
Mathematical Statistics

Stockholm University

Statistical inference for the EU portfolio in high

dimensions

Taras Bodnar

Solomiia Dmytriv

Yarema Okhrin

Nestor Parolya

Wolfgang Schmid

Research Report 2020:4

ISSN 1650-0377



Postal address:
Mathematical Statistics
Dept. of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden

Internet:
http://www.math.su.se



Mathematical Statistics

Stockholm University

Research Report 2020:4,

http://www.math.su.se

Statistical inference for the EU portfolio in high

dimensions

Taras Bodnara, Solomiia Dmytrivb, Yarema Okhrinc, Nestor Parolya∗d and

Wolfgang Schmidb

a
Department of Mathematics, Stockholm University, Stockholm, Sweden

b
Department of Statistics, European University Viadrina, Frankfurt(Oder), Germany

c
Department of Statistics, University of Augsburg, Augsburg, Germany

d
Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands

May 2020

Abstract

In this paper, using the shrinkage-based approach for portfolio weights and modern

results from random matrix theory we construct an effective procedure for testing the

efficiency of the expected utility (EU) portfolio and discuss the asymptotic behavior of

the proposed test statistic under the high-dimensional asymptotic regime, namely when

the number of assets p increases at the same rate as the sample size n such that their

ratio p/n approaches a positive constant c ∈ (0, 1) as n→∞ . We provide an extensive

simulation study where the power function and receiver operating characteristic curves of

the test are analyzed. In the empirical study, the methodology is applied to the returns of

S&P 500 constituents.

Keywords: Finance; Portfolio analysis; Mean-variance optimal portfolio; Statistical test;

Shrinkage estimator; Random matrix theory.

1 Introduction

Following the mean-variance approach of Markowitz (1952), which is considered to be one of

the most popular portfolio choice strategies, the weights of an optimal portfolio are obtained by

minimizing the portfolio variance for a predefined level of the portfolio expected return. This set

of optimal portfolios determines the efficient frontier in the mean-variance space. The Markowitz

approach formalizes the advantages of portfolio diversification and has become a benchmark for

both researchers and practitioners in portfolio management.

∗Corresponding Author: Nestor Parolya. E-Mail: N.Parolya@tudelft.nl



Markowitz optimal portfolios, also known as mean-variance optimal portfolios, can also be

obtained as solutions of other optimization problems (e.g., Bodnar et al. (2013)), like by maxi-

mizing the expected quadratic utility (EU) function (see, Ingersoll (1987)) expressed as

w′µ− γ

2
w′Σw→ max subject to w′1p = 1, (1)

where w = (w1, . . . , wp)
′ is the vector of portfolio weights, 1p is the p -dimensional vectors

of ones, µ and Σ are the mean vector and the covariance matrix of the random vector of

asset returns x = (x1, . . . , xp)
′ . The quantity γ > 0 measures the investors attitude towards

risk. If γ = ∞ , then the investor is fully risk averse and determines the investment strategy

by minimizing the portfolio variance without paying attention to the expected portfolio return,

i.e., constructs the so-called global minimum variance (GMV) portfolio. Under the assumption

that the asset returns are normally distributed, the problem of maximization the mean-variance

objective function (1) is equivalent to the maximization of the expected exponential utility,

which implies constant absolute risk aversion (CARA). In this case, γ is equal to the investors

absolute risk aversion coefficient (see, e.g., Ingersoll (1987)).

We denote the solution of (1) by wEU and it is given by

wEU =
Σ−11p

1′pΣ
−11p

+ γ−1Qµ, (2)

where

Q = Σ−1 −
Σ−11p1

′
pΣ
−1

1′pΣ
−11p

. (3)

The case of fully risk averse investor, i.e., γ = ∞ , leads to the weights of the GMV portfolio

expressed as

wGMV =
Σ−11p

1′pΣ
−11p

. (4)

The derived formulas of optimal portfolio weights (2) and (4) cannot directly be used in

practice, since they both depend on unknown parameters of the data generating process. The

mean vector µ and the covariance matrix Σ are not observable in practice and have to be

estimated by using historical data for asset returns. This, however, introduces further sources of

risk into the investment process, namely the estimation risk which has been ignored for a long

time in finance.

The most commonly used approach to estimate the weights of optimal portfolios is based on

simple replacing the unknown first two moments of the asset returns by their sample counter-

parts. As a result, we obtain a ”plug-in” estimator for the optimal portfolio weights also known

as its sample estimator, which is a traditional way to construct a portfolio in practice. Assuming

that the asset returns are independent and normally distributed Okhrin and Schmid (2006) ob-

tain the asymptotic distribution of the sample estimator of the EU portfolio weights, while the

corresponding exact distributional results can be found in Bodnar and Schmid (2011). Further

theoretical and practically relevant findings related to the characterization of the distribution of

the sample estimator of the optimal portfolio weights and their characteristics can be found in

Yang et al. (2015), Woodgate and Siegel (2015), Simaan et al. (2018), Zhao et al. (2019), among
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others.

The use of the ”plug-in” estimators in practice has been widely criticized in statistical and

financial literature. One of the main drawbacks of the sample estimators is the investors overop-

timism about the optimality of the constructed portfolio. Several studies (see, e.g., Siegel and

Woodgate (2007), Kan and Smith (2008), Bodnar and Bodnar (2010)) show with theoretical

and empirical arguments that the plug-in estimator of the efficient frontier overestimates the

location of the true efficient frontier in the mean-variance space. This leads to too optimistic

trading strategies which perform in practice typically much worse than expected.

In recent years, other types of estimators for the optimal portfolio weights have been intro-

duced in the literature. Some estimators attempt to improve the estimators for the parameters

of the asset returns. Relying on the idea of Stein (1956) we can use a shrinkage estimator for

the mean vector and for the covariance matrix or its inverse (see, e.g., Bodnar et al. (2014) and

Bodnar et al. (2016)). Alternatively, one can apply the shrinkage method directly to portfolio

weights as suggested by Golosnoy and Okhrin (2007), Okhrin and Schmid (2008), Frahm and

Memmel (2010), etc. The goal of the approach is to reduce the estimation uncertainty and to

decrease the variance in the estimated portfolio weights.

