function vε = p−1
ε,12 + p−1

ε,21. Obviously, 0 < vε → v0 = ∞ as
ε→ 0. Also, p−1

ε,12/vε → (1 + β)−1 and p−1
ε,21/vε → (1 + β−1)−1 as ε→ 0.

As was pointed out in Section 4, process (ξε(t), ηε(t)) is a regenerative
process with regeneration times τ̂ε,n, n = 0, 1, . . .. It is also a regenerative
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process with the transition period [0, τ̂ ′ε,1) and regeneration times τ̂ ′ε,n, n =
0, 1, . . ..

Unfortunately, the model with aggregated regeneration times τ̂ε,n does not
work in this case. Indeed, conditions G, H and N1 implies that φε,12(s) →
φ0,12(s) = 0 as ε → 0, for s ≥ 0 and, thus, using relation (31), we get

φ̂ε,11(s) = φε,11(s) + φε,12(s) 1
1−φε,22(s)

φε,21(s) → φ0,11(s) as ε → 0, for s ≥ 0.

Thus, the distributions of regeneration times Q̂ε,11(·) ⇒ Q̂0,11(·) = Q0,11(·)
as ε → 0. At the same time, conditions G – I, N1 and relation (32) imply
that, in this case, êε,11 = eε,1pε,21+eε,2pε,12

pε,21
→ e0,1 + e0,2β = e0,11 + e0,22β as

ε → 0. This makes it impossible to use Theorems 1 – 3, which require
convergence of expectations for regeneration times to the first moment of the
corresponding limiting distribution for regeneration times. In the above case,
ê0,11 = e0,11 6= e0,11 + e0,22β, if β > 0.

Fortunately, we can use an alternative model with aggregated regener-
ation times τ̌ε,n introduced in Subsection 4.2. Process (ξε(t), ηε(t)) is a re-
generative process with regeneration times τ̌ε,n, n = 0, 1, . . .. It is also a re-
generative process with the transition period [0, τ̌ ′ε,1) and regeneration times
τ̌ ′ε,n, n = 0, 1, . . ..

Let us analyse the asymptotic behaviour for probabilities Pε,11(t, A). In
this case, we do prefer to consider (ξε(t), ηε(t)), t ≥ 0 as the standard regen-
erative process with regeneration times τ̌ε,n, n = 0, 1, . . ..

The renewal equation (4) for probabilities Pε,11(t, A) takes, in this case,
the following form,

Pε,11(t, A) = q̌ε,1(t, A) +
∫ t

0
Pε,11(t− s, A)Q̌ε,11(ds), t ≥ 0, (46)

where q̌ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τ̌ε,1 > t}, t ≥ 0 and Q̌ε,11(t) =
P1{τ̌ε,1 ≤ t}, t ≥ 0.

If ηε(0) = 1, then ηε(t) = 1 for t ∈ [0, τ̃ε,1), and ηε(t) = 2, for t ∈ [τ̃ε,1, τ̌ε,1).
Therefore, for every A ∈ BX, t ≥ 0,

q̌ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τ̌ε,1 > t}
= P1{ξε(t) ∈ A, ηε(t) = 1, τ̃ε,1 > t} = q̃ε,1(t, A). (47)

In this case, Q̌ε,11(t) is the distribution function of the first return time
to state 1 after first hitting to state 2, for the semi-Markov process ηε(t). It
can be expressed in terms of convolutions of transition probabilities for this
semi-Markov process,

Q̌ε,11(t) = Q̃ε,12(t) ∗ Q̃ε,21(t), t ≥ 0. (48)
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where, for i, j ∈ Y, i 6= j,

Q̃ε,ij(t) =
∞∑
n=0

Q∗nε,ii(t) ∗Qε,ij(t), t ≥ 0, (49)

According relation (48), the distribution function Q̌ε,11(t) of return time
τ̌ε,1 is the convolution of two distribution functions, Q̃ε,12(t) and Q̃ε,21(t). This
means that return time τ̌ε,1 is the sum of two independent random variables
τ̃ε,1 and τ̌ε,1− τ̃ε,1, which have the distribution functions, respectively, Q̃ε,12(t)
and Q̃ε,21(t). The former one is the distribution of the first hitting time of
state 2 from state 1, the latter one is the distribution of the first hitting time
of state 1 from state 2, for the semi-Markov process ηε(t).

Remind that we assume that ηε(0) = ηε = 1. In this case, (a) the return

time τ̃ε,1 is a random sum, τ̃ε,1 =
∑θε[0]
n=1 κε,1,n, where (b) the random index,

θε[0] = min(n ≥ 1 : ηε,1,n = 1) has the geometric distribution with parameter
pε,12, i.e., it takes value n with probability pn−1

ε,11pε,12, for n = 1, 2, . . ..
Relation (b) and condition N1 imply that random variables,

pε,12θε[0]
d−→ ζ as ε→ 0, (50)

where ζ is a random variable exponentially distributed, with parameter 1.
Random variables κε,1,n, n = 1, 2, . . . are i.i.d. random variables with the

distribution function Fε,1(t) = P1{κε,1,1 ≤ t} = Qε,11(t) + Qε,12(t), t ≥ 0.
Conditions H and I imply that (c) distributions Fε,1(·) ⇒ F0,1(·) as ε → 0
and (d) expectations eε,1 = E1κε,1,1 =

∫∞
0 sFε,1(ds) → e0,1 =

∫∞
0 sF0,1(ds) as

ε→ 0.
Relations (c) and (d) imply that, for any integer-valued function 0 ≤

nε →∞ as ε→ 0,

n−1
ε

nε∑
k=1

κε,1,n
d−→ e0,1 as ε→ 0. (51)

Indeed, let 0 < sk →∞ as k →∞ be a sequence of continuity points for
the distribution function F0,1(t). The above relations (c) and (d) obviously
imply that, for any t > 0,

lim
ε→0

∫ ∞
tnε

sFε,1(ds) ≤ lim
ε→0

∫ ∞
sk

sFε,1(ds) = lim
ε→0

(eε,1 −
∫ sk

0
sFε,1(ds))

= e0,1 −
∫ sk

0
sF0,1(ds)→ 0 as k →∞, (52)

and, thus, the following relation holds, for any t > 0,

lim
ε→0

∫ ∞
tnε

sFε,1(ds) = 0. (53)
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Relation (53) implies that, for any t > 0,

nεP1{n−1
ε κε,1,1 > t} = nε(1− Fε,1(tnε))

≤ t−1
∫ ∞
tnε

sFε,1(ds)→ 0 as ε→ 0. (54)

Also, relations (d) and (53) implies that, for any t > 0,

nεE1n
−1
ε κε,1,1I(n−1

ε κε,1,1 ≤ t) =
∫ tnε

0
sdFε,1(ds)→ e0,1 as ε→ 0. (55)

Relations (54) and (55) imply, by the criterion of central convergence,
that relation (51) holds.

The random index θε[0] and the random variables κε,1,n, n = 1, 2, . . . are
dependent. Nevertheless, since the limit in relation (51) is non-random,
relations (50) and (51) imply that stochastic processes,

(pε,12θε[0],
∑

n≤tp−1
ε,12

κε,1,n, t ≥ 0
d−→ (ζ, te0,1), t ≥ 0 as ε→ 0. (56)

By well known results about convergence of randomly stopped stochastic
processes (for example, Theorem 2.2.1 [47]), representation (a) and relation
(56) imply that random variables,

pε,12τ̃ε,1
d−→ e0,1ζ as ε→ 0. (57)

Since, p−1
ε,12/vε → (1 + β)−1 as ε → 0, relation (k) implies the following

relation,
Q̃ε,vε,12(·)⇒ Q̃0,v0,12(·) as ε→ 0, (58)

where Q̃0,v0,12(t) = P{e0,1
1

1+β
ζ ≤ t}, t ≥ 0 is the distribution function of an

exponentially distributed random variable, with parameter e−1
0,1(1 + β).

Since the random variable τ̌ε,1− τ̃ε,1 has distribution function Q̃ε,21(t), one
can, in the way absolutely analogous with relation (57), prove the following
relation,

pε,21(τ̌ε,1 − τ̃ε,1)
d−→ e0,2ζ as ε→ 0, (59)

and, in sequel,
Q̃ε,vε,21(·)⇒ Q̃0,v0,21(·) as ε→ 0, (60)

where Q̃0,v0,21(t) = P{e0,2
1

1+β−1 ζ ≤ t}, t ≥ 0 is the distribution function of an

exponentially distributed random variable, with parameter e−1
0,2(1 + β−1).

Let Q̌ε,vε,11(t) = Q̌ε,11(tvε) = P1{τ̌ε,1/vε ≤ t}, t ≥ 0 be the distribution
function of the normalised return time v−1

ε τ̌ε,1.
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Relations (48), (58) and (60) imply that,

Q̌ε,vε,11(·)⇒ Q̌0,v0,11(·) as ε→ 0, (61)

where Q̌0,v0,11(t) = P{e0,1
1

1+β
ζ1 + e0,2

1
1+β−1 ζ2 ≤ t}, t ≥ 0 is the distribution

function of the linear combination of two independent random variables ζ1

and ζ2, exponentially distributed, with parameter 1.
Note that in that cases β = 0 or β = ∞, respectively, the second or

the first random variable in the above sum vanishes in zero. In this case,
Q̌0,v0,11(t) is an exponential distribution function with parameter, respec-
tively, e−1

0,1 or e−1
0,2.

Also, that above representation (a) for the random variable τ̃ε,1, as the
random sum, implies that,

ẽε,vε,12 =
∫ ∞

0
sQ̃ε,vε,12(ds) = v−1

ε E
θε[0]∑
n=1

κε,1,n

= v−1
ε E

∞∑
n=1

κε,1,nI(θε[0] > n− 1)

= v−1
ε E

∞∑
n=1

κε,1,nI(ηε,1,k = 1, 1 ≤ k ≤ n− 1)

= v−1
ε

∞∑
n=1

Eκε,1,nEI(ηε,1,k = 1, 1 ≤ k ≤ n− 1)

= v−1
ε

∞∑
n=1

eε,1p
n−1
ε,11 =

eε,1
vεpε,12

. (62)

Analogous formula also takes place,

ẽε,vε,21 = v−1
ε E(τ̌ε,1 − τ̃ε,1) =

eε,2
vεpε,21

. (63)

Relations (62) and (63) imply the following relation,

ěε,vε,11 = ẽε,vε,12 + ẽε,vε,21 = eε,1
1

vεpε,12

+ eε,2
1

vεpε,21

→ e0,1
1

1 + β
+ e0,2

1

1 + β−1
= ě0,v0,11 =

∫ ∞
0

sQ̌0,v0,11(ds). (64)

The above remarks prompt us how to apply the scaling of time trans-
formation with compression function vε, described in Subsection 5.1, to the
regenerative process (ξε(t), ηε(t)), t ≥ 0 with regeneration times τ̌ε,n, n =
0, 1, . . ..
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So, let us consider, for every ε ∈ (0, 1], the compressed in time ver-
sion of the regenerative process (ξε(t), ηε(t)), t ≥ 0 with regeneration times
τ̌ε,n, n = 0, 1, . . .. It is the regenerative process (ξε,vε(t), ηε,vε(t)), t ≥ 0 =
(ξε(tvε), ηε(tvε)), t ≥ 0 with regeneration times τε,vε,n = v−1

ε τ̌ε,n, n = 0, 1, . . ..
The renewal type equation (4) takes for probabilities Pε,vε,11(t, A) =

Pε,11(tvε, A) the following form,

Pε,vε,11(t, A) = q̌ε,vε,1(t, A) +
∫ t

0
Pε,vε,11(t− s, A)Q̌ε,vε,11(ds), t ≥ 0, (65)

where q̌ε,vε,1(t, A) = P1{ξε,vε,(t) ∈ A, ηε,vε(t) = 1, τ̌ε,vε,1 > t} = q̌ε,1(tvε, A) =
P1{ξε(tvε) ∈ A, ηε(tvε) = 1, v−1

ε τ̌ε,1 > t}, t ≥ 0 and Q̌ε,vε,11(t) = P1{τ̌ε,vε,1 ≤
t} = Q̌ε,11(tvε) = P1{v−1

ε τ̌ε,1 ≤ t}, t ≥ 0.
We shall define the corresponding limiting regenerative process (ξ0,v0(t),

η0,v0(t)), t ≥ 0 and the regeneration times τ̌0,v0,n, n = 0, 1, . . . in the next
subsection, after computing the corresponding limits for functions q̌ε,vε,1(t, A)
and distribution functions Q̌ε,vε,11(t).

