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Abstract

Realized covariance matrices are often constructed under the assumption that richness

of intra-day return data is greater than the portfolio size, resulting in non-singular matrix

measures. However, when for example the portfolio size is large, assets suffer from illiquidity

issues, or market microstructure noise deters sampling on very high frequencies, this rela-

tion is not guaranteed. Under these common conditions, realized covariance matrices may

obtain as singular by construction. Motivated by this situation, we introduce the Singular

Conditional Autoregressive Wishart (SCAW) model to capture the temporal dynamics of

time series of singular realized covariance matrices, extending the rich literature on econo-

metric Wishart time series models to the singular case. This model is furthermore developed

by covariance targeting adapted to matrices and a sectorwise BEKK-specification, allow-

ing excellent scalability to large and extremely large portfolio sizes. Finally, the model is

estimated to a 20 year long time series containing 50 stocks, and evaluated using out-of-

sample forecast accuracy. It outperforms the benchmark Multivariate GARCH model with

high statistical significance, and the sectorwise specification outperforms the baseline model,

while using much fewer parameters.
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1 Introduction

The covariance matrix of asset returns plays a key role in several financial appli-

cations, such as portfolio allocation, risk management and option pricing. It is

well-documented that this quantity changes over time, why describing and under-

standing its temporal dynamics is fundamental to financial decision making. A typ-

ical approach is to capture this evolution in discrete time by applying multivariate

GARCH-type models, summarized in Bauwens et al. (2006), where the conditional

covariance matrix is determined by past observations of daily returns. Another

classic method is to use multivariate stochastic volatility-type models, reviewed in

Asai et al. (2006), in where the covariance matrix process is assumed to be random.

During the last two decades, increased availability of asset price data on high

frequencies has paved the way for numerous novel approaches in this area. Many

of them are built upon the notion of realized covariance, where the daily return co-

variance matrix is estimated by a large number of intra-day returns, on for example

five or ten minute intervals (see e.g. Andersen et al. (2003) and Barndorff-Nielsen

and Shephard (2004)). Modeling the time series dynamics for realized covariance

matrices in discrete time has become a large branch in the econometric literature.

A popular approach is to assume the underlying stochastic process to be Wishart,

a well-studied distribution that ensures positive-definiteness almost surely. For ex-

ample, the Wishart Autoregressive (WAR) model introduced in Gouriéroux et al.

(2009), assumes realized covariances are conditionally distributed as non-central

Wishart, where the non-centrality parameter is described by historical realized co-

variance matrices. The High-Frequency-Based Volatility (HEAVY) model presented

in Noureldin et al. (2012) and the Conditional Autoregressive Wishart (CAW) model

introduced by Golosnoy et al. (2012) rely on the centralized Wishart distribution,

where the scale matrix parameters are determined by past observations. A central

Wishart distribution is also considered in Jin and Maheu (2012), but here the scale

matrix is decomposed into either multiplicative components or additive components

determined by sample means of historical realized covariances. The General Con-

ditional Autoregressive Wishart (GCAW) model is proposed in Yu et al. (2017),

parameterized with both a non-central parameter as in the WAR model and a scale
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matrix as in CAW model. In Anatolyev and Kobotaev (2018), the CAW model

is extended to the Conditional Threshold Autoregressive Wishart (CTAW) model

with the aim to include the effects of price asymmetry on future realized covari-

ances. Goodness-of-fit tests for models driven by an underlying central Wishart

distribution, such as the CAW model, is presented in Alfelt et al. (2019).