The problem of assessing the estimation risk, when an optimal portfolio is constructed,

becomes very challenging from the high-dimensional perspectives, i.e., when both the number of

included assets p and the sample size n tend to infinity simultaneously such that p/n tends

to the concentration ratio c > 0 as n → ∞ (see, Bai, Liu and Wong (2009), Bai and Shi

(2011)). Under the classical asymptotic regime, when the number of assets p is fixed and

substantially smaller then the sample size n , the traditional ”plug-in” estimator of optimal

portfolio weights is consistent (see, Okhrin and Schmid (2006), Bodnar and Schmid (2011)). On

the other hand, the sample estimators of the mean vector and of the covariance matrix are not

longer feasible under the high-dimensional asymptotics (Bai and Silverstein (2010), Bai and Shi

(2011), Bodnar, Okhrin and Parolya (2019)), which has a negative impact on the performance

of the asset allocation strategy. Moreover, the inverse covariance matrix does not exist anymore

for c > 1 and the optimal portfolios cannot be constructed in a traditional way.

Nowadays, the technological advances and the availability of financial information make the

whole universe of assets easily accessible for private and institutional investors (see, Hautsch and

Voigt (2019)). This leads to portfolios consisting of hundreds of assets and to a high demand for

new results on constructing optimal portfolios in a high-dimensional setting. Similarly as in the

low-dimensional case, the first line of the research deals with deriving improved estimators for

the mean vector and the covariance matrix of asset returns. These are used to obtain improved

plug-in estimators of the optimal portfolio weights (see, Ledoit and Wolf (2017), Holgersson

et al. (2020)). The second possibility is to improve the estimators of the optimal portfolio

weights directly. This can be achieved by taking their functional dependence on the mean vector

and of covariance matrix. Following this approach Bodnar et al. (2018) suggest the optimal

shrinkage estimator for the GMV portfolio weights, while Bodnar et al. (2020) propose the

optimal shrinkage estimator for the EU portfolio weights. Both estimators are derived by using

recent results in random matrix theory and appear to be feasible even in the case of c > 1 .

Other optimal portfolio choice strategies under the high-dimensional regime were established by
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Rubio et al. (2012), Benidis et al. (2018), Zhao et al. (2019).

It is important to note that the statistical methods developed for estimating optimal portfolio

weights can be linked to the classical methods used in statistical signal processing. For example,

the Capon or minimum variance spatial filter is equivalent to the GMV portfolio in signal

processing literature (see Verdú (1998) and Van Trees (2002)). The estimation risk of the

high-dimensional minimum variance beamformer is studied in Rubio et al. (2012) and Yang

et al. (2018), while its constrained versions are discussed in Li et al. (2004). Moreover, Mestre

and Lagunas (2006) discuss the finite-sample size effect on minimum variance filter and Zhang

et al. (2013) present an improved calibration of the precision matrix. Further literature on the

applications of random matrix theory to signal processing and portfolio optimization can be

found in Feng and Palomar (2016) and references therein.

We contribute to the recent literature in portfolio theory and signal processing theory by

developing new statistical tests on the weights of the EU portfolio in a high-dimensional setting.

From practical point of view an investor will have an opportunity to test if the current large

portfolio coincides with a prespecified benchmark portfolio or there are significant deviations.

From the theoretical perspective we contribute by derivation of confidence intervals and test

theory for expressions including functions of both the mean vector and the covariance matrix.

This directly extends the existent results on testing the structure of the covariance matrix in

high-dimensional settings (see, e.g., Bai, Jiang, Yao and Zheng (2009), Yao et al. (2015), Bodnar,

Dette and Parolya (2019)). The new approach is based on the shrinkage estimator of the EU

portfolio weights and extends the one derived for the weights of the GMV portfolio in Bodnar,

Dmytriv, Parolya and Schmid (2019) by taking the uncertainty about the estimated mean vector

into account when the high-dimensional asymptotic distribution of the test statistic is derived.

One of the main advantages of the approach is that the whole high-dimensional vector of portfolio

weights can be tested in a single step. Moreover, the investor can make a decision about the

efficiency of the holding portfolio based on the result of the testing procedure.

The rest of paper is organized as follows. In Section 2, we describe the existent approaches in

testing the finite number of the EU portfolio weights in both low and high dimensions. New test

based on the shrinkage approach is suggested in Section 3. Here, the asymptotic distribution

of the test statistic is derived under both the null and the alternative hypotheses under high-

dimensional settings. In Section 4.1, we compare the new test with the existent approaches in

terms of size and power properties, while an empirical illustration is provided in Section 4.2.

Concluding remarks are presented in Section .

2 Sample estimator of the EU portfolio and test theory

We consider a financial market consisting of p risky assets. Let xt denote the p -dimensional

vector of the returns on risky assets at time t . Suppose that E(xt) = µ and Cov(xt) = Σ

where Σ is assumed to be positive definite. Let x1,x2, . . . ,xn be a sample of asset return vectors

consisting of their n independent realizations and let Xn = (x1,x2, . . . ,xn) stand for the p×n
data matrix. Throughout of the paper we assume that the asset returns are independent and

identically normally distributed, i.e. xi ∼ Np(µ,Σ), i = 1, . . . , n .
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The sample estimators of µ and Σ are given by

x̄n =
1

n

n∑
j=1

xj and Σ̂n =
1

n− 1

n∑
j=1

(xj − x̄n) (xj − x̄n)′ . (5)

Replacing µ and Σ in (2) by their sample estimators from (5), we obtain the sample estimator

of the EU portfolio weights expressed as

ŵEU =
Σ̂−1n 1p

1′pΣ̂
−1
n 1p

+ γ−1Q̂nµ̂n,

where

Q̂n = Σ̂−1n −
Σ̂−1n 1p1

′
pΣ̂
−1
n

1′pΣ̂
−1
n 1p

. (6)

Okhrin and Schmid (2006) derive the analytical expression for the expectation and the co-

variance matrix of ŵEU and obtain its asymptotic distribution assuming that the portfolio size

is considerably smaller than the sample size. These results are extended in Bodnar and Schmid

(2011) who derive the finite-sample distribution of the estimated EU portfolio weights and use

these results in the derivation of an asymptotic tests on the weights which we present in the

next subsection.