4.3. Locally uniform convergence of functions and convergence
of Lebesgue integrals in the scheme of series. In this subsection, we
formulate two useful propositions concerned locally uniform convergence of
functions and convergence of Lebesgue integrals in the scheme of series. The
proofs can be found, for example, in book [14]. We slightly modify these
propositions for the case, where the corresponding functions and measures
are defined on a half-line.

Let fε(s) be, for every ε ∈ [0, 1], a real-valued bounded Borel functions

defined on R+ = [0,∞). We use the symbol fε(s)
U−→ f0(s) as ε → 0 to

indicate that functions fε(·) converge to function f0(·) locally uniformly at a
point s ∈ [0,∞) as ε→ 0. This means that,

lim
0<u→0

lim
ε→0

sup
−(u∧s)≤v≤u

|fε(s+ v)− f0(s)| = 0. (66)

Lemma 1. Functions fε(s)
U−→ fε(s) as ε → 0 if and only if (α)

fε(sε)→ f0(s) as ε→ 0, for any 0 ≤ sε → s as ε→ 0.

Let B+ denote the Borel σ-algebra on R+ and let µε(A) be, for every
ε ∈ [0, 1], a finite measure on B+. We use the symbol µε(·)⇒ µ0(·) as ε→ 0
to indicate that the measures µε(A) weakly converge to a measure µ0(A) as
ε → 0. This means that, for all 0 ≤ v < ∞ such that the limiting measure
has not an atom in the point v,

µε([0, v])→ µ0([0, v]) as ε→ 0. (67)
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Lemma 2. Let the following conditions hold: (α) µε(·) ⇒ µ0(·) as
ε→ 0; (β) µε(R+)→ µ0(R+) as ε→ 0; (γ) limε→0 sups∈R+

|fε(s)| <∞; (δ)

fε(s)
U−→ f0(s) as ε→ 0, for s ∈ S, where S is some subset of B+ such that

µ0(S) = 0. Then,∫
R+

fε(s)µε(ds)→
∫
R+

f0(s)µ0(ds) as ε→ 0. (68)

4.4. Super-long time ergodic theorems for singularly perturbed
alternating regenerative processes. In this subsection, we describe the
asymptotic behaviour for probabilities Pε,ij(tε, A) for so-called “super-long”
times 0 ≤ tε →∞ as ε→ 0 satisfying the following relation,

tε/vε →∞ as ε→ 0. (69)

The corresponding limits for stationary probabilities for perturbed semi-
Markov processes ηε,vε(t) take, for β ∈ [0,∞], the following form,

ρ1(β) = e0,1α1(β)/e(β), ρ2(β) = e0,2α2(β)/e(β), (70)

where
α1(β) = (1 + β)−1, α2(β) = (1 + β−1)−1, (71)

and
e(β) = e0,1α1(β) + e0,2α2(β). (72)

Note that ρ1(β), ρ2(β) ∈ (0, 1), if β ∈ (0,∞), while ρ1(β) = 1, ρ2(β) = 0,
if β = 0, and ρ1(β) = 0, ρ2(β) = 1, if β =∞.

The corresponding limiting probabilities for singularly perturbed alter-
nating regenerative processes take the following form,

π
(β)
0,j (A) = ρj(β)π0,j(A), A ∈ BX, j = 1, 2. (73)

It is useful to note that the above limiting probabilities coincide with
the corresponding limiting probabilities for regularly perturbed alternating
regenerative processes with parameter β = p0,12/p0,21 given in relations (26),
(36), and (37).

The following theorem takes place.

Theorem 8. Let conditions F – J, N1 hold and, also, condition Kβ holds
for some β ∈ [0,∞]. Then, for every A ∈ Γ, i, j = 1, 2, and 0 ≤ tε → ∞ as
ε→ 0 such that tε/vε →∞ as ε→ 0,

Pε,ij(tε, A)→ π
(β)
0,j (A) as ε→ 0. (74)
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Proof. We are going to prove that all conditions of Theorem 1 hold for
the regenerative processes (ξε,vε(t), ηε,vε(t)) = (ξε(tvε), ηε(tvε)), t ≥ 0 with
regeneration times τ̌ε,vε,n = v−1

ε τ̌ε,vε,n, n = 0, 1, . . . and, also, that all condi-
tions of Theorem 2 hold for the regenerative processes (ξε,vε(t), ηε,vε(t)) =
(ξε(tvε), ηε(tvε)), t ≥ 0 with the transition period [0, τ̌ ′ε,vε,1) and regeneration
times τ̌ ′ε,vε,n = v−1

ε τ̌ ′ε,vε,n, , n = 0, 1, . . ..
Note that, the regenerative lifetimes are not involved. The corresponding

stopping probabilities fε,vε = 0, ε ∈ (0, 1].
First, let us analyse the asymptotic behaviour of probabilities q̌ε,vε,1(t, A).

Here, we can use the quasi-stationary ergodic relation given in Theorem 3.
Let us introduce random variables µε,1,n = κε,1,nI(ηε,1,n = 1), n = 1, 2, . . ..

Let now consider the sequence of random triplets 〈ξ̄ε,1,n = 〈ξε,1,n(t), t ≥
0〉, κε,1,n, µε,1,n〉, n = 1, 2, . . ., the regenerative process ξε,1(t) = ξε,1,n(t −
τε,1,n−1), for t ∈ [τε,1,n−1, τε,1,n), n = 1, 2, . . ., with regeneration times τε,1,n =
κε,1,1+· · ·+κε,1,n, n = 1, 2, . . . , τε,1,0 = 0, and the regenerative lifetime µε,1,+ =
τε,1,νε,1 , where νε,1 = min(n ≥ 1 : µε,1,n < κε,1,n) = min(n ≥ 1 : ηε,1,n = 2).

Let us also denote Pε,1,+(t, A) = P1{ξε,1(t) ∈ A, µε,1,+ > t}. In this case,
the distribution function Fε,1(t) = P{κε,1,1 ≤ t, µε,1,1 ≥ κε,1,1} = P{κε,1,1 ≤
t, ηε,1,1 = 1}, t ≥ 0, the stopping probability fε,1 = P{µε,1,1 < κε,1,1} =
P{ηε,1,1 = 2} = pε,12, and the expectation eε,1 = Eκε,1,1I(µε,1,1 ≥ κε,1,1) =
Eκε,1,1I(ηε,1,1 = 1) = eε,11.

It is also readily seen that, for every A ∈ BX, t ≥ 0,

q̌ε,1(t, A) = P1{ξε(t) ∈ A, ηε(t) = 1, τ̌ε,1 > t}
= P1{ξε,1(t) ∈ A, µε,1,+ > t} = Pε,1,+(t, A). (75)

Conditions F – J and N1 imply that conditions A – D holds for the
regenerative processes ξε,1(t), t ≥ 0 with regenerative times τε,1,n, n = 1, 2, . . .
and regenerative lifetimes µε,1,+.

Let s ∈ (0,∞). We choose an arbitrary 0 ≤ sε → s as ε→ 0.
The above relation obviously implies that sεvε →∞. Conditions N1 and

Kβ obviously imply that fε,1sεvε = pε,12sεvε = sε(1 + pε,12/pε,21) → ts,β =
s(1 + β) as ε→ 0. Note that ts,β ∈ (0,∞), for β ∈ [0,∞), while ts,∞ =∞.

Thus, all conditions of Theorem 3 holds for the regenerative processes
ξε,1(t), t ≥ 0 with the regenerative times τε,1,n, n = 1, 2, . . . and the regener-
ative lifetimes µε,1,+. Therefore, the following relation holds, for any A ∈ Γ,
and s ∈ (0,∞),

Pε,1,+(sεvε, A) = q̌ε,1(sεvε, A) = q̌ε,vε,1(sε, A)

→ q̌0,v0,1(s, A) = e−ts,β/e0,1π0,1(A) as ε→ 0. (76)
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If β ∈ [0,∞), then the limiting function q̌0,v0,1(s, A) = e−s(1+β)/e0,1π0,1(A),
s ∈ (0,∞) is a non-trivial exponential function. However, if β = ∞, the
limiting function q̌0,v0,1(s, A) = 0, s ∈ (0,∞).

In both cases, we can define q̌0,v0,1(0, A) = lim0<s→0 q̌0,v0,1(s, A).
Obviously, q̌0,v0,1(0, A) = π0,1(A), if β ∈ [0,∞), and q̌0,v0,1(0, A) = 0, if

β =∞.
Recall also the limiting distribution function Q̌0,v0,11(t) = P{e0,1

1
1+β

ζ1 +

e0,2
1

1+β−1 ζ2 ≤ t}, t ≥ 0 given by relation (61). Here, ζ1 and ζ2 are two
independent random variables, exponentially distributed, with parameter 1.

Now, we are prepared to define the corresponding limiting regenerative
process (ξ0,v0(t), η0,v0(t)), t ≥ 0 with regeneration times τ̌0,v0,n, n = 0, 1, . . ..

Let us ξi,n, κi,n, i = 1, 2, n = 1, 2, . . . be random variables, for which we
assume that: (a) they are mutually independent; (b) their distributions do
not depend on n ≥ 1; (c) ξi,n are random variables taking values in space
X and such that, P{ξi,1 ∈ A} = πi(A), A ∈ BX, for i = 1, 2; (d) the ran-
dom variables κi,n are non-negative random variables and P{κ1,1 ≤ t} =
P{e0,1

1
1+β

ζ1 ≤ t}, t ≥ 0 while P{κ2,1 ≤ t} = P{e0,2
1

1+β−1 ζ2 ≤ t}, t ≥ 0.
Now, let us define the inter-regeneration times κ0,v0,n = κ1,n + κ2,n, n =

1, 2, . . ., the regeneration times τ0,v0,n = κ0,v0,1+· · ·+κ0,v0,n, n = 1, 2, . . . , τ0,v0,0

= 0, and the regeneration process ξ0,v0(t) = ξ1,n, η0,v0(t) = 1, for t ∈ [τ0,v0,n−1,
τ0,v0,n−1 +κ1,n) and ξ0,v0(t) = ξ2,n, η0,v0(t) = 2, for t ∈ [τ0,v0,n−1 +κ1,n, τ0,v0,n),
for n = 0, 1, . . ..

It is readily seen that P{ξ0,v0(t) ∈ A, τ0,v0,1 > t} = q̌0,v0,1(t, A), t ≥ 0 and
P{τ0,v0,1 ≤ t} = Q̌0,v0,11(t), t ≥ 0, where q̌0,v0,1(t, A) and Q̌0,v0,11(t) are given,
respectively, by relations (76) and (61).

Therefore, the renewal equation (4) for probabilities P0,v0,11(t, A) =
P{ξ0,v0(t) ∈ A, η0,v0(t) = 1} takes the following form,

P0,v0,11(t, A) = q̌0,v0,1(t, A) +
∫ t

0
P0,v0,11(t− s, A)Q̌0,v0,11(t), t ≥ 0. (77)

All conditions of Theorem 1 hold for the regenerative process (ξε,vε(t),
ηε,vε(t)), t ≥ 0 with regeneration times τε,vε,n, n = 0, 1, . . ..

Indeed, Condition F implies that condition A holds for the above regen-
erative processes. Relation (61) and conditions G, H, I and N1 imply that
condition B holds. Relation (64) and conditions and conditions G, H, I and
N1 also imply that condition C holds.

Due to an arbitrary choice of 0 ≤ sε → s as ε → 0, convergence in
relation (76) is locally uniform in every point s ∈ (0,∞). Thus, by Lemma
1 given Subsection 4.3, the asymptotic relation in condition D holds for
functions q̌ε,vε,1(s, A), s ∈ [0,∞) for any s ∈ (0,∞). Convergence at point
0 is not guarantied. However, m({0}) = 0. Thus, condition D holds for
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functions q̌ε,vε,1(sε, A), s ∈ [0,∞), with the limiting function q̌0,v0,1(s, A) =
e−ts,β/e0,11π0,1(A), s ∈ [0,∞).