All of the models discussed above assume a realized covariance matrix that is

positive definite. This can be ensured as long as the number, n, of intra-day returns

used to compute the realized covariance matrix is larger than or equal to the number,

m, of assets included into the portfolio. Regarding small and moderately sized

portfolios or reasonably liquid assets, this relation can often be justified. However,

in many applications it is of interest to consider portfolios of large dimensions,

containing perhaps 50, 100 or even 1000 assets (see, e.g., Hautsch et al. (2015),

Bodnar et al. (2020), Cai et al. (2020), Ding et al. (2020)). Furthermore, available

data for the portfolio assets might be restricted, due to for example low liquidity

resulting in a few price quotes per day. In addition, there might be limits to how

high of an intra-day return sample frequency that is suitable, in presence of so-called

market microstructure noise (see e.g. Aı̈t-Sahalia and Yu (2009)). Any combination

of these factors might result in a situation where m > n, and hence daily realized

covariance matrices that are singular. Finally, Jacod and Podolskij (2013) derived

an asymptotic test for inferring the rank of multivariate volatility processes.

This paper focuses on time series of singular realized covariance matrices, and ex-

tends the family of econometric autoregressive Wishart models to the singular case

by introducing the Singular Conditional Autoregressive Wishart (SCAW) model to

describe such time series. It is based on the assumption that realized covariance

matrices follow a conditional singular Wishart distribution, described in, e.g., Sri-

vastava (2003), Bodnar and Okhrin (2008), where the scale matrix parameter is

determined by historical observations in an autoregressive fashion similar to the

BEKK-specification of Engle and Kroner (1995), alike for example the CAW model

in Golosnoy et al. (2012). This specification ensures positive definiteness and allows

us to directly estimate the model parameter with the maximum likelihood method.

Furthermore, parameter-based conditions for weak stationarity of the model are
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deduced.

Since the singular case is closely related to portfolios of large dimensions, a chal-

lenge in this setting is to capture the temporal dynamics of the time series, while

simultaneously maintaining a parsimonious model that can be feasibly estimated.

To deal with this scaling challenge, two novel approaches are introduced. The first

one regards covariance targeting (see e.g. Pedersen and Rahbek (2014)), where

the approach of Noureldin et al. (2014) is adapted to the matrix case. It concerns

standardizing the time series by its unconditional mean, which allows implementing

straightforward conditions on the model parameters such that positive definiteness

is maintained also under a covariance targeting regime. This method circumvents

estimating the large number of parameters present in the constant matrix of the

BEKK-specification, greatly increasing estimation feasibility. The second approach

utilizes the similarity of assets that belong to the same market sector. This spec-

ification assumes that the parameters governing temporal dynamics of the matrix

time series are homogeneous for assets of the same sector. As such, the number of

parameters does not depend on the number of portfolio assets, but rather of the

number of market sectors these assets stem from. Combining these approaches re-

sults in a model that is well equipped for implementation on large or extremely large

portfolios. In addition, an extension using the heterogeneous autoregressive (HAR)

specification, adapted from Corsi (2009), is applied to the SCAW model. This

approach considers long-time memory dependence by including historical realized

covariance matrices on longer horizons, such as weekly or monthly.

In the empirical part of the paper the SCAW model with various specifications

is estimated to a time series of 50 assets traded on the National Association of Secu-

rities Dealers Automated Quotations (NASDAQ) over 20 years. It is evaluated by

several out-of-sample forecast measures and benchmarked against similarly specified

Multivariate GARCH models. The results of the empirical study reveal that the

SCAW model outperforms the benchmark model with high statistical significance

for the vast majority of the forecasts measures. Moreover, it suggests that the pre-

sented sectorwise parameterization indeed can be useful, outperforming the original

SCAW model both in and out-of-sample, despite having substantially fewer param-
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eters. Finally, including the HAR-extension to this specification yields the lowest

out-of-sample forecast accuracy for several measures, again by only employing a

small number of parameters.

The rest of the paper is organized as follows. Section 2 introduces the SCAW

model and presents its stochastic properties. In Section 3, covariance targeting, the

sectorwise specification, and the HAR-extension are introduced. Section 4 governs

the estimation procedure for the SCAW model with its various specifications. The

empirical application is presented in Section 5, while Section 6 concludes. Proofs of

the obtained theoretical results can be found in the Appendix.

2 Singular Conditional Autoregressive Wishart

(SCAW) Model

Let Rt be an m×m realized covariance matrix, constructed using n intra-day return

vectors recorded during day t. In addition, suppose that the number of intra-day

return vectors used in the computation of Rt is less than the dimension of these

vectors, such that n < m. As a result, Rt is a singular matrix by construction.