2.1 Tests based on Mahalanobis distance

At each time point an investor has to decide whether the holding portfolio is efficient or it has

to be adjusted (see, Bodnar and Schmid (2008), Bodnar and Schmid (2011)). This problem

can be presented as a special case of the general linear hypotheses formulated for the portfolio

weights. Let L denote the k × p dimensional matrix of constants with k < p − 1 and let r

be the k -dimensional vector of constants. Bodnar and Schmid (2011) consider the following

hypotheses for linear combinations of the EU portfolio weights

H0 : LwEU = r against H1 : LwEU 6= r, (7)

If one sets L = [Ik Ok,p−k] in (7) where Ik is the k -dimensional identity matrix and Ok,p−k

is the k × (p − k) matrix with zeros, then the null hypothesis states that the first k weights

in wEU are equal to the corresponding components defined by r . It also has to be noted that

whole structure of the EU portfolio cannot be tested by using (7) because of the restriction

imposed on the number of linear combinations which should be smaller than p− 1 . Thus, the

test on the whole vector of the EU portfolio weights should be performed by testing at least two

null hypotheses of the form (7) by selecting matrices L in each of the null hypotheses such that

all elements in wEU are tested. This leads to a multiple testing problem also discussed below.
In order to test (7) for a given matrix L and a vector r , Bodnar and Schmid (2011) suggest
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the following test statistic:

TL = (n− p+ 1) (ŵL − r)
′

(
LQ̂nL′

1′pΣ̂
−1
n 1p

+ γ−1
LQ̂nL′

x̄′nQ̂nx̄n

+ γ−2(LQ̂nL′x̄′nQ̂nx̄n − LQ̂nx̄nx̄′nQ̂nL′)

)−1
× (ŵL − r) , (8)

where

ŵL = LŵEU =
LΣ̂−1n 1p

1′pΣ̂
−1
n 1p

+ γ−1LQ̂nx̄n. (9)

Bodnar and Schmid (2011) show that the test statistic TL can be asymptotically well ap-

proximated by a non-central χ2 -distribution with k degrees of freedom and the non-centrality

parameter

λ = n (wL − r)′
(

LQL′

1′pΣ
−11p

+ γ−1
LQnL

′

µ′Qµ
+ γ−2(LQL′µ′Qµ− LQµµ′QL′)

)−1
(wL − r) (10)

with

wL = LwEU =
LΣ−11p
1′pΣ

−11p
+ γ−1LQµ, (11)

when both p and k are relatively small with respect to the sample size n . As a special case,

we obtain the asymptotic distribution of TL under the null hypothesis. This appears to be a

χ2 -distribution, i.e. TL ∼ χ2
k under the null hypothesis in (7).

Since the asymptotic distribution of the test statistic TL is obtained under classical asymp-

totic regime, this test, in general, is not applicable when the portfolio size is comparable to the

sample size. We illustrate this point in Figure 1. Here we plot the kernel density estimator

(KDE) of the distribution of the test statistic TL under the null hypothesis together with the

asymptotic χ2 -distribution (green and red curves, respectively). For this purpose we generate

samples from a multivariate normal distribution with mean vector and covariance matrix as

specified in the numerical study of Section 4.1. The vector r consists of the first k components

of the true EU portfolio weights and we set L = [Ik Ok,p−k] . For each sample we compute the

value of the test statistic TL and then plot the KDE. To robustify the conclusions we set γ = 5 ,

p = 300 , cn = p/n ∈ {0.3, 0.8} and k ∈ {10, 30, 100} . We observe that already for k = 10

the difference between the KDE and the asymptotic distribution is very large and this evidence

becomes stronger if k increases. For k = 100 the KDE shifts strongly to the right and is not

shown to retain the same scaling on the x -axis. Table 1 gives the realized sizes (type I errors)

of the considered test based on the 5000 independent replications and with the nominal level

α = 0.05 . For different values of k ∈ {10, 30, 100} , it can be seen that TL is highly inconsistent

and has a much higher size than the nominal value α . We conclude that the test is highly

unreliable if we wish to test many or all weights simultaneously.

6



2.2 Improvement of the test based on Mahalanobis distance for large-

dimensional portfolios

Bodnar, Dette, Parolya and Thorsén (2019) show that the sample estimator of the EU portfolio

weights is not consistent under the high-dimensional asymptotic regime, i.e., when p/n → c ∈
[0, 1) as n → ∞ . Moreover, they derive a consistent estimator for the elements of wEU and

use these findings to construct a high-dimensional asymptotic test on the finite number of linear

combinations of the EU portfolio weights.

Let L be a k × p matrix of constant as defined in Section 2.1 and let

ŵGMV ;L = LŵGMV =
LΣ̂−1n 1p

1′pΣ̂
−1
n 1p

, ŝ = x̄′nQ̂nx̄n

and η̂L =
LQ̂nx̄n

x̄′nQ̂nx̄n
. (12)

Assuming that k is finite, i.e. considerably smaller than both p and n , Bodnar, Dette, Parolya

and Thorsén (2019) prove that

ŵGMV ;L
a.s.→ LwGMV , ŝc = (1− cn)ŝ− cn

a.s.→ s (13)

and η̂L;c =
ŝc + cn
ŝc

η̂L
a.s.→ ηL (14)

for cn = p/n→ c ∈ [0, 1) as n→∞ with

s = µ′Qµ and ηL =
LQµ

µ′Qµ
. (15)

The symbol
a.s.→ denotes the almost surely convergence.

Using (13), Bodnar, Dette, Parolya and Thorsén (2019) propose a high-dimensional asymp-

totic test on the hypotheses (7) with the test statistic given by

TL;c = (n− p) (ŵL;c − r)′ Ω̂−1L;c (ŵL;c − r) , (16)

where

ŵL;c = ŵGMV ;L + γ−1ŝcη̂L;c (17)

and

Ω̂L;c =

((
1− cn
ŝc + cn

+ (ŝc + cn)γ−1
)
γ−1 + V̂c

)
(1− cn)LQ̂nL

>

+ γ−2
{2(1− cn)c3n

(ŝc + cn)2
+ 4(1− cn)cn

ŝc(ŝc + 2cn)

(ŝc + cn)2
+

2(1− cn)c2n(ŝc + cn)2

ŝ2c
− ŝ2c

}
η̂L;cη̂

′
L;c,

(18)

where

V̂c =
V̂GMV

1− cn
with V̂GMV =

1

1′pΣ̂
−1
n 1p

(19)
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are the consistent and the sample estimators of the variance of the GMV portfolio (4), that is

(see, e.g., Bodnar et al. (2018, p.387))

V̂c
a.s.→ VGMV =

1

1′pΣ
−11p

for cn = p/n→ c ∈ [0, 1) as n→∞ .

The application of the results of Theorem 4.4 in Bodnar, Dette, Parolya and Thorsén (2019)

leads to the high-dimensional asymptotic distribution of TL;c under both hypotheses in (7).

Namely, it holds that the asymptotic distribution of TL;c under H1 is well approximated by a

non-central χ2 -distribution with k degrees of freedom and non-centrality parameter given by

λc = (n− p)(wL − r)′Ω−1L;c(wL − r), (20)

where

ΩL;c =

((
1− c
s+ c

+ (s+ c)γ−1
)
γ−1 + VGMV

)
(1− c)LQL>

+ γ−2

2(1− c)c3

(s+ c)2
+ 4(1− c)cs(s+ 2c)

(s+ c)2
+

2(1− c)c2(s+ c)2

s2
− s2

ηLη
′
L.