By the above remarks, all conditions of Theorem 1 hold, and the ergodic
relation given in this theorem takes place for probabilities Pε,vε,11(t′ε, A) =
Pε,11(t′εvε, A) for any 0 ≤ t′ε →∞ as ε→ 0,

Pε,vε,11(t′ε, A) = Pε,11(t′εvε, A)→ π
(β)
0,v0,1(A)

=
1

ě0,v0,11

∫ ∞
0

e−ts,β/e0,1π0,1(A)m(ds) as ε→ 0. (78)

Relation (64) and formula ts,β = s(1+β) imply that probabilities π
(β)
0,v0,1(A)

coincide with probabilities π
(β)
0,1 (A) given in relation (73). Indeed,

π
(β)
0,v0,1(A) =

1

ě0,v0,11

∫ ∞
0

e−s(1+β)/e0,1π0,1(A)m(ds)

=
e0,1(1 + β)−1

e0,1(1 + β)−1 + e0,2(1 + β−1)−1
π0,1(A) = π

(β)
0,1 (A). (79)

Thus, the following ergodic relation holds for any for A ∈ Γ and 0 ≤ t′ε →
∞ as ε→ 0,

Pε,11(t′εvε, A)→ π
(β)
0,1 (A) as ε→ 0. (80)

Let us now consider the compressed version of the regenerative process
(ξε(t), ηε(t)), t ≥ 0 with the transition period [0, τ̌ ′ε,1) with regeneration times
τ̌ ′ε,n, n = 0, 1, . . .. It is the regenerative process (ξε,vε(t), ηε,vε(t)), t ≥ 0 =
(ξε(tvε), ηε(tvε)), t ≥ 0 with regeneration times τ ′ε,vε,n = v−1

ε τ̌ ′ε,n, n = 0, 1, . . ..
The shifted process (ξε,vε(τ̂

′
ε,vε,1 + t), ηε,vε(τ̂

′
ε,vε,1 + t)), t ≥ 0 is a standard

regenerative process. If ηε,vε(0) = 2, then ηε,vε(τ̃ε,vε,1) = 1. That is why, prob-
abilities Pε,vε,11(t, A) play for this process the role of probabilities P (1)

ε (t, A)
pointed out in Subsection 2.1.

Relation (60) and conditions G, H, I and N1 imply that condition E
holds for the distribution functions Q̃ε,vε,21(t) = P2{τ̃ε,vε,1 ≤ t}, t ≥ 0.

Thus, all conditions of Theorem 2 hold, and the ergodic relation (80)
for probabilities Pε,vε,11(t′ε, A) = Pε,11(t′εvε, A) also holds for probabilities
Pε,vε,21(t′ε, A) = Pε,21(t′εvε, A).

Due to the symmetricity of conditions G – J, Kβ, and N1 with respect
to the indices i, j = 1, 2, the ergodic relations, analogous to the mentioned
above ergodic relations for probabilities Pε,vε,11(t′ε, A) = Pε,11(t′εvε, A) and
Pε,vε,21(t′ε, A) = Pε,21(t′εvε, A), also take place for probabilities Pε,vε,22(t′ε, A) =
Pε,22(t′εvε, A) and Pε,vε,12(t′ε, A) = Pε,12(t′εvε, A). They have the following

forms, Pε,vε,i2(t′ε, A) = Pε,i2(t′εvε, A)→ π
(β)
0,2 (A) as ε→ 0, for i = 1, 2.
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The above analysis, in particular, relation (80), yields the description of
asymptotic behaviour of probabilities Pε,ij(tε, A) for super-long times 0 ≤
tε →∞ as ε→ 0 satisfying the asymptotic relation tε/vε →∞ as ε→ 0. To
see this, one should just represent such tε in the form, tε = t′εvε. Obviously,
t′ε = tε/vε →∞ as ε→ 0. �

4.5. Long time ergodic theorems for singularly perturbed al-
ternating regenerative processes. In this subsection, we describe the
asymptotic behaviour of probabilities Pε,ij(tε, A) for so-called “long” times
0 ≤ tε →∞ as ε→ 0, which satisfy asymptotic relation,

tε/vε → t ∈ (0,∞) as ε→ 0. (81)

Let β ∈ (0,∞), and η(β)(t), t ≥ 0 be a homogeneous continuous time
Markov chain with the phase space Y = {1, 2}, the transition probabilities
of embedded Markov chain pij = I(i 6= j), i, j = 1, 2, and the distribution

functions of sojourn times in states 1 and 2, respectively, F
(β)
1 (t) = 1 −

e−t(1+β)/e0,1 , t ≥ 0 and F
(β)
2 (t) = 1 − e−t(1+β−1)/e0,2 , t ≥ 0. We also assume

that this Markov chain has continuous from the right trajectories.
Let us p

(β)
ij (t) = Pi{η(β)(t) = j}, t ≥ 0, i, j = 1, 2 be transition probabili-

ties for the Markov chain η(β)(t).

The explicit expression for the transition probabilities p
(β)
ij (t) are well

known, as the solutions of the corresponding forward Kolmogorov system
of differential equations for these probabilities. Namely, the corresponding
matrix ‖p(β)

ij (t)‖ has the following form, for t ≥ 0,

‖p(β)
ij (t)‖ =

∥∥∥∥∥∥
ρ1(β) + ρ2(β)e−λ(β)t ρ2(β)− ρ2(β)e−λ(β)t

ρ1(β)− ρ1(β)e−λ(β)t ρ2(β) + ρ1(β)e−λ(β)t

∥∥∥∥∥∥ , (82)

where

λ1(β) =
1 + β

e0,1

, λ2(β) =
1 + β−1

e0,2

, λ(β) = λ1(β) + λ2(β), (83)

and

ρ1(β) =
λ2(β)

λ(β)
=
e0,1(1 + β)−1

e(β)
, ρ2(β) =

λ1(β)

λ(β)
=
e0,2(1 + β−1)−1

e(β)
. (84)

Note that the Markov chain η(β)(t) is ergodic and ρi(β), i = 1, 2 are its
stationary probabilities.
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The corresponding limiting probabilities have in this case the following
forms, for A ∈ BX, i, j = 1, 2, t ∈ (0,∞),

π
(β)
0,i1(t, A) =


π0,1(A) for i = 1, 2, β = 0,

p
(β)
i1 (t)π0,1(A) for i = 1, 2, β ∈ (0,∞),

0 for i = 1, 2, β =∞,
(85)

and

π
(β)
0,i2(t, A) =


0 for i = 1, 2, β = 0,

p
(β)
i2 (t)π0,2(A) for i = 1, 2, β ∈ (0,∞),

π0,2(A) for i = 1, 2, β =∞.
(86)

The following theorem takes place.

Theorem 9. Let conditions F – J, N1 hold and, also, condition Kβ holds
for some β ∈ [0,∞]. Then, for every A ∈ Γ, i, j = 1, 2, and 0 ≤ tε → ∞ as
ε→ 0 such that tε/vε → t ∈ (0,∞) as ε→ 0,

Pε,ij(tε, A)→ π
(β)
0,ij(t, A) as ε→ 0. (87)

Proof. Let us again us consider the renewal equation (77) for the com-
pressed regenerative process (ξε,vε(t), ηε,vε(t)), t ≥ 0 = (ξε(tvε), ηε(tvε)), t ≥ 0
with regeneration times τ̌ε,vε,n = v−1

ε τ̌ε,n, n = 0, 1, . . ..
As well known, the solution of this equation has the form,

Pε,vε,11(t, A) =
∫ t

0
q̌ε,vε,1(t− s, A)Ǔε,vε,11(ds), t ≥ 0, (88)

where

Ǔε,vε,11(t) =
∞∑
n=0

Q̌∗nε,vε,11(t), t ≥ 0, (89)

is the corresponding renewal function.
Inequality Q̌∗nε,vε,11(t) ≤ Q̌n

ε,vε,11(t) obviously holds any t ≥ 0 and n =

1, 2, . . .. These inequalities and relation (61) imply that, limε→0 Q̌
∗n
ε,vε,11(t) ≤

limε→0 Q̌
n
ε,vε,11(t) = Q̃n

0,v0,11(t) < 1, since Q̃0,v0,11(t) = P{e0,1
1

1+β
ζ1+e0,2

1
1+β−1 ζ2

≤ t} < 1. Thus, the series on the right hand side in (89) converge asymptot-
ically uniformly, as ε→ 0.

Also, relation (61) implies that Q̌∗nε,vε,11(·)⇒ Q̌∗n0,v0,11(·) as ε→ 0.
The above remaks imply that, for t > 0,

Ǔε,vε,11(t)→ Ǔ0,v0,11(t) as ε→ 0. (90)

The convergence relation in (90) holds for all t > 0, since Q̃∗n0,v0,11(t), t ≥ 0
is a continuous distribution function and, in sequel, due to the above remarks,
Ǔ0,v0,11(t), t ≥ 0 is continuous function.
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Relation (76) implies that, for every t > 0, functions q̌ε,vε,1(t− s, A)
U−→

q̌0,v0,1(t − s, A) as ε → 0, for s ∈ [0, t). At the same time, due to continuity
function Ǔ0,v0,11(t), for t > 0, measure Ǔ0,v0,11(ds) has no atom at any point
t > 0.

By the above remarks and relations (76), (90), Lemma 2 formulated in
Subsection 4.3 imply, that the following relation holds, for A ∈ Γ and t > 0,

Pε,vε,11(t, A) =
∫ t

0
q̌ε,vε,1(t− s, A)Ǔε,vε,11(ds)

→ P0,v0,11(t, A) =
∫ t

0
q̌0,v0,1(t− s, A)Ǔ0,v0,11(ds)

= π1(A)
∫ t

0
e−(t−s)(1+β)/e0,1Ǔ0,v0,11(ds) as ε→ 0. (91)

Next, we make an important remark that the scaling of time transforma-
tion with the compression factors vε and all following asymptotic relations
presented above can be, in obvious way, repeated for any slightly modified
compression factors v̇ε = aεvε, where 0 < aε → 1 as ε→ 0.

In particular, the modified asymptotic relation (91) takes the following
form, for A ∈ Γ and t > 0,

Pε,v̇ε,11(t, A) = Pε,11(taεvε, A)→ P0,v0,11(t, A) as ε→ 0. (92)

Due to an arbitrary choice of 0 < aε → 1 as ε → 0, relation (92) is, for
every t > 0, equivalent to the following relation, which holds for any A ∈ Γ
and 0 ≤ t′′ε → t as ε→ 0,

Pε,11(t′′εvε, A) = Pε,vε,11(t′′ε , A)→ P0,v0,11(t, A) as ε→ 0. (93)

As was pointed in Subsection 4.4, the shifted process (ξε,vε(τ̂
′
ε,vε,1 + t),

ηε,vε(τ̂
′
ε,vε,1 + t)), t ≥ 0 is a standard regenerative process. If ηε,vε(0) = 2,

then ηε,vε(τ̃ε,vε,1) = 1. That is why, probabilities Pε,vε,11(t, A) play for this
process the role of probabilities P (1)

ε (t, A) pointed out in Subsection 2.1. The
distribution function for the duration of transition period is Q̃ε,vε,21(t) =
P2{τ̃ε,vε,1 ≤ t}, t ≥ 0.

According relation (60), the distribution functions Q̃ε,vε,21(t) weakly con-
verge as ε → 0 to the distribution function Q̃0,v0,21(t) = P{e0,2

1
1+β−1 ζ ≤ t}

which is continuous function for t > 0. If β ∈ (0,∞], then Q̃0,v0,21(t) =
1 − e−t(1+β−1)/e0,2 , t ≥ 0 is the exponential distribution function. If β = 0,
then Q̃0,v0,21(t) = I(t ≥ 0), t ≥ 0.

The renewal type transition relation (8) takes the following form,

Pε,vε,21(t, A) =
∫ t

0
Pε,vε,11(t− s, A)Q̃ε,vε,21(ds), t ≥ 0. (94)
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Relation (93) implies that, for every t > 0, functions Pε,vε,11(t− s, A)
U−→

P0,v0,11(t− s, A) as ε→ 0, for s ∈ [0, t). At the same time, due to continuity
the distribution function Q̃0,v0,21(t) for t > 0 measure Q̃0,v0,21(ds) has no
atom at any point t > 0. By these remarks and relations (60), (93), Lemma
2 formulated in Subsection 4.3 implies that the following relation holds, for
A ∈ Γ and t > 0,

Pε,vε,21(t, A) =
∫ t

0
Pε,vε,11(t− s, A)Q̃ε,vε,21(ds)

→
∫ t

0
P0,v0,11(t− s, A)Q̃0,v0,21(ds) = P0,v0,21(t, A). (95)

By arguments similar with those used for relations (91) – (93), one can,
for every t > 0, improve relation (95) to the more advanced form of this
relation, which holds for A ∈ Γ and any 0 ≤ t′′ε → t as ε→ 0,

Pε,21(t′′εvε, A) = Pε,vε,21(t′′ε , A)→ P0,v0,21(t, A) as ε→ 0. (96)

It is remains to give a more explicit expression for the limiting probabil-
ities P0,v0,11(t, A), t > 0 and P0,v0,21(t, A), t > 0.

