

The risk for a new COVID-19 wave – and how it depends on R_0 , the current immunity level and current restrictions

Tom Britton^{*}, Pieter Trapman[†]and Frank Ball[‡]

August 2020

Abstract

The COVID-19 pandemic has hit different parts of the world differently: some regions are still in the rise of the first wave, other regions are now facing a decline after a first wave, and yet other regions have started to see a second wave. The current immunity level \hat{i} in a region is closely related to the cumulative fraction infected, which primarily depends on two factors: a) the initial potential for COVID-19 in the region (often quantified by the basic reproduction number R_0), and b) the timing, amount and effectiveness of preventive measures put in place. By means of a mathematical model including heterogeneities owing to age, social activity and susceptibility, and allowing for time-varying preventive measures, the risk for a new epidemic wave and its doubling time, and how they depend on R_0 , i and the overall effect of the current preventive measures, are investigated. Focus lies on quantifying the minimal overall effect of preventive measures p_{Min} needed to prevent a future outbreak. The first result shows that the current immunity level i plays a more influential roll than when immunity is obtained from vaccination. Secondly, by comparing regions with different R_0 and \hat{i} it is shown that regions with lower R_0 and low \hat{i} may now need higher preventive measures (p_{Min}) compared with other regions having higher R_0 but also higher \hat{i} , even when such immunity levels are far from herd immunity.

^{*}Stockholm University, Sweden; tom.britton@math.su.se

[†]Stockholm University, Sweden; ptrapman@math.su.se

[‡]University of Nottingham, UK; Frank.Ball@nottingham.ac.uk