Moreover, TL;c
d→ χ2

k under H0 , where the symbol
d→ denotes the convergence in distribu-

tion.

In Figure 1 we present the KDE of the distribution of TL;c (blue curve) and compare it to

its high-dimensional asymptotic distribution (red curve). The kernel density estimator as well

as the sizes of the test are obtained under the same simulation setup as one used at the end of

Section 2.1. The approximation works well and much better than in the case of TL for smaller

values of k , but discrepancy becomes large if k increases. The same conclusion can be drawn

from Table 1. Here the method proposed by Bodnar, Dette, Parolya and Thorsén (2019) has a

much better realized size which still increases dramatically with growing k .

c = 0.3

k = 10 k = 30 k = 100

TL 0.528 0.891 1

TL;c 0.061 0.071 0.181

c = 0.8

k = 10 k = 30 k = 100

TL 0.226 0.765 1

TL;c 0.069 0.105 0.221

Table 1: Empirical sizes of the tests based on TL and TL;c using 5 · 103 independent replications.
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Figure 1: The high-dimensional asymptotic χ2 approximation of the densities of TL and TL;c

together with their kernel density estimators for γ = 5 , p = 300 , cn = p/n ∈ {0.3, 0.8} and
k ∈ {10, 30, 100} .

3 Test based on the shrinkage approach

Both tests based on the Mahalanobis distance are designed to test a finite number of linear

restrictions imposed on the EU portfolio weights. Although the high-dimensional test shows a

considerable improvement in terms of the size (see, Figures 1 and Table 1), this test, similarly

to the test based on the statistic TL , cannot be applied to test the structure of the whole EU

portfolio. In practice, one has to fix the number k of the EU portfolio weights (or their linear
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restrictions) and apply the test TL;c several times in order to cover the whole vector wEU .

This approach is a single-step multiple test (see, Dickhaus (2014)) with the number of marginal

hypotheses to be tested equal to [p/k]+1 . Since the dependence structure between the marginal

tests is very complicated, one has to monitor the overall type I error rate by using the so-called

Bonferroni correction (see, Dickhaus (2014)). This would worse the power properties of each

individual test, especially when the number of tests is relatively large.

As a solution to this challenging problem, we suggest a new approach for testing the structure

of the EU portfolio by a single test. The new procedure is based on the shrinkage estimator of

the EU portfolio weights as suggested by Bodnar et al. (2020) and extend our previous results

obtained for the GMV portfolio in Bodnar, Dmytriv, Parolya and Schmid (2019), which is a

very special case of the EU portfolio. In contrast to the EU portfolio, the weights of the GMV

portfolio do not depend on the mean vector. As a result, the derivation of the test for the EU

portfolio becomes a very challenging task and completely new results in random matrix theory

have to be derived to handle it.

3.1 Optimal shrinkage estimator of the EU portfolio weights

The shrinkage estimator for the EU portfolio weights is a convex combination of the sample

estimator and a fixed well behaved target portfolio b ∈ Rp with bounded expected return and

variance, i.e., Rb = b′µ < ∞ and Vb = b′Σ−1b < ∞ uniformly in p . Thus, the shrinkage

estimator is expressed as

ŵGSE = αnŵEU + (1− αn)b with b′1p = 1, (21)

where αn is the shrinkage intensity. One of the main ideas behind the shrinkage estimator (21)

is to reduce the large variability present in the sample estimator ŵEU by shrinking it to a vector

of constants. This approach might introduce a bias in the estimator, but on the other side it

reduces the variability of the sample estimator considerably.

Bodnar et al. (2020) determine the optimal shrinkage intensity α∗n as the solution of the

maximization problem based on the mean-variance objective function. It is given by

α∗n =
(ŵEU − b)′(µ− γΣb)

(ŵEU − b)′Σ(ŵEU − b)
(22)

Since the expression of α∗n depends on both the population mean vector and covariance matrix

and on their sample counterparts, it cannot be directly applied in practice. As such, Bodnar

et al. (2020) propose a two-stage procedure. First, the deterministic quantity α∗ which is

asymptotically equivalent to α∗n is found. Second, it is consistently estimated under the high-

dimensional asymptotic regime.

It holds that (see, Bodnar et al. (2020, Theorem 2.1))

α∗ = γ−1
(RGMV −Rb)

(
1 + 1

1−c

)
+ γ(Vb − VGMV ) + γ−1

1−cs

1
1−cVGMV − 2

(
VGMV + γ−1

1−c(Rb −RGMV )
)

+ γ−2
(

s
(1−c)3 + c

(1−c)3
)

+ Vb
, (23)
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where RGMV =
1′pΣ−1µ

1′pΣ−11p
is the expected return of the GMV portfolio. Following Bodnar et al.

(2020) we assume throughout the paper that uniformly in p the quadratic form 1′Σ−11p is

bounded away from zero and µ′Σ−1µ is bounded from above by some positive constant. These

conditions guarantee among others the boundedness of RGMV , VGMV and s as p → ∞ ,

thus, keeping the limiting expressions coming further well defined asymptotically. Consistent

estimators for the variance of the GMV portfolio VGMV and for the slope parameter of the

efficient frontier s are given in (19) and (13), respectively. Bodnar et al. (2020) show that the

sample estimators of RGMV , Rb , and Vb are consistent, that is

R̂GMV =
1′pΣ̂

−1
n x̄n

1′pΣ̂
−1
n 1p

a.s→ RGMV ,

R̂b = b′x̄n
a.s→ Rb,

V̂b = b′Σ̂nb
a.s→ Vb,

(24)

for p/n→ c ∈ [0, 1) as n→∞ .

Hence, a consistent estimator for α∗ is constructed as

α̂∗c = γ−1
(R̂GMV − R̂b)

(
1 + 1

1−cn

)
+ γ(V̂b − V̂c) + γ−1

1−cn ŝc
1

1−cn V̂c − 2
(
V̂c + γ−1

1−cn (R̂b − R̂GMV )
)

+ γ−2
(

ŝc
(1−cn)3 + cn

(1−cn)3
)

+ V̂b
, (25)

while the bona fide shrinkage estimator for the weights of the EU portfolio are expressed as

ŵBFGSE = α̂∗cŵEU + (1− α̂∗c)b. (26)

Next, we prove that α̂∗c is asymptotically normally distributed. This result will then be used

to derive a test for the structure of the EU portfolio in Section3.2. Let α∗ = A
B

and α̂∗c = Ân

B̂n
.

