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Abstract

Most countries are suffering severely from the ongoing covid-19
pandemic despite various levels of preventive measures. A common
question is if and when a country or region will reach herd immunity
h. The classical herd immunity level hC is defined as hC = 1− 1/R0,
where R0 is the basic reproduction number, for covid-19 estimated to
lie somewhere in the range 2.2-3.5 depending on country and region. It
is shown here that the disease-induced herd immunity level hD, after
an outbreak has taken place in a country/region with a set of pre-
ventive measures put in place, is actually substantially smaller than
hC . As an illustration we show that if R0 = 2.5 in an age-structured
community with mixing rates fitted to social activity studies, and also
categorizing individuals into three categories: low active, average ac-
tive and high active, and where preventive measures affect all mixing
rates proportionally, then the disease-induced herd immunity level is
hD = 43% rather than hC = 1− 1/2.5 = 60%. Consequently, a lower
fraction infected is required for herd immunity to appear. The under-
lying reason is that when immunity is induced by disease spreading,
the proportion infected in groups with high contact rates is greater
than that in groups with low contact rates. Consequently, disease-
induced immunity is stronger than when immunity is uniformly dis-
tributed in the community as in the classical herd immunity level.

1Stockholm University, Department of Mathematics, Sweden.
2University of Nottingham, School of Mathematical Sciences, UK.



Introduction

Covid-19 is spreading in most countries of the world and many different
preventive measures are put in place to reduce transmission. Some countries
aim for suppression by means of a total lockdown, and others for mitigation
by slowing the spread using certain preventive measures in combination with
protection of the vulnerable [1]. An important question for both policies is
when to lift some or all of the restrictions. A closely related question is if and
when herd immunity is obtained. Some regions and countries have already
reached high estimates for the population immunity level, with 26% infected
in metropolitan Stockholm region as per May 1 2020 [2], while by the end of
March [1] estimates for Italy and Spain as a whole were already around or
above 10% and more recent. It is debated if the (classical) herd immunity
level hC = 1− 1/R0, which for Covid-19 is believed to lie between 50% and
75% since common estimates of R0 for Covid-19 typically lie in the range 2-4
(e.g. [1]), is at all realistic to achieve without too many case fatalities [3, 4]

Herd immunity is defined as a level of population immunity such that
disease spreading will decline and stop also after all preventive measures
have been relaxed. If all preventive measures are relaxed when the immunity
level (from people having been infected) is clearly below the herd immunity
level, then a second wave of infection will start once restrictions are lifted.

The classical herd immunity level hC is defined as hC = 1− 1/R0, where
R0 is the basic reproduction number defined as the average number of new
infections caused by a typical infected individual during the early stage of an
outbreak [5]. This definition originates from vaccination considerations: if a
fraction v is vaccinated (with a vaccine giving 100% immunity) and vaccinees
are selected uniformly in the community, then the new reproduction number
is Rv = (1− v)R0. From this it is clear that the critical vaccination coverage
vc = 1 − 1/R0; if at least this fraction is vaccinated, the community has
reached herd immunity, as Rv ≤ 1, and no outbreak can take place.

An epidemic model for an age and activity-

level structured population

The simplest of all epidemic models is to assume a homogeneously mixing
population in which all individuals are equally susceptible, and equally in-
fectious if they become infected. We let λ denote the average number of
infectious contacts an individual who becomes infected has before recovering
and becoming immune (or dying). An infectious contact is defined as one
close enough to infect the other individual if this individual is susceptible
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(contacts with already infected individuals have no effect). For this simple
model the basic reproduction number R0 equals λ [5].

To this simple model we add two important features known to play an
important role in disease spreading (the model is described in full detail in
the Supplementary Information, SI). The first is to include age structure
by dividing the community into different age cohorts, with inhomogeneous
mixing between the different age cohorts. More precisely, we divide the
community into 6 age groups and fit contact rates from an empirical study
of social contacts [6]. Consequently, the person-to-person infectious contact
rate between two individuals depends on the age groups of both individuals.
The average number of infectious contacts an infected in age group i has
with individuals in age group j now equals λaijπj, where aij reflects both
how much an i-individual has contact with a specific j-individual but also
typical infectivity of i-individuals and susceptibility of j-individuals, and πj
denotes the population fraction of individuals belonging to age cohort j.