First, let us consider the case, where β = 0.
In this case, Q̌0,v0,11(t) = P{e0,1ζ1 ≤ t} = 1− e−t/e0,1 , t ≥ 0, i = 1, 2 is an

exponential distribution function. Thus, the renewal function Ǔ0,v0,11(t) =
I(t ≥ 0) + 1

e0,1
t, t ≥ 0. Also, Q̃0,v0,21(t) = I(t ≥ 0), t ≥ 0. Finally, ts,0 = s, s ≥

0. That is why, for A ∈ BX and t > 0,

P0,v0,11(t, A) = π0,1(A)
∫ t

0
e−(t−s)/e0,1Ǔ0,v0,11(ds)

= π0,1(A)(e−t/e0,1 +
∫ t

0

e−(t−s)/e0,1

e0,1

ds)

= π0,1(A)(e−t/e0,1 + e−t/e0,1(et/e0,1 − 1)) = π0,1(A). (97)

and

P0,v0,21(t, A) =
∫ t

0
P0,v0,11(t− s, A)Q̃0,v0,21(ds) = π0,1(A). (98)

Second, let us consider the case, where β =∞.
In this case, Q̃0,v0,11(t) = P{e0,2ζ2 ≤ t} = 1 − e−t/e0,2 , t ≥ 0 is an expo-

nential distribution function. Thus, the renewal function Ǔ0,v0,11(t) = I(t ≥
0)+ 1

e0,2
t, t ≥ 0. Also, Q̃0,v0,21(t) = P{e0,2ζ2 ≤ t} = 1−e−t/e0,2 , t ≥ 0. Finally,

ts,∞ =∞, s ≥ 0. That is why, for t > 0,

P0,v0,11(t, A) = P0,v0,21(t, A) = 0. (99)
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Third, let us consider the main case, where β ∈ (0,∞).
Let us η(β)(t), t ≥ 0 be a continuous time homogeneous Markov chain

introduced in the beginning of this subsection.
Let τ (β)

n = inf(t > τ
(β)
n−1, η

(β)(t) 6= η(β)(τ
(β)
n−1)), n = 1, 2, . . . , τ

(β)
0 = 0 be the

sequential moments of jumps for the Markov chain η(β)(t).
The Markov chain η(β)(t) obviously is also an alternating regenerative

process, with regeneration times τ
(β)
2n , n = 0, 1, . . ..

Let us assume that η(β)(0) = 1. The transition probabilities p
(β)
11 (t), t ≥ 0

satisfy the following renewal equation,

p
(β)
11 (t) = q

(β)
1 (t) +

∫ t

0
p

(β)
11 (t− s)F (β)

11 (ds), t ≥ 0, (100)

where q
(β)
1 (t) = P1{η(β)(t) = 1, τ

(β)
2 > t} and F

(β)
11 (t) = P1{τ (β)

2 ≤ t}, fior
t ≥ 0.

Let U
(β)
11 (t) =

∑∞
n=0 F

(β)∗n
11 (t), t ≥ 0 be the corresponding renewal function

generated by the distribution function F
(β)
11 (t). The transition probabilities

p
(β)
11 (t) can be expressed as the solution of the renewal equation (100) in the

following form,

p
(β)
11 (t) =

∫ t

0
q

(β)
1 (t)U

(β)
11 (ds), t ≥ 0. (101)

Obviously,

q
(β)
1 (t) = P1{τ (β)

1 > t} = e−t(1+β)/e0,1 , t ≥ 0, (102)

and
F

(β)
11 (t) = F

(β)
1 (t) ∗ F (β)

2 (t) = Q̌0,v0,11(t), t ≥ 0. (103)

and, thus,
U

(β)
11 (t) = Ǔ0,v0,11(t), t ≥ 0. (104)

Relations (101), (102), and (104) imply that,

p
(β)
11 (t) =

∫ t

0
e−(t−s)(1+β)/e0,1Ǔ0,v0,11(ds), t ≥ 0. (105)

Finally, relations (91) and (105) imply that that the following equality
takes place, for t > 0,

P0,v0,11(t, A) = p
(β)
11 (t)π0,1(A). (106)

The distribution function F
(β)
2 (t) = Q̌0,v0,21(t) = 1− e−t(1+β−1)/e0,2 , t ≥ 0.

Thus,

p
(β)
21 (t) =

∫ t

0
p

(β)
11 (t− s)Q̌0,v0,21(ds), t ≥ 0, (107)
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and, therefore, relation (95) implies that following equality takes place, for
t > 0,

P0,v0,21(t, A) = p
(β)
21 (t)π0,1(A). (108)

Due to the symmetricity of conditions F – J, Kβ, and N1 with respect
to the indices i, j = 1, 2, the ergodic relations, analogous to the mentioned
above ergodic relations for probabilities Pε,vε,11(t′′ε , A) = Pε,11(t′′εvε, A) and
Pε,vε,21(t′′ε , A) = Pε,21(t′′εvε, A), also take place for probabilities Pε,vε,22(t′′ε , A) =
Pε,22(t′′εvε, A) and Pε,vε,12(t′′ε , A) = Pε,12(t′′εvε, A).

The above analysis yields the description of asymptotic behaviour of prob-
abilities Pε,ij(tε, A) for long times 0 ≤ tε → ∞ as ε → 0 satisfying the
asymptotic relation tε/vε → t ∈ (0,∞) as ε → 0. To see this, one should
just represent such tε in the form, tε = t′′εvε. Obviously, t′′ε = tε/vε → t as
ε→ 0. �

5. Short time ergodic theorems for singularly perturbed
alternating regenerative processes

In this section, we present short time individual ergodic theorems for
singularly perturbed alternating regenerative processes.

5.1. Short time ergodic theorems for singularly perturbed al-
ternating regenerative processes, under the assumption that con-
dition Kβ holds for some β ∈ (0,∞). In this subsection, we describe the
asymptotic behaviour of probabilities Pε,ij(tε, A) for so-called “short” times
0 ≤ tε →∞ as ε→ 0, which satisfy the following asymptotic relation,

tε/vε → 0 as ε→ 0. (109)

We also assume that, additionally to conditions N1, condition Kβ holds
for some β ∈ (0,∞).

The corresponding limiting probabilities are, in this case, the same for
any β ∈ (0,∞) and take the following form, for A ∈ BX, i, j = 1, 2,

π0,ij(A) = I(j = i)π0,i(A) =

{
π0,i(A) for j = i,

0 for j 6= i.
(110)

The following theorem takes place.

Theorem 10. Let conditions F – J, N1 hold and, also, condition Kβ

holds for some β ∈ (0,∞). Then, for every A ∈ Γ, i, j = 1, 2, and 0 ≤ tε →
∞ as ε→ 0 such that tε/vε → 0 as ε→ 0,

Pε,ij(tε, A)→ π0,ij(A) as ε→ 0. (111)
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Proof. First, let us analyse the asymptotic behaviour of probabilities
Pε,11(tε, A) and, thus, assume that ηε(0) = 1.

We return back to the initial alternating regenerative process (ξε(t), ηε(t)),
t ≥ 0 with regeneration times τε,n, n = 0, 1, . . ..

Recall the stopping time τ̃ε,1, which is the time of first hitting sate 2 by
process ηε(t).

Let us again consider the regenerative process ξε,1(t), t ≥ 0 with regener-
ation times τε,1,n, n = 0, 1, . . ., and the random lifetime µε,1,+ introduced in
Subsection 4.4.

It is readily seen that, for every t ≥ 0,

Q̃ε,12(t) = P1{τ̃ε,1 ≤ t} = P{µε,1,+ ≤ t} (112)

and, for every A ∈ BX, t ≥ 0,

P1{ξε(t) ∈ A, ηε(t) = 1, τ̃ε,1 > t} = P{ξε,1(t) ∈ A, µε,1,+ > t}. (113)

According relation (58), if ηε(0) = 1, random variables,

v−1
ε τ̃ε,1

d−→ e0,1
1

1 + β
ζ as ε→ 0, (114)

where ζ is a random variable exponentially distributed, with parameter 1.
Since, we assumed that tε/vε → 0 as ε → 0, relations (112) and (114)

imply that,

P{µε,1,+ > tε} = P1{τ̃ε,1 > tε}
= P1{v−1

ε τ̃ε,1 > tεv
−1
ε } → 1 as ε→ 0. (115)

Relations (113) and (115) imply that

P1{ξε(tε) ∈ A, ηε(tε) = 1} − P1{ξε(tε) ∈ A, ηε(tε) = 1, τ̃ε,1 > tε}
≤ P1{τ̃ε,1 ≤ tε} → 0 as ε→ 0. (116)

and, analogously,

P{ξε,1(tε) ∈ A} − P{ξε,1(tε) ∈ A, µε,1,+ > tε}
≤ P{µε,1,+ ≤ tε} → 0 as ε→ 0, (117)

These relations and Theorem 1, which can be applied to the regenerative
processes ξε,1(t), imply that, for every A ∈ Γ,

lim
ε→0

P11(tε, A) = lim
ε→0

P1{ξε(tε) ∈ A, ηε(tε) = 1}

= lim
ε→0

P1{ξε(tε) ∈ A, ηε(tε) = 1, τ̃ε,1 > tε}

= lim
ε→0

P{ξε,1(tε) ∈ A, µε,1,+ > tε}

= lim
ε→0

P{ξε,1(tε) ∈ A} = π0,1(A). (118)
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Let us now analyse the asymptotic behaviour for probabilities Pε,21(t, A)
and, thus, assume that ηε(0) = 2.

In this case, relation (60) implies that random variables,

v−1
ε τ̃ε,1

d−→ e0,2
1

1 + β−1
ζ as ε→ 0, (119)

where ζ is a random variable exponentially distributed, with parameter 1.
Since, we assumed that tε/vε → 0 as ε → 0, the above convergence in

distribution relation, obviously, implies that,

P2{τ̃ε,1 > tε} = P2{v−1
ε τ̃ε,1 > tεv

−1
ε } → 1 as ε→ 0. (120)

If ηε(0) = 2, then, for every t > 0, event {ηε(t) = 1} ⊆ {τ̃ε,1 ≤ t}. Thus,
for every A ∈ Γ,

P21(tε, A) = P2{ξε(tε) ∈ A, ηε(tε) = 1}
≤ P2{τ̃ε,1 ≤ tε} → 0 as ε→ 0. (121)

Due to the symmetricity of conditions F – J and N1 with respect to the
indices i, j = 1, 2, the ergodic relations, analogous to the mentioned above
ergodic relations for probabilities Pε,11(tε, A) and Pε,21(tε, A), also take place
for probabilities Pε,22(tε, A) and Pε,vε,12(tε, A). �

5.2. Compression of time factors vε and wε. Let introduce function
wε = (pε,12 + pε,21)−1. This function possess useful asymptotic properties
different of asymptotic properties of function vε = p−1

ε,12 + p−1
ε,21.

The following lemma present some useful relations between functions vε
and wε.

Lemma 3. If conditions M1 holds and condition Kβ holds, for some
β ∈ [0,∞]. Then, 0 < wε < vε <∞, ε ∈ [01], and:

(i) If β ∈ (0,∞), then vε ∼ p−1
ε,12(1 + β) ∼ p−1

ε,21(1 + β−1) as ε→ 0, while

wε ∼ p−1
ε,12(1 + β−1)−1 ∼ p−1

ε,21(1 + β)−1 as ε→ 0, and , thus, wε ∼ β
(1+β)2

vε as
ε→ 0.

(ii) If β = 0, then vε ∼ p−1
ε,12 as ε→ 0, while wε ∼ p−1

ε,21 ≺ vε as ε→ 0.
(iii) If β =∞, then vε ∼ p−1

ε,21 as ε→ 0, while wε ∼ p−1
ε,12 ≺ vε as ε→ 0.

Here and henceforth, symbols f ′ε ∼ f ′′ε as ε → 0 and f ′ε ≺ f ′′ε as ε → 0
are used for two functions 0 < f ′ε, f

′′
ε → ∞ as ε → 0 in the sense that,

respectively, f ′ε/f
′′
ε → 1 as ε→ 0 and f ′ε/f

′′
ε → 0 as ε→ 0.