Furthermore, let {Rt} be a discrete time series of such matrices, and let Ft denote

the filtration associated with {Rt}. Now, assume that conditioned on Ft−1, Rt

follows a singular Wishart distribution of dimension m. That is,

Rt | Ft−1 ∼ SWm(n,St/n), (1)

where SWm(ν,Σ) denote the singular Wishart distribution with degrees of freedom

ν and symmetric, positive-definite scale matrix Σ of dimension m×m. In addition,

since E[Rt | Ft−1] = St, the matrix St is the conditional mean matrix of {Rt}. Note

that the singularity of Rt stems from the degrees of freedom n being lower than

the matrix dimension m, while the conditional mean matrix, St, is assumed to be

non-singular.

5



Now, let Rt be partitioned as

Rt =

 R11,t R12,t

R21,t R22,t

 , (2)

where R11,t is an n × n non-singular matrix, R12,t is n × (m − n), R21,t = R′12,t

and R22,t is (m − n) × (m − n) with R22,t = R21,tR
−1
11,tR12,t. That any singular,

symmetric matrix can be partitioned this way is shown by, e.g., Harville (1997,

Lemma 9.2.2). Consequently, in accordance with Srivastava (2003) regarding the

singular Wishart distribution, the conditional density for Rt is given by

f(Rt | Ft−1) =
πn(n−m)/2

2mn/2Γn(n/2)|St/n|n/2
|R11,t|(n−m−1)/2 exp

(
−1

2
tr((St/n)−1Rt)

)
=

πn(n−m)/2nm−n/2

2mn/2Γn(n/2)|St|n/2
|R11,t|(n−m−1)/2 exp

(
−n

2
tr(S−1t Rt)

)
, (3)

where Γn(·) denotes the multivariate gamma function (see, e.g., Gupta and Nagar

(2000)). In addition, the conditional conditional covariance matrix of Rt consists

of the following elements

Cov[rij,t, rkl,t | Ft−1] =
1

n
(sik,tsjl,t + sil,tsjk,t), (4)

for i, j, k, l = 1, . . . ,m, where rij,t and sij,t denotes the element on row i and column

j of Rt and St respectively.

The conditional mean matrix St, which is measurable by Ft−1, captures the time

series dynamics of singular realized covariance matrices {Rt}. In the following it is

assumed that

St = CC′ +

p∑
i=1

BiSt−iB
′
i +

q∑
j=1

AjRt−jA
′
j , (5)

where we will denote the lag order of the model by (p, q) and Aj ,Bi,C are m×m

parameter matrices for i = 1, . . . , p and j = 1, . . . , q where C is lower-triangular with

strictly positive diagonal elements. This form is similar to the BEKK specification

of Engle and Kroner (1995) in the multivariate GARCH case, which is also adapted

for the CAW model in Golosnoy et al. (2012). It ensures that St is symmetric and
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positive definite as long as the initial matrices S0,S−1, . . . ,S−p+1 are symmetric

and positive semi-definite. It is notable that the conditional covariance matrix in

GARCH-BEKK(p, q) coincides with the expression presented in (5) with Rt−j =

xt−jx
′
t−j , where xt is the one day return vector of day t. As such, the proposed

SCAW model (1) and (5) is a generalization of the GARCH-BEKK(p, q) process,

where the GARCH-BEKK(p, q) model is a special case corresponding to n = 1.

Furthermore, the specification of the SCAW(p, q) process is similar to the CAW(p, q)

model suggested in Golosnoy et al. (2012) with the difference that the SCAW(p, q)

process models singular realized covariance matrices, while Golosnoy et al. (2012)

consider non-singular ones.

