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Epidemics on networks with preventive rewiring

Frank Ball1 and Tom Britton2

August 13, 2020

Abstract

A stochastic SIR (susceptible → infective → recovered) epidemic model defined on
a social network is analysed. The underlying social network is described by an Erdős-
Rényi random graph but, during the course of the epidemic, susceptible individuals
connected to infectious neighbours may drop or rewire such connections. Large pop-
ulation limits of the model are derived giving both convergence results for the early
branching process-like behaviour, and, assuming a major outbreak, the main phase of
the epidemic process which converges to a deterministic model that is equivalent to
a certain pair approximation model. Law of large numbers results are also obtained
for the final size (i.e. total number of individuals infected) of a major outbreak. Two
results stand out (valid for a range of parameter set-ups): (i) the limiting final fraction
infected may be discontinuous in the infection rate λ at its threshold λc (thus making
a discrete jump from 0 to a strictly positive number) and (ii) for the situation when
rewiring is necessarily to uninfected individuals, if it is discontinuous, the limiting final
fraction infected jumps from 0 to 1 as λ passes through λc.

1 Introduction

Traditional mathematical models for the spread of an infectious disease assume that indi-
viduals behave the same way all through the epidemic outbreak, and that no interventions
are put in place during the outbreak. More recently models have been studied that include
various public health preventive measures put in place during the outbreak, thus reducing
spreading (e.g. [Ferguson et al.(2006)]). Usually such measures are easy to incorporate into
a model, however the resulting model is often not susceptible to mathematical analysis and
the effects of measures are qualitatively understood and quantitatively obtained through
large simulations studies (e.g. [Chinazzi et al.(2020)]).

A different type of preventive measure is those performed by separate individuals. For
example, it is well known for diseases like HIV, Ebola and Covid-19 that individuals at
risk also, individually, increase their preventive behaviour once they become aware of an
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ongoing epidemic outbreak. Recently, mathematical models containing such individual
preventive measures have been defined and studied numerically (e.g. [Funk et al.(2010)]).
These individually-based preventive measures, triggered by an ongoing epidemic, are however
harder to analyse and few analytical results are available for epidemic models incorporating
such adaptive dynamics.

In the current paper we continue the study of one such SIR (susceptible → infective →
recovered) epidemic model, where transmission occurs along links of an underlying social
network, and in which uninfected individuals that are connected to infectious individuals
may choose to drop or rewire connections to infectious neighbors in order to avoid getting
infected. [Leung et al.(2018)] study such a model and prove that for some (but not all!)
networks and parameter set-ups, the model with preventive rewiring may actually give a
larger epidemic outbreak than the corresponding network and parameter set-up but without
rewiring. The surprising conclusion is hence that such preventive rewiring at the individual
level reduces the risk for an individual to get infected, but if collectively performed it may
increase the final epidemic size.

Durrett and co-workers ([Jiang et al.(2019)]) study the same model for the special case
where the underlying social network is an Erdős-Rényi network (i.e. one in which between
any two distinct individuals an edge is present independently with a fixed probability) and
conjecture, by means of a convincing simulation study, that the final epidemic size may be
discontinuous at criticality. By this we mean that, fixing the Erdős-Rényi network model and
all other model parameters apart from the transmission rate λ, the limiting final epidemic
outbreak size τ(λ) (more specifically, the fraction of the population infected by an epidemic
initiated by one infective, given the occurrence of a major outbreak, i.e. one that takes off
and becomes established) satisfies

τ(λ)

{
= 0 if λ ≤ λc,

≥ a if λ > λc,
(1.1)

λc being the value for which the basic reproduction number R0 = 1, and a being a strictly
positive constant. In [Jiang et al.(2019)] the authors provide details of various approxima-
tions to the epidemic model with rewiring (none of which displayed the discontinuity) in the
hope that someone can find an accurate approximation that explains the reason for discon-
tinuous phase transition at λ = λc. The main achievement of the present paper is to provide
such a deterministic approximation, together with an associated law of large numbers for
the temporal trajectory of the stochastic epidemic as the population size n → ∞. We give
almost identical necessary and sufficient conditions for the final size of this deterministic
model to display the discontinuity (1). For the stochastic model, we prove conditions under
which the final size of a major outbreak satisfies (1) in the limit as n → ∞ and conditions
under which it does not satisfy (1).

Our deterministic approximation is derived from a novel construction of the stochastic
epidemic with rewiring, in which the Erdős-Rényi network and epidemic are constructed
simultaneously. A key observation underlying this construction is that owing to symmetries
in the Erdős-Rényi network and the rewiring process it is sufficient to keep track of just the
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number (and not the end points) of susceptible-susceptible rewired edges. The construction
yields an infinite-dimensional continuous-time Markov chain. However the epidemic dy-
namics are encapsulated by the four-dimensional process which records the evolution of the
numbers of susceptibles, infectives, infective-susceptible edges and susceptible-susceptible
rewired edges with time. We prove weak law of large numbers convergence of this four-
dimensional process to the above-mentioned deterministic approximation using a theorem
in [Darling and Norris(2008)].

The construction yields a process whose law is very close to but not exactly the same
as that of the original model. However, the difference is very small and we prove that
convergence in probability results transfer from the constructed to the original process. The
approximating deterministic model is equivalent to the pair-approximation model of the
epidemic, so the above law of large numbers provides a rigorous justification of the pair-
approximation model.

A common approach to analysing the final size of an SIR epidemic is via a suitable ran-
dom time-scale transformation which leaves the final size unchanged. For the present model
this yields a deterministic limiting process that is not Lipschitz in the vicinity of disease-free
states, which means that results concerning convergence of terminal values, in for exam-
ple [Darling and Norris(2008)], cannot be applied. This explains why only partial results,
derived by considering appropriate bounding processes, are proved concerning discontinuity
of the final size of the stochastic model. For the special case of the SI model, in which there
is no recovery from infection so infectious individuals remain so forever, this difficulty dis-
appears. Moreover, for the SI model, the deterministic limiting process can be analysed to
yield an explicit non-linear equation for the final size τ , which enables us to prove a necessary
and sufficient condition for there to be a discontinuity at the threshold λ = λc.

In the above models, when a susceptible individual rewires an edge from an infective
neighbour it is to an individual chosen uniformly at random from all the other n − 2 in-
dividuals in the population. We analyse also an alternative model in which such rewiring
is to an individual chosen uniformly at random from all other susceptible individuals. This
model also does not suffer from the Lipschitz problem and a full rigorous analysis of the
stochastic model is available. In particular, a necessary and sufficient condition for the (in
probability) limiting final size of a major outbreak τ(λ) to have a discontinuity at λc) is
proved. Moreover, when it exists, the discontinuity at λc is more striking in that

τ(λ)

⎧
⎪⎨

⎪⎩

= 0 if λ ≤ λc,

= 1 if λc < λ ≤ ω − γ,

∈ (0, 1) if λ > ω − γ,

(1.2)

where ω and γ are the rewiring and recovery rates, respectively. (A necessary but not
sufficient condition for τ(λ) to be discontinuous at λc is ω > γ.) Thus the fraction of the
population infected by a major outbreak jumps from 0 to 1 when λ passes through the
threshold λc. When λ is very large susceptibles become infected before they can rewire away
from neighbouring infectives and in the limit n → ∞ an epidemic that takes off infects all
members of the giant component of the underlying Erdős-Rényi network.
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While we were completing our research, Durrett and another co-worker ([Yao and Durrett(2020)])
published a second paper concerned with epidemics with rewiring on random graphs gener-
ated by the configuration model, in which conditions (that are almost complementary) for
the final size of the SIR epidemic to have and not have a discontinuity at λc are proved. They
also prove similar results for the SI model. When the degree distribution in the configuration
model graph is chosen to be Poisson, the conditions in [Yao and Durrett(2020)] for τ(λ) to
have a discontinuity at λc coincide with those we give for epidemics on an Erdős-Rényi net-
work but (at least for the SI model) the function τ(λ) in [Yao and Durrett(2020)] is different
from ours. In our work an explicit equation satisfied by τ(λ) is not available for the SIR
model. As we discuss later, the results in [Yao and Durrett(2020)] are obtained by analysing
a construction of the network and epidemic which we believe is not probabilistically equiva-
lent to the original model, and which yields an incorrect deterministic limit as n → ∞ (even
if numerically quite close).

The remainder of the paper is organised as follows. The main SIR model with rewiring
is described in Section 2.1. It is slightly more general than that indicated above in that
susceptible individuals may also drop edges to infective neighbours. The main results of the
paper are given in Section 2.2. The SIR model is treated in Section 2.2.1, where theorems
concerning branching process approximation of the early stages of an epidemic with one
initial infective (Theorem 2.1) and a weak law of large numbers for the temporal behaviour
of an epidemic in which a strictly positive fraction of the population are initially infective
(Theorem 2.2) are stated. A weak law of large numbers for the final size of a major outbreak
is conjectured (Conjecture 2.1). Theorems giving conditions for the final size of the approx-
imating deterministic model and stochastic model to have a discontinuity at the threshold
λc are stated (Theorems 2.3 and 2.4, respectively).

The SI model is treated in Section 2.2.2. A weak law of large numbers for the final size
of a major outbreak is given in Theorem 2.5 and a necessary and sufficient condition for
the final size τ(λ) to have a discontinuity at λc is presented in Theorem 2.6. Note that a
major outbreak is not guaranteed even though infected individuals remain so forever, as the
initial infective may not belong to the giant component of the original network, and even if
it does, susceptibles can rewire their connections away from infected neighbours. A detailed
analysis of the final size of a major outbreak is given in Corollary 2.1. The SIR model in
which rewiring is necessarily to susceptibles is treated in Section 2.2.3. Weak laws of large
numbers for the temporal behaviour of an epidemic with a positive fraction initially infected
and for the final size of a major outbreak for an epidemic with one initial infective are given
in Theorems 2.7 and 2.8, respectively. The latter includes the behaviour described by (1.2).
Two other rewiring models are treated briefly in Section 2.2.4. Throughout Section 2.2
results are illustrated by simulations and numerical studies.

The construction of the epidemic model which underpins its analysis is described in
Section 2.3. The approximating deterministic model is shown to be equivalent to a pair-
approximation model of the epidemic in Section 3. A comparison of our results with those
in [Yao and Durrett(2020)] is given in Section 4, where a numerical study shows that the
corresponding asymptotic final sizes differ and a simulation study gives very strong support
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to the correctness of our asymptotic final size. A heuristic derivation of the final size of
the SI model is given in Section 5. The proofs are given in Section 6 and some very brief
concluding comments are given in Section 7.

2 The model, results and construction

2.1 The network epidemic model with social distancing

Consider a community of size n socially structured by the Erdös-Renyi random graph
G(n, µ/n), i.e. where there is an edge, independently, between each pair of individuals with
probability µ/n.

Given the social graph/network a Markovian SIR epidemic process is defined as follows.
The epidemic starts by one or more individuals, selected uniformly at random from the pop-
ulation, being infectious and the rest being susceptible. During the course of the epidemic,
each infectious individual infects each susceptible neighbour at rate λ (i.e. at the points of
independent Poisson processes each having rate λ, and each infectious individual recovers
(and becomes immune) at rate γ (implying that the duration of the infectious period follows
an exponential distribution having mean γ−1). The preventive feature of the model is that
each susceptible individual rewires or drops its edges to any infectious neighbour indepen-
dently at rate ω for each edge. More precisely, the susceptible individual rewires such an
edge with probability α, otherwise the susceptible individual drops the edge. When a sus-
ceptible rewires an edge, the rewiring is to an individual chosen uniformly at random from
the other n− 2 individuals in the population. (In Section 2.2.3 we treat also the case where
the rewiring is necessarily to a susceptible individual, and in Section 2.2.4 we outline the
case where the rewiring is to anyone except those currently infectious.) All events described
above are defined to occur mutually independently. The epidemic stops when there is no
infective individual remaining in the population.

The parameters of the model are hence: µ: the mean degree of the underlying graph,
λ the transmission rate, γ: the recovery rate, ω: the rewiring/dropping rate, and α: the
probability of rewiring (rather than dropping).

Throughout the paper we assume implicitly that ω > 0, unless explicitly stated otherwise.
If ω = 0 the model reduces to an SIR epidemic on an Erdős-Rényi random graph having
known large-n behaviour ([Andersson and Britton(2000)] and [Neal(2003)]).

2.2 Results

2.2.1 SIR model

We first introduce some notation, the precise meaning of which is made clear when we
describe our construction of the epidemic model in Section 2.3. LetX(n) = {X(n)(t) : t ≥ 0},
where X(n)(t) = (S(n)(t), I(n)(t), I(n)E (t),W (n)(t)) and S(n)(t), I(n)(t), I(n)E (t) and W (n)(t)
are respectively the numbers of susceptibles, infectives, infectious (i.e. infective-susceptible)
edges and susceptible-susceptible rewired edges at time t.
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Our first result concerns the initial phase of an epidemic starting with one initial infective,
which we approximate by a branching process. Let B be a continuous-time branching process,
with one ancestor, in which the lifetime of an individual follows an exponential distribution
with mean γ−1. At birth an individual is assigned Po(µ) infectious edges, where Po(µ)
denotes a Poisson random variable with mean µ. An individual drops each of its infectious
edges independently at rate ω and infects down them independently at rate λ. When an
individual infects down an infectious edge a new individual is born and the edge is dropped.
When an individual dies all of its remaining infectious edges are dropped. For t ≥ 0, let
I(t), IE(t) and T (t) be respectively the number of individuals, number of infectious edges
and the total progeny (including the initial ancestors) in B at time t. For n = 1, 2, . . . , let
tn = inf{t ≥ 0 : T (t) ≥ log n}, where tn = ∞ if T (t) < log n for all t ≥ 0. Let E (n) be the
epidemic described in Section 2.1, assuming a single initial infective. Let T (n)(t) = n−S(n)(t)
be the total number of infections in E (n) during [0, t].

Theorem 2.1 There exists a probability space (Ω,F ,P) on which are defined realisations of
E (n) (n = 1, 2, . . . ) and B satisfying

sup
0≤t≤tn

∣∣∣
(
I(n)(t), I(n)E (t), T (n)(t)

)
− (I(t), IE(t), T (t))

∣∣∣ p−→ 0 as n → ∞.

Let

R0 =
µλ

λ+ ω + γ
(2.1)

be the offspring mean of B. The quantity R0 is known as the basic reproduction number for
the epidemic E (n). We say that a major outbreak occurs in E (n) if at least log n individuals
are infected. It follows from Theorem 2.1 that as n → ∞ the probability of a major outbreak
converges to the probability that B does not go extinct. Thus with high probability a major
outbreak is possible if and only if R0 > 1. (An event, An say, is said to hold with high
probability if P(An) → 1 as n → ∞.) In particular, if all parameters other than λ are held
fixed, with high probability a major outbreak is possible if and only if λ > λc, where

λc =
γ + ω

µ− 1
. (2.2)

Let T (n) = n − S(n)(∞) be the final size of the epidemic E (n), i.e. the total number of
individuals infected during the epidemic, and T̄ (n) = n−1T (n) be the fraction of the pop-
ulation that become infected. The above criticality of λc and the following lemma follow
from [Jiang et al.(2019)], Theorem 2, though the proof there is quite different from the cur-
rent proof, given in Section 6.1.

Lemma 2.1 Suppose that R0 > 1. Then there exists τ ′ = τ ′(µ,λ, γ,ω) > 0 such that

lim
n→∞

P(T̄ (n) ≥ τ ′|T (n) ≥ log n) = 1.
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Remark 2.1 Note that λc and τ ′ are independent of the value of α. It is clear that the model
with α = 0, so there is dropping but no rewiring of edges, provides a lower bound for any
corresponding model with α > 0. For the model with α = 0, the epidemic and random graph
can be constructed simultaneously on a generation basis using an obvious extension of the
construction in [Neal(2003)] to yield a process that can be represented as a randomised Reed-
Frost process ([Martin-Löf(1986)]). The central limit theorem in [Martin-Löf(1986)] then
yields a central limit theorem for the final size of a major outbreak. We omit the details.

Our next result is concerned with the deterministic approximation of the main body of
an epidemic started with many initial infects. For t ≥ 0, let x(t) = (s(t), i(t), iE(t), w(t)) be
the solution of the system of ordinary differential equations

ds

dt
= −λiE, (2.3)

di

dt
= −γi+ λiE (2.4)

diE
dt

= −λiE − γiE + λµiEs− λ
i2E
s

+ 2λiE
w

s
− ωiE(1− α + α(1− i)), (2.5)

dw

dt
= ωαiEs− 2λiE

w

s
, (2.6)

having initial condition x(0) = (s(0), i(0), iE(0), w(0)). (The vector x(t) is not in bold to
help link with the theory in [Darling and Norris(2008)], where x(t) has a separate meaning,

that is used in the proofs.) Let X̄
(n)

(t) = n−1X(n)(t).