Then, we get

√
n(α̂∗c − α∗) =

√
n

(
Ân − A
B̂n

− A(B̂n −B)

BB̂n

)

=
1

B̂n

(√
n(Ân − A)− A

B

√
n(B̂n −B)

)

=
d′

B̂n

√
nt + oP (1) (27)

for p/n→ c+ o(n−1/2) as n→∞ with

t =



R̂GMV −RGMV

V̂c − VGMV

ŝc − s
R̂b −Rb

V̂b − Vb


and d =



1 + 1
1−cn

(
1− 2A

B

)
−γ

(
1 + A

B

(
1

1−cn − 2
))

γ−1

1−cn

(
1− 1

(1−cn)2
A
B

)
−1− 1

1−cn

(
1− 2A

B

)
γ
(
1− A

B

)


, (28)

where the symbol oP (1) denotes a sequence which tends almost surely to zero. In Theorem 1

we derive the asymptotic distribution of t .
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Theorem 1 Let x1, . . . ,xn be independent and identically distributed with xi ∼ Np(µ,Σ) for

i = 1, . . . , n with Σ positive definite. Then it holds that

√
nt

d→ N5(0,Ωα) (29)

for p/n→ c ∈ [0, 1) as n→∞ where

Ωα =



VGMV (s+1)
1−c 0 0 VGMV −2VGMV (Rb −RGMV )

0 2
V 2
GMV

1−c 0 0 2V 2
GMV

0 0 2 ((s+1)2+c−1)
1−c 2(Rb −RGMV ) −2(Rb −RGMV )2

VGMV 0 2(Rb −RGMV ) Vb 0

−2VGMV (Rb −RGMV ) 2V 2
GMV −2(Rb −RGMV )2 0 2V 2

b


.

(30)
Since

B̂n
a.s→ B for

p

n
→ c ∈ [0, 1) as n→∞,

the application of Slutsky’s lemma (c.f., DasGupta (2008, Theorem 1.5)) leads to the asymptotic

distribution of α̂∗c as given in Theorem 2.

Theorem 2 Under the assumptions of Theorem 1, it holds that

√
n(α̂∗c − α∗)

d→ N (0, Cα), (31)

for p/n→ c ∈ [0, 1) as n→∞ where

Cα =
1

B2
d′Ωαd . (32)

Finally, using (13), (19), and (24) a consistent estimator for Cα is given by

Ĉα =
1

B̂2
n

d′Ω̂α;cd , (33)

where Ω̂α;c is a consistent estimator for Ωα expressed as

Ω̂α;c =



V̂c(ŝc+1)
1−c 0 0 V̂c −2V̂c(R̂b − R̂GMV )

0 2 V̂ 2
c

1−c 0 0 2V̂ 2
c

0 0 2 ((ŝc+1)2+c−1)
1−c 2(R̂b − R̂GMV ) −2(R̂b − R̂GMV )2

V̂c 0 2(R̂b − R̂GMV ) V̂b 0

−2V̂c(R̂b − R̂GMV ) 2V̂ 2
c −2(R̂b − R̂GMV )2 0 2V̂ 2

b


.

(34)

Remark 1 In the case of the investor who invests into the GMV portfolio ( γ = ∞ ), the

formulas (23) and (25) simplify to

α∗ =
(1− c)(Vb − VGMV )

c+ (1− c)(Vb − VGMV )
and α̂∗c =

(1− c)(V̂b − V̂c)
c+ (1− c)(V̂b − V̂c)

.

12



Moreover, the application of Theorem 1 leads to

√
n(α̂∗c − α∗)→ N

(
0,

2(1− c)c2(Lb + 1)

((1− c)Rb + c)4
((2− c)Lb + c)

)
(35)

for p/n → c ∈ (0, 1) as n → ∞ with Lb = Vb/VGMV − 1 , which coincides with the results

obtained in Theorem 2 of Bodnar, Dmytriv, Parolya and Schmid (2019).

3.2 Test based on a shrinkage estimator

We use the properties of the shrinkage intensity α∗ and of its consistent estimator α̂∗c to derive

an asymptotic test on the structure of the EU portfolio. The testing hypotheses are given by

H0 : wEU = w0 against H1 : wEU 6= w0, (36)

which, in contrast to the hypotheses considered in Section 2, allow to test the structure of

the whole vector of the EU portfolio weights by using a single test avoiding the problem of

multiplicity.

Following Bodnar, Dmytriv, Parolya and Schmid (2019), the idea behind a statistical test

based on the shrinkage approach is the usage w0 as a fixed target portfolio, i.e., to set b = w0

in (21). Since w0 is the EU optimal portfolio under the null hypothesis in (36), its expected

return and variance should satisfy

Rw0 = RGMV + γ−1s and Vw0 = VGMV + γ−2s. (37)

As a result, the numerator in (23) becomes

A(w0) = (RGMV −Rb)
(

1 +
1

1− c

)
+ γ(Vb − VGMV ) +

γ−1

1− c
s

= −γ−1s
(

1 +
1

1− c

)
+ γ−1s+

γ−1

1− c
s = 0,

proving that

α∗ = 0 under H0. (38)

Hence, for testing (36), one can derive a test on the hypotheses

H0 : α∗(w0) = 0 against H1 : α∗(w0) 6= 0, (39)

where the notation α∗(w0) denotes the optimal shrinkage intensity as in (23) computed with

target portfolio w0 . It has to be noted that the hypotheses (36) and (39) are not equiva-

lent. Nevertheless, the rejection of the null hypothesis in (39) ensures the rejection of the null

hypothesis in (36) meaning that w0 is not the EU optimal portfolio.

Let α̂∗c(w0) be the consistent estimator of α∗(w0) as constructed in (25) when the shrinkage

13



target is b = w0 . Then the application of Theorem 2 shows that

α̂∗c(w0)
a.s.→ 0 for

p

n
→ c ∈ [0, 1) as n→∞ ,

when the null hypothesis in (36) is true.

Moreover, since the numerator in the expression of α∗(w0) in (23) under the null hypothesis

in (39) is equal to zero, i.e. A = 0 where A is defined before (27), we get the following stochastic

representation of
√
nα̂∗c(w0) expressed as

√
nα̂∗c(w0) =

1

B̂n

d′0
√
nt with d0 =



1 + 1
1−cn
−γ
γ−1

1−cn
−1− 1

1−cn
γ


(40)

and t is defined in (28). The application of Theorem 1 then leads to the following result

Theorem 3 Assume that the conditions of Theorem 1 are fulfilled. Then, under the null hy-

pothesis in (39), it holds that
√
nα̂∗c(w0)

d→ N (0, Cα;0), (41)

for p/n → c ∈ [0, 1) as n → ∞ with Cα;0 = 1
B2 d

′
0Ωαd0 where Ωα is given in (30) and B is

defined before (27).