In the paper we will further consider different structures of the parameter ma-

trices Aj ,Bi,C, j = 1, . . . , q, i = 1, . . . , p. Since large dimensional cases will gener-

ally be discussed, the matrices Aj ,Bi,C needs to be specified parsimoniously such

that estimation of the model remains feasible. If for example one allows Aj ,Bi to

be general m × m matrices and C lower-triangular, the model (5) will consist of

m(m+1)/2+(p+q)m2 parameters. With a large dimensional case, such as m = 50

and p = q = 2, this results in 11275 parameters, a formidable estimation exercise

indeed.

2.1 Stochastic properties of the SCAW model

In this section we will present conditions under which the matrix-variate process

{Rt} is weakly stationary. As with the CAW(p, q) model in Golosnoy et al. (2012),

the stochastic properties of the SCAW(p, q) model defined in (1) and (5) are derived

using the VARMA representation of the model. The proofs of the results presented

in this section can be found in the Appendix.

Let vec(·) be the vectorization operator and let vech(·) be the half-vectorization

operator. The symbol Dm denotes the duplication matrix, while Lm stands for the

elimination matrix1. We define

rt = vech(Rt), st = vech(St), c = vech(CC′),

1The matrices Dm and Lm are defined as the matrices which satisfy the following equalities vec(A) =
Dmvech(A) and vech(A) = Lmvec(A) for a symmetric matrix A, respectively (see, e.g., Harville (1997)).
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such that the vector representation of (5) is

st = c +

p∑
i=1

Bist−i +

q∑
j=1

Ajrt−j , (6)

where Aj and Bi are k × k matrices, with k = m(m+ 1)/2 given by

Aj = Lm(Aj ⊗Aj)Dm, Bi = Lm(Bi ⊗Bi)Dm,

where the symbol⊗ denotes the Kroenecker product. Furthermore, rt can be written

as

rt = E[rt | Ft−1] + vt = st + vt, (7)

where vt is a martingale difference sequence such that

E[vt] = 0 and E[vtv
′
s] = 0, ∀s 6= t.

Plugging in (7) into (6), the SCAW(p, q) model can be written with the following

VARMA(max(p, q), p) representation:

rt = c +

max(p,q)∑
i=1

(Ai + Bi)rt−i + vt −
p∑
j=1

Bjvt−j , (8)

where Ai = Bj = 0 for i > q, j > p. From (8) the conditions for weak stationarity

of Rt can be obtained. First, we derive a condition for the existence of the uncon-

ditional expectation of the SCAW(p, q) process, given by the following proposition.

Proposition 1. The unconditional expectation of the SCAW(p,q) model is finite if

and only if all eigenvalues of the matrix

Ψ1 =

max(p,q)∑
i=1

(Ai + Bi) (9)
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are less than 1 in modulus. In that case the unconditional expectation is given by

E[rt] = r̄ =

Ik −
max(p,q)∑
i=1

(Ai + Bi)

−1 c. (10)

Equation (8) can also be represented as an infinite vector moving average time

series by (see, e.g., sections 11.3 and 11.4 in Lütkepohl (2005))

rt = r̄ +

∞∑
i=0

Φivt−i, where (11)

Φi = −Bi +
i∑

j=1

(Aj + Bj)Φi−j , i, j = 1, 2, . . . , (12)

Φ0 = Im. (13)

Moreover, given that they exist, the autocovariances of rt can then be expressed as

E[(rt − r̄)(rt−τ − r̄)′] =

∞∑
i=0

Φi+τ E[vtv
′
t]Φ
′
i. (14)

Let

Ω =
1

n
(Lm ⊗ Lm)[Im2 ⊗ (Im2 + Kmm)](Im ⊗Kmm ⊗ Im)(Dm ⊗Dm), (15)

where Kmm is the commutation matrix.2 Then the following holds.

Proposition 2. The unconditional second moment of the SCAW(p,q) model is finite

if and only if all eigenvalues of the matrix

Ψ2 =
∞∑
i=1

(Φi ⊗Φi)Ω (16)

are less than 1 in modulus. In that case the second moment is given by

vec(E[rtr
′
t]) = (Ω + Ik2)

(
Ik2 −

∞∑
i=1

(Φi ⊗Φi)Ω

)−1
vec(r̄r̄′), (17)

with r̄ given by (10).