Theorem 2.2 Suppose X̄
(n)

(0)
p−→ x(0) as n → ∞, where i(0) > 0 and iE(0) > 0. Then,

for any t0 > 0,

sup
0≤t≤t0

∣∣∣̄X(n)
(t)− x(t)

∣∣∣ p−→ 0 as n → ∞.

Remark 2.2 We show in Section 3 that (2.3)-(2.6) are equivalent to the pair-approximation
model of the epidemic, so Theorem 2.2 provides a rigorous justification of the pair-approximation
model of the epidemic E (n) when a positive fraction of individuals are initially infective;
cf. [Altmann (1998)] and [Jacobsen et al.(2018)] who prove similar weak law of large num-
bers for other dynamic network epidemic models.

Theorem 2.2 is illustrated in Figure 1, which is based on simulations of epidemics with
λ = 1.5, γ = 1, ω = 4 and α = 1 (so no dropping of edges) on networks with µ = 5. For
each of n = 1, 000 and n = 5, 000, a realisation of the Erdös-Renyi random graph G(n, µ/n)
was simulated and then an epidemic, in which initially 1% of the population were infected
and the remaining 99% susceptible, was simulated on that graph, with the whole process
being repeated 100 times. The trajectories of the fraction of the population infected in
the 100 simulations are shown, together with the trajectory of their mean (dashed curve)
and the deterministic fraction i(t) (solid curve). When n = 1, 000, there are only 10 initial
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Figure 1: 100 simulated realisations of trajectories of fraction infected in SIR epidemics in
populations of size n = 1, 000 and n = 5, 000 with 1% initially infective, when µ = 5, λ = 1.5,
γ = 1, ω = 4 and α = 1. Also shown is the deterministic fraction i(t) (solid curve) and the
mean of the stochastic trajectories (dashed curve). See text for details.

infectives. Consequently a few of the epidemics failed to take off and for those that took
off there was noticeable variation in the time of the peak of the process of infectives. Both
of these phenomena have the effect of reducing the mean trajectory and can be explained
by considering the branching process B which approximates the early stages of an epidemic.
See [Barbour and Reinert(2013)] for a formal proof of the latter phenomenon for a range
of epidemic models. When n = 5, 000, there are 50 initial infectives, all 100 simulated
epidemics took off and there was appreciably less variation in the time of the peak. The
initial conditions are now closer to those of Theorem 2.2 and the deterministic model provides
a good approximation to the corresponding stochastic model.

We now consider the final outcome of an epidemic. Recall that T (n) = n − S(n)(∞) is
the final size of the epidemic and let T̄ (n) = n−1T (n) be the fraction of the population that
become infected.

Conjecture 2.1 (a) Suppose X̄
(n)

(0)
p−→ x(0) as n → ∞, where i(0) > 0 and iE(0) > 0.

Then
T̄ (n) p−→ 1− x(∞) as n → ∞.

(b) Suppose that R0 > 1 and for each n the epidemic is started by 1 infective, with the
rest of the population susceptible. For ϵ ∈ (0, 1), let xϵ(t) = (sϵ(t), iϵ(t), iϵE(t), w

ϵ(t))
be the solution of (2.3)-(2.6) with xϵ(0) = (1 − ϵ, ϵ, L−1ϵ, 0), where L = λ

λ(µ−1)−ω , and

τ = 1− limϵ↓0 sϵ(∞). Then, conditional upon a major outbreak,

T̄ (n) p−→ τ as n → ∞.
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Remark 2.3 We present arguments in support of Conjecture 2.1 in Section 6.5, although
we do not have a complete proof. The usual approach to proving limit theorems for the final
size of an SIR epidemic models is via a random time-scale transformation (see the start of
Section 6.3). This leads to a deterministic model in which the right-hand sides of (2.3)-(2.6)
are divided by λiE (see (6.41)-(6.43) in Section 6.5.1). Note that the vector field corre-
sponding to the time-transformed deterministic model is not Lipschitz in the neighbourhood
of (i, iE) = (0, 0) owing to the term i/iE in the transformed version of (2.4), so standard
results for the approximation of Markov chains by differential equations cannot be applied.
Note that for the SI epidemic (i.e. when γ = 0), i(t) = 1 − s(t) for all t ≥ 0. The time-
transformed differential equations for (s, iE, w) form a closed system that is Lipschitz, so the
above difficulty disappears and rigorous results are readily available.

Write τ in Conjecture 2.1(b) as τSIR(µ,λ, γ,ω,α) to show explicitly its dependence on
the parameters of the epidemic and let τSIR(µ,λ, γ,ω,α) = 0 if R0 ≤ 1. Our next result
gives a sufficient (and almost necessary) condition for τSIR(µ,λ, γ,ω,α) to be discontinuous
at λ = λc when all other parameters are held fixed.

Theorem 2.3

lim
λ↓λc

τSIR(µ,λ, γ,ω,α)

{
= 0 if γ > ω(2α− 1) or µ < 2ωα

ω(2α−1)−γ ,

> 0 if γ < ω(2α− 1) and µ > 2ωα
ω(2α−1)−γ .

Theorem 2.3 would immediately yield rigorous results concerning a discontinuity at λ =
λc for the final size of stochastic epidemics that take off if Conjecture 2.1(b) is true. By
considering suitable bounding processes we can however obtain conditions, together with a
proof, under which the final size of an epidemic started with a single infective that take off
is discontinuous at the threshold and other conditions when it is continuous at the threshold
λ = λc. Our main result is that the final size may be discontinuous at the threshold λ = λc.

Theorem 2.4 Suppose that for each n the epidemic is started by 1 infective, with the rest
of the population susceptible.

(a) Suppose that ω(2α−1) > γ and µ > 2ωα
ω(2α−1)−γ . Then there exists τ0 = τ0(µ,λ,ω,α) > 0

such that, conditional upon a major outbreak,

lim
λ↓λc

lim
n→∞

P(T̄ (n) > τ0) = 1.

(b) Suppose that ω(3α−1) ≤ γ or µ ≤ 3ωα
ω(3α−1)−γ . Then, conditional upon a major outbreak,

for all c > 0,
lim
λ↓λc

lim
n→∞

P(T̄ (n) < c) = 1.
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Figure 2: 1,000 simulations of final size of SIR epidemic when n = 10, 000, µ = 5, γ = 1,α = 1
and varying λ; ω = 3

2 in the left panel and ω = 4 in the right panel. See text for details.

Remark 2.4 Theorem 2.4 is not fully satisfactory as there is a gap between the conditions
in parts (a) and (b). Note that Conjecture 2.1(b) and Theorem 2.3 imply the conjecture that
the condition in Theorem 2.4(b) can be replaced by

ω(2α− 1) < γ or µ <
2ωα

ω(2α− 1)− γ
. (2.7)

See Section 6.5 for further evidence in support of this conjecture is provided, which suggests
also that the strict inequalities in (2.7) can be replaced by weak inequalities.

Figure 2, which is inspired by Figure 4 of [Jiang et al.(2019)], shows the results of simu-
lations of the final outcome of the SIR epidemic with rewiring. In each of the two plots the
final size (expressed as a fraction of the population) of 1, 000 epidemics in a population of size
n = 10, 000, with values of λ equally spaced in [0, 2], γ = 1, α = 1 (so there is no dropping
of edges) and ω = 3

2 (left panel) and ω = 4 (right panel). Each simulation was initiated by 5
infectives, chosen uniformly at random from the population, with the rest of the population
being susceptible. The value of ω in the right panel is that used in [Jiang et al.(2019)], Fig-
ure 4, for which Theorem 2.4(a) indicates that the final size is discontinuous at the threshold
λ = λc. The value of ω in the left panel is chosen so that our conjecture predicts the final
size is continuous at λ = λc. The solid curves in the two panels show the limiting fraction
infected predicted by Conjecture 2.1(b); they are calculated numerically solving the differen-
tial equation for xϵ(t) with ϵ = 10−10 and deeming the deterministic epidemic finished when
iϵ(t) crosses 10−8 from above. Note the excellent agreement between the stochastic simula-
tions and the asymptotic limits in both panels, lending credence to Conjecture 2.1(b), and
the marked discontinuity at λ = λc in the right panel. In both panels some large epidemics
occur when λ ≤ λc. This is a finite-population effect even though n is relatively large.
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2.2.2 SI model

In this section we assume that γ = 0, so there is no recovery and the model becomes SI.
We focus on the final size of the epidemic; results concerning temporal behaviour follow by
setting γ = 0 in corresponding results for the SIR model. Note that as infectives remain
so forever the epidemic stops when there is no edge between a susceptible and infective
individuals. For this model we obtain an explicit equation satisfied by the limiting fraction
ultimately infected as n → ∞ (see Theorem 2.5), which enables analysis of the dependence
of that fraction on model parameters and proof of a necessary and sufficient condition for
its discontinuity (Corollary 2.1). For ϵ ∈ [0, 1), define Fϵ : [ϵ, 1] → R by

Fϵ(x) = 1− x− (1− ϵ) exp

(
− (λµ+ ωα)x− ωαϵ

λ+ ω(1− α) + 2ωα(1− x)

)
. (2.8)

Theorem 2.5 (a) Suppose that X̄
(n)

(0)
p−→ (1 − ϵ, ϵ, µϵ(1 − ϵ), 0) as n → ∞, where

ϵ ∈ (0, 1) and let τ be the smallest solution in (ϵ, 1) of Fϵ(x) = 0. Then, provided
F ′
ϵ(τ) < 0,

T̄ (n) p−→ τ as n → ∞.

(b) Suppose that R0 > 1 and for each n the epidemic is started by one infective, with the
rest of the population susceptible. Then, conditional upon a major outbreak,

T̄ (n) p−→ τ as n → ∞,

where τ is the unique solution in (0, 1) of F0(x) = 0.

For R0 > 1, let τSI(µ,λ,ω,α) denote the solution of F0(x) = 0 in (0, 1), i.e. the fraction
of the population that is infected by a major outbreak in the limit as n → ∞, assuming
1 initial infective. The fact that τSI(µ,λ,ω,α) satisfies an explicit equation facilitates a
detailed analysis of τSI(µ,λ,ω,α), which is given in Corollary 2.1 below. We first highlight
a key result that is an immediate consequence of Corollary 2.1(b). Note that setting γ = 0
in (2.1) and (2.2) yields R0 =

µλ
λ+ω and λc =

ω
µ−1 . Let τSI(µ,λ,ω,α) = 0 if R0 ≤ 1.

Theorem 2.6 Suppose that µ > 1,ω and α are held fixed. Then τSI(µ,λ,ω,α) is discontin-
uous at the threshold λ = λc if and only if α > 1

3 and µ > 3α
3α−1 .

Before stating Corrolary 2.1 we need some more notation. For (µ,α) ∈ (1,∞) × [0, 1],
let θ(µ,α) = 2α(µ−1)

µ+α(µ−1) and

f0(x) = log(1− x) +
x

1− θ(µ,α)x
(0 < x < 1). (2.9)

Let

h(µ,α) = log

(
α− (1− α)µ

2αµ

)
+

µ+ α(µ− 1)

2α
(
1

2
< α ≤ 1, 1 < µ <

α

1− α
) (2.10)

11



and, for α ≥ 7
9 , let

µ̂(α) =
α

2(1− α)

(
1 +

√
9α− 7

1 + α

)
.

Let

x0(µ,α) =
1 + α

2α
− 1

2µ
. (2.11)

The following facts, required for the statement of Corollary 2.1 below, are proved in Sec-
tion 6.4. There exists a unique α∗ ∈ (79 , 1) such that h(µ̂(α),α) = 0. Let τ ∗ = x0(α∗, µ̂(α∗)).
(Numerical calculation yields α∗ ≈ 0.8209, µ̂(α∗) ≈ 3.3482 and τ ∗ ≈ 0.8764.) For fixed
α ∈ (α∗, 1), the equation h(µ,α) = 0 has two solutions for µ ∈ (1, α

1−α), which we denote
by µ∗

L(α) and µ∗
U(α), where µ∗

L(α) < µ∗
U(α). Finally, h(µ, 1) = 0 has a unique solution

µ̂∗(1) ≈ 1.7564 in (1,∞), which satisfies 2µ = eµ−
1
2 .

Corollary 2.1 (a) For fixed µ > 1,ω > 0 and α ∈ [0, 1],

lim
λ↓λc

τSI(µ,λ,ω,α) = τ0(µ,α),

where τ0(µ,α) is the largest solution in [0, 1) of f0(x) = 0. Note that the limit τ0(µ,α)
is independent of ω.

(b) If α ≤ 1
3 then τ0(µ,α) = 0 for all µ > 1. If α > 1

3 then

τ0(µ,α) > 0 if and only if µ >
3α

3α− 1
.

(c) For fixed ω > 0 and α ∈ [0, 1] we have the following, where implicitly λ > λc.

(i) If α < α∗ then τSI(µ,λ,ω,α) is strictly increasing in λ for all µ.

(ii) If α = α∗ then τSI(µ,λ,ω,α) is strictly increasing in λ, unless µ = µ̂(α∗) when
τSI(µ,λ,ω,α) = τ ∗ for all λ > λc.

(iii) If α∗ < α < 1 then τSI(µ,λ,ω,α) is strictly increasing in λ if µ < µ∗
L(α) or

µ > µ∗
U(α), strictly decreasing in λ if µ∗

L(α) < µ < µ∗
U(α), and independent of λ

if µ = µ∗
L(α) or µ∗

U(α); τSI(µ,λ,ω,α) = x0(µ∗
L(α),α) for all λ if µ = µ∗

L(α) and
x0(µ∗

U(α),α) for all λ if µ = µ∗
U(α).

(iv) If α = 1 then τSI(µ,λ,ω,α) is strictly increasing in λ if µ < µ̂∗(1), independent
of λ if µ = µ̂∗(1) and strictly decreasing in λ if µ > µ̂∗(1).

Remark 2.5 Assuming that the conjecture in Remark 2.4 is correct, as γ ↓ 0 in the SIR
model the final size is discontinuous at λc if and only if α > 1

2 and µ > 2α
2α−1 , which is

different from that for the SI model, viz. α > 1
3 and µ > 3α

3α−1 (see Corollary 2.1(b)).
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Remark 2.6 By linearly rescaling time it is immediate that τSI(µ,λ,ω,α) depends on λ and
ω only through λ/ω. For fixed λ > 0, let ωc = (µ − 1)λ, so, in the limit n → ∞, a major
outbreak is possible if and only if ω ∈ [0,ωc). It follows immediately from Corollary 2.1(a)
that, for fixed µ > 1,λ ≥ 0 and α ∈ [0, 1],

lim
ω↑ωc

= τSI(µ,λ,ω,α) = τ0(µ,α).

Hence, by Corollary 2.1(b), τSI(µ,λ,ω,α) is discontinuous at the threshold ωc if and only if
α > 1

3 and µ > 3α
3α−1 . The obvious analogue of Corollary 2.1(c) holds.

Remark 2.7 Note that if ω = 0 and λ > 0 then the epidemic ultimately spreads to all
individuals in the components of the underlying graph G(n, µ/n) that have initial infectives,
so the distribution of the final size T (n) is independent of λ. In particular, for µ > 1 and
λ > µ−1 (so R0 > 1), ρ(µ) = τSI(µ,λ, 0, 0) gives the fraction of individuals in the giant
component of G(n, µ/n) in the limit as n → ∞. Setting ω = 0 in Theorem 2.5(b) yields
that ρ(µ) is the unique solution in (0, 1) of 1− x = e−µx (see, for example, [Durrett(2007)],
Theorem 2.3.2).

Remark 2.8 Suppose that ω > 0 and α = 1, so there is no dropping of edges. Plots of
τ0(µ, 1), which gives the size of the discontinuity in τ at the threshold λc, and ρ(µ) are shown
in Figure 3. Note that τ0(µ, 1) < ρ(µ) for µ < µ̂∗(1) and τ0(µ, 1) > ρ(µ) for µ > µ̂∗(1),
which is consistent with Corollary 2.1(c)(iv). Thus, when α = 1, rewiring reduces the size
of a major epidemic if µ < µ̂∗(1) and increases it if µ > µ̂∗(1).