The second population structure added categorizes individuals according
to their social activity level. A common way to do this is by means of
network models (e.g. [7]). Here we take a simpler approach and assume that
individuals can be categorized into three different activity levels: 50% of
each age cohort have normal activity, 25% have low activity corresponding
to half as many contacts compared to normal activity, and 25% have high
activity corresponding to twice as many contacts as normal activity. By
this we mean that, for example, a high-activity individual in age group i on
average has 2∗aijπj∗0.5∗0.25 infectious contacts with low-activity individuals
of type j. The factor 2 comes from the infective having high activity, the
factor 0.5 from the contacted person having low activity, and the factor 0.25
from low-activity individuals making up 25% of each age cohort. The basic
reproduction number R0 for this model is given by the dominant eigenvalue
of the (next-generation) matrix M having these elements as its entries. [5].

The final fraction getting infected in the epidemic, starting with few initial
infectives, is given as the unique non-negative solution to a set of equations
(the final-size equations) given in the SI. This solution also agrees with the
final fraction infected of different types for the corresponding stochastic epi-
demic model assuming a large population [8]. In order to also say something
about the time evolution of the epidemic we assume a classical SEIR epi-
demic model. More precisely, we assume that individuals who get infected
are initially latent for a period with mean 3 days, followed by an infectious
period having mean 4 days, thus approximately mimicking the situation for
Covid-19 (e.g. [1]). During the infectious period an individual makes in-
fectious contacts at suitable rates such that the mean number of infectious
contacts agree with that of the next-generation matrix M .
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The epidemic model with preventive measures

put in place

We assume that the basic reproduction number satisfies R0 = 2.5 (a few
other values are also evaluated) and that the epidemic is initiated with a
small fraction of infectious individuals on February 15. On March 15, when
the fraction infected is still small, preventive measures are implemented such
that all averages in the next-generation matrix are scaled by the same factor
α < 1, so the next-generation matrix becomes αM . Consequently, the new
reproduction number is αR0. These preventive measures are kept until the
ongoing epidemic is nearly finished. More precisely, all preventive measures
are relaxed thus setting α back to 1 on June 30. If herd immunity is not
reached there will then be a second wave, whereas the epidemic continues to
drop if herd immunity has been reached.

In the results section we investigate the effect of the preventive measures
and for a couple of different scenarios numerically analyse whether or not a
given level of preventive measures will yield disease-induced herd immunity.
We do this for populations that a) are homogeneous population b) have
individuals categorized into different age groups but no activity levels, c)
have no age groups but different activity levels, and d) have both age and
activity structures.

Results

For each of the four population structures, we first show the overall disease-
induced herd immunity level in Table 1. The level is obtained by assuming
that preventive measures having factor α < 1 are implemented at the start
of an epidemic, running the resulting epidemic to its conclusion and then
exposing the population to a second epidemic with α = 1. We find α∗, the
greatest value of α such that the second epidemic is subcritical; hD is then
given by the fraction of the population that is infected by the first epidemic.
This approximates the situation where preventive measures are implemented
early and lifted late in an outbreak. Note that hD is independent of the
distributions of the latent and infectious periods.

As seen in the table all three structured population have lower disease-
induced herd immunity hD compared to the classical herd immunity hC ,
which assumes immunity is uniformly distributed among the different types
of individual. From the table it is clear that the different activity levels have
a greater effect on reducing hD than age structure.
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Table 1: Disease-induced herd immunity level hD and classical herd immunity
level hC = 1− 1/R0 for different population structures, for R0 = 2.0, 2.5 and
3.0. Numbers correspond to percentages.