Proposition (i) of Lemma 3 implies that, in the case, where condition
condition Kβ holds, for some β ∈ (0,∞), relations tε/vε → t and tε/wε → t
as ε→ 0 generate, for every t ∈ [0,∞], equivalent, in some sense, asymptotic
time zones.
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Propositions (ii) and (iii) of Lemma 3 imply that, in the case, where
condition K0 or K∞ holds, relations tε/vε → t and tε/wε → t as ε → 0
generate, for every t ∈ [0,∞], essentially different asymptotic time zones.

We should assume in this case that “short” times 0 ≤ tε → ∞ as ε → 0
satisfy, additionally to the asymptotic relation (109), the following asymp-
totic relation,

tε/wε → t ∈ [0,∞] as ε→ 0. (122)

5.3. Short time ergodic theorems for singularly perturbed alter-
nating regenerative processes, under the assumption that condition
K0 or K∞ hold and wε ≺ tε ≺ vε as ε→ 0. In this subsection, we consider
the case, where parameter t = ∞ in relation (122). In this case, relations
(109) and (122) mean that,

wε ≺ tε ≺ vε as ε→ 0. (123)

The corresponding limiting probabilities take the following forms, for A ∈
BX, i, j = 1, 2,

π
(0)
0,j (A) =

{
π0,1(A) for j = 1,

0 for j = 2.
(124)

and

π
(∞)
0,j (A) =

{
0 for j = 1,

π0,2(A) for j = 2.
(125)

It is useful to note that the above limiting probabilities π
(0)
0,j (A) and

π
(∞)
0,j (A) coincide with the corresponding limiting probabilities for semi-regu-

larly perturbed alternating regenerative processes, respectively, with param-
eter β = 0, given in relation (36), and β =∞, given in relation (37).

The following theorems take place.

Theorem 11. Let conditions F – J, N1, and K0 hold. Then, for every
A ∈ Γ, i, j = 1, 2, and 0 ≤ tε →∞ as ε→ 0 such that tε/wε →∞ as ε→ 0
and tε/vε → 0 as ε→ 0,

Pε,ij(tε, A)→ π
(0)
0,j (A) as ε→ 0. (126)

Theorem 12. Let conditions F – J, N1, and K∞ holds. Then, for every
A ∈ Γ, i, j = 1, 2, and 0 ≤ tε →∞ as ε→ 0 such that tε/wε →∞ as ε→ 0
and tε/vε → 0 as ε→ 0,

Pε,ij(tε, A)→ π
(∞)
0,j (A) as ε→ 0. (127)

Proof. First, let us prove Theorem 11.
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It can be noted that the analysis of asymptotic behaviour for probabil-
ities Pε,11(tε, A) can be performed in absolutely analogous way with those
presented in relations (112) – (118), in the proof of Theorem 10. The only
difference is that parameter β = 0, and, thus, the limiting random variable
in the analogue of asymptotic relation (114) has the form, e0,1ζ, where ζ is a
random variable exponentially distributed, with parameter 1. This analysis
yields that the following asymptotic relation takes place, for every A ∈ Γ and
any tε/vε → 0 as ε→ 0,

Pε,11(tε, A)→ π0,1(A) as ε→ 0. (128)

The asymptotic behaviour for probabilities Pε,21(tε, A) differs in this case
of those presented in Theorem 10. As a matter of fact, the asymptotic
relation analogous to (119) does not take place.

In this case, random variables v−1
ε τ̃ε,1

d−→ 0 as ε → 0. This asymptotic
relation does not imply relation analogous to (115). The right normalising
function for random variables τ̃ε,1 is, in this case, wε ∼ p−1

ε,21 as ε → 0.
According this relation and relation (59), if ηε(0) = 2, then,

w−1
ε τ̃ε,1

d−→ e0,2ζ as ε→ 0, (129)

where ζ is a random variable exponentially distributed, with parameter 1.
The following renewal type relation connects probabilities Pε,11(tε, A) and

Pε,21(tε, A),

Pε,21(tε, A) =
∫ tε

0
Pε,11(tε − s, A)P2{τ̃ε,1 ∈ ds}

=
∫ tε/wε

0
Pε,11(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds}

=
∫ ∞

0
Pε,11(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds}, (130)

where function Pε,11(tε − swε, A) is defined as 0 for tε − swε < 0.
Let us take an arbitrary sε → s ∈ [0,∞) as ε → 0. Obviously, (tε −

sεwε)/wε = tε/wε − sε →∞ and, thus, (tε − sεwε)→∞ as ε→ 0.
Also, (tε − sεwε)/vε = tε/vε − sεwε/vε → 0 as ε→ 0.
That is why, according relation (128), the following asymptotic relation

take place, for A ∈ Γ and s ∈ [0,∞),

Pε,11(tε − sεwε, A)→ π0,1(A) as ε→ 0. (131)

Relations (129) and (131) imply, by Lemma 2 given in Subsection 4.3
that the following relation takes place, for A ∈ Γ,

Pε,21(tε, A)→
∫ ∞

0
π0,1(A)P{e0,2ζ ∈ ds} = π0,1(A) as ε→ 0. (132)
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As was pointed out in Subsection 2.5, the phase space X ∈ Γ. Also,
π0,1(X) = 1. Thus, relations (128) and (132) imply that the following relation
holds, for A ∈ Γ and i = 1, 2,

Pε,i2(tε, A) ≤ Pε,i2(tε,X) = 1− Pε,i1(tε,X)

→ 1− π0,1(X) = 0 as ε→ 0. (133)

The proof of Theorem 11 is completed.
The proof of Theorem 12 is absolutely analogous to the proof of Theorem

11, due to simmetrisity conditions F – J and N1 with respect to indices
i, j = 1, 2. The only formula (124) for the corresponding limiting probabilities
should be replaced by formula (125). �

5.4. Short time ergodic theorems for singularly perturbed alter-
nating regenerative processes, under the assumption that condition
K0 or K∞ hold and tε/wε → t ∈ (0,∞) as ε → 0. In this subsection, we
consider the case, where parameter t ∈ (0,∞), in relation (122). In this case,
relation (122) means that,

tε ∼ twε as ε→ 0, where t ∈ (0,∞). (134)

According propositions (ii) and (iii) of Lemma 3, if condition K0 or K∞,
then wε ≺ vε as ε→ 0, and, thus, relation (134) implies that a “short” time
relation (109) holds, i.e., tε/vε → 0 as ε→ 0.

The corresponding limiting probabilities take the following forms, for A ∈
Γ, i, j = 1, 2 and t ∈ (0,∞),

π̇
(0)
0,ij(t, A) =



π0,1(A) for i = 1, j = 1,

0 for i = 1, j = 2,

(1− e−t/e0,2)π0,1(A) for i = 2, j = 1,

e−t/e0,2π0,2(A) for i = 2, j = 2.

(135)

and

π̇
(∞)
0,ij (t, A) =



e−t/e0,1π0,1(A) for i = 1, j = 1,

(1− e−t/e0,1)π0,2(A) for i = 1, j = 2,

0 for i = 2, j = 1,

π0,2(A) for i = 2, j = 2.

(136)

The following theorems take place.

Theorem 13. Let conditions F – J, N1 and K0 hold. Then, for every
A ∈ Γ, i, j = 1, 2, and any 0 ≤ tε → ∞ as ε → 0 such that tε/wε → t ∈
(0,∞) as ε→ 0,

Pε,ij(tε, A)→ π̇
(0)
ij (t, A) as ε→ 0. (137)
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Theorem 14. Let conditions F – J, N1 and K∞ hold. Then, for every
A ∈ Γ, i, j = 1, 2, and 0 ≤ tε →∞ as ε→ 0 such that tε/wε → t ∈ (0,∞) as
ε→ 0,

Pε,ij(tε, A)→ π̇
(∞)
0,ij (t, A) as ε→ 0. (138)

Proof. First, let us prove Theorem 13.
It can be noted, as in the proof of Theorem 11, that the analysis of asymp-

totic behaviour for probabilities Pε,11(tε, A) can be performed in absolutely
analogous way with those presented in relations (112) – (118), in the proof
of Theorem 10. The only difference is that parameter β = 0, and, thus, the
limiting random variable in the analogue of asymptotic relation (114) has
the form, e0,1ζ, where ζ is a random variable exponentially distributed, with
parameter 1.

This analysis yields that the asymptotic relation (128) takes place, i.e.,
Pε,11(tε, A)→ π0,1(A) as ε→ 0, for A ∈ Γ and any tε/vε → 0 as ε→ 0.

Also, as in the proof of Theorem 11, the renewal type relation (130),
connecting probabilities Pε,11(tε, A) and Pε,21(tε, A), takes place.

Let us take an arbitrary sε → s ∈ [0,∞) as ε → 0. Obviously, (tε −
sεwε)/wε = tε/wε − sε → t− s as ε→ 0.

Thus, for t > s, the following relations holds, (tε − sεwε) = (tε/wε −
sε)wε →∞ as ε→ 0 and (tε − sεwε)/vε = (tε/wε − sε)wε/vε → 0 as ε→ 0.

Also, for t < s function (tε − sεwε) = (tε/wε − sε)wε → −∞ for ε→ 0.
That is why, according relation (128) and the definition of Pε,11(tε −

swε, A) = 0, for tε − swε < 0, in relation (130), the following asymptotic
relation holds, for A ∈ Γ and s 6= t,

Pε,11(tε − sεwε, A)→ π0,1(A)I(t > s) as ε→ 0. (139)

Note that convergence of Pε,11(tε − sεwε, A) as ε → 0 is not guarantied
for s = t. However, the distribution of limiting ransom variable in relation
(129) is exponential and, thus, it has not an atom at any point t > 0.

Therefore, relations (129) and (139) imply, by Lemma 2 given in Sub-
section 4.3, that the following relation takes place, for A ∈ Γ and any
0 ≤ tε →∞ as ε→ 0 such that tε/wε → t ∈ (0,∞) as ε→ 0,

Pε,21(tε, A) =
∫ ∞

0
Pε,11(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds},

→
∫ ∞

0
π0,1(A)I(t > s)e−1

0,2e
−s/e0,2ds

= (1− e−t/e0,2)π0,1(A) as ε→ 0. (140)
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It remains to give the asymptotic analysis of asymptotic behaviour for
probabilities Pε,12(tε, A) and Pε,22(tε, A).

As was pointed out in Subsection 2.5, the phase space X ∈ Γ. Also,
π0,1(X) = 1. Thus, relation (128) implies that the following relation holds,
for A ∈ Γ and any 0 ≤ tε → ∞ as ε → 0 such that tε/wε → t ∈ (0,∞) as
ε→ 0,

Pε,12(tε, A) ≤ Pε,12(tε,X) = 1− Pε,11(tε,X)

→ 1− π0,1(X) = 0 as ε→ 0. (141)

Let us introduce random variables µε,2,n = κε,2,nI(ηε,2,n = 2), n = 1, 2, . . ..
Let now consider the random sequence of triplets 〈ξ̄ε,2,n = 〈ξε,2,n(t), t ≥
0〉, κε,2,n, µε,2,n〉, n = 1, 2, . . ., the regenerative process ξε,2(t) = ξε,2,n(t −
τε,2,n−1), for t ∈ [τε,2,n−1, τε,2,n), n = 1, 2, . . ., with regeneration times τε,2,n =
κε,2,1 + · · · + κε,2,n, n = 1, 2, . . . , τε,2,0 = 0, and the random lifetime µε,2,+ =
τε,2,νε,2 , where νε,2 = min(n ≥ 1 : µε,2,n < κε,2,n) = min(n ≥ 1 : ηε,2,n = 1).

Let us also denote Pε,2,+(t, A) = P2{ξε,2(t) ∈ A, µε,2,+ > t}. In this case,
the distribution function Fε,2(t) = P{κε,2,1 ≤ t, µε,2,1 ≥ κε,2,1} = P{κε,2,1 ≤
t, ηε,2,1 = 2}, t ≥ 0, the stopping probability fε,2 = P{µε,2,1 < κε,2,1} =
P{ηε,2,1 = 1} = pε,21, and the expectation eε,2 = Eκε,2,1I(µε,2,1 ≥ κε,2,1) =
Eκε,2,1I(ηε,2,1 = 2) = eε,22.

The following relation obviously takes place, for A ∈ BX, t ≥ 0,

Pε,2,+(t, A) = P{ξε,2(t) ∈ A, µε,2,+ > t}
= P2{ξε(t) ∈ A, τ̃ε,1 > t}. (142)

Conditions F – J, N1 and K0 imply that conditions A – D holds. Thus,
conditions of Theorem 13 imply that all conditions of Theorem 3 hold for the
regenerative processes ξε,2(t), t ≥ 0 with regenerative times τε,2,n, n = 1, 2, . . .
and the regenerative lifetime µε,2,+.