It is interesting to note that [Britton and Trapman(2012)] find the identical threshold
µ̂∗(1) ≈ 1.7564 when studying the size of the giant component of a Poissonian random graph
where nodes have mixed-Poisson degrees with mean µ. They found that whenever µ > µ̂∗(1)
the giant is maximized when the Poisson degree is not mixed and instead is Po(µ). The giant
component is hence maximized with minimal heterogeneity in degree distribution whereas the
present result shows that the fraction infected by a major outbreak is minimized when there
is no rewiring whenever µ > µ̂∗(1).

2.2.3 SIR model with rewiring only to susceptibles

Suppose now that when a susceptible individual rewires an edge away from an infective,
instead of rewiring to an individual chosen uniformly at random from the other n− 2 indi-
viduals in the population it rewires to an individual chosen uniformly at random from the
other susceptible individuals in the population. If there is no other susceptible individual

13
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Figure 3: Plots of τ0(µ, 1) (solid curve)and ρ(µ) (dashed curve).

then it does not rewire. The deterministic approximation becomes

ds

dt
= −λiE, (2.12)

di

dt
= −γi+ λiE (2.13)

diE
dt

= −λiE − γiE + λµiEs− λ
i2E
s

+ 2λiE
w

s
− ωiE, (2.14)

dw

dt
= ωαiE − 2λiE

w

s
. (2.15)

Note that the only changes from the ordinary differential equations (2.3)-(2.6) are in the last
term in (2.14), where the factor 1−α+α(1−i) has been dropped as now rewiring necessarily
leads to the loss of one infectious edge, and in the first term in (2.15), where the factor s
has been dropped as now rewiring necessarily leads to the gain of one susceptible-susceptible
rewired edge. (The difference when there is only one susceptible remaining does not affect
the deterministic limit.)

Theorem 2.7 Suppose X̄
(n)

(0)
p−→ x(0) as n → ∞, where i(0) > 0 and iE(0) > 0. Then,

for any t0 > 0,

sup
0≤t≤t0

∣∣∣̄X(n)
(t)− x(t)

∣∣∣ p−→ 0 as n → ∞,

where x(t) = (s(t), i(t), iE(t), w(t)) is given by the solution of (2.12)-(2.15) with initial state
x(0).

14



Note that the differential equations (2.12), (2.14) and (2.15) form a closed system, whose
time-transformed version is Lipschitz (see Section 6.6). Consequently the final outcome of
the deterministic model is readily susceptible to analysis and corresponding laws of large
numbers are readily available for the stochastic model. For brevity, we restrict attention to
the case of the stochastic model with one initial infective. Theorem 2.1 holds also for the
present model, see Remark 6.1 at the end of Section 6.1, so R0 and λc are still given by (2.1)
and (2.2), respectively. Let

g(x) =

(
1 +

γ + ω(1− 2α)

λ

)
log(1− x) +

(
µ− 2αω

λ

)
x (0 ≤ x < 1)

and
r(µ, γ,ω,α) = µ(γ + ω − 2αω) + 2αω. (2.16)

Theorem 2.8 Suppose that R0 > 1 and for each n the epidemic is started by 1 infective,
with the rest of the population susceptible. Then, conditional upon a major outbreak,

T̄ (n) p−→ τ̃ = τ̃(µ,λ, γ,ω,α) as n → ∞,

where

(a) if r(µ, γ,ω,α) ≥ 0 then, for all λ > λc, τ̃ is given by the unique solution in (0, 1) of
g(x)=0;

(b) if r(µ, γ,ω,α) < 0 then τ̃ = 1, for λc < λ ≤ ω(2α − 1) − γ, and τ̃ is given by the
unique solution in (0, 1) of g(x) = 0, for λ > ω(2α− 1)− γ.

Remark 2.9 Note that a necessary condition for r(µ, γ,ω,α) < 0 is α > γ+ω
2ω . Moreover,

if this condition is satisfied then, in the limit n → ∞, the fraction of the population that is
infected by a major outbreak is one!

Remark 2.10 Note from Theorem 2.8 that if λ is increased, with all other parameters held
fixed, then for all sufficiently large λ the final size of the epidemic is strictly less than one and
is given by the root of g in (0, 1). Thus, in the case of Theorem 2.8(b) (i.e. r(µ, γ,ω,α) < 0),
as λ is increased from 0, the final size jumps from 0 to 1 at the threshold λc, stays at 1 until
λ = ω(2α − 1) − γ and then decreases. This is because when λ is very large susceptible
individuals with infectious neighbours become infected before they are able to rewire away
from them. Indeed, in the limit λ → ∞, all individuals in components of the graph that
contain initial infectives become infected. In particular, the final size of a major outbreak
coincides with that of the giant component, as is easily verified by letting λ → ∞ in the
equation g(x) = 0; cf. Remark 2.7.

Figure 4 shows the results of simulations of the SIR model with rewiring only to sus-
ceptibles. In each of the two plots the final size of 1, 000 epidemics in a population of size
n = 10, 000, with values of λ equally spaced in the given range, γ = 1, α = 1 (so there is no
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Figure 4: 1,000 simulations of final size of SIR epidemic with rewiring only to susceptibles
when n = 10, 000, µ = 2.5, γ = 1,α = 1 and varying λ; ω = 4 in the left panel and ω = 10
in the right panel. See text for details.

dropping of edges) and ω = 4 (left panel) and ω = 10 (right panel). Each simulation was
started with 10 infectives, chosen uniformly at random from the population. The two values
of ω were chosen so that r(µ, γ,ω,α) < 0 (left panel) and r(µ, γ,ω,α) > 0 (right panel). The
vertical dashed line shows the critical value λc of λ. The solid curve shows the final size given
by Theorem 2.8(a). The figure demonstrates clearly Theorem 2.8. Note in the right panel
that the final size is less than 1 for λ > ω − γ = 9. There are a few simulations in the right
panel in which the whole population is infected when λ < λc. This is a finite-population
effect, which would be reduced if n was increased and enhanced if n was decreased.

2.2.4 SIR models with alternative rewiring

Two other rewiring models are when a susceptible rewires from an infective it (i) rewires to
a randomly chosen recovered individual or (ii) it rewires to an individual chosen uniformly
at random from all those individuals that are not currently infectious. Note that in model
(i) the edge is effectively dropped as far as disease transmission is concerned, so the model
is equivalent to the dropping model (i.e. the corresponding model with α = 0). The analysis
of model (ii) is similar to, and has the same difficulties as, that of the SIR model considered
in Section 2.2.1. Models (i) and (ii) each have R0 given by (2.1) and critical infection rate
λc given by (2.2). We omit the details but Theorem 2.3 holds also for model (ii) and we
conjecture that the conjecture in Remark 2.4 holds as well.

2.3 Construction

The main idea of the construction is to explicitly consider only infectious individuals and
connections emanating from these individuals and to keep track also of the pool of rewired
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edge-stubs. Only when a new individual is infected are its degree and whether it has received
any rewired edges determined.

To help introduce the construction, consider first the SIR model without rewiring (or
dropping). We construct a realisation of the epidemic and Erdős-Rényi random graph si-
multaneously as follows (cf. [Britton and O’Neill(2002)] and [Neal(2003)]). We start with
I0 infectives, n − I0 susceptibles and no edges in the graph. Attach to each infective in-
dependently Po(µn) edges, where µn = −n log(1 − µ

n) so µn satisfies 1 − µ
n = e−

µn
n . Such

unconnected edges are called live infectious edges. Infectives make infectious contacts along
each of their live infectious edges independently at rate λ. When an infective, individual
i0 say, makes infectious contact along an edge, that edge emanating from i0 becomes dead
and an individual, j0 say, is sampled independently and uniformly from the whole popula-
tion. If individual j0 is susceptible then an edge between i0 and j0 is formed, individual
j0 becomes infected and (independently) has Po(µn) live infectious edges attached to it. If
individual j0 is not susceptible then nothing happens (apart from the edge from i0 becoming
dead). Infectives recover independently at rate γ. When an infective recovers, all live edges
attached to it become dead. The epidemic stops as soon as there is no infective remaining.
(Infection spread stops as soon as there is no live infectious edge remaining. In the SI model
the epidemic stops when there is no live infectious edge remaining.) It is easily verified that
this construction gives an epidemic that is probabilistically equivalent to the SIR epidemic
on an Erdős-Rényi graph. (Note that µn is chosen so that if γ = 0, so an infective infects
down all of the edges that are initially attached to it, then it tries to infect the other n− 1
individuals independently, each with probability µ

n .)
An alternative approach, which is more easily generalised to incorporate rewiring, is to

modify the above construction so that only live infectious edges that will be paired with
susceptibles are included, and each time an infection occurs along such an edge it is with an
individual chosen independently and uniformly from all susceptible individuals at that time.

More specifically, suppose an individual i0 say, is infected at time t. Then Po(µn
S(n)(t)

n )
live infectious edges are attached to it. However, we now have to delete each of the live
infectious edges at time t− (apart from the one that led to the infection of i0, which is
necessarily deleted) independently with probability 1

S(n)(t)
, to take account of the fact that

all live infectious edges are necessarily to susceptible individuals.
Consider now the SIR model E (n) with rewiring and dropping of edges described in Sec-

tion 2. We adopt the above alternative approach and treat rewiring/dropping as follows. Let
W (n)(t) be the number of rewired susceptible-susceptible edges at time t, so W (n)(0) = 0.
Each infective independently sends warnings down each of its unconnected live infectious
edges independently at rate ω. Suppose that an individual, i0 say, sends such a warning at
time t. Then i0 drops that edge with probability 1 − α; otherwise the edge is rewired to
a susceptible individual, an infective individual or a recovered individual with probabilities
(S(n)(t)− 1)/(n− 2), (I(n)(t)− 1)/(n− 2) and 1− (S(n)(t)+ I(n)(t)− 2)/(n− 2), respectively,
where I(n)(t) is the number of infectives at time t (a rewiring is always to a new individual
other than the individual itself). If the edge is rewired to a susceptible then W (n)(t) is
increased by 1. (We do not decide the two susceptible individuals involved at this stage.) If
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the edge is rewired to an infective, then i0 loses an infectious edge and an individual chosen
uniformly at random from the other I(n)(t)− 1 infectives at time t gains an infectious edge.
If the edge is rewired to a recovered individual then i0 loses an infective edge but nothing
else happens.

As before infectives infect along their live infectious edges at rate λ. If an infective,
i0 say, infects down a live infectious edge at time t. Then that live edge is connected
with an individual, j0 say, chosen uniformly from S(n)(t), where, for t ≥ 0, S(n)(t) is the set
comprising of the S(n)(t) susceptibles at time t. The live edge then becomes dead. Individual

j0 is infected at time t and acquires Po(µn
S(n)(t)

n ) live infectious edges (corresponding to edges
in the original network), the fraction S(n)(t)/n comes from now only considering edges to
be connected to susceptibles. Individual j0 may also acquire rewired infectious edges as
follows. For each i = 1, 2, . . . ,W (n)(t−), independently sample two individuals, ki and li say,
without replacement from S(n)(t−). If j0 ∈ {ki, li} then j0 acquires a further live infectious
edge and W (n)(t) is reduced by one. Finally, each of the live infectious edges at time t−,
apart from the one that infected j0, is dropped independently with probability 1/S(n)(t−)
(thus reducing the number of live edges to be connected to susceptibles correctly). The live
infectious edge that infected j0 is necessarily dropped. The construction now continues in
the obvious manner. The epidemic stops when there is no infective remaining (SIR model)
or no infectious edge remaining (SI model).

The above construction is not fully faithful to the model E (n), as it allows the possibility
of a susceptible, i0 say, to rewire from an infective, j0 say, and then be subsequently infected
by j0 without having first rewired back to j0. Let Fn be the probability that no such
imperfection occurs. We show at the start of Section 6 that lim infn→∞ P(Fn) > 0, and
consequently any statement which holds with high probability for the construction, holds
also with high probability when the construction is conditioned on being faithful to the
original model (cf. [Janson(2009)]).

For t ≥ 0, let I(n)E (t) be the total number of live infectious edges at time t. We show in

Section 2.2 that the {(S(n)(t), I(n)(t), I(n)E (t),W (n)(t)) : t ≥ 0} converges to the deterministic
model given by (2.3)-(2.6) as n → ∞, in the sense made clear in Theorem 2.2. The terms
in (2.5) are explained as follows. The first two terms correspond to a live infectious edge
being lost if the associated infective infects along it or recovers. The third term is owing
to the creation of new live infectious edges (corresponding to edges in the original network)
when an infective transmits infection along an infectious edge; on average each such infection
creates µs new live infection edges as only edges that will be paired with a susceptible are
included. The fourth term arises from live infectious edges that are lost when a susceptible is
infected. The fifth term comes from the gain of live infectious edges from the pool of rewired
susceptible-susceptible edges when a susceptible is infected; the factor 2 is present as each
such rewired susceptible-susceptible edge has probability 2/S(n)(t−) of having an end at the
newly infected susceptible. The final term comes from rewiring/dropping of live infectious
edges; note that any edge down which an infective sends a warning is lost unless the edge is
rewired to another infective. The terms in the other 3 equations are explained similarly.
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3 Pair approximation

In this section we describe a deterministic pair-approximation model for the SIR epidemic of
Section 2.2.1 (see [Gross et al.(2006)] for a similar pair approximation to the corresponding
SIS epidemic) and show that it is equivalent to the deterministic model given by (2.3)-(2.6).
It then follows using Theorem 2.2 that the pair-approximation SIR model is exact in the
limit as n → ∞. For simplicity we treat the case α = 1, i.e. no dropping of edges. We use
the pair-approximation paradigm described in [Andersson and Britton(2000)], Chapter 7.

Consider the stochastic SIR model with rewiring described in Section 2.1. Label the
nodes (individuals) in the population 1, 2, . . . , n. Let G = [gij] be the n × n matrix having
elements gij, where gij is the number of edges joining nodes i and j, if i ̸= j, and gii = 0.
(In many applications G is an adjacency matrix but here the elements of G can be > 1
owing to rewiring.) Each node is of type S, I or R, according to its disease status. For
A ∈ {S, I, R} and i = 1, 2, . . . , n, let Ai = 1 if node i is of type A and Ai = 0 otherwise. For
A,B,C ∈ {S, I, R}, let

[A]n =
n∑

i=1

Ai, [AB]n =
n∑

i,j=1

AigijBj and [ABC]n =
n∑

i,j,k=1
i ̸=k

AigijBjgjkCk.

Note that [A]n, [AB]n and [ABC]n are all functions of time t, as indeed isG owing to rewiring.
For example, [I]n(t) is the number of infectives at time t and [SI]n(t) is the number of edges
between infective and susceptible nodes at time t. Note that [SS]n(t) is twice the number of
edges between susceptible nodes at time t.

Suppose that n−1[A]n(t), n−1[AB]n(t) and n−1[ABC]n(t) each tend to deterministic limits
as n → ∞. For example, n−1[S]n(t) → s(t) and n−1[SI]n(t) → xSI(t). A heuristic argument
then yields the following system of ordinary differential equations:

ds

dt
= −λxSI , (3.1)

di

dt
= λxSI − γi, (3.2)

dxSS

dt
= 2ωsxSI − 2λxSSI , (3.3)

dxSI

dt
= −λxSI + λxSSI − λxISI − [ω(s+ r) + γ]xSI . (3.4)

The second and third terms in (3.4) are explained as follows. The second term is added to
the first since an infection along an SSI link does not change the number of SI links. The
third term is present because not only is the rate doubled, although this is already counted
since it consists of two SI links, but when an infection occurs the number of SI links is
reduced by 2. The factor 2 in (3.3) arises from the double counting in [SS]n(t). There are
other variables, such as xII , for which we could write down a differential equation but the
above system is sufficient for our purposes.

19



To close the above system we make the pair approximation

xABC =
xABxBC

xB
for all A,B,C ∈ {S, I, R},

where, for example, xS = s. Equations (3.3) and (3.4) then become

dxSS

dt
= 2ωsxSI − 2λ

xSIxSS

s
, (3.5)

dxSI

dt
= −λxSI

(
1− xSS

s
+

xSI

s

)
− (ω(s+ r) + γ) xSI . (3.6)

To connect informally with the deterministic model given by (2.3)-(2.6), note that [SS]n
includes SS links in the original network and SS links arising from rewiring. Taking account
of the double counting in [SS]n, it follows that

w(t) =
1

2

(
xSS(t)− µs(t)2

)
for all t ≥ 0. (3.7)

For a formal proof, substitute from (3.7) into (3.6) to obtain

dxSI

dt
= −λxSI

(
1− 2

w

s
− µs+

xSI

s

)
− (ω(s+ r) + γ) xSI ,

which, noting that s + r = 1 − i, coincides with (2.5), with α = 1 and iE replaced by xSI .
Also, differentiating (3.7) and using (3.1), (3.5) and (3.7), yields

dw

dt
=

1

2

(
dxSS

dt
− 2µs

ds

dt

)

=
1

2

(
2ωsxSI − 2λ

xSIxSS

s
+ 2µsλxSI

)

= ωsxSI − 2λ
xSIw

s
,

which agrees with (2.6). Finally, (3.1) and (3.2) clearly agree with (2.3) and (2.4).