R0 = 2.0 R0 = 2.5 R0 = 3.0
Population structure hD hC hD hC hD hC

Homogeneous 50.0 50.0 60.0 60.0 66.7 66.7
Age structure 46.0 50.0 55.8 60.0 62.5 66.7

Activity structure 37.7 50.0 46.3 60.0 52.5 66.7
Age & Activity structure 34.6 50.0 43.0 60.0 49.1 66.7

In Table 2 the final fractions infected in the different age activity groups
for α = α∗ just barely reaching disease-induced herd immunity are given.
This is done for the age and activity group structure and assuming R0 = 2.5.
The overall fraction infected equals hD = 43.0%, in agreement with Table 1.

Table 2: Final outcome fractions infected in different groups assuming
R0 = 2.5 and preventive measures put in place such that α = α∗ just barely
reaching herd immunity for R0 = 2.5. Population structure includes both
age and activity and fractions infected are given as percentages.

Age-group Low activity Average activity High activity

0 - 5 years 17.6 32.1 53.9
6 - 12 years 25.8 44.9 69.7
13 - 19 years 31.4 52.9 77.8
20 - 39 years 27.4 47.2 72.1
40 - 59 years 22.8 40.3 64.4
≥ 60 years 14.6 27.0 46.7

We also illustrate the time evolution of the epidemic for R0 = 2.5, as-
suming both age and activity structure, and starting with a small fraction
externally infected in mid-February. For this we show the epidemic over
time for four different levels of preventive measures put in place early in
the epidemic outbreak (mid-March) and being relaxed once transmission has
dropped to low levels (June 30). In Figure 1 the community proportion that
is infectious is plotted during the course of the epidemic.

On March 15 preventive measures (at four different levels for α) are put
in place and it is seen that the growth rate is reduced except for the black
curve which has no preventive measures (α = 1). Moreover, the preventive
measures reduce the size and delay the time of the peak. Sanctions are lifted
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Figure 1: Plot of the overall fraction infected over time for the age and
activity structured community with R0 = 2.5, for four different preventive
levels inserted March 15 (day 30) and lifted June 30 (day 135). The black,
red, yellow and purple curves corresponds to no, light, moderate and severe
preventive measures, respectively.

on June 30 putting transmission rates back to their original levels, but only
in the curve with highest sanctions is there a clear second outbreak wave,
since the remaining curves have reached (close to) herd immunity. The yellow
curve finishes below 50% getting infected. The reason it has more than the
43% infected shown in Table 1 is that preventive measures were not from the
very start and were also lifted before the epidemic was over. An interesting
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observation is that the purple curve ends up with a higher overall fraction
infected even though it had more restrictions than those of the yellow. The
explanation is that this epidemic was further from completion when sanctions
were lifted.

Figure 2 plots the corresponding cumulative fraction infected as a func-
tion of time. Observe that the first three curves see no (strong) second wave
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Figure 2: Plot of the cumulative fraction infected over time for the age and
activity structured community and R0 = 2.5, for a four different preventive
levels inserted March 15 and lifted June 30. The black curve corresponds
to no preventive measures, the red with light preventive measure, the yellow
to moderate preventive measures and the purple corresponding to severe
preventive measures.
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of outbreak once preventive measures are lifted – it is only the curve corre-
sponding to highest preventive measures that has a severe second wave when
restrictions are lifted. Note also that the yellow curve, having overall fraction
infected well below the classical herd immunity level hC = 60%, is protected
by herd immunity since no second wave appears. This clearly illustrates that
the disease-induced herd immunity level hC is well below 60% – it is 43%
(see Table 1). In the SI we show additional plots for the situation where
restrictions are lifted continuously between June 1 and August 31, and also
study how the effective reproduction number evolves as a function of the
time when restrictions are lifted.

Discussion

The main conclusion is that the disease-induced herd immunity level may be
substantially lower then the classical herd immunity level. Our illustration
indicates a reduction from 60% down to 43% (assuming R0 = 2.5) but this
should be interpreted as an illustration, rather than an exact value or even
a best estimate.