Replacing B and Ωα by their consistent estimators B̂2
n and Ω̂α;c , we get a consistent

estimator for Cα;0 expressed as

Ĉα;0 =
1

B̂2
n

d′0Ω̂α;cd0 . (42)

Then for testing hypotheses (39), we obtain the following test statistic

Tα =
√
n
α̂∗c(w0)√
Ĉα;0

=
√
n
α̂∗c(w0)B̂n√
d′0Ω̂α;cd0

, (43)

where α̂∗c(w0) with b = w0 and Ω̂α;c are given in (25) and (34), respectively. Under the null

hypothesis in (39) we get that

Tα
d→ N (0, 1)

for p/n → c ∈ [0, 1) as n → ∞ and, hence, the hypothesis that w0 are the weights of the

EU portfolio is rejected as soon as |Tα| > z1−β/2 where z1−β/2 is the (1 − β/2) quantile of

the standard normal distribution. Under the alternative hypothesis in (39), the distribution of
√
nα̂∗c(w0) can still be well approximated by the normal distribution under the high-dimensional

asymptotic regime and d′0Ω̂α;cd0 provides a consistent estimator of its asymptotic variance. On

the other side, it does not hold that α̂∗c(w0)
a.s.→ 0 and consequently, the test based on Tα can

detect the deviation in the null hypotheses of both (36) and (39).

Remark 2 Using that s = γ(Rw0 − RGMV ) (see (37)) and R̂w0 and R̂GMV are consistent
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estimators of Rw0 and RGMV , respectively (see (24)), another consistent estimator of Ωα

under H0 in (39) is given by

Ω̃α;c =



V̂c(γ(R̂w0−R̂GMV )+1)
1−c 0 0 V̂c −2V̂c(R̂w0 − R̂GMV )

0 2 V̂ 2
c

1−c 0 0 2V̂ 2
c

0 0 2
((γ(R̂w0−R̂GMV )+1)2+c−1)

1−c 2(R̂w0 − R̂GMV ) −2(R̂w0 − R̂GMV )2

V̂c 0 2(R̂w0 − R̂GMV ) V̂w0 0

−2V̂c(R̂w0 − R̂GMV ) 2V̂ 2
c −2(R̂w0 − R̂GMV )2 0 2V̂ 2

w0


.

(44)

Then, the hypotheses in (39) can also be tested by using the following test statistic

T̃α =
√
n
α̂∗c(w0)B̂n√
d′0Ω̃α;cd0

(45)

which is asymptotically standard normally distributed under H0 in (39).

Remark 3 Using the duality between the test theory and confidence interval (see, Aitchison

(1964)), the null hypothesis in (39) and consequently in (36) are rejected at significance level β

as soon as the (1 − β) confidence interval constructed for α∗(w0) does not include zero. This

confidence interval in the case of the test Tα has the boundaries

α̂∗c(w0)±
z1−β/2√

n

√
d′0Ω̂α;cd0

B̂n

, (46)

while for the test based on T̃α we get

α̂∗c(w0)±
z1−β/2√

n

√
d′0Ω̃α;cd0

B̂n

. (47)

To assess the precision of the asymptotic distribution we use a similar setting as in the

last section. In Figure 2 we show the KDEs of the distribution of the test statistics Tα and

T̃α under the null hypothesis together with their high-dimensional asymptotic distribution. The

latter approximates the simulated exact distributions very precisely, although the the fit appears

to be slightly better for Tα . The empirical size on both cases is close to the nominal size of

5% as it is shown in Table 2. Summarizing, we conclude that the high-dimensional asymptotic

distribution provide a good approximation for proposed test statistics for different values of c .

c = 0.3 c = 0.8

Tα 0.048 0.054

T̃α 0.052 0.053

Table 2: Empirical sizes of the two tests based on Tα and T̃α using 5 · 103 replications.
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Figure 2: The high-dimensional asymptotic normal approximation of the densities of Tα and T̃α
together with their kernel density estimators for γ = 5 , p = 300 and cn = p/n ∈ {0.3, 0.8} .

4 Simulation and empirical study

The performance of the derived test is investigated throughout an extensive simulation study.

In particular, we explore the behavior of the test with respect to its power characteristics and

receiver operative characteristic curves. Additionally, we apply the derived inference procedure

to the real data in this section.

4.1 Simulation study

The sample of asset returns x1,x2, . . . ,xn are generated independently from Np(µ,Σ) . To

mimic the bahavior of real data we generate the eigenvalues of population covariance matrix

Σ according to the law λi = 0.1eδc(i−1)/p , i = 1, . . . p (see, Bodnar et al. (2020)) and take its

eigenvectors from the spectral decomposition of the standard Wishart random matrix. Then,

the covariance matrix is given as follows

Σ = ΘΛΘ′, (48)

where Λ is a diagonal matrix of the predefined eigenvalues and Θ is a p× p matrix of eigen-

vectors. By changing the value of δ , we can control the conditional index of the covariance

matrix for different values of c . We set condition index equals to 450. This setting reflects

the parametrisation we observed in the empirical study in the next section. The mean vector is

randomly generated from U (−0.2, 0.2) , which also corresponds to the natural behavior of daily

asset returns.

We assume that the portfolio weights and thus the shrinkage intensity change due to a change

in the mean of asset returns. Under the alternative hypothesis, there is an additive shift to the

mean vector of the asset returns defined as

µ1 = µ+ ε, (49)
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where

ε = −a · (1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
m

),

where a = 0.01κ , κ ∈ {0, 1, 2, . . . , 35} , m = 0.5p . Thus we assume that the expected return

on the assets with high variance decreases.

We conduct the test at the significance level α = 0.05 . We put p = 300 and c ∈ {0.3, 0.8} .

The number of repetitions is 105 and γ = 5 . For the ROC curves we fix a at 0.08 . The results

are illustrated in Figure 3. It can be seen that both tests display an overall consistency and

a good performance in terms of power functions and ROC curves. The behavior is better for

smaller values of c and not substantially worse in case of c = 0.8 . The test based on the test

statistic given in (45) outperforms the test given in (43) and demonstrates a satisfactory power.
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Figure 3: Empirical power functions of the proposed tests as a function of the change a (left) and
ROC curves of two tests for a = 0.08 (right) for different values of c according to the scenario given
in (49) and p = 300 .