4 Comparison with [Yao and Durrett(2020)]

[Yao and Durrett(2020)] consider SI and SIR epidemics with rewiring on graphs generated by
the configuration model (see, for example, [Durrett(2007)], Chapter 3, and [van der Hofstad(2016)],
Chapter 7) or its close relatives, which include Erdős-Rényi random graphs. Briefly, the con-
figuration model random graph on n individuals, labelled 1, 2, . . . , n, is constructed as follows.
Let D1, D2, . . . , Dn be i.i.d. copies of a random variable D, which takes values in Z+. Attach
Di half-edges to individual i (i = 1, 2, . . . , n) and then pair up the D1 + D2 + · · · + Dn

half-edges uniformly at random to form the graph. (If D1 + D2 + · · · + Dn is odd then
there is a left-over half-edge, which is ignored.) This yields the version of the model in-
troduced in [Newman et al.(2001)]. In an alternative version ([Molloy and Reed(1995)])
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the degrees are prescribed deterministically. The configuration model was first introduced
by [Bollobás(1980)].

We outline the main result obtained by [Yao and Durrett(2020)] for the SI model. In
our notation, α = 1, so there is no dropping of edges. Let µ = E[D] and G(z) = E[zD] be
respectively the mean and probability-generating function of D. Suppose that E[D3] < ∞.
Let β = ωµ

λ (ω is denoted by ρ in [Yao and Durrett(2020)], and β by α). Let f : (0, 1) → R
be defined by

f(x) = log

(
µx

G′(x) + β(1− x)G(x)

)
+

β

2
(x− 1)2.

Suppose that λ > λc and let

σ = sup{x : 0 < x < 1, f(x) = 0} with sup(∅) = 0,

v = 1− exp

(
−β

2
(σ − 1)2

)
G(σ).

Suppose that either σ = 0, or σ ∈ (0, 1) and there exists δ > 0 such that f < 0 on (σ− δ,σ).
Suppose that there is initially one infective, chosen uniformly at random from the population
of n individuals. Then ([Yao and Durrett(2020)], Theorem 2), for any ϵ > 0,

lim
n→∞

P(T̄ (n) < ν + ϵ) = lim
η↓0

lim inf
n→∞

P(T̄ (n) > ν − ϵ|T̄ (n) > η) = 1. (4.1)

Note that ν in (4.1) has essentially the same interpretation as τ in Theorem 2.5(b) (when
α = 1), so one would expect them to be equal when D ∼ Po(µ). Calculation shows that is
not the case. Plots of ν and τ as functions of the rewiring rate ω when µ = 2 and λ = 1
are shown in Figure 5, together with mean fraction infected based on 1, 000 simulations
of major outbreaks in a population with n = 5, 000 for each of ω = 0.2, 0.4, 0.6, 0.8 and
1.0. Each simulated epidemic was started by one infective, with the rest of the population
being susceptible. A cut-off of 3, 000 was used to determine whether a major epidemic had
occurred. (For each ω, epidemics were simulated until 1, 000 major epidemics had occurred.
The smallest major epidemic had size 3, 840 and the largest non-major epidemic size 1, 164.)
Note that R0 = 1 when ω = 1, so major outbreaks have zero probability of occurrence in
the limit n → ∞. However, they do occur when n = 5, 000. The value of τ when ω = 1 is
τ0(2, 1) (see Remark 2.6). The simulations are consistent with Theorem 2.5(b) and suggest
strongly that (4.1) is incorrect.

The results in [Yao and Durrett(2020)] are based on an effective-degree type construction
([Ball and Neal(2008)]) in which the random graph and epidemic are constructed simulta-
neously. Briefly, half-edges are labelled susceptible, infective or recovered according to the
disease status of the individual to which they are attached. Initially no half-edge is paired.
Infectives transmit infection down their infective half-edges independently at rate λ. When
such transmission occurs, the half-edge is paired with a half-edge chosen uniformly at ran-
dom from all available half-edges, to form an edge in the graph. If the chosen half-edge
is attached to a susceptible individual then that individual becomes infected and can then
transmit infection down its remaining half-edges. If it is attached to a recovered or infective
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Figure 5: Plots of τ (solid curve) and ν (dashed curve) as functions of ω for SI epidemics
with µ = 2, λ = 1 and α = 1. The circles show the mean sizes of 1, 000 simulated major
epidemics in a population of n = 5, 000. See text for details.

individual then nothing happens, apart from the loss of the two edges. Such an approach has
been used by [Janson et al.(2014)] to prove law of large numbers results for SIR epidemics
on Molloy–Reed configuration model random graphs.

In [Yao and Durrett(2020)], rewiring is added to the construction by assuming that each
infective half-edge is removed from the vertex to which it is attached independently at rate
ω and is immediately re-attached to a vertex chosen uniformly at random from all other
vertices. It is claimed that the construction then yields a model whose final size has the
same distribution as the original model. However, it is not clear that is the case. Suppose
that an infective half-edge is moved from individual i to individual j at time t0 and individual
j becomes infected and transmits infection down that half-edge at time t1 > t0. First, the
half-edge needs to be paired to determine whether or not it should be moved; it should be
moved only if it is paired with a susceptible individual. Second, if it is moved and infection is
transmitted along it at time t1 then that half-edge should be paired with an individual chosen
from susceptible individuals at time t0, weighted by their degree at that time, and not from
all half-edges at time t1. Third, if a half-edge is moved then one of the susceptibles (k say) at
time t0 should have a half-edge such that if k is subsequently infected (and the corresponding
edge has not been rewired) and transmits infection down that half-edge at time t2, then that
half-edge should be paired with an individual chosen (approximately) uniformly at random
from the rest of the population and not with a half-edge chosen uniformly at random from the
other half-edges at time t2. In view of these observations and the simulations, it would appear
that the model analysed in [Yao and Durrett(2020)] is an approximation of the epidemic with
rewiring. However, it is interesting to note that in both the SI and SIR models the condition
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in [Yao and Durrett(2020)] for the final size to be discontinuous at the threshold λ = λc

(see their Examples 3 and 7, respectively) coincides with that obtained by setting α = 1 in
Theorems 2.3 and 2.6.

5 Heuristic argument for final size of SI epidemic

Consider first the SI model with α = 0, so there is dropping of edges but no rewiring. The
fraction infected by a major outbreak can be obtained heuristically as follows. Suppose
that a fraction τ get infected. Fix an initial susceptible, i say. The probability that i gets
infected can be calculated by conditioning on the spread among all members of the population
excluding i. For n large, in the event of a major outbreak, the number of infected neighbours
of i has a Po(µτ) distribution, since i has Po(µ) neighbours, each of which is independently
infected by the epidemic with probability τ . (These are approximations which become exact
in the limit n → ∞.) Each infected neighbour of i infects i with probability λ

λ+ω , so the

probability that i avoids infection is exp(− µτλ
λ+ω ). This probability is also given by 1 − τ , so

τ satisfies

1− τ = exp

(
− µλτ

λ+ ω

)
,

in agreement with Theorem 2.5(b) with α = 0. This argument is straightforward to extend
to the SIR model with α = 0.

We now extend the argument to the model with rewiring and for ease of exposition
assume that α = 1, i.e. that there is no dropping of edges. This extension involves two new
features.

(1) It is no longer the case that the probability that a given infective neighbour, i∗ say, of
i leads to i being infected by that neighbour is given by λ/(λ+ ω) because if i rewires
away from i∗ it may be to another infective.

(2) Individual i may acquire infective neighbours through rewiring, which were not neigh-
bours of i in the original network. This happens if a susceptible rewires to i and that
susceptible is subsequently infected.

We treat these in turn, again assuming that a fraction τ of the population gets infected.
Consider an infective neighbour, j say, of i. Individual i rewires from j at rate ω and is

infected by j at rate λ. However, if i rewires to an infective its position as far as the disease
is concerned is unchanged. Now i rewires to a susceptible (in which case i avoids infection
owing to the original link to j) at rate ω(1− τ). It follows that the probability, pI say, that
i is infected owing to the original link to j is given by

pI =
λ

λ+ ω(1− τ)
. (5.1)

We now determine heuristically the (approximate) distribution of the number of infective

neighbours, N (RW )
I (i) say, that i acquires through rewiring. Let E∗ denote the epidemic in
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which i is excluded and assume that n is large. For any susceptible–infective edge, the
probability that the susceptible rewires that edge before being infected along it is ω/(λ+ω).
Thus if the epidemic E∗ infects (n− 1)τ individuals, by the law of large numbers there will
be ≈ (n − 1)τω/λ rewiring events in it. Each such rewiring has probability 1/(n − 2) of
being to individual i, so if N (RW )(i) denotes the number of edges that rewire to individual
i, then N (RW )(i) ∼ Po(τω/λ) approximately.

Consider a typical edge that rewires to i. For large n, the number of infections in
E∗ that occur prior to that rewiring is distributed approximately as ⌈(n− 1)τU⌉, where
U ∼ U(0, 1). The number of infections that occur after that rewiring is ≈ ⌊(n− 1)τ(1− U)⌋.
By symmetry, these ⌊(n− 1)τ(1− U)⌋ infections are with individuals drawn uniformly at
random without replacement from the ≈ n− 1− ⌈(n− 1)τU⌉ suscpetibles remaining at the
time of this typical rewire to i. Thus, given U , the probability that the susceptible who
rewires to i is subsequently infected is approximately

τ(1− U)

1− τU
= 1− 1− τ

1− τU
.

Taking expectations with respect to U , it follows that for a typical edge that rewires to i,
the probability that the susceptible is subsequently infected is given approximately by

∫ 1

0

1− 1− τ

1− τu
du = 1 +

(1− τ)

τ
log(1− τ).

Thus in the event of a major outbreak, recalling that N (RW )(i) ∼ Po(τω/λ) approximately,
we have approximately for large n that

N (RW )
I (i) ∼ Po

(
τω

λ

[
1 +

(1− τ)

τ
log(1− τ)

])
. (5.2)

Let NI(i) be the number of neighbours of i in the original network that are infected by
the epidemic. Then, as before,

NI(i) ∼ Po(µτ), (5.3)

approximately. Now NI(i) and N (RW )
I (i) are approximately independent, so the total number

of edges from i to an infective is approximately Poisson distributed with mean E[NI(i)] +

E[N (RW )
I (i)]. Each such edges leads to the infection of i independently with probability pI

so, using (5.1)-(5.3), τ = τSI(µ,λ,ω,α = 1) satisfies

1− τ = exp

(
−
{
µτ +

τω

λ

[
1 +

(1− τ)

τ
log(1− τ)

]}
λ

λ+ ω(1− τ)

)

= exp

(
−τ(µλ+ ω) + ω(1− τ) log(1− τ)

λ+ ω(1− τ)

)
. (5.4)

Taking logarithms of both sides of (5.4) and rearranging yields

log(1− τ) = − τ(µλ+ ω)

λ+ 2ω(1− τ)
,
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so F0(τ) = 0, in agreement with Theorem 2.5(b) when α = 1.
The arguments leading to (5.2) and (5.3) still hold for the SIR model. However, pI is no

longer given by (5.1) since (i) the infective, j say, at the end of an edge from i may recover
before it infects i and (ii) if i rewires from j to an individual, k say, that was infected by
epidemic the rewiring needs to occur before k recovers from infection. There does not seem
to be an easy way to approximate pI .

6 Proofs

We prove the results described in Section 2.2 by showing that corresponding results hold
for the construction described in Section 2.3. As noted there, the construction is not fully
faithful to the rewiring model described in Section 2.1 as it allows for the possibility of a
susceptible, i0 say, to rewire an edge in the “original network” from an infective, j0 say,
and then be subsequently infected by j0 along another edge in the “original network”. (By
an edge in the “original network” we mean one of the un-rewired infectious edges allocated
to i0 when it was infected.) A realisation of a process that is probabilistically equivalent
to the original model is obtained by conditioning on there being no such imperfections.
The allocation of “original network” infectious edges to infectives in the construction can
be achieved by labelling the individuals in the population 1, 2, . . . , n, letting X1, X2, . . . , Xn

be i.i.d. Po(µn) random variables and χi,j (i = 1, 2, . . . , n, j = 1, 2, . . . ) be i.i.d. discrete
uniform random variables on {1, 2, . . . , n}. The ith individual to be infected is allocated
Xi “original network” infectious edges, that are linked to individuals χj (j = 1, 2, . . . , Xi).
Those that are not linked to susceptibles are dropped immediately. Let Fn be the event that
the construction remains faithful to the model of Section 2.1 and Dn be the event that χj

(j = 1, 2, . . . , Xi) are distinct for each i = 1, 2, . . . , n. Then Dn ⊆ Fn. Now

P(χ1,χ2, . . . ,χXi are distinct|Xi) =
Xi−1∏

i=1

(
1− i

n

)

≥ 1− Xi(Xi − 1)

2n
,

so

P(Dn) ≥
(
1− E[X1(X1 − 1)]

2n

)n

=

(
1− µ2

n

2n

)n

→ e−
µ2

2 as n → ∞.

Thus lim infn→∞ P(Fn) > 0 and it follows that any statement which holds with high probabil-
ity for the construction, holds also with high probability when the construction is conditioned
on being faithful to the original model (cf. [Janson(2009)]).
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In the proofs that follow, we use the same notation for the construction as that defined
for the original model in Section 2.1. We treat the final size of the SI model before that of
the SIR model as the former is simpler.

6.1 Proofs of Theorem 2.1 and Lemma 2.1

Let (Ω,F ,P) be a probability space on which are defined independent unit-rate Poisson

processes η1, η2, . . . . Let ZE
i = ηi([0, µ]) (i = 1, 2, . . . ). For n = 1, 2, . . . , let Z(n)

i =
ηi([0, µn(1−n−1i)]) (i = 1, 2, . . . , n). A realisation of the branching process B is constructed
on (Ω,F ,P) in which the ith individual born in B is assigned at birth ZE

i infectious edges.
For n = 1, 2, . . . , a realisation of the epidemic process E (n) is constructed on (Ω,F ,P), using

the construction in Section 2.3, in which when first infected the ith infective has Z(n)
i infec-

tious edges. Further details of these constructions are indicated below. First we show that
some events associated with the epidemic processes hold with high probability.

Let T (n)
E = Z(n)

1 + Z(n)
2 + · · · + Z(n)

⌊logn⌋. Then the law of large numbers implies that

T (n)
E ≤ 2µ log n with high probability. Let In denote the set consisting of the first ⌊log n⌋

individuals infected in E (n). (If the final size of E (n) is less than ⌊log n⌋ then In consists of
all individuals infected in E (n).) Recall that T (n)(t) = n − S(n)(t) is the total number of
infections in E (n) during [0, t] and let t̂n = inf{t ≥ 0 : T (n)(t) ≥ log n}, where t̂n = ∞ if

T (n)(∞) < log n. Let W (n)
T be the total number of infectious edges rewired from individuals

in In during [0, t̂n]. Clearly no individual in In can have more than T (n)
E infectious edges

when it is first infected. If every individual in In were to have every infectious edge they had
when they were first infected rewired then, given T (n)

E , the expected number that would be

rewired to individuals in In is less than (log n)T (n)
E

logn
n−2 and it follows that, unconditionally,

the number of such rewirings is zero with high probability. Thus W (n)
T ≤ 2µ log n with high

probability.
Recall that in E (n) a newly infected individual, at time t say, acquires Bin(W (n)(t−), 2/S(n)(t−))

rewired infectious edges upon infection. (As usual, Bin(n, p) denotes a binomial random vari-

able with n trials and success probability p.) Let Ŵ (n)
T be the total number of such edges

acquired by the infectives in In. Then

E
[
Ŵ (n)

T |W (n)
T

]
≤ (log n)W (n)

T

2

n− log n

and it follows that Ŵ (n)
T = 0 with high probability. Recall also that in E (n) when an infection

occurs, say individual i0 is infected at time t, each infectious edge in E (n) at time t is dropped
independently with probability 1/S(n)(t−), apart from the one that infected i0 which is

necessarily dropped. Let T (n)
D be the total number of such edges dropped by the infectives

in In. Then,

E
[
T (n)
D |T (n)

E , Ŵ (n)
T

]
≤ (log n)

(
T (n)
E + Ŵ (n)

T

) 1

n− log n
,

whence T (n)
D = 0 with high probability.
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Collating the above, we have shown that in E (n) with high probability, during [0, t̂n], (i)
all rewired edges are to individuals not in In, (ii) no individual in In acquires a rewired
infectious edge at infection and (iii) no individual in In drops an infectious edge at infection.