Therefore, the following relation holds, for any A ∈ Γ, and any 0 ≤ tε →
∞ as ε→ 0 such that pε,21tε = tε/wε → t ∈ (0,∞) as ε→ 0,

P2{ξε(tε) ∈ A, τ̃ε,1 > tε} = Pε,2,+(tε, A)

→ e−t/e0,2π0,2(A) as ε→ 0. (143)

The following renewal type equation connects probabilities Pε,22(tε, A)
and Pε,12(tε, A),

Pε,22(tε, A) = P2{ξε(tε) ∈ A, τ̃ε,1 > tε}

+
∫ tε

0
Pε,12(tε − s, A)P2{τ̃ε,1 ∈ ds} (144)
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The integral at the right hand side of the above relation can be represented
in the following form,∫ tε

0
Pε,12(tε − s, A)P2{τ̃ε,1 ∈ ds}

=
∫ ∞

0
Pε,12(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds}, (145)

where function Pε,12(tε − swε, A) is defined as 0 for tε − swε < 0.
Analogously to relation (139), one can get using relation (141) and the

definition of Pε,12(tε − swε, A) = 0, for tε − swε < 0, in relation (145), the
following asymptotic relation holds, for any sε → s ∈ [0,∞) as ε→ 0, A ∈ Γ
and s 6= t,

Pε,12(tε − sεwε, A)→ 0 as ε→ 0. (146)

Therefore, relations (129) and (146) imply, by Lemma 2 given in Sub-
section 4.3, that the following relation takes place, for A ∈ Γ and any
0 ≤ tε →∞ as ε→ 0 such that tε/wε → t ∈ (0,∞) as ε→ 0,∫ ∞

0
Pε,12(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds}

→
∫ ∞

0
0 · e−1

0,2e
−s/e0,2ds = 0 as ε→ 0. (147)

Relations (143) – (145) and (147) imply that the following relation holds
for A ∈ Γ and any 0 ≤ tε → ∞ as ε → 0 such that tε/wε → t ∈ (0,∞) as
ε→ 0,

Pε,22(tε, A)→ e−t/e0,2π0,2(A) as ε→ 0. (148)

The proof of Theorem 13 is completed.
The proof of Theorem 14 is absolutely analogous to the proof of Theorem

13, due to simmetrisity conditions F – J and N1 with respect to indices
i, j = 1, 2. The only formula (135) for the corresponding limiting probabilities
should be replaced by formula (136). �

5.5. Short time ergodic theorems for singularly perturbed alter-
nating regenerative processes, under the assumption that condition
K0 or K∞ hold and tε/wε → 0 as ε → 0. In this subsection, we consider
the case, where parameter t = 0 in relation (122). In this case, relation (122)
means, for times tε →∞ as ε→ 0, that,

tε ≺ wε as ε→ 0. (149)

The corresponding limiting probabilities are the same for both cases,
where condition K0 or K∞ holds, and take the following form, for A ∈
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Γ, i, j = 1, 2,

π0,ij(A) =

{
π0,i(A) for j = i,

0 for j 6= i.
(150)

The following theorem takes place.

Theorem 15. Let conditions F – J, N1 and K0 or K∞ hold. Then, for
every A ∈ Γ, i, j = 1, 2, and 0 ≤ tε → ∞ as ε → 0 such that tε/wε → 0 as
ε→ 0,

Pε,ij(tε, A)→ π0,ij(A) as ε→ 0. (151)

Proof. Let us, first, assume that condition K0 holds.
Relation tε/wε → 0 as ε → 0 implies relation tε/vε → 0 as ε → 0. This

makes it possible to repeat the part of proof of Theorem 10 given in relations
(112) – (118) and to get the asymptotic relation,

P11(tε, A)→ π0,1(A) as ε→ 0. (152)

In the case, where condition K0 holds, wε ∼ p−1
ε,21 as ε → 0. According

this relation and relation (59), if ηε(0) = 2, then,

w−1
ε τ̃ε,1

d−→ e0,2ζ as ε→ 0, (153)

where ζ is a random variable exponentially distributed, with parameter 1.
Since, we assumed that tε/wε → 0 as ε → 0, the above convergence in

distribution relation, obviously, implies that,

P2{τ̃ε,1 > tε} = P2{w−1
ε τ̃ε,1 > tεw

−1
ε } → 1 as ε→ 0. (154)

If ηε(0) = 2, then, for every t > 0, event {ηε(t) = 1} ⊆ {τ̃ε,1 ≤ t}. Thus,
for every A ∈ Γ,

P21(tε, A) = P2{ξε(tε) ∈ A, ηε(tε) = 1}
≤ P2{τ̃ε,1 ≤ tε} → 0 as ε→ 0. (155)

As was pointed out in Subsection 2.5, the phase space X ∈ Γ. Also,
π0,1(X) = 1. Thus, relation (152) implies that the following relation holds,
for A ∈ Γ and any 0 ≤ tε →∞ as ε→ 0 such that tε/wε → 0 as ε→ 0,

Pε,12(tε, A) ≤ Pε,12(tε,X) = 1− Pε,11(tε,X)

→ 1− π0,1(X) = 0 as ε→ 0. (156)

Finally, let us analyse the asymptotic behaviour of probabilities Pε,22(tε, A)
and, thus, assume that ηε(0) = 2.
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We return back to the initial alternating regenerative process (ξε(t), ηε(t)),
t ≥ 0 with regeneration times τε,n, n = 0, 1, . . ..

Recall the stopping time τ̃ε,1, which is the time of first hitting sate 1 by
process ηε(t).

Let us again consider the regenerative process ξε,2(t), t ≥ 0 with regener-
ation times τε,2,n, n = 0, 1, . . ., and the random lifetime µε,2,+ introduced in
Subsection 4.4.

It is readily seen that, for every t ≥ 0,

Q̃ε,21(t) = P2{τ̃ε,1 ≤ t} = P{µε,2,+ ≤ t} (157)

and, for every A ∈ BX, t ≥ 0,

P2{ξε(t) ∈ A, ηε(t) = 2, τ̃ε,1 > t} = P{ξε,2(t) ∈ A, µε,2,+ > t}. (158)

Since, tε/wε → 0 as ε→ 0, relations (153) and (157) imply that,

P{µε,2,+ > tε} = P2{τ̃ε,1 > tε}
= P2{w−1

ε τ̃ε,1 > tεw
−1
ε } → 1 as ε→ 0. (159)

Relations (113) and (159) imply that

P2{ξε(tε) ∈ A, ηε(tε) = 2} − P2{ξε(tε) ∈ A, ηε(tε) = 2, τ̃ε,1 > tε}
≤ P2{τ̃ε,1 ≤ tε} → 0 as ε→ 0. (160)

and, analogously,

P{ξε,2(tε) ∈ A} − P{ξε,2(tε) ∈ A, µε,2,+ > tε}
≤ P{µε,2,+ ≤ tε} → 0 as ε→ 0, (161)

These relations and Theorem 1, which can be applied to the regenerative
processes ξε,2(t), imply that, for every A ∈ Γ,

lim
ε→0

P22(tε, A) = lim
ε→0

P2{ξε(tε) ∈ A, ηε(tε) = 2}

= lim
ε→0

P2{ξε(tε) ∈ A, ηε(tε) = 2, τ̃ε,1 > tε}

= lim
ε→0

P{ξε,2(tε) ∈ A, µε,2,+ > tε}

= lim
ε→0

P{ξε,2(tε) ∈ A} = π0,2(A). (162)

In the case of holding condition K∞, the proof is analogous. �
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6. Ergodic theorems for super-singularly perturbed alternating
regenerative processes

In this section, we present ergodic theorems for super-singularly per-
turbed alternating regenerative processes. As for singularly perturbed alter-
nating regenerative processes, these theorems take different forms of super-
long, long and short time ergodic theorems for different asymptotic time
zones.

6.1. Super-singularly perturbed alternating regenerative pro-
cesses. Let us consider the alternating regenerative processes with the
super-singular modulation model, where, additionally to F – J, the following
condition holds:

N2: (a) pε,12 = 0, for ε ∈ [0, 1], and 0 < pε,21 → p0,21 = 0 as ε → 0, or (b)
0 < pε,12 → p0,12 = 0 as ε→ 0, and pε,21 = 0, for ε ∈ [0, 1].

In this case, vε =∞, ε ∈ (0, 1].
The role of time scaling factor is played function wε, ε ∈ (0, 1]. Note that

wε = p−1
ε,21, ε ∈ (0, 1], if condition N2 (a) holds, while wε = p−1

ε,12, ε ∈ (0, 1], if
condition N2 (b) holds.

We shall investigate asymptotic behaviour of probabilities Pε,ij(tε, A) un-
der for 0 ≤ tε → ∞ as ε → 0 such that the following time scaling relation
holds,

tε/wε → t ∈ [0,∞] as ε→ 0. (163)

It is readily seen that that conditions N2 (a) and N2 (b) are, in some
sense, stronger forms, respectively, of conditions K0 and K∞. That is why, it
is expectable that the corresponding individual ergodic theorems for super-
singularly perturbed alternating regenerative processes should take forms
analogous to those presented for singularly perturbed alternating regener-
ative processes in short time ergodic Theorems 11 – 15, for models with
asymptotic time zones generated by the asymptotic relation (163).

We also include in the class of super-singularly perturbed alternating
regenerative processes the extremal case of absolutely singular perturbed
alternating regenerative processes where, additionally to F – J, the following
condition holds:

N3: pε,12, pε,21 = 0, for ε ∈ [0, 1].

6.2. Super-long time ergodic theorems for super-singularly per-
turbed alternating regenerative processes. In this subsection, we inves-
tigate asymptotic behaviour for probabilities Pε,ij(tε, A) for times 0 ≤ tε →
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∞ as ε→ 0 satisfying the following relation,

tε/wε →∞ as ε→ 0. (164)

The corresponding limiting probabilities take the following form, for A ∈
Γ, i, j = 1, 2,

π
(0)
0,j (A) =

{
π0,1(A) for j = 1,

0 for j = 2.
(165)

and

π
(∞)
0,j (A) =

{
0 for j = 1,

π0,2(A) for j = 2.
(166)

The following theorems takes place.

Theorem 16. Let conditions F – J and N2 (a) hold. Then, for every
A ∈ Γ, i, j = 1, 2, and 0 ≤ tε →∞ as ε→ 0 such that tε/wε →∞ as ε→ 0,

Pε,ij(tε, A)→ π
(0)
0,j (A) as ε→ 0. (167)

Theorem 17. Let conditions F – J and N2 (b) hold. Then, for every
A ∈ Γ, i, j = 1, 2, and 0 ≤ tε →∞ as ε→ 0 such that tε/wε →∞ as ε→ 0,

Pε,ij(tε, A)→ π
(∞)
0,j (A) as ε→ 0. (168)

Proof. The asymptotic behaviour for probabilities Pε,11(tε, A) is obvi-
ously given by Theorems 1. Indeed, if ηε(0) = 1, then condition N2 (a)
implies that the process ξε(t), t ≥ 0 coincides with the process ξε,1(t), t ≥ 0,
while the process ηε(t) = 1, t ≥ 0. Thus, the following relation takes place,
for any A ∈ Γ, and any 0 ≤ tε →∞ as ε→ 0,

Pε,11(tε, A)→ π0,1(A) as ε→ 0. (169)

Also, for any A ∈ Γ and t ≥ 0,

Pε,12(t, A) = 0. (170)

According relation (59), if ηε(0) = 2, then,

w−1
ε τ̃ε,1

d−→ e0,2ζ as ε→ 0, (171)

where ζ is a random variable exponentially distributed, with parameter 1.
The following renewal type relation connects probabilities Pε,11(tε, A) and

Pε,21(tε, A),

Pε,21(tε, A) =
∫ tε

0
Pε,11(tε − s, A)P2{τ̃ε,1 ∈ ds}

=
∫ ∞

0
Pε,11(tε − swε, A)P2{w−1

ε τ̃ε,1 ∈ ds}, (172)
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where function Pε,11(tε − swε, A) is defined as 0 for tε − swε < 0.
Let us take an arbitrary sε → s ∈ [0,∞) as ε → 0. Obviously, (tε −

sεwε)/wε = tε/wε−sε →∞ as ε→ 0. That is why, according relation (169),
the following asymptotic relation take place, for A ∈ Γ and s ∈ [0,∞),

Pε,11(tε − sεwε, A)→ π0,1(A) as ε→ 0. (173)

Relations (171) and (173) imply, by Lemma 2 given in Subsection 4.3
that the following relation takes place, for A ∈ Γ,

Pε,21(tε, A)→
∫ ∞

0
π0,1(A)P{e0,2ζ ∈ ds} = π0,1(A) as ε→ 0. (174)

As was pointed out in Section 3, the phase space X ∈ Γ. Also, π0,1(X) = 1.
Thus, relations (174) implies that the following relation holds, for A ∈ Γ,

Pε,22(tε, A) ≤ Pε,22(tε,X) = 1− Pε,21(tε,X)

→ 1− π0,1(X) = 0 as ε→ 0. (175)

The proof of Theorem 16 is completed.
The proof of Theorem 17 is absolutely analogous. �

6.3. Long time ergodic theorems for super-singularly perturbed
alternating regenerative processes. In this subsection, we investigate
asymptotic behaviour for probabilities Pε,ij(tε, A) for times 0 ≤ tε → ∞ as
ε→ 0 satisfying the following relation,

tε/wε → t ∈ (0,∞) as ε→ 0. (176)

The corresponding limiting probabilities take that following form for A ∈
Γ, i, j = 1, 2 and t ∈ (0,∞),

π̇
(0)
0,ij(t, A) =



π0,1(A) for i = 1, j = 1,

0 for i = 1, j = 2,

(1− e−t/e0,2)π0,1(A) for i = 2, j = 1,

e−t/e0,2π0,2(A) for i = 2, j = 2.