2It is defined by the following equality Kmmvec(A) = vec(A′) for any symmetric matrix A (see,
Harville (1997).
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Proposition 3. Given that the unconditional second moments of the SCAW(p,q)

model exist, the autocovariance matrix at lag τ is given by

vec(E[(rt − r̄)(rt−τ − r̄)′]) =

∞∑
i=0

(Φi+τ ⊗Φi)Ω

(
Ik2 −

∞∑
i=1

(Φi ⊗Φi)Ω

)−1
vec(r̄r̄′).

As such, the process {Rt} under the SCAW(p, q) model defined by (1)-(5) is

weakly stationary if and only if the eigenvalues of the matrix (16) are less than 1 in

modulus.

3 Parameterization

As mentioned in Section 2, when the dimension of {Rt} grows large, it is important

to parameterize St in (5) parsimoniously, in order to maintain feasible estimation.

Simultaneously, the specification must be rich enough to capture the time series

dynamics observed in data. This section discusses several parameterizations that

can be applied to this end.

3.1 Covariance targeting

The constant term CC′ in (5) consists of m(m+1)/2 parameters, rapidly increasing

the estimation burden as the portfolio size grows. One approach to reduce the

number of parameters is to consider covariance targeting, an extension of the idea

of variance targeting (see Engle and Mezrich (1996)), where the constant term

CC′ is consistently estimated (see Pedersen and Rahbek (2014)) as follows. Let

Rt = St + Vt, where Vt is a martingale difference, s.t. E[Vt] = 0. Further denote

the unconditional mean of {Rt} as E[Rt] = S̄. Then we can write (5) as

St = CC′ +

p∑
i=1

BiSt−iB
′
i +

q∑
j=1

AjRt−jA
′
j

Rt −Vt = CC′ +

p∑
i=1

Bi(Rt−i −Vt−i)B
′
i +

q∑
j=1

AjRt−jA
′
j .
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Taking unconditional expectations we obtain

E[Rt] = CC′ +

p∑
i=1

Bi E[Rt]B
′
i +

q∑
j=1

Aj E[Rt]A
′
j

S̄ = CC′ +

p∑
i=1

BiS̄B′i +

q∑
j=1

AjS̄A′j .

such that

CC′ = S̄−
p∑
i=1

BiS̄B′i −
q∑
j=1

AjS̄A′j . (18)

The idea is then to replace CC′ in (5) by the expression (18), and to estimate

S̄ by the sample mean of the process. This specification determines the constant

term CC′ by the persistence parameters Aj and Bi, such that k = m(m + 1)/2

parameters less needs to be estimated in the model.

In order to ensure that the expression (18) is positive-definite, particular re-

strictions on the parameter matrices Aj and Bi must be imposed, and in general

it is difficult to specify such conditions. One approach to circumvent this issue is

considered in Noureldin et al. (2014) in the case of an ARCH model, where the

original series of return vectors is rotated by its unconditional mean, to create a

standardized series of returns particularly suitable to model with covariance target-

ing. In this paper we adapt this approach to singular realized covariance matrices in

order to obtain a parsimonious parameterization. To this end, apply the eigenvalue

decomposition to the unconditional expectation such that

S̄ = PΛP′,

where P is a matrix with eigenvectors of S̄ as columns and Λ is a diagonal matrix

with the eigenvalues of S̄ as diagonal entries. Note that although {Rt} is a series

of singular matrices, its unconditional mean S̄ is non-singular and as such all the

eigenvalues in Λ are positive. Further note that the symmetric square root of S̄ is

S̄1/2 = PΛ1/2P′ and that S̄−1/2 = PΛ−1/2P′, since P is an orthogonal matrix.
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Next we define the standardized realized covariance as

Et = S̄−1/2Rt(S̄
−1/2)′ = PΛ−1/2P′RtPΛ−1/2P′. (19)

which has expected value

E[Et] = S̄−1/2 E[Rt](S̄
−1/2)′ = S̄−1/2S̄(S̄−1/2)′ = Im.