Recalling that Z(n)
i and ZE

i are both defined on the same Poisson process ηi, we have that

|Z(n)
i − ZE

i | ∼ Po(|µn(1− i
n)− µ| (i = 1, 2, . . . , n). Thus, noting that µn > µ,

E

⎡

⎣
⌊logn⌋∑

i=1

|Z(n)
i − ZE

i |

⎤

⎦ ≤ log n

(
µn − µ+ µn

log n

n

)

→ 0 as n → ∞,

since µn − µ = O(1/n) as n → ∞. Thus, by Markov’s inequality, Z(n)
i = ZE

i (i =
1, 2, . . . , ⌊log n⌋) with high probability. Given (i)-(iii) above, it is then straightforward to
define realisations of E (n) (n = 1, 2, . . . ) from a realisation of B so that with high probability
the process of infectives in E (n) coincides with the realisation of B over [0, tn] and Theorem 2.1
follows.

Turning to the proof of Lemma 2.1, note by Theorem 2.1 and Remark 2.1 it is sufficient
to consider the case α = 0, i.e. the model with only dropping of edges. Let r denote the
Malthusian parameter of the branching process B. Then r is given by the unique real solution
of the equation ∫ ∞

0

e−rtµλe−(λ+ω+γ)t dt = 1,

so r = λ(µ− 1)− γ −ω. For t ≥ 0, let IE1 (t) be the number of individuals alive in B at time
t that had precisely 1 infectious edge at birth and still have that edge at time t. Recall that
T (t) is the total progeny of B at time t. Let Aext = {ω′ ∈ Ω : T (∞,ω′) < ∞} denote the set
on which B goes extinct. Then it follows using [Nerman(1981)], Theorem 5.4 and Corollary
3.2, that there exists a random variable W∞ ≥ 0, where W∞(ω′) = 0 if and only if ω′ ∈ Aext,
such that, as t → ∞,

e−rtT (t)
a.s.−→ r + γ

r
W∞ and e−rtIE1 (t)

a.s.−→ e−µ(r + γ)

λ
W∞. (6.1)

We use the construction in the above proof of Theorem 2.1 to define realisations of E (n)

(n = 1, 2, . . . ) and B on (Ω,F ,P). Recall that tn = inf{t ≥ 0 : T (t) ≥ log n}. It follows using
Theorem 2.1 and the first limit in (6.1) that, with high probability, T (n) > log n if and only
if ω′ ∈ AC

ext. Using the second limit in (6.1), there exists c1 > 0 such that IE1 (tn) > c1 log n
with high probability.

Recall that R0 > 1. There exists ϵ > 0 such that Rϵ
0 = (1 − ϵ)R0 > 1. Note that

in the above construction of E (n), Z(n)
i

st
≥ Po(µ(1 − ϵ)) for i ≤ nϵ, where

st
≥ denotes the

usual stochastic ordering. Thus, with high probability, if T (n) ≥ log n, then until time t
such that T (n)(t) ≥ nϵ, the process of infectives in the epidemic E (n) is bounded below by
the branching process Bϵ, which follows B until time tn, after which each birth is aborted
independently with probability ϵ. Let T ϵ(∞) be the total progeny of Bϵ. Let πϵ be the
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extinction probability for the progeny of an individual with one infectious edge at time tn in
Bϵ, so πϵ < 1 as Rϵ

0 > 1. It follows that

lim inf
n→∞

P(T (n) ≥ ϵn|T (n) ≥ log n) ≥ lim inf
n→∞

P(T ϵ(∞) ≥ ϵn|tn < ∞)

≥ lim inf
n→∞

(
1− πc1 logn

ϵ

)

= 1,

and Lemma 2.1 follows on setting τ ′ = ϵ.

Remark 6.1 It is clear from the above proofs that Theorem 2.1 and Lemma 2.1 hold also
for the model of Section 2.2.3, in which rewiring is necessarily to susceptibles.

6.2 Proof of Theorem 2.2

The proof is an application of [Darling and Norris(2008)], Theorem 4.1, and much of our
notation is chosen to aid that application.

For t ≥ 0, let S(n)(t) be the number of susceptibles at time t, I(n)i (t) be the number
of infectives with i infective edges at time t (i = 0, 1, . . . ) and W (n)(t) be the number
of rewired susceptible-susceptible edges at time t. Let X(n) = {X(n)(t) : t ≥ 0}, where
X(n)(t) = (S(n)(t), I(n)0 (t), I(n)1 (t), . . . ,W (n)(t)). ThenX(n) is a continuous-time Markov chain
with state space E(n) having typical element ξ = (nS, nI

0, n
I
1, . . . , n

W ). Thus

E(n) = {(nS, nI
0, n

I
1, . . . , n

W ) : nS, nI
0, n

I
1, . . . , n

W ∈ Z+, n
S + nI ≤ n},

where nI =
∑∞

k=0 n
I
k is the number of infectives corresponding to state ξ. For future reference,

nE =
∑∞

k=0 kn
I
k is the number of infectious edges corresponding to state ξ.

For distinct states ξ, ξ′ ∈ E(n), let q(n)(ξ, ξ′) = limt↓0 t−1P(X(n)(t) = ξ′|X(n)(0) = ξ)
denote the jump rate of X(n) from ξ to ξ′. We do not write down expressions for these jump
rates, as there are many different types of jumps and some jump rates are quite complex
owing to binomial samplings in the construction. Moreover, the individual jump rates are
not required for our purpose; see (6.3) and (6.4) below.

Let x : E(n) → R4 be defined by

x(ξ) = (x1(ξ), x2(ξ), x3(ξ), x4(ξ)) = n−1
(
nS, nI , nE, nW

)
(6.2)

and X̄
(n)

= {X̄(n)
(t) : t ≥ 0}, where X̄

(n)
(t) = x(X(n)(t)) (t ≥ 0). Thus X̄

(n)
corresponds

to the process with the same notation in Theorem 2.2. (To ease notation we have not indexed

x by n. To aid connection with [Darling and Norris(2008)], the 4-dimensional vector X̄
(n)

(t)
is rendered in bold and the infinite-dimensional vector X(n)(t) is not.)

For each ξ ∈ E(n), let

β(n)(ξ) =
∑

ξ′ ̸=ξ

(x(ξ′)− x(ξ))q(n)(ξ, ξ′) (6.3)
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be the drift function for X̄
(n)

and

α(n)(ξ) =
∑

ξ′ ̸=ξ

|x(ξ′)− x(ξ)|2q(n)(ξ, ξ′). (6.4)

To define the limiting deterministic process, let U = [0, 1]2 × [0,∞)2 and write x1 =
s, x2 = i, x3 = iE and x4 = w. Let b : U → R4 be the vector field defined by

b(x) = bR(x) + bD(x) + bRWR(x) + bRWS(x) + bI(x), (6.5)

where

bR(x) = γ(0,−i,−iE, 0),

bD(x) = ω(1− α)iE(0, 0,−1, 0),

bRWR(x) = ωαiE(0, 0,−(1− i− s), 0),

bRWS(x) = ωαiE(0, 0,−s, s),

bI(x) = λiE(−1, 1,−1 + µs− yE
s

+ 2
w

s
,−2

w

s
).

(The suffices R,D,RWR,RWS and I correspond to recovery, dropping of an infectious
edge, rewiring of an infectious edge to a recovered individual, rewiring of an infectious edge
to a susceptible individual and infection, respectively. Rewiring of an infectious edge to
an infective has no effect on x.) Let x(t) = (s(t), i(t), iE(t), w(t)) be the solution of the

differential equation
dx

dt
= b(x) with initial state x(0). Observe that b(x) is such that x(t)

coincides with the solution of (2.3)-(2.6) in Section 2.2.
To apply [Darling and Norris(2008)], Theorem 4.1, we need bounds for |β(n)(ξ)−b(x(ξ))|

and α(n)(ξ), which we now derive. We partition β(n)(ξ) and α(n)(ξ) into sums analogous to
that for b(x) at (6.5). We derive first expressions for the components of β(n)(ξ). Recall that
ξ = (nS, nI

0, n
I
1, . . . , n

W ), nI =
∑∞

k=0 n
I
k and nE =

∑∞
k=0 kn

I
k. Then

β(n)
R (ξ) = n−1γ(0,−nI ,−nE, 0) = bR(x(ξ)),

β(n)
D (ξ) = ω(1− α)nEn−1(0, 0,−1, 0) = bD(x(ξ)),

β(n)
RWR(ξ) = ωαnE

(
n− nS − nI − 2

n− 2

)
n−1(0, 0,−1, 0)

= ωαx3(ξ)

(
n(1− x1(ξ)− x2(ξ))− 2

n− 2

)
(0, 0,−1, 0),

β(n)
RWS(ξ) = nEωα

nS − 1

n− 2
n−1(0, 0,−1, 0) = ωαx3(ξ)

nx1(ξ))− 1

n− 2
(0, 0,−1, 0),

β(n)
I (ξ) = λnEn−1

(
−1, 1,

µn(nS − 1)

n
− 1 + 2

nW

nS
− nE − 1

nS
,−2

nW

nS

)
(6.6)

= λx3(ξ)

(
−1, 1, µn(x

1(ξ)− n−1)− 1 + 2
x4(ξ)

x1(ξ)
− x3(ξ)− n−1

x1(ξ)
,−2

x4(ξ)

x1(ξ)

)
.
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The expression for β(n)
I (ξ) is derived as follows. (The derivations of the expressions for

the other components of β(n)(ξ) are much simpler and hence omitted.) When X(n) is in state
ξ, infections occur at overall rate λnE. A single infection clearly decreases nS by one and
increases nI by one. The newly infected individual, i0 say, acquires X ∼ Po(µnn−1(nS − 1))
un-rewired infectious edges and Y ∼ Bin(nW , 2/nS) rewired infectious edges. The infectious
edge that infected i0 is dropped, as are Z ∼ Bin(nE − 1, 1/nS) other infectious edges. (The
ones that would attempt to infect i0 if the edge was formed.) Thus, in view of (6.2), the
associated change in x(ξ) is

n−1(−1, 1, X + Y − Z − 1, Z). (6.7)

Summing (x(ξ′)− x(ξ))q(n)(ξ, ξ′) over ξ′ ̸= ξ is equivalent to multiplying (6.7) by λnE and
taking expectations with respect to (X, Y, Z), which yields (6.6). For future reference, note
that X, Y and Z are independent.

Simple calculation then yields

|β(n)
R (ξ)− bR(x(ξ))| = 0, (6.8)

|β(n)
D (ξ)− bD(x(ξ))| = 0, (6.9)

|β(n)
RWR(ξ)− bRWR(x(ξ))| = 2(n− 2)−1ωαx3(ξ)(x1(ξ) + x2(ξ)), (6.10)

|β(n)
RWS(ξ)− bRWS(x(ξ))| =

√
2(n− 2)−1ωαx3(ξ)|1− 2x1(ξ)|, (6.11)

|β(n)
I (ξ)− bI(x(ξ))| = λx3(ξ)|(µn − µ)x1(ξ)− n−1µn| (6.12)

and, letting nE
2 =

∑∞
k=0 k

2nI
k,

α(n)
R (ξ) = n−2γ(nI + nE

2 ), (6.13)

α(n)
D (ξ) = n−2ω(1− α)nE = n−1ω(1− α)x3(ξ), (6.14)

α(n)
RWR(ξ) = n−2ωαnE

(
n− nS − nI − 2

n− 2

)

= (n− 2)−1ωαx3(ξ)(1− x1(ξ)− x2(ξ)− 2n−1), (6.15)

α(n)
RWS(ξ) = n−2ωαnE2(nS − 1)/(n− 2),

= 2(n− 2)−1ωαx3(ξ)(x1(ξ)− n−1). (6.16)

Calculation of α(n)
I (ξ) is more involved; an upper bound is sufficient, which we now derive.

Using (6.7),

α(n)
I (ξ) = λnEn−2E[2 + (X + Y − Z − 1)2 + Z2]. (6.17)

Noting that, E[X2] = E[X]+E[X]2 (asX has a Poisson distribution), E[Y 2] ≤ E[Y ](1+E[Y ])
and E[Z2] ≤ E[Z](1 + E[Z]) (as Y and Z have binomial distributions), a simple calculation
yields

E[2 + (X + Y − Z − 1)2 + Z2] < 3 + (E[X] + E[Y ])2 + 2E[Z](2 + E[Z]),
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so

α(n)
I (ξ) < λn−1x3(ξ)

[
3 +

(
µn(x

1(ξ)− n−1) +
2x4(ξ)

x1(ξ)

)2

+ 2
x3(ξ)

x1(ξ)

(
2 +

x3(ξ)

x1(ξ)

)]
. (6.18)

We need bounds for M (n)
E = max0≤t≤t0 I

(n)
E (t), M (n)

RW = max0≤t≤t0 W
(n)(t) and M (n)

D =

max0≤t≤t0 maxk≥0(k : I(n)k (t) > 0) which hold with high probability. Clearly both M (n)
E and

M (n)
RW are bounded above by the total of the original degrees of all infectives during [0, t0],

which in turn is bounded above by S(n)
D = D(n)

1 +D(n)
2 + · · ·+D(n)

n , where D(n)
1 , D(n)

2 , . . . , D(n)
n

are i.i.d. Po(µn) random variables. Since µn → µ as n → ∞, it follows immediately

from the law of large numbers that limn→∞ P(S(n)
D > 2µn) = 0, whence limn→∞ P(M (n)

E >

2µn) = limn→∞ P(M (n)
RW > 2µn) = 0. Let M (n) = max(D(n)

1 , D(n)
2 , . . . , D(n)

n ). Then it follows
from [Kimber(1983)] that

lim
n→∞

P(M (n) > log n) = 0. (6.19)

Turning to rewirings, letR(n)
1 , R(n)

2 , . . . , R(n)
n , whereR(n)

i is the total number of rewirings to

the ith infective in E (n), then R(n)
i

st
≤ R̂(n)

i (i = 1, 2, . . . , n), where R̂(n)
1 , R̂(n)

2 , . . . , R̂(n)
n are ob-

tained by assuming that all n individuals are infectious throughout [0, t0], where t0 is as in the

statement of Theorem 2.2. Then, conditional upon S(n)
D , the quantities R̂(n)

1 , R̂(n)
2 , . . . , R̂(n)

n

are independent Poisson random variables, each having mean ωαt0S
(n)
D /(n−1). (Each warn-

ing independently has probability n−2
n−1 of not being to i and the probability that the person

who received the warning rewires to i is 1
n−2 .) Given that limn→∞ P(S(n)

D > 2µn) = 0 it

follows that with high probability R̂(n)
1 , R̂(n)

2 , . . . , R̂(n)
n are bounded above by independent

Po(3ωαt0µ) random variables, whence

lim
n→∞

P( max
i=1,2,...,n

R(n)
i > log n) = 0. (6.20)

Finally, we consider rewired susceptible-susceptible edges acquired by infectives at infec-
tion. As seen later in the proof, we need consider only such acquired edges while the number
of susceptibles S(n)(t) ≥ s0n, for fixed s0 ∈ (0, 1). As noted above, W (n)(t) ≤ S(n)

D (t) for all

t ≥ 0. For i = 2, 3, . . . , n, let Y (n)
SS,i be the number of rewired susceptible-susceptible edges

acquired by the ith infective at infection. Recall that if the ith infection occurs at time t

then, conditionally, Y (n)
SS,i ∼ Bin

(
W (n)(t−), 2

S(n)(t−)

)
. It follows that with high probability

Y (n)
SS,i

st
≤ Ŷ (n)

SS,i (i = 2, 3, . . . , ⌊n(1− s0)⌋), where the Ŷ (n)
SS,i are i.i.d. Bin(⌈2µn⌉ , 2

ns0
) random

variables. Now X
st
≤ Y if X ∼ Bin(1, p) and Y ∼ Po(− log(1− p)), so with high probability

Y (n)
SS,i

st
≤ Y̌ (n)

SS,i (i = 2, 3, . . . , ⌊n(1− s0)⌋), where the Y̌ (n)
SS,i are i.i.d. Po(fn) random variables

and fn = µn log(1 − 2
ns0

). Now fn → 2µ
s0

as n → ∞ so, for all n sufficiently large, Y̌ (n)
SS,i

(i = 2, 3, . . . , ⌊n(1− s0)⌋) are stochastically smaller than i.i.d. Po(3µs0 ) random variables. It
then follows that

lim
n→∞

P( max
i=2,3,...,⌊n(1−s0)⌋

Y (n)
SS,i > log n) = 0. (6.21)
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Equations (6.19), (6.20) and (6.21) imply that, provided the number of susceptibles

remains above ns0, then M (n)
D , the maximum number of infectious edges attached to any

individual throughout [0, t0], is bounded above by 3 log n with high probability.
Now s(t0) > 0. Choose s0 ∈ (0, s(t0)). Let U∗ = [s0, 1] × [0, 1] × [0, 2µ]2. The partial

derivatives associated with the vector field b are bounded on U∗, so b is Lipschitz on U∗,
with Lipschitz constant K say. Choose ϵ ∈ (0, s(t0)− s0) such that the path x(t)(0 ≤ t ≤ t0)
lies at a distance greater than ϵ from the complement of U∗ and let δ = ϵe−Kt0/3. Let

T (n) = inf{t ≥ 0 : X̄
(n)

(t) /∈ U∗}. Then, with high probability, x1(X(n)(t)) ∈ [s0, 1],
x2(X(n)(t)) ∈ [0, 1], x3(X(n)(t)) ∈ [0, 2µ] and x4(X(n)(t)) ∈ [0, 2µ] for all t ∈ [0, T (n)]. It then
follows using (6.8)-(6.12) that with high probability

|β(n)(X(n)(t))− b((x(X(n)(t)))| ≤ (8 +
√
2)µαω(n− 2)−1 + 2λµ(|µn − µ) + n−1µn),

for all t ∈ [0, T (n)], which implies that the event Ω1 occurs with high probability, where

Ω1 =

{∫ T (n)∧t0

0

|β(n)(X(n)(t))− b(x(X(n)(t)))| dt ≤ δ

}
.