(177)

and

π̇
(∞)
0,ij (t, A) =



e−t/e0,1π0,1(A) for i = 1, j = 1,

(1− e−t/e0,1)π0,2(A) for i = 1, j = 2,

0 for i = 2, j = 1,

π0,2(A) for i = 2, j = 2.

(178)

The following theorems take place.
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Theorem 18. Let conditions F – J and N2 (a) hold. Then, for every
A ∈ Γ, i, j = 1, 2, and 0 ≤ tε →∞ as ε→ 0 such that tε/wε → t ∈ (0,∞) as
ε→ 0,

Pε,ij(tε, A)→ π̇
(0)
ij (t, A) as ε→ 0. (179)

Theorem 19. Let conditions F – J and N2 (b) hold. Then, for every
A ∈ Γ, i, j = 1, 2, and 0 ≤ tε →∞ as ε→ 0 such that tε/wε → t ∈ (0,∞) as
ε→ 0,

Pε,ij(tε, A)→ π̇
(∞)
0,ij (t, A) as ε→ 0. (180)

Proof. The asymptotic behaviour of probabilities Pε,1j(tε, A), j = 1, 2 is
given, under the assumption that condition N2 (a) holds, is given by relations
(169) and (170), in the proof of Theorem 16.

Recall again relation (59). If ηε(0) = 2, then, for u ≥ 0,

P2{w−1
ε τ̃ε,1 ≤ u} → 1− e−u/e0,2 as ε→ 0. (181)

Also recall the renewal type relation connecting probabilities Pε,11(tε, A)
and Pε,21(tε, A),

Pε,21(tε, A) =
∫ tε

0
Pε,11(tε − s, A)P2{τ̃ε,1 ∈ ds}

=
∫ ∞

0
Pε,11(tε − swε, , A)P2{w−1

ε τ̃ε,1 ∈ ds}, (182)

where function Pε,11(tε − swε, A) is defined as 0 for tε − swε < 0.
Let us take an arbitrary sε → s ∈ [0,∞) as ε → 0. Obviously, (tε −

sεwε)/wε = tε/wε − sε → t − s as ε → 0. That is why, according relation
(169) and the above definition of Pε,11(tε− swε, A) = 0, for tε− swε < 0. the
following asymptotic relation holds, for A ∈ Γ and s 6= t,

Pε,11(tε − sεwε, A)→ π0,1(A)I(t > s) as ε→ 0. (183)

Note that convergence of Pε,11(tε − sεwε, A) as ε → 0 is not guarantied
for s = t. However the limiting distribution in relation (181) is exponential
and, thus, it has not an atom at any point t > 0.

Therefore, relations (181) and (183) imply, by Lemma 2 given Subsection
4.3, that the following relation takes place, for A ∈ Γ and t ∈ (0,∞),

Pε,21(tε, A)→
∫ ∞

0
π0,1(A)I(t > s)e−1

0,2e
−s/e0,2ds

= (1− e−t/e0,2)π0,1(A) as ε→ 0. (184)

It remains to give the asymptotic analysis of asymptotic behaviour for
probabilities Pε,22(tε, A).
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Let us introduce random variables µε,2,n = κε,2,nI(ηε,2,n = 2), n = 1, 2, . . ..
Let now consider the random sequence of triplets 〈ξ̄ε,2,n = 〈ξε,2,n(t), t ≥
0〉, κε,2,n, µε,2,n〉, n = 1, 2, . . ., the regenerative process ξε,2(t) = ξε,2,n(t −
τε,2,n−1), for t ∈ [τε,2,n−1, τε,2,n), n = 1, 2, . . ., with regeneration times τε,2,n =
κε,2,1 + · · · + κε,2,n, n = 1, 2, . . . , τε,2,0 = 0, and the random lifetime µε,2,+ =
τε,2,νε,2 , where νε,2 = min(n ≥ 1 : µε,2,n < κε,2,n) = min(n ≥ 1 : ηε,2,n = 1).

Let us also denote Pε,2,+(t, A) = P2{ξε,2(t) ∈ A, µε,2,+ > t}. In this case,
the distribution function Fε,2(t) = P{κε,2,1 ≤ t, µε,2,1 ≥ κε,2,1} = P{κε,2,1 ≤
t, ηε,2,1 = 2}, t ≥ 0, the stopping probability fε,2 = P{µε,2,1 < κε,2,1} =
P{ηε,2,1 = 1} = pε,21, and expectation eε,2 = Eκε,2,1I(µε,2,1 ≥ κε,2,1) =
Eκε,2,1I(ηε,2,1 = 2) = eε,22.

Condition N2 (a) implies that, for every A ∈ BX, t ≥ 0,

Pε,22(t, A) = P2{ξε(t) ∈ A, τ̃ε,1 > t}
= P{ξε,2(t) ∈ A, µε,2,+ > t} = Pε,2,+(t, A). (185)

Conditions F – J and N2 (a) and imply that conditions A – D holds.
Thus, conditions of Theorem 18 imply that all conditions of Theorem 3 hold
for the regenerative processes ξε,2(t), t ≥ 0 with regenerative times τε,2,n, n =
1, 2, . . . and random lifetimes µε,2,+. Therefore, the following relation holds,
for any A ∈ Γ, and tε → t ∈ (0,∞) as ε→ 0,

Pε,22(tε, A) = Pε,2,+(tε, A)→ e−t/e0,2π0,2(A) as ε→ 0. (186)

The proof of Theorem 18 is completed.
The proof of Theorem 19 is absolutely analogous. �

6.4. Short time ergodic theorems for super-singularly perturbed
alternating regenerative processes. In this subsection, we investigate
asymptotic behaviour for probabilities Pε,ij(tε, A) for times 0 ≤ tε → ∞ as
ε→ 0 satisfying the following relation,

tε/wε → 0 as ε→ 0. (187)

The corresponding limiting probabilities are the same for both case, where
condition N2 (a) or N2 (b) holds. They take the following form, for A ∈
Γ, i, j = 1, 2,

π0,ij(A) =

{
π0,i(A) for j = i,

0 for j 6= i.
(188)

The following theorem takes place.

Theorem 20. Let conditions F – J and N2 hold. Then, for every A ∈
Γ, i, j = 1, 2, and 0 ≤ tε →∞ as ε→ 0 such that tε/wε → 0 as ε→ 0,

Pε,ij(tε, A)→ π0,ij(A) as ε→ 0. (189)
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Proof. Let us, first, assume that condition N2 (a) holds.
The asymptotic behaviour of probabilities Pε,1j(tε, A), j = 1, 2 is given,

under the assumption that condition N2 (a) holds, by relations (169) and
(170), in the proof of Theorem 17.

It is readily seen that, for every t ≥ 0,

Q̃ε,21(t) = P2{τ̃ε,1 ≤ t} = P{µε,2,+ ≤ t} (190)

and, for every A ∈ BX, t ≥ 0,

P2{ξε(t) ∈ A, ηε(t) = 2, τ̃ε,1 > t} = P{ξε,2(t) ∈ A, µε,2,+ > t}. (191)

According relation (59), if ηε(0) = 2, random variables, w−1
ε τ̃ε,1

d−→ e0,2ζ
as ε→ 0, where ζ is a random variable exponentially distributed with param-
eter 1. Since, we assumed that tε/wε → 0 as ε → 0, the above convergence
in distribution relation and relation (190) imply that,

P{µε,2,+ > tε} = P2{τ̃ε,1 > tε}
= P2{w−1

ε τ̃ε,1 > tεw
−1
ε } → 1 as ε→ 0. (192)

Relations (191) and (192) imply that

P2{ξε(tε) ∈ A, ηε(tε) = 2} − P2{ξε(tε) ∈ A, ηε(tε) = 2, τ̃ε,1 > tε}
≤ P2{τ̃ε,1 ≤ tε} → 0 as ε→ 0, (193)

and, analogously,

P{ξε,2(tε) ∈ A} − P{ξε,2(tε) ∈ A, µε,2,+ > tε}
≤ P{µε,2,+ ≤ tε} → 0 as ε→ 0, (194)

These relations and Theorem 1, which can be applied to the regenerative
processes ξε,2(t), imply that, for every A ∈ Γ,

lim
ε→0

P22(tε, A) = lim
ε→0

P2{ξε(tε) ∈ A, ηε(tε) = 2}

= lim
ε→0

P2{ξε(tε) ∈ A, ηε(tε) = 2, τ̃ε,1 > tε}

= lim
ε→0

P{ξε,2(tε) ∈ A, µε,2,+ > tε}

= lim
ε→0

P{ξε,2(tε) ∈ A} = π0,2(A). (195)

If ηε(0) = 2, then, for every t > 0, event {ηε(t) = 1} ⊆ {τ̃ε,1 ≤ t}. Thus,
for every A ∈ Γ,

P21(tε, A) = P2{ξε(tε) ∈ A, ηε(tε) = 1}
≤ P2{τ̃ε,1 ≤ tε} → 0 as ε→ 0. (196)
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The proof for the case, where condition N2 (b) holds, is absolutely anal-
ogous to the above proof, due to the simmetrisity conditions F – J and N2

(a) and (b) with respect to indices i, j = 1, 2. �

6.5. Ergodic theorems for absolutely singular perturbed alter-
nating regenerative processes. This is the extremal and trivial case,
where condition N3 holds.

In this case, the process ξε(t), t ≥ 0 coincides with the process ξε,i(t), t ≥ 0
and the process ηε(t) = i, t ≥ 0, if ηε(0) = i, for i = 1, 2.

Thus, the asymptotic behaviour for probabilities Pε,ii(tε, A) is given by
Theorem 1.

Also, probabilities Pε,12(t, A), Pε,21(t, A) = 0, for t ≥ 0.
The above remarks can be summarised in following theorem.

Theorem 21. Let conditions F – J and N3 hold. Then, for every A ∈
Γ, i, j = 1, 2, and any 0 ≤ tε →∞ as ε→ 0,

Pε,ij(tε, A)→ π0,ij(A) as ε→ 0. (197)

6.6. One- and multi-dimensional distributions for perturbed
alternating regenerative processes. Individual ergodic theorems pre-
sented in this paper give ergodic relations for one-dimensional distributions
Pε,ij(t, A) = Pi{ξε(t) ∈ A, ηε(t) = j} for alternating regenerative processes
with semi-Markov modulation (ξε(t), ηε(t)).

This makes it possible to weaken the model assumption (j) formulated
in Subsection 2.4. This assumption concerns multi-dimensional joint dis-
tributions of random variables ξε,i,n(tk), k = 1, . . . , r and κε,i,n, ηε,i,n. This
assumption can be replaced by the weaker assumption that the joint distri-
butions of random variables ξε,i,n(t) and κε,i,n, ηε,i,n do not depend on n ≥ 1,
for every t ≥ 0 and i = 1, 2.

Process (ξε(t), ηε(t), t ≥ 0 still will process a weaken, say, one-dimensional
regenerative property, which, in fact, means that one-dimensional distribu-
tions Pε,ij(t, A) = Pi{ξε(t) ∈ A, ηε(t) = j}, t ≥ 0, i = 1, 2 satisfy the system
of renewal type equations (13). Respectively, formulations of conditions,
propositions and proofs of Theorems 4 – 21 still remain to be valid.