Similarly, define Gt = S̄−1/2St(S̄
−1/2)′, such that

Et ∼ SWm(n,Gt/n) (20)

due to the affine transformation property of the singular Wishart distribution (see

Theorem 2 of Bodnar et al. (2014)). As such, we will model Gt with an specification

equivalent to (5) given by

Gt = C̃C̃
′
+

p∑
i=1

B̃iGt−iB̃
′
i +

q∑
j=1

ÃjEt−jÃ
′
j .

Note that since Et follows a conditional singular Wishart distribution and the spec-

ification of Gt is equivalent to that of St, all results in Section (2.1) applies to the

process {Et} as well, with regards to parameters Ãj and B̃i. Moreover, by applying

the covariance targeting technique described in (18) with E[Et] = Im we get

Gt =

Im −
p∑
i=1

B̃iB̃
′
i −

q∑
j=1

ÃjÃ
′
j

+

p∑
i=1

B̃iGt−iB̃
′
i +

q∑
j=1

ÃjEt−jÃ
′
j . (21)

The restrictions on the persistence parameters Ãj and B̃i needed to ensure the posi-

tive definiteness of Gt are easily obtained for several parameterizations, as discussed

below. In the following, the covariance targeting SCAW model described by (19),

(20) and (21) will be referred to as SCAWCT(p, q).

Furthermore, since St = S̄1/2Gt(S̄
1/2)′ and Et = S̄−1/2Rt(S̄

−1/2)′ the model
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(21) for the standardized series {Et} implies the following equalities

Aj = S̄1/2Ãj(S̄
1/2)′ (22)

Bi = S̄1/2B̃i(S̄
1/2)′ (23)

CC′ = S̄1/2

Im −
p∑
i=1

B̃iB̃
′
i −

q∑
j=1

ÃjÃ
′
j

 (S̄1/2)′ (24)

for the parameterization in (5), modeling the non-standardized series {Rt}.

Moreover, as discussed in Noureldin et al. (2014), there are seveal ways to param-

eterize the conditional mean, in this model described by (21): scalar and diagonal

specification of Ãj and B̃i, as well as specifications with common persistence or with

orthogonal parameter matrices. In this presentation we will focus on the diagonal

specification, such that Ãj and B̃i are all diagonal matrices, with the additional

condition that the first element of each parameter matrix is positive, in order to en-

sure model identification. As such, the constant term in (21) will be positive-definite

if and only if (see Engle and Kroner (1995))

q∑
j=1

ã2j,ll +

p∑
i=1

b̃2i,ll < 1, l = 1, . . . ,m, (25)

where ãj,ll is the l:th diagonal element of Ãj and b̃i,ll is the l:th diagonal element of

B̃i. Conditions for the other specifications mentioned above can be obtained corre-

spondingly. The diagonal parameterization of (21) results in m(p+ q) parameters,

which is substantially lower than the m(m + 1)/2 + (p + q)m2 parameters in the

original specification (5), particularly for large dimensional cases. In the example

with m = 50 and p = q = 2 above, the diagonal model suggested thus results in 200

parameters, instead of the 11275 parameters in the original specification, making

estimation much more feasible.

Hence, instead of modeling the series {Rt} with conditional means {St} directly,

the above approach instead models the standardized realized covariances {Et} with

the conditional means {Gt}. In turn, this model implies {St} to be specified as (5)

with parameters obtained as (22)-(24). Note that while Ãj and B̃i are diagonal, the

implied parameters for {St}, Aj and Bi, are in general not, since the transformations
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(22)-(24) do not necessarily result in diagonal matrices. This does indeed suggest a

rich dynamic for the original series of realized covariance matrices, as discussed in

Noureldin et al. (2014) in the equivalent ARCH case. However, it does not mean

that the specification {St} results in an entirely general BEKK model, since its

parameters are constrained by the unconditional mean S̄.

3.2 Sectorwise parameterization

Prices for assets that belong to the same market sector tend to exhibit some level

of similarity in price movements (see e.g. King (1966) and Chan et al. (2007)).