Further, (6.14)-(6.18) imply that with high probability

α(n)
D (X(n)(t)) + α(n)

RWR(X
(n)(t)) + α(n)

RWS(X
(n)(t)) ≤ 2µω(n− 2)−1(1 + 2α) (6.22)

and
α(n)
I (X(n)(t)) ≤ λn−1

[
3 + (µn + 4µs−1

0 )2 + 8µs−1
0 (1 + µs−1

0 )
]
, (6.23)

for all t ∈ [0, T (n)]. Also, since M (n)
D ≤ 3 log n implies that

∑∞
k=1 k

2I(n)k (t) ≤ 3 log nI(n)E (t),
(6.13) implies that with high probability

α(n)
R (X(n)(t)) ≤ γn−1(1 + 3µ log n), (6.24)

for all t ∈ [0, T (n)]. The inequalities (6.22)-(6.24) imply that there exists C ∈ (0,∞) such
that with high probability α(n)(X(n)(t)) ≤ Cn−1 log n for all t ∈ [0, T (n)], whence the event
Ω2 occurs with high probability, where

Ω2 =

{∫ T (n)∧t0

0

α(n)(X(n)(t)) dt ≤ Ant0

}

and An = Cn−1 log n. The event Ω0 =
{∣∣∣̄X(n)

(0)− x(0)
∣∣∣≤ δ

}
occurs with high probability

as X̄
(n)

(0)
p−→ x(0) as n → ∞. By [Darling and Norris(2008)], Theorem 4.1,

P

(
sup

0≤t≤t0

∣∣∣̄X(n)
(t)− x(t)

∣∣∣> ϵ

)
≤ 4An

δ2
+ P(Ωc

0 ∪ Ωc
1 ∪ Ωc

2) (6.25)

and Theorem 2.2 follows since the right-hand side of (6.25) converges to 0 as n → ∞ and
ϵ > 0 can be chosen arbitrarily small.
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6.3 Proof of Theorem 2.5

Let ζ(n) = inf{t ≥ 0 : I(n)E (t) = 0}, then the final size T (n) of the epidemic is given by T (n) =

n−S(n)(ζ(n)). Let X̃(n) = {X̃(n)(t) : t ≥ 0}, where X̃(n)(t) = (S̃(n)(t), Ĩ(n)0 (t), Ĩ(n)1 (t), . . . , W̃ (n)(t)),
be the process having the same state space as X(n), viz. E(n), and jump rates q̃(n)(ξ, ξ′) =
q(n)(ξ, ξ′)/(λnE) (ξ, ξ′ ∈ E(n), ξ ̸= ξ′). Recall that nE is the total number of infective edges
when corresponding to state ξ. The process X̃(n) stops when it reaches a state ξ with
nE = 0. For t ≥ 0, let Ĩ(n)E (t) =

∑∞
k=1 kĨ

(n)
k (t). Let ζ̃(n) = inf{t ≥ 0 : Ĩ(n)E (t) = 0}

and T̃ (n) = n − S̃(n)(ζ̃(n)). Note that X̃(n) is a random time-scale transformation of X(n),
in which when X(n) is in state ξ the clock for X̃(n) is slowed down by the factor λnE(ξ)
(i.e. by the total force of infection), so T (n) and T̃ (n) have the same distribution. Conse-
quently we can use the time-transformed process X̃(n) and T̃ (n) to study the asymptotic
behaviour of T (n) as n → ∞. The advantage of using the time-transformed process is that,
as n → ∞, ζ̃(n)

p−→ ζ̃ < ∞ (where ζ̃ is non-random and defined below), whereas ζ(n)
p−→ ∞.

Such random time-scale transformations have a long history of application to the final out-
come of epidemics; see, for example, [Watson(1980)], [Ethier and Kurtz(1986)], page 467,
[Darling and Norris(2008)], Section 5.2, and [Janson et al.(2014)].

Let X̃
(n)

= {X̃(n)
(t) : t ≥ 0}, where X̃

(n)
(t) = x̃(X̃(n)(t)) (t ≥ 0) and x̃ : E(n) → R3 is

defined by
x̃(ξ) = (x1(ξ), x3(ξ), x4(ξ)) = n−1

(
nS, nE, nW

)
; (6.26)

cf. (6.2), there is no need to keep track of the number of infectives as the model is SI so
nI = n − nS. (The labelling of the three coordinates of x̃(ξ) is chosen to aid connection

with the coordinates of x(ξ) at (6.2).) The deterministic approximation to X̃
(n)

, obtained
by dividing the right-hand sides of (2.3), (2.5) and (2.6) by λiE, setting γ = 0 and using
i+ s = 1, is x̃(t) = (s̃(t), ĩE(t), w̃(t)) (t ≥ 0), where

ds̃

dt
= −1, (6.27)

d̃iE
dt

= −1 + µs̃− ĩE
s̃

+ 2
w̃

s̃
− ω

λ
(1− α + αs̃), (6.28)

dw̃

dt
=

ωα

λ
s̃− 2

w̃

s̃
. (6.29)

Suppose that X̄
(n)

(0)
p−→ (1− ϵ, ϵ, µϵ(1− ϵ), 0) as n → ∞, where ϵ ∈ (0, 1), as in part (a)

of Theorem 2.5. Then X̃
(n)

(0)
p−→ (1−ϵ, ϵ, µϵ(1−ϵ), 0) also. It is shown in Appendix A.1 that

the solution of (6.27) to (6.29), with initial condition (s̃(0), ĩE(0), w̃(0)) = (1−ϵ, µϵ(1−ϵ), 0),
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is

s̃(t) = 1− ϵ− t, (6.30)

ĩE(t) = s̃(t)

{[
1 +

ω

λ
(1− α)

]
log

(
s̃(t)

1− ϵ

)
+
(
µ+

ωα

λ

)
(1− s̃(t))

−ωαϵ

λ
+

2ωα

λ
s̃(t) log

(
s̃(t)

1− ϵ

)}
, (6.31)

w̃(t) = −ωα

λ
(s̃(t))2 log

(
s̃(t)

1− ϵ

)
. (6.32)

Let Ũ = [0, 1] × (0,∞) × [0,∞). Let b̃ : Ũ → R3 be the vector field given by the right-
hand sides of (6.27) to (6.29). Let ζ̃ = inf{t > 0 : ĩE(t) = 0} and τ = 1 − s̃(ζ̃). Then it
follows from (6.31) that τ is given by the smallest solution in (ϵ, 1) of Fϵ(x) = 0, where Fϵ is
defined at (2.8). (We show in Appendix A.2 that such a solution exists.) We follow Section
4.2 of [Darling and Norris(2008)], adapted to L2 estimates rather than exponential estimates
as there presented. For ϵ′ > 0, let

ζ̃−ϵ′ = inf{t ≥ 0 : B(x̃(t), ϵ′) ∩ Ũ c ̸= ∅},
ζ̃+ϵ′ = inf{t ≥ 0 : B(x̃(t), ϵ′) ⊆ Ũ c},

where B(x̃(t), ϵ′) is the closed ball {x̃ ∈ R3 : |x̃− x̃(t)| ≤ ϵ′}, and let

ρ̃(ϵ′) = sup
ζ̃−
ϵ′≤t≤ζ̃+

ϵ′

|x̃(t)− x̃(ζ̃)|.

We show in Appendix A.2 that, under the conditions of Theorem 2.5(a), ĩ′E(ζ̃) < 0. Thus
b̃(x̃(ζ̃)) is not tangent to the boundary of Ũ , so there exists C̃ < ∞ such that ρ̃(ϵ′) < C̃ϵ′ for
all sufficiently small ϵ′ > 0. Choose such an ϵ′ and then t̃0 so that t̃0 > ζ̃+ϵ′ . Let s̃0 = s̃(t̃0)
and ĩE0 = min{̃iE(t) : 0 ≤ t ≤ t̃0}. Let Ũ∗ = [s0, 1]× (0, 2µ]× [0, 2µ]. The vector field b̃, now
defined on [s0, 1]× (2̃iE0 , 2µ]× [0, 2µ], is Lipschitz, with Lipschitz constant K̃ say.

Let β̃(n) and α̃(n) be defined analogously to β(n) and α(n) at (6.3) and (6.4). Let
δ′ = ϵ′e−K̃t̃0/3 and Ω̃i (i = 0, 1, 2) be corresponding events to Ωi (i = 0, 1, 2) (see the
proof of Theorem 2.2) for X̃(n). The components of β̃(n)(ξ) are given by the corresponding

components of β(n)(ξ) divided by λx(3)(ξ). (Note that β(n)
R and β(n)

RWR are no longer rele-
vant.) A similar comment applies to the components of b̃(x̃(ξ)). In an obvious notation,

α̃(n)
D (ξ) = α(n)

D (ξ)/(λx3(ξ)), α̃(n)
RWS(ξ) = α(n)

RWS(ξ)/(λx
3(ξ)) and

α̃(n)
I (ξ) = n−2E[1 + (X + Y − Z − 1)2 + Z2]; (6.33)

cf. (6.17), the constant 2 in the expectation in (6.17) is replaced by 1 in (6.33), since x̃(ξ) does
not have the component x2(ξ) = n−1nI corresponding to the number of infectives. (Again,

α(n)
R and α(n)

RWR are no longer relevant.) The proof of Theorem 2.2 is easily modified to show
that the events Ω̃1 and Ω̃2, with An replaced by Ãn = C1n−1 log n for suitable C1 > 0, each
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occur with high probability. It then follows using [Darling and Norris(2008)], Theorem 4.3
(adapted to L2 estimates) that

P
(∣∣∣̃X

(n)
(ζ̃(n))− x̃(ζ̃)

∣∣∣> (1 + C̃)ϵ′
)
≤ 4Ãn

(δ′)2
+ P(Ω̃c

0 ∪ Ω̃c
1 ∪ Ω̃c

2). (6.34)

Theorem 2.5(a) follows since Ω̃0 occurs with high probability, by assumption, and ϵ′ > 0 can
be chosen arbitrarily small.

Turn now to Theorem 2.5(b). Consider first the non-time-transformed process, let tn =
inf{t > 0 : S(n)(t) ≤ n − log n} and note that tn < ∞ since a major outbreak occurs. Let
X(n)′ = {X(n)′(t) : t ≥ 0} be defined by X(n)′(t) = X(n)(t+tn) (t ≥ 0), so X(n)′(0) = X(n)(tn)
is random. We apply the same random time-scale transformation as above to the process
X(n)′ , yielding a process, X̃(n)′ say, with X̃(n)′(0) = X(n)(tn). We now drop the superfix ′,
from the process X̃(n)′ to yield a time-transformed process X̃(n) with X̃(n)(0) = X(n)(tn).

It follows from the proofs of Theorem 2.1 and Lemma 2.1 that I(n)E (tn) and W (n)(tn)

are each Op(log n), so X̃
(n)

(0)
p−→ (1, 0, 0) as n → ∞. The deterministic approximation

x̃(t) = (s̃(t), ĩE(t), w̃(t)) (t ≥ 0) is now the solution of (6.27)-(6.29) with initial condition
(s̃(0), ĩE(0), w̃(0)) = (1, 0, 0), which is given by setting ϵ = 0 in (6.30)-(6.32). (Note that,
unlike the corresponding un-time-transformed deterministic approximation, this process does
not get stuck at (1, 0, 0).) As before, ζ̃ = inf{t > 0 : ĩE(t) = 0} and τ = 1 − s̃(ζ̃). Thus τ
satisfies F0(τ) = 0. We show in Appendix A.3 that, when R0 > 1, F0(τ) = 0 has a unique
solution in (0, 1) and ĩ′E(ζ̃) < 0.

Let τ ′ be as in Lemma 2.1, t1 = τ ′/2 and c̃ = s̃(t1) = 1− t1. We now take

Ũ = {([1− c̃, 1]× [−1, 2µ)) ∪ ([0, 1− c̃)× (0, 2µ))}× [0, 2µ).

Note that with this choice of Ũ , ζ̃−ϵ′ is close to ζ̃ for all sufficiently small ϵ′ > 0. Note also

that Ĩ(n)E (t) > 0 for all t ∈ [0, t1] with high probability, since if Ĩ(n)E (t) = 0 for some t ∈ [0, t1]
then T̄ (n) ≤ τ ′/2 contradicting Lemma 2.1. The remainder of the proof now follows that of
(a).

6.4 Proof of Corollary 2.1

Recall that γ = 0 and we consider the SI model. By Theorem 2.5(b), τSI(µ,λ,ω,α) is given
by the unique solution in (0, 1) of f(x) = 0, where

f(x) = log(1− x) +
(λµ+ ωα)x

λ+ ω(1− α) + 2ωα(1− x)
. (6.35)

Recall from (2.2) that λc =
ω

µ−1 . The function f0, defined at (2.9) is obtained by substituting
λ = λc in (6.35).

Writing θ for θ(µ,α) = 2α(µ−1)
µ+α(µ−1) , elementary calculus yields

f ′
0(x) = − 1

1− x
+

1

(1− θx)2
and f ′′

0 (x) = − 1

(1− x)2
+

2θ

(1− θx)3
.
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Thus f ′
0(0) = 0. If θ ∈ [0, 12 ] then f ′

0(x) < 0 for all x ∈ (0, 1), whence f0 is strictly decreasing
on [0, 1) and 0 is the only root of f0 in [0, 1). If θ > 1

2 then f ′′
0 (0) > 0 and f0 has a unique

root in (0, 1), since f0(1−) = −∞ and f has at most two stationary points in (0, 1). Part
(a) follows since, with µ,ω and α held fixed, limλ↓λc f(x) = f0(x) for all x ∈ [0, 1). Part (b)
follows on noting that θ > 1

2 if and only if α > 1
3 and µ > 3α

3α−1 .
Turning to part (c), fix µ > 1,ω > 0 and α > 0, and let

g(x,λ) = log(1− x) +
(λµ+ ωα)x

λ+ ω(1− α) + 2ωα(1− x)
(0 ≤ x < 1,λ > λc),

so τSI(µ,λ,ω,α) is given by the unique x ∈ (0, 1) such that g(x,λ) = 0. Let gλ denote the
partial derivative of g with respect to λ. Then

gλ(x,λ) =
ωx[(1 + α− 2αx)µ− α]

[λ+ ω(1− α) + 2ωα(1− x)]2
,

so

gλ(x,λ)

⎧
⎪⎨

⎪⎩

> 0 if x < x0(µ,α),

= 0 if x = x0(µ,α),

< 0 if x > x0(µ,α),

(6.36)

where (recall (2.11))

x0(µ,α) =
1 + α

2α
− 1

2µ
.

Note that x0(µ,α) is independent of both λ and ω.
Now µ > 1, so x0(µ,α) >

1
2α . Thus if α ≤ 1

2 , then gλ(x,λ) > 0 for all x ∈ (0, 1) and it
follows that τSI(µ,λ,ω,α) is strictly increasing in λ for λ > λc.