The current model takes age cohorts and social activity levels into ac-
count. However, more complex and realistic models have many other types
of heterogeneities: for instance increased spreading within households (of
different sizes) or within schools and workplaces; and spatial aspects with
rural areas having lower contact rates than metropolitan regions. It seems
reasonable to assume that most such additional heterogeneities will have the
effect of lowering the disease-induced immunity level hD even further, in
that high spreading environments (metropolitan regions, large households,
big workplaces, ...) will have a higher fraction infected thus resulting in
immunity being concentrated even more on highly-active individuals. Some
complex models do not categorize individuals into different activity levels,
or the related feature in an underlying social network with varying number
of acquaintances. As illustrated in our results section, differences in social
activity play a greater role in reducing the disease-induced herd immunity
level than inhomogeneous age-group mixing. Thus models not having such
features will see smaller difference between hD and hC . Our choice to have
50% having average activity, 25% having half and 25% having double activity
is of course very arbitrary. An important future task is hence to determine
the size of differences in social activity within age groups. The more social
heterogeneity there is between groups, the greater the difference between hD
and hC .

An assumption of our model is that preventive measures act proportion-
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ally on all contact rates. This may not always hold. For example, most coun-
tries have a pronounced ambition to protect elderly (and other risk groups),
which does not obey this assumption. Again, we expect the effect would
be to lower the disease-induced immunity level had this type of preventive
measure been considered, because the oldest age group is the one having
fewest contacts. For a model having schools and workplaces, it is however
not obvious what effect school closure and strong recommendations to work
from home would have on the disease-induced herd immunity level.

There are of course other more efficient exit-strategies than to lift all
restrictions simultaneously. In fact, most countries are currently employing
a gradual lifting of preventive measures. Such slower lifting of preventive
measures will avoid seeing the type of overshoot illustrated by the purple
curve in Figure 2, which results in a greater fraction infected than the yellow
curve, even though the latter has milder restrictions. The effect of such
gradual lifting of restrictions will result in the final fraction infected reaching
close to the disease-induced herd immunity level.

Different forms of immunity levels have been discussed previously in the
literature although, as far as we know, not when considering early-introduced
preventions that are lifted towards the end of an epidemic outbreak. Ander-
son and May [9] concludes that immunity level may differ between uniformly
distributed, disease-induced and optimally-located immunity, and vaccina-
tion policies selecting individuals to immunize in an optimal manners have
been discussed in many papers, e.g. [10]. A very recent and independent
preprint makes similar observations to those in the present paper, but where
heterogeneities in terms of e.g. susceptibilities vary continuously [11]. The
correspondning epidemic model is solved numerically similar to our Figure
1, but analytical results for final sizes and hD are missing.

The present study highlights that the disease-induced herd immunity level
hD is substantially smaller than the classical herd immunity level hC . To try
to quantify more precisely the size of this effect remains to be done, and we
encourage more work in this area.
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Supplementary information

Materials and Methods

A deterministic SEIR model and the fraction of the pop-
ulation infected

In this supplementary information we describe the deterministic SEIR (Sus-
ceptible, Exposed, Infectious, Removed) epidemic model in a population par-
titioned by age and activity level. For reasons of notational convenience we
label the types (the combination of age and activity level) from 1 to m, where
m is the product of the number of age classes and the number of activity
levels. A more detailed exposition than the one presented here can be found
in [12, Sections 5.5 and 6.2].

We assume that for all j ∈ {1, · · · ,m} the population consists of nj people
of type j. We set n =

∑m
j=1 nj and πj = nj/n. We assume that the population

is large and closed, in the sense that we do not consider births, deaths (other
than possibly the deaths caused by the infectious disease) and migration.
Throughout the epidemic, ni is fixed, so people who die from the infectious
disease are still considered part of the population. For j, k ∈ {1, · · · ,m},
every given person of type j makes infectious contacts with every given person
of type k independently at rate αajk/n. If at the time of such a contact the
type-j person is infectious and the type-k person is susceptible then the
latter becomes latently infected (Exposed). People of the same type may
infect each other, so ajj may be strictly positive. Because the definition of
an infectious contact includes that the contact leads to transmission of the
disease, it is not necessarily the case that ajk is equal to akj. The parameter
α is a scaling parameter, used to quantify the impact of control measures in
the main paper, without measures α is set equal to 1. Exposed individuals
become Infectious at constant rate σ and infectious individuals recover or
die (are Removed) at constant rate µ. The rates of becoming infectious and
removal are assumed to be independent of type. It is straightforward to
extend the model to make those rates age and/or activity level dependent.