6.7. Alternating regenerative processes with transition periods.
Ergodic theorems for perturbed alternating regenerative processes can be
generalised to such processes with transition periods. In this case, the model
assumption (j) formulated in Subsection 2.4 is assumed to hold only for
n ≥ 2. The alternating regenerative process (ξε(t), ηε(t)), t ≥ 0 has the
transition period [0, τε,1), while the shifted process (ξ(1)

ε (t), η(1)
ε (t)) = (ξε(τε,1+

t), ηε(τε,1 + t)) ≥ 0 is a usual alternating regenerative process.
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All quantities appearing in conditions G – J the renewal type equations
(13) and relations (12) and (15) should be, in this case, defined using shifted
sequence of triplets 〈ξ̄ε,i,2 = 〈ξε,i,2(t), t ≥ 0〉, κε,i,2, ηε,i,2〉, i = 1, 2. It is also
natural to index the above mentioned quantities by the upper index (1),
for example, to use notation P

(1)
ε,i,j(t, A) = Pi{ξ(1)

ε (t) ∈ A, η(1)
ε (t) = j}, etc.

Probabilities P
(1)
ε,ij(t, A) satisfy the system of renewal type equations (13).

Theorems 4 – 21 present, in this case, the corresponding ergodic relations for
these probabilities.

Instead of condition E, condition G should be assumed to hold for prob-
abilities p̃ε,ij = P{ηε,i,1 = j}, i, j = 1, 2 and condition H (with omitted the
non-arithmetic assumption) for transition probabilities Q̃ε,ij(t) = P{κε,i,1 ≤
t, ηε,i,1 = j}, t ≥ 0, i, j = 1, 2. The corresponding ergodic relations for proba-
bilities Pε,ij(tε, A) = Pi{ξε(t) ∈ A, ηε(t) = j} take the form similar with the

asymptotic relation (16). If, for example, P
(1)
ε,ij(tε, A) → π

(β)
0,ij(t, A) as ε → 0,

for i = 1, 2, then, Pε,ij(tε, A)→ p̃0,i1π
(β)
0,1j(t, A) + p̃0,i2π

(β)
0,2j(t, A) as ε→ 0.

7. Summary of results

In this section, a summary of results obtained in the paper and a list of
some open directions for further extension of its results are given.

7.1. Summary of results. As it was pointed in the introduction,
the paper presents results of complete analysis and classification of ergodic
theorems for perturbed alternating regenerative processes modulated by two
states semi-Markov processes.

It is shown that the forms of the corresponding ergodic relations and
limiting probabilities appearing in these relations are essentially determined
by two parameters.

The first one is parameter β ∈ [0,∞], which asymptotically balance
switching probabilities pε,12 and pε,21 between two alternative variants of
regenerative processes, in the form of asymptotic relation, pε,12/pε,21 → β as
ε→ 0.

The second one is a time scaling parameter t ∈ [0,∞], which determines
the asymptotic time zones for time tε → ∞ as ε → 0, in the form of one of
two asymptotic relations, tε/vε → t or tε/wε → t as ε→ 0, with time scaling
factors, respectively, vε = p−1

ε,12 + p−1
ε,21 or wε = (pε,12 + pε,21)−1.

The variants of ergodic relations are presented in Theorems 4 – 21, which
we split in groups as ergodic theorems for regularly perturbed alternating
regenerative processes, and short, long, and super-long time ergodic theo-
rems for singularly and super-singularly perturbed alternating regenerative
processes.
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The classification of the corresponding individual ergodic theorems is
summarised in the following Table 1 (where numbers of theorems, their condi-
tions, the corresponding asymptotic time zones, and the limiting probabilities
are given, respectively, in columns 1, 2, 3 and 4).

Regular perturbations

T Conditions Asymptotic time zones Limiting probabilities

4 F – J, M1, β = 1 tε →∞ π
(1)
0,j (A)

5 F – J, M2, β ∈ (0,∞) tε →∞ π
(β)
0,j (A)

6 F – J, M3, β = 0 tε →∞ π
(0)
0,j (A)

7 F – J, M3, β =∞ tε →∞ π
(∞)
0,j (A)

Singular perturbations

T Conditions Asymptotic time zones Limiting probabilities

8 F – J, N1, Kβ, β ∈ [0,∞] vε ≺ tε π
(β)
0,j (A)

9 F – J, N1, Kβ, β ∈ [0,∞] tε ∼ tvε, t ∈ (0,∞) π
(β)
0,ij(t, A)

10 F – J, N1, Kβ, β ∈ (0,∞) tε ≺ vε, tε →∞ π0,ij(A)

11 F – J, N1, K0 wε ≺ tε ≺ vε π
(0)
0,j (A)

12 F – J, N1, K∞ wε ≺ tε ≺ vε π
(∞)
0,j (A)

13 F – J, N1, K0 tε ∼ twε, t ∈ (0,∞) π̇
(0)
0,ij(t, A)

14 F – J, N1, K∞ tε ∼ twε, t ∈ (0,∞) π̇
(∞)
0,ij (t, A)

15 F – J, N1, K0 or K∞ tε ≺ wε, tε →∞ π0,ij(A)

Super-singular perturbations

T Conditions Asymptotic time zones Limiting probabilities

16 F – J, N2 (a) wε ≺ tε π
(0)
0,j (A)

17 F – J, N2 (b) wε ≺ tε π
(∞)
0,j (A)

18 F – J, N2 (a) tε ∼ twε, t ∈ (0,∞) π̇
(0)
0,ij(t, A)

19 F – J, N2 (b) tε ∼ twε, t ∈ (0,∞) π̇
(∞)
0,ij (t, A)

20 F – J, N2 tε ≺ wε, tε →∞ π0,ij(A)

21 F – J, N3 tε →∞ π0,ij(A)

Table 1: Classification of ergodic theorems

It should be noted that the limiting probabilities appearing in Theorems
4 – 21 have the forms π

(β)
0,j (A) = ρj(β)π0,j(A), π

(β)
0,ij(t, A) = p

(β)
ij (t)π0,j(A) and

π̇
(0)
0,ij(t, A) = ṗ

(0)
ij (t)π0,j(A), π̇

(∞)
0,ij (t, A) = ṗ

(∞)
ij (t)π0,j(A). Coefficients ρj(β)
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and p
(β)
ij (t), ṗ

(0)
ij (t), ṗ

(∞)
ij (t) can be interpreted as, respectively, stationary

probabilities and transition probabilities for some semi-Markov processes or
Markov chains controlling switching of regimes for the limiting alternating
regenerative processes, while π0,j(A) are the stationary probabilities for these
limiting regenerative processes corresponding to different regimes.

Also, it is worth noting that limiting probabilities π
(β)
0,j (A) and π

(β)
0,ij(t, A),

π̇
(0)
0,ij(t, A), π̇

(∞)
0,ij (t, A) possess some natural continuity properties as functions

of parameters β ∈ [0,∞] and t ∈ [0,∞].

In particular, the limiting probabilities π
(β)
0,j (A), which appear, for regu-

larly perturbed alternating regenerative processes, in Theorems 4 – 7, and,
for singularly and super-singularly perturbed alternating regenerative pro-
cesses, in Theorems 8, 9, 11, 12, 16, and 17, are continuous functions of
parameter β ∈ [0,∞].

Analogously, the limiting probabilities π
(β)
0,ij(t, A), which appear, for sin-

gularly perturbed alternating regenerative processes, in Theorem 9, are con-
tinuous functions of parameter (β, t) ∈ [0,∞] × [0,∞], except points (0, 0)

and (∞, 0). Also, the limiting probabilities π̇
(0)
0,ij(t, A) and π̇

(∞)
0,ij (t, A), which

appear, for singularly and super-singularly perturbed alternating regenera-
tive processes, in Theorems 13, 14, 18, and 19, are continuous functions of
parameter t ∈ [0,∞].

Moreover, the corresponding limits, π
(β)
0,ij(0, A) = limt→0 π

(β)
0,ij(t, A) =

π0,ij(A), for β ∈ (0,∞), while π
(0)
0,ij(0, A) = limt→0 π

(0)
0,ij(t, A) = π

(0)
0,j (A) and

π
(∞)
0,ij (0, A) = limt→0 π

(∞)
0,ij (t, A) = π

(∞)
0,j (A). Also, the limit, π

(β)
0,ij(∞, A) =

limt→∞ π
(β)
0,ij(t, A) = π

(β)
0,j (A), for β ∈ [0,∞]. Here, π0,ij(A) are the limiting

probabilities appearing in Theorems 10, 15, 20 and 21.
The latter asymptotic relations have a natural explanation. As a matter

of fact, there exists some kind of “competition” between the velocities with
which the switching probabilities pε,12, pε,21 tends to zero and time tε tends
to infinity, for singularly and super-singularly perturbed alternating regener-
ative processes. Probabilities pε,12, pε,21 determine the “grade of singularity”
for perturbed alternating regenerative processes. These processes become
more singular if parameter βε = pε,12/pε,21 takes values close to 0 or ∞. The
time parameter t controls the “grade of ergodicity” for perturbed alternat-
ing regenerative processes. Values of βε closer to 0 or ∞ and smaller values
of parameter t promote convergence of probabilities Pε,ij(tε, A) to limiting
probabilities π0,ij(A) = I(j = i)π0,i(A), characteristic for absolutely singular
alternating regenerative processes (for which switching of regimes is impossi-
ble). Larger values of switching probabilities and parameter t promote man-
ifestation of ergodic phenomena and convergence of probabilities Pε,ij(tε, A)
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to limiting probabilities π
(β)
0,j (A) = ρj(β)π0,j(A), which are characteristic for

regular alternating regenerative processes.

6.2. Directions for future research. Let us list some directions for
further continuation of research studies, which results are presented in the
paper.

It is clear that analogous individual ergodic theorems can be obtained for
perturbed alternating regenerative processes with discrete time.

Individual ergodic theorems presented in this paper relate to one-dimen-
sional distributions of alternating regenerative processes. It would be useful
to get also analogous ergodic theorems for multi-dimensional distributions.

A very interesting and prospective direction for future studies is indi-
vidual ergodic theorems for singularly and super-singularly perturbed multi-
alternating regenerative processes. These are models analogous to those stud-
ied in the present paper, but with alternative regenerative processes choosing
from some parametric finite or more general sets, which serve as the phase
space for the corresponding switching (modulating) semi-Markov processes.

An important is model of alternating regenerative processes with termi-
nating regeneration times, where the regenerative processes ξε,i,n(t), t ≥ 0
and random vectors (κε,i,n, ηε,i,n) are independent.

Another important model is where the processes ξε,i,n(t), t ≥ 0 are of
Markov processes, random variables κε,i,n are some Markov moments for
these processes, and the switching random variables ηε,i,n are determined by
some events for random trajectories ξε,i,n(t), t ∈ [0, κε,i,n).

An unbounded area of applications constitute queuing, reliability, control
and other types of stochastic systems with alternating regimes of function.

Results in the listed above directions shall be presented in future publi-
cations.
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M. (Eds). Engineering Mathematics II. Algebraic, Stochastic and Analy-
sis Structures for Networks, Data Classification and Optimization, Springer
Proceedings in Mathematics & Statistics 179, Springer, Cham, Chapter 10,
151–222.

[52] Silvestrov, D., Silvestrov, S. (2017). Nonlinearly Perturbed Semi-Markov
Processes. Springer Briefs in Probability and Mathematical Statistics,
Springer, Cham, xiv+143 pp.

[53] Smith, W.L. (1955). Regenerative Stochastic Processes. Proceedings of the
Royal Society, Ser. A: Mathematical, Physical and Engineering Sciences.
232, 6–31.

[54] Stewart, G.W. (1998). Matrix Algorithms. Vol. I. Basic Decompositions.
SIAM, Philadelphia, PA, xx+458 pp.

[55] Stewart, G.W. (2001). Matrix Algorithms. Vol. II. Eigensystems. SIAM,
Philadelphia, PA, xx+469 pp.

[56] Stewart, G.W., Sun, J.G. (1990). Matrix Perturbation Theory. Computer
Science and Scientific Computing. Academic Press, Boston, xvi+365 pp.

[57] Thorisson, H. (2000). Coupling, Stationarity and Regeneration. Probability
and its Applications, Springer, New York, xiv+517 pp.

[58] Yeleiko, Ya.I., Shurenkov, V.M. (1995).Transient phenomena in a class of
matrix-valued stochastic evolutions. Theor. Ĭmovirn. Mat. Stat., 52, 72–76
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