To incorporate this feature, we introduce a model specification that assumes that

covariance dynamics are homogeneous within market sectors. For this sectorwise

parameterization, we define the diagonal elements of the parameter matrices Ãj and

B̃i, j = 1, . . . , q, i = 1, . . . , p, in (21) as all,j = akk,j and bll,i = bkk,i if asset l and

asset k belong to the same market sector. The number of parameters for this speci-

fication is as such s(p+q), where s denote the number of sectors that the considered

assets belong to. Hence, the number of parameters for this approach is independent

of process dimension m, which makes it an attractive modeling candidate when very

large asset portfolios are considered.

3.3 HAR extension

To account for the high persistence in volatility processes, we also adapt the SCAW

model with a heterogeneous autoregressive (HAR) extension, as proposed by Corsi

(2009) in the univariate case and implemented by Golosnoy et al. (2012) in a matrix-

variate version. Such an approach considers the long-memory dependence in daily

volatility by including lagged realized covariances observed on longer horizons, like

weekly and monthly. Consequently, for this specification, we define the conditional

process mean Gt as

Gt =

Im −
q∑
j=1

ÃjÃ
′
j − D̃D̃′

+

q∑
j=1

ÃjEt−jÃ
′
j + D̃E

(h)
t−1D̃

′, (26)
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where E
(h)
t denote the standardized realized covariance, averaged of the last h trad-

ing days, up to trading day t. Further, we define D̃ as a diagonal matrix with

sectorwise parameterization as described above. As such, (26) can be specified in

terms of (21), but we denote it with a separate parameter matrix D̃ for ease of

interpretation.

4 Estimation

Similar to Noureldin et al. (2014), we apply a two-step estimation procedure in order

to obtain the parameter estimates of the considered model (21). Given a sample of

the realized covariance process, {Rt}1≤t≤T , a method of moments approach is first

used to estimate the unconditional mean of the process S̄, as

ˆ̄S =
1

T

T∑
t=1

Rt. (27)

The estimate ˆ̄S is then decomposed into estimates P̂ and Λ̂. From these estimates,

a standardized series is obtained in correspondence to (19) as

Et = P̂Λ̂−1/2P̂′RtP̂Λ̂−1/2P̂′,

consistent with the approach in Noureldin et al. (2014). In the second step, we

estimate the diagonal parameter matrices Ãj and B̃i, i = 1, . . . , p, j = 1 . . . , q, in

(21), by the maximum likelihood method. Similarly to Golosnoy et al. (2012), in

order to ensure the positivity of the first diagonal element in each of the parameter

matrices, the square roots of these values are estimated. To enforce the condition

(25), the diagonal elements of Ãj are specified according to the following function,
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for l = 1, . . . ,m,

ãll,j =


a∗ll,j if sl < 1

a∗ll,j(1−ε)
sl

if sl ≥ 1

(28)

b̃ll,i =


b∗ll,i if sl < 1

b∗ll,i(1−ε)
sl

if sl ≥ 1

, (29)

where sl =
∑q

j=1 ã
2
j,ll +

∑p
i=1 b̃

2
i,ll and ε is positive and close to zero. As such, we

define the argument vector to the log-likelihood function as ψ′ = (ψ′a, ψ
′
b) with ψ′a =(√

a∗11,1, a
∗
22,1, . . . , a

∗
ll,q

)
and ψ′b =

(√
b∗11,1, b

∗
22,1, . . . , b

∗
ll,q

)
. Furthermore, since by

(20), Et follows a singular Wishart distribution, the log-likelihood obtains directly

from the density (3) as

L(ψ) =
T∑
t=1

[
c+

n

2
ln |Gt|+

n−m− 1

2
ln |E11,t|−

− n−m− 1

2
tr(G−1t Et)

]
, (30)

where

c =
n(n−m)

2
ln(π) +

(
m− n

2

)
lnn− ln Γp

(n
2

)
. (31)

Finding the vector ψ that maximizes the log-likelihood function (30) can then be

done by applying numerical optimization techniques.