In the described multi-type SEIR model, the expected number of people
of type k that are infected by an infected person of type j during the early
stages of the epidemic is nk × (αajk/n) × (1/µ) = πkαajk/µ, where 1/µ is
the expected duration of an infectious period. The next-generation matrix
M has (for j, k ∈ {1, · · · ,m}) as element in the j-th row and m-th column
the quantity πkαajk/µ. The basic reproduction number R0 is defined as the
largest eigenvalue of M ; it is necessarily real and positive. If R0 > 1, then
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a large outbreak is possible with positive probability, while if R0 ≤ 1 an
outbreak stays small with probability 1.

We set Sj(t) to be the number of people of type j that are susceptible to
the disease at time t, Ej(t) the number of people of type j that are latently
infected, Ij(t) the number of infectious people of type j and Rj(t) the number
of removed people of type j (j ∈ {1, · · · ,m}). Note that Sj(t)+Ej(t)+Ij(t)+
Rj(t) = nj = πjn for all t ≥ 0, because the population is closed. Again for
j ∈ {1, · · · ,m}, we define sj(t) = Sj(t)/nj, ej(t) = Ej(t)/nj, ij(t) = Ij(t)/nj

and rj(t) = Rj(t)/nj.
Theory on Markov processes [13, Chapter 11] (see also [12, Section 5.5]

for the single type counterpart) gives that for large n the above model can
be described well by the following system of differential equations (again for
j ∈ {1, · · · ,m}):

ṡj(t) = − 1
nj

m∑
k=1

α
akj
n
Sj(t)Ik(t) = −

m∑
k=1

απkakjsj(t)ik(t),

ėj(t) = 1
nj

(
m∑
k=1

α
akj
n
Sj(t)Ik(t)− σEj(t)

)
=

m∑
k=1

λπkakjsj(t)ik(t)− σej(t),

i̇j(t) = 1
nj

(σEj(t)− µIj(t)) = σej(t)− µij(t),
ṙj(t) = 1

nj
µIj(t) = µij(t).

To be complete, in the main text, we use when analysing the time-dependent
behaviour of an epidemic that for all j ∈ {1, · · · ,m}, sj(0) = 1− ε, ej(0) = ε
and ij(0) = rj(0) = 0. In the analysis below we do not impose specific
assumptions on the initial conditions.

The epidemic will ultimately go extinct, because the population is closed,
so for all j ∈ {1, · · · ,m} we have that ej(t) → 0 and ij(t) → 0 as t → ∞.
Thus sj(t) + rj(t) → 1 as t → ∞. Furthermore sj(t) is non-increasing, so
sj(∞) = limt→∞ sj(t) exists.

It can be shown in the spirit of [12, Equation (6.2)] that for j ∈ {1, · · · ,m},

sj(∞)

sj(0)
= exp

[
−λ

m∑
k=1

akjπk (1− rk(0)− sk(∞)) /µ

]
. (1)

To understand this identity we observe first that sj(∞)

sj(0)
is the fraction of

initially susceptible people of type j who escape the epidemic, while the sum
in the right-hand side can be written as

m∑
k=1

nπk (1− rk(0)− sk(∞))×λakj/n×
1

µ
=

m∑
k=1

(nk−Rk(0)−Sk(∞))×λakj/n×
1

µ
.
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In words the summands read as the number of people of type k that were
infectious at some moment during the epidemic, times the rate at which a
type-k person makes infectious contacts with someone of type j, times the
expected time an infected person is infectious. In other words, the right hand
side is the cumulative force of infection during the entire epidemic acting on
a person of type j. Standard theory on epidemics gives that minus the
natural logarithm of the probability that a given initially susceptible person
of type j avoids infection is the cumulative force of infection acting on that
person. Thus (1) gives that the fraction of initially susceptible people that
are ultimately still susceptible is equal to the probability that a given initially
susceptible person avoids infection.

f the epidemic is initiated by few infectives in a large population then,
conditional upon a large outbreak occurring, the final fractions of initially
susceptible people of the different types satisfy (1) with sj(0) = 1 and rj(0) =
0 for all j ∈ {1, · · · ,m}. In the main text, this special case is used to calculate
hD in Table 1 and the final fractions infected in Table 2.