4.2 Empirical study

In this section, we apply the derived theoretical results to real data. The objective is to determine

the periods where the shrinkage intensity is significantly different from zero and thus the EU

optimal portfolio is significantly different from the target or the benchmark portfolio b . This
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c=0. 8, p=300, γ=5

Figure 4: Estimated shrinkage intensities for the equally weighted portfolio as the target portfolio
( p = 100 on the right and p = 300 on the left) with 95% pointwise confidence intervals. The black
dots indicate the periods with rejected H0 (1-values) and not rejected H0 (0- values).

study is based on daily return data of all companies listed in the S&P 500 index for the period

from April 1999 to March 2020. We assume that the investor allocates her wealth to portfolios

of size p ∈ {100, 300} with daily reallocation. She selects the first p assets in alphabetic order

from the available data. The sample size n is chosen to attain c ∈ {0.3, 0.5, 0.8} , i.e. n = p/c .

We put γ = 5 which is a common value for the risk aversion coefficient in financial literature.

As the target portfolio we consider the equally weighted portfolio with all weights equal 1/p .

Despite of its simplicity this portfolio appears to show a superior long-run performance and

dominates many more sophisticated trading strategies (see DeMiguel et al. (2009)).

Figure 4 shows the time series of estimated shrinkage intensities together with 95% confidence

intervals as defined in (47). If c = 0.3 , then the shrinkage intensity is close to one indicating
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that the EU portfolio clearly dominates both benchmarks in the convex combination. This is

due to the fact, that the investor has more historical data to estimate the unknown parameters

and the estimation risk is relatively low. If c increases, the sample available for a portfolio of a

fixed size gets smaller and the shrinkage intensity shifts towards zero. The benchmark portfolio

gets higher weight and for c = 0.8 it even becomes dominant. The same reasoning applies if we

analyse the impact of increase in p from 100 to 300. Fixed c and larger p increase the sample

size n and has a stabilizing impact on the shrinkage intensity.

We cannot reject the null hypothesis of the test based on T̃α in (45) that the shrinkage

intensity is zero if the confidence intervals cover the zero value (see Remark 3 above). The

figures reveal that we never opt for H0 if c = 0.3 or 0.5 . Thus for this parameter constellation

the portfolio weights of the EU portfolio are always significantly different from the weights of

the equally weighted portfolio. The situation changes for c = 0.8 where we do have periods

with not rejected H0 in (39). Similar behavior is observed for p = 300 too, however, here the

intensities and their variances are more stable leading to less periods with not rejected H0 .
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Figure 5: Components of the estimated shrinkage intensity given in (25) using equally weighted target
for c = 0.8 , p = 300 and γ = 5 .

Recall that a non-rejection of H0 in (39) does not guarantee that the weights of the EU

portfolio coincide with the weights of the target portfolio. To elaborate on the difference between

the two portfolios and to get more economic insight into the dynamics of the intensities we

consider Figure 5. Here we plot the difference between the means and variances of the GMV

and the equally weighted benchmark. These quantities determine the behavior of the empirical
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shrinkage intensity in (23). On the one hand, we observe in Figure 4 that the shrinkage intensity

increases during a crisis period, e.g. 2002-2003 and 2008-2010. This seems to be surprising

since the volatility of returns is high in this period and the equally weighted portfolio is believed

to reduce the risk. However, Figure 5 shows that the variance of the benchmark portfolio is

much higher (i.e. V̂b > V̂c ) and its return is much lower (i.e. R̂b < R̂GMV ) compared to the

GMV portfolio in the crisis period leading to a higher relative precision and efficiency of the EU

portfolio. On another hand, the mean returns and the variances are almost indistinguishable in

calm periods leading to shrinkage intensities closer to zero and even insignificant for larger c ’s.

Thus we conclude that non-rejecting H0 is driven by high similarity between the mean and the

variance of the target and GMV portfolios.

5 Summary

This paper is dedicated to portfolio selection problems driven by high-dimensional financial

data sets. In particular, we deal with optimal asset allocation in a high-dimensional asymptotic

regime, namely when the number of assets and the sample size tend to infinity at the same

rate. Due to the curse of dimensionality in the parameter estimation process, asset allocation

for such portfolios becomes a challenging task. Using the techniques from the theory of random

matrices, new inferential procedures based on the optimal shrinkage intensity for testing the

efficiency of the high-dimensional EU portfolio are developed and the asymptotic distributions

of the proposed test statistics are derived. In extensive simulations, we show that the suggested

tests have excellent performance characteristics for various values of c . The practical advantage

of the proposed procedures are demonstrated in en empirical study based on stocks included

into the S&P 500 index.
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6 Appendix

In this section the proofs of the theoretical results are given. The proof of Theorem 1 is based

on Lemmas 1-2.

Lemma 1 Let z1 , ..., zn be an independent sample from the p -dimensional standard normal

distribution and let

Sn =
1

n− 1

n∑
j=1

(zj − z̄)(zj − z̄)′ (50)

be the corresponding sample covariance matrix. Let m1 , m2 , and m3 be the p -dimensional

vector of constants with the Euclidean norms equal to one. Then

√
n


m′1Snm1 − 1

m′2S
−1
n m2 − 1

1−cn
m′2S

−1
n m3 − 1

1−cn m′2m3

m′3S
−1
n m3 − 1

1−cn


d→ N4

(
0,

2

c
Θ(m1,m2,m3) ◦Λ

)
, (51)
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with

Θ(m1,m2,m3) =


1 lim

n→∞
(m′1m2)

2 lim
n→∞

(m′1m2)(m
′
1m3) lim

n→∞
(m′1m3)

2

lim
n→∞

(m′1m2)
2 1 lim

n→∞
(m′2m3) lim

n→∞
(m′2m3)

2

lim
n→∞

(m′1m2)(m
′
1m3) lim

n→∞
(m′2m3) 0.5 + 0.5 lim

n→∞
(m′2m3)

2 lim
n→∞

(m′2m3)

lim
n→∞

(m′1m3)
2 lim

n→∞
(m′2m3)

2 lim
n→∞

(m′2m3) 1


(52)

and

Λ =


c − c

1−c −
c

1−c −
c

1−c
− c

1−c
c

(1−c)3
c

(1−c)3
c

(1−c)3

− c
1−c

c
(1−c)3

c
(1−c)3

c
(1−c)3

− c
1−c

c
(1−c)3

c
(1−c)3

c
(1−c)3

 , (53)

where the symbol ◦ denotes the Hadamard (elementwise) product of matrices.