Now fix α ∈ (12 , 1). Noting that ω(1− α) + 2ωα[1− x0(µ,α)] =
ωα
µ ,

g(x0(µ,α),λ) = h̃(µ) (λ > λc), (6.37)

where h̃(µ) = h(µ,α) and h is defined at (2.10). (Note that g(x0(µ,α),λ) is independent of
λ.) If µ ≥ α

1−α then x0(µ,α) ≥ 1 whence, as above, τSI(µ,λ,ω,α) is strictly increasing in λ.
Thus, consider 1 < µ < α

1−α .

Now h̃(1) = log
(
1− 1

2α

)
+ 1

2α < 0 and h̃( α
1−α) = −∞. Further,

h̃′(µ) =
1 + α

2α
− α

µ[α− (1− α)µ]
. (6.38)

Hence, h̃′(1) = α−1
2α(2α−1) < 0, as α ∈ (12 , 1), and

h̃′(µ) = 0 if and only if (1− α2)µ2 − α(1 + α)µ+ 2α2 = 0. (6.39)

The discriminant of the quadratic (in µ) on the right-hand side of (6.39) is ∆ = α2(1 +
α)(9α − 7). Suppose α < 7

9 . Then ∆ < 0, so h̃ has no stationary point in (1, α
1−α) and
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h̃(µ) < 0 for all µ ∈ (1, α
1−α). Thus, for such µ, (6.37) implies that g(x0(µ,α),λ) < 0 for all

λ > λc, whence τSI(µ,λ,ω,α) < x0(µ,α) for all λ > λc. It then follows, using (6.36) and
the definition of τSI(µ,λ,ω,α), that τSI(µ,λ,ω,α) is strictly increasing in λ on (λc,∞). The
same conclusion holds if α = 7

9 since then h̃ has a unique stationary point in (1, α
1−α), which

must be an inflection as h̃′(1) < 0 and h̃( α
1−α) = −∞, so again h̃(µ) < 0 for all µ ∈ (1, α

1−α).

Suppose now that 7
9 < α < 1. Then h̃ has two stationary points in (1, α

1−α), a minimum
at µ̌(α) and a maximum at µ̂(α) say, where µ̌(α) < µ̂(α) are given by α

2(1−α) [1± η(α)], with

η(α) =
√

9α−7
1+α . Note that η is strictly increasing on [79 , 1], η(

7
9) = 0 and η(1) = 1. Further,

η−1(θ) = 7+θ2

9−θ2 (θ ∈ [0, 1]). For θ ∈ [0, 1), let ĥ(θ) = h(µ̂(α),α), where α = η−1(θ). A little
algebra yields that

ĥ(θ) = 2 log(1− θ)− log(7 + θ2) +
3 + θ

2(1− θ)
.

Now ĥ(0) = 3
2 − log 7 < 0, consistent with the above analysis of the case α = 7

9 . It is shown

easily that ĥ is strictly increasing and ĥ(1−) = ∞. Thus ĥ has a unique root (0, 1), which
we denote by θ∗. Numerical calculation yields θ∗ ≈ 0.4614, whence α∗ = η−1(θ∗) ≈ 0.8209
and µ̂(α∗) ≈ 3.3482.

When 7
9 < α < α∗, then for all µ ∈ (1, α

1−α) we have h̃(µ) < 0 and the previous analysis
shows that τSI(µ,λ,ω,α) is strictly increasing in λ on (λc,∞). (Thus we have now proved
part (c)(i).) The same is true when α = α∗ and µ ̸= µ̂(α∗). If α = α∗ and µ = µ̂(α∗)
then g(x0(µ̂(α∗)),λ) = 0 for all λ > λc, whence τSI(µ̂(α∗),λ,ω,α∗) = x0(µ̂(α∗)) = τ ∗ for all
λ > λc, thus proving part (c)(ii).

Suppose now that α∗ < α < 1. Then h̃(µ̂(α)) > 0, so there exists µ∗
L(α) < µ̂(α) < µ∗

U(α)
such that (recall that 1 < µ < α

1−α)

h̃(µ)

⎧
⎪⎨

⎪⎩

< 0 if 1 < µ < µ∗
L(α) or µ

∗
U(α) < µ < α

1−α ,

= 0 if µ = µ∗
L(α) or µ

∗
U(α),

> 0 if µ∗
L(α) < µ < µ∗

U(α).

The cases when h̃(µ) < 0 or h̃(µ) = 0 have been analysed previously and the same conclusions
follow. If h̃(µ) > 0 then g(x0(µ,α),λ) > 0 for all λ > λc. Thus now τSI(µ,λ,ω,α) > x0(µ,α)
for all λ > λc, so (6.36) and the definition of τSI(µ,λ,ω,α) implies that τSI(µ,λ,ω,α) is
strictly decreasing in λ on (λc,∞), which completes the proof of part (c)(iii).

Suppose finally that α∗ < α = 1. Then h̃(µ) = − log(2µ)+µ− 1
2 , so h̃′(µ) = 1−µ−1 > 0

for all µ > 1. Further, it is shown easily that h̃ has a unique root, denoted by µ∗(1), in
(1,∞). Thus h̃(µ) is < 0,= 0 or > 0 according to µ < µ ∗ (1),= µ∗(1) or > µ∗(1) and part
(c)(iv) follows.

6.5 Final outcome and discontinuity of the SIR model

In this section we present arguments in support of conjectures concerning the final size of
the SIR epidemic (Conjecture 2.1) and its discontinuity at the critical value λ = λc (see Re-
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mark 2.4), together with proofs of Theorems 2.3 and 2.4. In Section 6.5.1, we first outline the
difficulty in extending the proof in Section 6.3 of Theorem 2.5, concerning the final outcome
of the SI epidemic, to the SIR model. We then make some remarks on how Conjecture 2.1
might be proved. In Section 6.5.2, we prove Theorem 2.3 concerning discontinuity at λ = λc

of the final size of the deterministic SIR model given by (2.3)-(2.6) when its initial condition
converges to having zero infected in an appropriate fashion. Finally, in Section 6.5.3 we
prove Theorem 2.4, which gives sufficient conditions and (implicitly) necessary conditions
for the final size of the stochastic SIR model to have a discontinuity at λ = λc, and discuss
a possible approach to proving that the sufficient conditions are also necessary.

6.5.1 Final size of SIR epidemic

A similar random time-scale transformation to that used in Section 6.3, in which the clock
is slowed down by a factor given by the total force of infection, leads to the deterministic
model

ds̃

dt
= −1, (6.40)

d̃i

dt
= −γ

λ

ĩ

ĩE
+ 1, (6.41)

d̃iE
dt

= −1− γ

λ
+ µs̃− ĩE

s̃
+ 2

w̃

s̃
− ω

λ
(1− α + α(1− ĩ)), (6.42)

dw̃

dt
=

ωα

λ
s̃− 2

w̃

s̃
, (6.43)

which is obtained from (2.3)-(2.6) by dividing all right-hand sides by λiE.
Note that the corresponding vector field, b say, is not Lipschitz on, for example, U∗ =

[s0, 1]× [0, 1]× [0, 2µ]2, owing to the term ĩ
ĩE

in (6.41). Also, the quantity corresponding to

α(n)
R (ξ) in (6.13) becomes

α̃(n)
R (ξ) = n−2

(γ
λ

)(nI + nE
2

nE
2

)
,

leading to the bound (cf. (6.24))

α̃(n)
R (X̃(n)(t)) ≤ n−1

(γ
λ

)(x1(ξ)

x3(ξ)
+ 3 log n

)
,

which causes problems in the application of [Darling and Norris(2008)], Theorem 4.1, if x3(ξ)
can be arbitrarily small. These problems disappear if both ĩE and x3(ξ) are bounded away
from zero but that excludes the end of an epidemic, and also the start if there are few initial
infectives.

Consider Conjecture 2.1(a). For any ϵ ∈ (0, 1 − s(∞)), it follows immediately from
Theorem 2.2, by choosing t0 so that s(t0) = s(∞) + ϵ

2 , that

lim
n→∞

P(T̄ (n) > 1− s(∞)− ϵ) = 1.
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To prove Conjecture 2.1(a) it is sufficient to show also that

lim
n→∞

P(T̄ (n) < 1− s(∞) + ϵ) = 1. (6.44)

One approach to proving (6.44) is as follows (cf. the proof of [Ball and Britton(2007)], The-
orem 4.3). For ϵ′ ∈ (0, 1 − s(∞)), let t0(ϵ′) be defined by s(t0(ϵ′)) = s(∞) + ϵ′. Choose
ϵ′0 sufficiently small so that the process {X(n)(t) : t ≥ t0(ϵ′0)} is subcritical; intuitively this
is possible since otherwise the final fraction susceptible would be smaller than s(∞). For
ϵ′ ≤ ϵ′0, the process of infectives in {X(n)(t) : t ≥ t0(ϵ′)} can be bounded above by a sub-
critical branching process, B(ϵ′) say, having 2ni(t0(ϵ′)) initial ancestors. Let µB(ϵ′) be the
mean total progeny of B(ϵ′) if it had a single ancestor. Note that µB(ϵ′) is increasing in ϵ′

and µB(ϵ′) < ∞ for ϵ′ < ϵ′0. A simple argument using Markov’s inequality shows that, for
ϵ > 0,

P
(
T̄ (n)(∞)− T̄ (n)(t0(ϵ

′)) ≥ ϵ
)
≤ 2i(t0(ϵ′))µB(ϵ′0)

ϵ
. (6.45)

The right-hand side of (6.45) can be made arbitrarily small as i(t0(ϵ′)) → 0 as ϵ′ ↓ 0,
and (6.44) follows. The lack of a closed-form solution to the ordinary differential equa-
tions (6.40)-(6.43) makes it difficult to make the above argument rigorous.

Turning to Conjecture 2.1(b), consider the approximating branching process B defined
in Section 2.2.1. Application of [Nerman(1981)], Theorem 5.4 and Corollary 3.2, as at (6.1),
yields

e−rtI(t)
a.s.−→ W∞ as n → ∞,

so, for P-almost all ω ∈ AC
ext,

lim
t→∞

I(t)

IE(t)
=

λ

r + γ

=
λ

λ(µ− 1)− ω
,

as r = λ(µ − 1) − γ − ω. It is then clear from the proof of Theorem 2.1 that for the

epidemic E (n), conditional upon a major outbreak, I(n)(tn)/I
(n)
E (tn)

a.s.−→ L as n → ∞, where
tn = inf{t ≥ 0 : T (n)(t) ≥ log n} is the time when the cumulative number of infectives in
E (n) first reaches log n. This suggests the initial conditions for the deterministic model used
in Conjecture 2.1(b).

6.5.2 Proof of Theorem 2.3

The lack of a closed-form solution to (6.40)-(6.43) also means that we do not obtain an
equation that is satisfied by the final size τ . We can however obtain a condition for the final
size of the deterministic model (6.40)-(6.43), with initial condition (s̃(0), ĩ(0), ĩE(0), w̃(0)) =
(1−ϵ, ϵ, Lϵ, 0) where L is a suitably chosen constant, to have a discontinuity at the threshold
λ = λc in the limit ϵ ↓ 0 and hence prove Theorem 2.3.
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First note that (6.42), together with the initial condition, yields

ĩ′E(0) = −1− γ + ω

λ
+ µ > 0 if and only if λ >

γ + ω

µ− 1
= λc. (6.46)

Differentiating (6.42) yields

d2ĩE
dt2

= µ
ds̃

dt
− 1

s̃

d̃iE
dt

+
1

s̃2
ĩE

ds̃

dt
+

2

s̃

dw̃

dt
− 2

s̃2
w̃
ds̃

dt
+

ωα

λ

d̃i

dt
(6.47)

= −µ− 1

s̃

d̃iE
dt

− 1

s̃2
ĩE +

2ωα

λ
− 2w̃

s̃2
+

ωα

λ

(
−γ

λ

ĩ

ĩE
+ 1

)
.

To determine ĩ′′E(0), we need L = limt↓0
ĩ(t)

ĩE(t)
. The value of L is assumed in the theorem,

see the definition of τSIR(µ,λ, γ,ω,α) just prior to Theorem 2.3, but it can also be obtained
using l’Hopital’s rule. Assuming that the limit exists, l’Hopital’s rule gives

L = lim
t↓0

ĩ′(t)

ĩ′E(t)
=

−γ
λL+ 1

−1− γ+ω
λ + µ

,

using (6.41) and (6.46), whence

L =
λ

λ(µ− 1)− ω
. (6.48)

Substituting (6.48) into (6.47) yields

ĩ′′E(0) = −µ+
ωα

λ

(
3− γ

λ(µ− 1)− ω

)

= −µ+
2ωα

λc
=

µ[ω(2α− 1)− γ]− 2ωα

γ + ω
, (6.49)

when λ = λc. Thus, when λ = λc,

ĩ′′E(0) > 0 if and only if γ < ω(2α− 1) and µ >
2ωα

ω(2α− 1)− γ

and

ĩ′′E(0) < 0 if and only if γ > ω(2α− 1) or µ <
2ωα

ω(2α− 1)− γ
.

Theorem 2.3 follows since

lim
λ↓λc

τSIR(µ,λ, γ,ω,α)

{
= 0 if ĩ′′E(0) < 0,

> 0 if ĩ′′E(0) > 0.
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6.5.3 Proof of Theorem 2.4

Theorem 2.4 is proved by considering modifications of the epidemic model E (n) which (i)
give upper and lower bounds for the process of infectives in E (n) and (ii) lead to a time-
transformed deterministic model whose corresponding vector field is Lipschitz thus enabling
proof of an associated law of large numbers. Part (a) of Theorem 2.4 follows by showing that
under the given conditions the final size of the deterministic model for the lower bounding
process has a discontinuity at the threshold λ = λc; part (b) follows similarly by showing
that the final size of deterministic model for the upper bounding process is continuous at
λ = λc. We present the argument in detail for the lower bounding process. The proof for
the upper bounding process is similar, so only an outline is given.

Suppose first that the model E (n) is modified so that if a susceptible rewires an edge
from one infective to another infective then the edge is dropped. This clearly leads to a
model whose final size is stochastically smaller than that of the original model E (n). We
run the original model until time tn = inf{t > 0 : S(n)(t) ≤ n − log n} and then the
modified model, and make the same random time-scale transformation as in Section 6.3 to
the latter. For the time-transformed modified model, in an obvious notation, let X̂(n) =
{(Ŝ(n)(t), Î(n)(t), Î(n)E (t), Ŵ (n)(t)) : t ≥ 0}, where Ŝ(n)(0) = S(n)(tn) etc. The corresponding
deterministic model is

dŝ

dt
= −1, (6.50)

d̂i

dt
= −γ

λ

î

îE
+ 1, (6.51)

d̂iE
dt

= −1− γ

λ
+ µŝ− îE

ŝ
+ 2

ŵ

ŝ
− ω

λ
, (6.52)

dŵ

dt
=

ωα

λ
ŝ− 2

ŵ

ŝ
, (6.53)

with initial condition (ŝ(0), î(0), îE(0), ŵ(0)) = (1, 0, 0, 0). Note that the only difference
between (6.40)-(6.43) and (6.50)-(6.53) is that the final term in (6.42) is replaced by ω

λ since
now every rewiring necessarily leads to a drop of an infective edge.

For t ≥ 0, let X̂
(n)

(t) = n−1(Ŝ(n)(t), Î(n)E (t), Ŵ (n)(t)) and x̂(t) = (ŝ(t), îE(t), ŵ(t)). Let
ζ̂ = inf{t > 0 : îE(t) = 0}. Observe that (6.50), (6.52) and (6.53) form an autonomous
system that is Lipschitz provided that ŝ is bounded away from 0. Also, in an obvious
notation, (6.13) becomes

α̂(n)
R (ξ) = n−2

(γ
λ

) nE
2

nE
2

,

leading to the bound (cf. (6.24))

α̃(n)
R (X̂(n)(t)) ≤ 2

γ

λ
n−1 log n.

Consequently, it is straightforward to modify the proof of Theorem 2.2 to show that, for any
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t0 ∈ (0, ζ̂),

sup
0≤t≤t0

∣∣∣̂X
(n)

(t)− x̂(t)
∣∣∣ p−→ 0 as n → ∞. (6.54)

Now î′E(0) = µ − 1 − γ+ω
λ , so î′E(0) > 0 if and only if λ > λc and î′E(0) = 0 if λ = λc.

Further, using (6.50),

d2îE
dt2

= −µ− 1

ŝ

d̂iE
dt

− 1

ŝ2
îE +

2

ŝ

dŵ

dt
+

2ŵ

ŝ2
,

so, using (6.53), when λ = λc,

î′′E(0) = −µ+
2ωα

λc
=

µ(ω(2α− 1)− γ)− 2ωα

ω + γ
.