0.1 The population matrix

In the main text we analyse an age structured population. Contact intensities
between different age groups we took from [6]. The age groups are 0-5, 6-
12, 13-19, 20-39, 40-59 and 60+. The contact matrix, i.e. the matrix with
elements {ajk; j, k ∈ {1, · · · , 6}} is taken from Table 1 of [6]. Note that the
expected number of contacts from a person of type j with people of type
k is nkajk/n = πkajk. Therefore we divide the elements of Table 1 by the
corresponding πk to obtain the contact matrix. We further multiply this
matrix by a constant such that the largest eigenvalue is equal to 2.5, the
value we have chosen for R0. The contact matrix is

2.2257 0.4136 0.2342 0.4539 0.2085 0.1506
0.4139 3.6140 0.4251 0.4587 0.2712 0.1514
0.2342 0.4257 2.9514 0.6682 0.4936 0.1972
0.4539 0.4592 0.6676 0.9958 0.6510 0.3300
0.2088 0.2706 0.4942 0.6508 0.8066 0.4341
0.1507 0.1520 0.1968 0.3303 0.4344 0.7136


.

As explained in the main text we can use this matrix to generate the 18 by
18 contact matrix for the model in which we take both age and activity level
into account.
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Additional figures

In the main text we studied effects of lifting restrictions of different levels
α on June 30 (day 135) going back to the situation of no restrictions cor-
responding to setting α back to 1. Below are the corresponding plots but
where restrictions are relaxed gradually (linearly) between June 1 (day 105)
and August 31 (day 195). In Figure 3 the we plot the fraction of infectious
individuals.

The plot looks quite similar to that of Figure 1 in the main text except
that the purple curve with highest restrictions no longer has a pronounced
second wave. The reason for this is that now restrictions are lifted slowly and
gradually during a 3 month period rather than directly back to normal at a
single time point. In Figure 4 the corresponding plot for cumulative fraction
of infected over time is given. Compared to Figure 2 tha main difference
is that the purple curve (severe restrictions) has fewer finally infected since
there is no longer such a large overshoot above hD = 43% caused by a second
wave.

Finally, in Figure 5 we consider the situation when preventive measures
with level α are implemented 30 days after introduction of the disease and
relaxed (so α returns to 1) at time t > 30. The parameters are again chosen so
that R0 = 2.5 when α = 1. The graphs show the effective R0 (incorporating
disease-induced immunity) as a function of time t, for four different choices of
preventive level α. Thus all four curves coincide until day 30. The effective R0

with no preventive measures (α = 1) reaches the critical value of one on about
day 57 (mid-April), whilst that for α = 0.8 does so on about day 68 (April
23). The stronger preventive measures (α = 0.6 and α = 8/15) are such that
herd immunity is never reached even if they are retained indefinitely.
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Figure 3: Plot of the overall fraction infected over time for the age and activ-
ity structured community with R0 = 2.5, for four different preventive levels
inserted March 15 (day 30) and lifted gradually between June 1 (day 105) and
August 31 (day 195). The black, red, yellow and purple curves corresponds
to no, light, moderate and severe preventive measures, respectively.
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Figure 4: Plot of the overall fraction infected over time for the age and activ-
ity structured community with R0 = 2.5, for four different preventive levels
inserted March 15 (day 30) and lifted gradually between June 1 (day 105) and
August 31 (day 195). The black, red, yellow and purple curves corresponds
to no, light, moderate and severe preventive measures, respectively.
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Figure 5: Plot of the effective reproduction number (incorporating disease-
induced immunty) if restrictions for different α are put in place Day 30 and
relaxed on day t > 30.
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