Proof of Lemma 1: Since (n−1)Sn has a p -dimensional Wishart distribution with the identity

covariance matrix, we get that there exists a p×(n−1) matrix Z̃ whose entries are independent

and standard normally distributed such that (n − 1)Sn = Z̃Z̃′ . The application of Theorem 2

in Bai et al. (2011) leads to (51) with Θ as in (52) and Λ given by

Λ =


λ1 λ2 λ2 λ2

λ2 λ3 λ3 λ3

λ2 λ3 λ3 λ3

λ2 λ3 λ3 λ3


with

λ1 =
∫ a+

a−
z2dFc(z)−

(∫ a+

a−
zdFc(z)

)2

,

λ2 = 1−
∫ a+

a−
zdFc(z)

∫ a+

a−

1

z
dFc(z),

λ3 =
∫ a+

a−

1

z2
dFc(z)−

(∫ a+

a−

1

z
dFc(z)

)2

where the function Fc(z) denotes the cumulative distribution function of the Marchenko-Pastur

law (see, Bai and Silverstein (2010)) for c < 1 expressed as

dFc(z) =
1

2πzc

√
(a+ − z)(z − a−)1[a−,a+](z)dz,

where a± = (1±
√
c)2 . The moments of Fc(z) present in Λ can be found in Glombeck (2014,

Lemma 14). This completes the proof of the lemma. 2
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Lemma 2 Under the conditions of Theorem 1 it holds that

√
nh =

√
n



1′pΣ̂
−1
n x̄n − 1

1−cn1
′
pΣ
−1µ

1′pΣ̂
−1
n 1p − 1

1−cn1
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pΣ
−11p

x̄′nΣ̂
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n x̄n − 1

1−cnµ
′Σ−1µ− cn

1−cn
b′x̄n − b′µ

b′Σ̂nb− b′Σb


d→ N5 (0,Ξ) (54)

for cn = p/n→ c ∈ [0, 1) as n→∞ with

Ξ =



1
(1−c)3

1
VGMV

(
s∗ +

R2
GMV

VGMV
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2
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V 2
GMV

2
(1−c)3

RGMV s
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VGMV
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V 2
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2
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VGMV

2
(1−c)3

R2
GMV

V 2
GMV

2
(1−c)3 ((s∗)2 + c− 1) 2Rb
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2
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1
1−c 0 2Rb

1−c Vb 0

− 2
1−cRb − 2

1−c − 2
1−cR

2
b 0 2V 2

b


, (55)

where s∗ = s+
R2
GMV

VGMV

+ 1 .

Proof of Lemma 2: Let a′ = (a1, a2, a3, a4, a5) be an arbitrary vector of constants. Next, we

show that
√
na′h

d→ N (0, a′Ξa) , which will prove the statement of the lemma.

Since x1, ...,xn are independent and identically distributed with xi ∼ Np(µ,Σ) , we get that

xi = µ + Σzi where z1, ..., zn are independent standard normally distributed and Σ1/2 is the

symmetric square root of Σ . Moreover, it holds that

x̄n = µ+ Σz̄n and Σ̂n = Σ1/2SnΣ
1/2,

where

z̄n =
1

n

n∑
i=1

zi and Sn =
1

n− 1

n∑
i=1

(zi − z̄n)(zi − z̄n)′.

To this end, we have that z̄n and Sn are independent with
√
nz̄n standard normally distributed

and (n− 1)Sn standard Wishart distributed.

Let ν = Σ−1/2µ . We get

√
na′h = H1(z̄n,Sn) +H2(z̄n),
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with

H1(z̄n,Sn) = a1
√

1′pΣ
−11p
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√
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−1
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′Σb
√
n

(
b′Σ̂nb
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)
= d′1(z̄n)

√
nh1(z̄n,Sn)

and

H2(z̄n) = a1
1

1− cn
√
n
(
1′pΣ

−1x̄n − 1′pΣ
−1µ

)
+ a3

1

1− cn
√
n
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x̄′nΣ

−1x̄n − µ′Σ−1µ− cn
)
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√
n(b′x̄n − b′µ)
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√
n
(
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)

with
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a3

(
a3
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a1
2(1− cn)
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a4
2

Σ1/2b

)
,

and

h1(z̄n,Sn) =



b′Σ1/2SnΣ1/2b
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− 1
1′pΣ−1/2S−1

n Σ−1/21p

1′pΣ−11p
− 1

1−cn
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n (ν+z̄n)√
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1′pΣ−11p
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−1
n (ν+z̄n)

(ν+z̄n)′(ν+z̄n)
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1−cn

 .

Since Sn and z̄n are independent the conditional distribution of H1(z̄n,Sn) given z̄n = v

coincides with H1(v,Sn) . Furthermore, the application of Lemma 1 to
√
nh1(v,Sn) proves that

it is asymptotically normally distributed and, thus, the asymptotic stochastic representation of

H1(z̄n,Sn) is given by

H1(z̄nv,Sn)
d
=

√
2

c

√√√√√d′1

Θ

 Σ1/2b√
b′Σb

,
Σ−1/21p√
1′pΣ

−11p
,

(ν + z̄n)√
(ν + z̄n)′(ν + z̄n)

 ◦Λ

d1ω1, (56)

where ω1
d→ N (0, 1) and is independent of z̄n and hence of H2(z̄n) . Finally, we have
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that n (z̄n + d2)
′ (z̄n + d2) has a non-central χ2 distribution with p degrees of freedom and

noncentrality parameter nd′2d2 . The application of Bodnar and Reiß (2016) leads to

√
p

(
n (z̄n + d2)

′ (z̄n + d2)

p
− nd′2d2

p
− 1

)
d→ N

(
0, 2 + 4

d′2d2

c

)

and, consequently,

H2(z̄n)
d
=

√
cn

1− cn
a3

√
2 + 4

d′2d2

cn
ω2. (57)

where ω2
d→ N (0, 1) .

Using that ν ′z̄n
a.s.→ 0 and z̄′nz̄n

a.s.→ c , the application of Slutsky’s lemma (c.f., DasGupta

(2008, Theorem 1.5)) leads to
√
na′h

d→ N (0, a′Ξa)

for p/n → c + o(n−1/2) as n → ∞ where Ξ is given in (55). Since a is an arbitrary vector,

the statement of Lemma 2 is proved. 2

Proof of Theorem 1: It holds that
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Hence,
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with h is defined in (54) and

D =



(1− cn)V̂c −(1− cn)V̂cRGMV 0 0 0

0 −(1− cn)V̂cVGMV 0 0 0

(1− cn)V̂c
(
RGMV

VGMV
− R̂GMV

V̂c

)
(1− cn)V̂c

R2
GMV

VGMV
(1− cn) 0 0

0 0 0 1 0

0 0 0 0 1



The application of R̂GMV
a.s.→ RGMV and V̂c

a.s.→ VGMV for p/n→ c ∈ [0, 1) as n→∞ , the

results of Lemma 2, and Slutsky’s lemma (c.f., DasGupta (2008, Theorem 1.5)) completes the

proof of the theorem. 2
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