Note that î′′E(0) > 0 if and only if the condition in Theorem 2.4(a) is satisfied.

Let ζ̂(n) = inf{t ≥ 0 : Î(n)E (t) = 0} and T̂ (n) = n − Ŝ(n)(ζ̂(n)), so T̂ (n) is the size of
the modified epidemic. Suppose that the condition in Theorem 2.4(a) is satisfied. Then
limλ↓λc(1− x̂(ζ̂)) > 0 and it follows using (6.54) that there exists τ0 > 0 such that

lim
λ↓λc

lim
n→∞

P(n−1T̂ (n) > τ0) = 1.

Theorem 2.4(a) now follows as T̄ (n), conditioned on the occurrence of a major outbreak, is
stochastically larger than n−1T̂ (n).

Turning to part (b), suppose now that the model E (n) is modified so that if a susceptible
rewires an edge from an infective to a recovered individual then the edge to the infective is
also retained. In the construction this means that when an infective sends a warning down
an infective edge and that edge is rewired to a recovered individual then the infective does
not lose that infective edge. This leads to a model whose final size is stochastically larger
than that of E (n). As before, we run the model E (n) until time tn defined above and then the
time-transformed modified model. The corresponding time-transformed deterministic model
is given by (6.50)-(6.53), with (6.52) replaced by

d̂iE
dt

= −1− γ

λ
+ µŝ− îE

ŝ
+ 2

ŵ

ŝ
− ω

λ
(1− α + αŝ). (6.55)

Note that (6.50), (6.55) and (6.53) form an autonomous system that is Lipschitz provided
that ŝ is bounded away from 0. The proof parallels that of part (a) in the obvious fashion,
the only difference being that now, when λ = λc,

î′′E(0) = −µ+
3ωα

λc
=

µ(ω(3α− 1)− γ)− 3ωα

ω + γ
.

Thus î′′E(0) < 0 if either ω(3α − 1) < γ or µ < 3ωα
ω(3α−1)−γ . Moreover, a further calculation

shows that if λ = λc and î′′E(0) = 0 then î′′′E(0) = −2ωα
λc

< 0. Part (b) of the theorem now
follows using a similar argument to that used at the end of the proof of part (a).
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The bounding process used in the proof of Theorem 2.4(b) suggests an approach to
proving the conditions in part(a) are also necessary for the final size to be discontinuous
at λ = λc. Run the epidemic E (n) until time tn and then make the random time-scale

transformation. For the latter, let X̃
(n)

= {X̃(n)
(t) : t ≥ 0}, where X̃

(n)
(t) = x̃(X̃(n)(t))

(t ≥ 0) and x̃ : E(n) → R4 is defined by (6.2). Let Ĩ(n)(t) and Ĩ(n)E (t) denote respectively

the numbers of infectives and infective edges in X̃
(n)

at time t. Recall from Section 6.5.2
that for the epidemic E (n), conditional upon a major outbreak, I(n)(tn)/I

(n)
E (tn)

a.s.−→ L as
n → ∞. This suggests that there exists L′ > L and t0 > 0 such that, conditional upon a
major outbreak, Ĩ(n)(t) ≤ L′Ĩ(n)E (t) for all t ∈ [0, t0] with high probability.

The term ω
λ (1−α+α(1− ĩ)) in (6.42) arises from rewirings to susceptibles or recovered.

In particular, the probability that a rewiring is to a recovered, and the infective edge is

dropped, is n−X(n)(t)−I(n)(t)−2
n−2 . Modifying the model so that this probability is replaced by

n−X(n)(t)−L′I
(n)
E (t)−2

n−2 leads to an upper bounding process for the true model and hence also for
the time-transformed model. The latter has deterministic limit which satisfies (6.40)-(6.43)
over [0, t0] but with (6.42) replaced by

d̃iE
dt

= −1− γ

λ
+ µs̃− ĩE

s̃
+ 2

w̃

s̃
− ω

λ
(1− α + α(1− L′̃iE)). (6.56)

Thus (6.40), (6.56) and (6.43) form an autonomous system, that is Lipschitz provided that
ŝ is bounded away from 0 and hence susceptible to analysis. Omitting the details, when
λ = λc we obtain ĩ′′E(0) = −µ + 2ωα

λc
and ĩ′′′E(0) = −2ωα

λc
< 0 if ĩ′′E(0) = 0, which imply that

the conditions in Theorem 2.4(b) are also necessary.
It may be possible to make the argument rigorous using branching processes that bound

E (n) but that does not seem straightforward since (i) t0 depends on λ and ↓ 0 as λ ↓ λc and
(ii) the result is conditional upon a major epidemic, the probability of which also ↓ 0 as
λ ↓ λc.

6.6 Proof of Theorems 2.7 and 2.8

The proof of Theorem 2.7 is omitted as it parallels that of Theorem 2.2 in Section 6.2, with
only very minor modification. Turning to Theorem 2.8, we make the same random time-scale
transformation as in Section 6.3, in which the clock is slowed down by a factor given by the
total force of infection. Recalling (2.12)-(2.15), this leads to the deterministic model given
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by

ds̃

dt
= −1, (6.57)

d̃i

dt
= −γ

λ

ĩ

ĩE
+ 1 (6.58)

d̃iE
dt

= −1− γ

λ
+ µs̃− ĩE

s̃
+ 2

w̃

s̃
− ω

λ
, (6.59)

dw̃

dt
=

ωα

λ
− 2

w̃

s̃
, (6.60)

with initial condition (s̃(0), ĩ(0), ĩE(0), w̃(0)) = (1, 0, 0, 0). The equations for (s̃, ĩE, w̃) form
a closed system having solution

s̃(t) = 1− t, (6.61)

ĩE(t) = s̃(t)g̃(s̃(t)), (6.62)

w̃(t) =
ωα

λ
s̃(t)(1− s̃(t)), (6.63)

where

g̃(s) =

(
1 +

γ + ω(1− 2α)

λ

)
log s̃+

(
µ− 2

ωα

λ

)
(1− s̃(t)).

The solution is derived as follows. Equation (6.61) follows immediately from (6.57)
and the initial condition. Equation (6.63) is obtained by dividing (6.60) by (6.57) and
solving the resulting differential equation using the integrating factor s̃−2, together with the
initial condition. Finally, (6.62) is obtained by dividing (6.59) by (6.57), substituting for w̃
from (6.63) and then solving the resulting differential equation using the integrating factor
s̃−1, together with the initial condition.

Let ζ̃ = inf{t > 0 : ĩE(t) = 0} and ŝ = s̃(ζ̃). Then either ŝ = 0 or g̃(ŝ) = 0. We thus
investigate the solutions of g̃(s) = 0 in [0, 1]. Note that ĩ′E(0) = µ− 1− ω+γ

λ > 0, as λ > λc,

and s̃(1) = 0, so ζ̃ ∈ (0, 1], so we investigate the solutions of g̃(s) = 0 in [0, 1). Now

g̃′(s) =

(
1 +

γ + ω(1− 2α)

λ

)
s−1 − µ+ 2

ωα

λ
,

so g̃ has at most one stationary point in (0, 1]. Further, g̃(1) = 0 and g̃′(1) = 1−µ+ ω+γ
λ < 0,

as λ > λc, so by considering g̃(0+) it is seen easily that g̃ has no root in (0, 1) if λ + γ +
ω(1 − 2α) ≤ 0 and precisely one root in (0, 1) if λ + γ + ω(1 − 2α) > 0. Note that since
λc =

γ+ω
µ−1 , a necessary (but not sufficient) condition for g̃ not to have a root in (0, 1) is that

r(µ, γ,ω,α) < 0, where r(µ, γ,ω,α) is defined at (2.16).
Suppose that a major epidemic occurs. Let tn = inf{t > 0 : S(n)(t) ≤ n − log n} < ∞.

Define the time-transformed process X̃
(n)

analogously to the SI model, using the coordinate

functions (6.26), with X̃
(n)

(0) = (n−1(S(n)(tn), I
(n)
E (tn),W (n)(tn)).
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Suppose that r(µ, γ,ω,α) < 0 and λ ∈ (λc,ω(2α − 1) − γ]. Then, given any ϵ ∈ (0, 1),
let t1 = 1 − ϵ/2, so s̃(t1) = ϵ/2. Let Ũ = [ ϵ2 , 1] × [− ϵ

2 , 2µ] × [0, 2µ]. The vector field

b̃ : Ũ → R3 given by the right-hand sides of (6.57), (6.59) and (6.60) is Lipschitz and the
proof of Theorem 2.2 is easily modified to yield

lim
n→∞

P

(
sup

0≤t≤t1

∣∣∣̃X
(n)

(t)− x̃(t)
∣∣∣>

ϵ

4

)
= 0, (6.64)

where x̃(t) = (s̃(t), ĩE(t), w̃(t)). By a similar argument to that used at the end of the proof of

Theorem 2.5(b) in Section 6.3, there exists t2 ∈ (0, t1) such that Ĩ(n)E (t) > 0 for all t ∈ [0, t2]
with high probability. It follows that

lim
n→∞

P(T̄ (n) > 1− ϵ) ≥ lim
n→∞

P(S̃(n)(t1) < ϵ)

= 1,

using (6.64) and the definition of t1. Theorem 2.8(b) for the case when λ ∈ (λc,ω(2α−1)−γ]
now follows as ϵ ∈ (0, 1) is arbitrary.

The proof of Theorem 2.8 for the other cases, i.e. when the limit τ̃ < 1, follows a similar
argument to that of Theorem 2.5(b) and hence is omitted.

7 Concluding comments

We have presented a construction of an SIR epidemic with preventive rewiring on an Erdős-
Rényi random graph, together with a rigorously justified deterministic approximation. For
the special case of the SI model, these yielded a detailed analysis of the final outcome of the
epidemic, and in particular a proof of a necessary and sufficient condition for the final size
to be discontinuous at the phase transition λ = λc. Similar results were also obtained for the
SIR model when rewiring is necessarily to a susceptible individual. Moreover in that case
the behaviour at the phase transition is very striking in that the final fraction infected by
the epidemic jumps from 0 to 1. For the original SIR model only partial results were proved,
in that there is a non-negligible gap between the necessary and sufficient conditions for a
discontinuity, although stronger results were conjectured together with supporting evidence.
Proving those conjectures is a worthwhile future work.

It seems likely that similar results hold for epidemics on networks constructed using the
configuration model. Indeed [Yao and Durrett(2020)] provides such results although, as de-
scribed in Section 4, we believe that their results are for a model which is different from the
original SIR model and does not provide an exact asymptotic approximation to the original
model in the limit as n → ∞. However it seems hard to extend our construction to epidemics
on configuration-model networks since the construction exploits symmetries and indepen-
dence properties of a Erdős-Rényi random graph that are not present in configuration-model
networks. Although not considered here, it seems likely that the construction can be ex-
tended to models that are more akin to the Erdős-Rényi random graph, such as the stochastic
block model.
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A Time-transformed deterministic SI model.

A.1 Solution of time-transformed deterministic model (6.27)-(6.29)

We solve (6.27)-(6.29) with the initial condition (s̃(0), ĩE(0), w̃(0)) = (1 − ϵ, µϵ(1 − ϵ), 0).
The solution (6.30) for s̃(t) follows immediately from (6.27) as x̃(0) = 1− ϵ. Dividing (6.29)
by (6.29) yields

dw̃

ds̃
= −ωα

λ
s̃+ 2

w̃

s̃
,

which with the above initial condition yields, using the integrating factor s̃−2,

w̃(s̃) =
ωα

λ
s̃2 log

(
s̃

1− ϵ

)
, (A.1)

and (6.32) follows. Dividing (6.28) by(6.29) and substituting from (A.1) gives

d̃iE
ds̃

= 1− µs̃+
ĩE
s̃

+ 2
ωα

λ
s̃
w̃

s̃
log

(
s̃

1− ϵ

)
+

ω

λ
(1− α + αs̃),

which, with the above initial condition can be solved using the integrating factor s̃−1 to
yield (6.31).

A.2 Final size and ĩ′E(ζ̃) when ϵ > 0

Define fϵ : [ϵ, 1) → R by

fϵ(x) = log

(
1− x

1− ϵ

)
+

(λµ+ ωα)x− ωαϵ

λ+ ω(1− α) + 2ωα(1− x)
,

so τ satisfies Fϵ(τ) = 0 if and only if fϵ(τ) = 0. From (6.31), we have ĩE(t) = H(s̃(t)), where

H(s̃) =
s̃

λ
G(s̃), with G(s̃) = (λ+ ω(1− α) + 2ωαs̃)fϵ(1− s̃).

Now fϵ(ϵ) > 0 and fϵ(1−) = −∞, so fϵ has at least one root in [ϵ, 1), and since s̃(t) = 1−ϵ−t
(t ≥ 0), ζ̃ = inf{t > 0 : ĩE(t) = 0} is finite and s̃(ζ̃) = 1− τ , where τ is the smallest solution
of Fϵ(x) = 0 in (ϵ, 1). Further, since s̃′(ζ̃) = −1,

ĩ′E(ζ̃) = −H ′(s̃(ζ̃))

= −1

λ

[
s̃(ζ̃)G′(s̃(ζ̃)) +G(s̃(ζ̃))

]

= − s̃(ζ̃)

λ
G′(s̃(ζ̃)),

as G(s̃(ζ̃)) = 0. Now,

G′(s̃(ζ̃)) = −(λ+ ω(1− α) + 2ωαs̃(ζ̃))f ′
ϵ(1− s̃(ζ̃)),

since fϵ(1− s̃(ζ̃)) = 0, so ĩ′E(ζ̃) < 0 if and only if f ′
ϵ(τ) < 0. It is shown easily that f ′

ϵ(τ) < 0
if and only if F ′

ϵ(τ) < 0.
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A.3 Final size and ĩ′E(ζ̃) when ϵ = 0

Setting ϵ = 0 in (6.31) shows that τ = 1 − s̃(ζ̃) is given by the smallest solution in (0, 1)
of F0(x) = 0, provided there is at least one solution, otherwise τ = 1. We show now that
when R0 > 1 there is a unique solution in (0, 1). Let f be the function defined at (6.35), so
τ satisfies F0(τ) = 0 if and only if f(τ) = 0. Now

f ′(x) = − 1

1− x
+

(λµ+ ωα)[λ+ ω(1 + α)]

[λ+ ω(1− α) + 2ωα(1− x)]2
,

so, for x ∈ (0, 1), f ′(x) = 0 if and only if g1(1−x) = g2(1−x), where g1(x) = (λ+ω(1−α)+
2ωαx)2 and g2(x) = (λµ+ωα)[λ+ω(1+α)]x. Now g1(0) > g2(0), limx→∞ g1(x)−g2(x) = ∞
and a simple calculation shows that g1(1) < g2(1) if and only if λ > ω

µ−1 = λc. Suppose
R0 > 1, so λ > λc. Then g1 − g2 has a root in (0, 1) and a root in (1,∞). Moreover, g1 − g2
has precisely one root in each of these intervals, as it convex on R. Hence f ′ has a unique
root in (0, 1). Further, f(0) = 0, f ′(0) = −1+ (λµ+ ωα)/[λ+ ω(1 +α)] > 0, as λ > λc, and
f(1−) = −∞, so the unique stationary point of f ′ in (0, 1) must be a maximum. It follows
that f(x) = 0, and hence also F0(x) = 0 has a unique solution τ in (0, 1) and f ′(τ) < 0.
Letting ϵ = 0 in the argument in Appendix (A.2) shows that ĩ′E(ζ̃) < 0.
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[Martin-Löf(1986)] Martin-Löf, A. (1986) Symmetric sampling procedures, general epidemic
processes and their threshold limit theorems. J. Appl. Prob. 23, 265–282.

[Molloy and Reed(1995)] Molloy, M. and Reed, B. (1995) A critical point for random graphs
with a given degree sequence. Random Structures Algorithms 6, 161–179.

[Neal(2003)] Neal, P. (2003) SIR epidemics on a Bernoulli random graph. J. Appl. Prob. 23,
265–282.

[Nerman(1981)] Nerman, O. (1981) On the convergence of supercritical general (C-M-J)
branching processes. Z. Wahrscheinlichkeitsth 57, 365–395.

[Newman et al.(2001)] Newman, M.E.J., Strogratz, S.H. and Watts, D.J. (2001) Random
graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64,
026118.

[Watson(1980)] Watson, R. (1980) A useful random time-scale transformation for the stan-
dard epidemic model. J. Appl. Prob. 17, 324–332.

[Yao and Durrett(2020)] Yao, D. and Durrett, R. (2020) Epidemics on evolving graphs.
arXiv:2003.08534v1.

49