5 Empirical application

5.1 Data

The SCAW model presented in Section 2 is applied to analyze the daily realized

covariance matrices of 50 assets traded at National Association of Securities Deal-

ers Automated Quotations (NASDAQ) from mid 1997 to mid 2017. These assets

are listed in Table 1 together with their associated market sector, following the

NASDAQ sector classification (as e.g. Litimi et al. (2016), BenSäıda (2017)). As-
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sets are selected such that the sample sector distribution is proportional to the

sector distribution of assets traded at NASDAQ for the considered time period.

The realized covariance matrix of these assets, for trading day t, is constructed as

Rt =
∑n

i xt,ix
′
t,i, where xt,i is the m × 1 return vector obtained for the i:th 10-

minute interval of day t between 09:30 and 16:00. In turn, this results in n = 39

return vectors, such that the rank of the m×m matrix Rt is 39, making it a singular

matrix. The sample period starts 2nd of June 1997 and ends 15th of June 2017,

resulting in about 20 years of data, and 4993 trading days. As such, the considered

series covers two exceptionally volatile time periods: the so-called Dot-com bubble,

which had its peak around the year 2000, and the global financial crisis of 2007-

2008. Out of this time series sample, the first 90% of the trading days is used for

estimating the models, while the remaining 10% of the sample is used to compute

forecast accuracy.

Summary statistics of the realized variances (multiplied by 104 for easier reading)

of the 50 considered assets are shown in Table 1. As is typical regarding empirical

variances of asset returns, most of the series are considerably right skewed and

leptokurtic. Table 2 summarizes statistics for the realized variance in each of the

12 market sectors in the sample. According to these statistics, the energy sector

experiences the largest average variance, while assets in the financial sector are the

most right skewed and leptokurtic.

5.2 Models

To study these data using the suggested SCAW model, the estimation and forecast-

ing are performed using the various model specifications discussed in Section 3. The

following SCAW-parameterizations are considered:

• SCAWCT(p, q): Parameter matrices Ãj and B̃i, j = 1, . . . , q, i = 1, . . . , p of

(21) are diagonal.

• SCAW-SSCT(p, q): Parameter matrices Ãj and B̃i, j = 1, . . . , q, i = 1, . . . , p

of (21) are diagonal. Further, all,j = akk,j and bll,i = bkk,i if asset l and asset

k belongs to the same sector.

• SCAW-SS-HARCT(q, h): Parameter matrices Ãj and D̃ of (26) are diagonal.

17



Further, all,j = akk,j and dll = dkk if asset l and asset k belongs to the same

sector.

Similarly to Golosnoy et al. (2012), Multivariate GARCH models fitted to daily

return data are used as forecast accuracy benchmarks to the parameterizations

described above. To have comparable results, the benchmark models follow equiv-

alent specifications and are consequently denoted MGARCHCT(p, q), MGARCH-

SSCT(p, q) and MGARCH-SS-HARCT(q, h). As discussed in Section 2, the Multi-

variate GARCH model with BEKK-specification can be thought of as a special case

of SCAW model, with the number of intra-day returns (and matrix rank) n = 1.

5.3 Estimation

The first 90% of data consisting of 4494 trading days is used to estimate the models

discussed in Section 5.2. The parameters of considered models are estimated as

described in Section 4, where ε = 10−7 is used in Equations (28) and (29). Ta-

ble 3 displays the number of parameters for each specification, and the maximum

log-likelihood value (MLL) obtained from the optimization procedure. We also in-

clude two information criteria: Akaikes (AIC) and Bayesian (BIC). Within each set

of model types, SCAW and MGARCH, the most favorable value in each column

is highlighted in bold. With regards to the MLL-value and information criteria,

SCAW-SSCT(2, 2) performs the best among the SCAW specifications. Note that

the maximum log-likelihood value as well as the values of AIC and BIC computed

for the SCAW and MGARCH models are not comparable, since these two models

have probability distributions with the mass being concentrated on the spaces of

different dimensions. In accordance with the partition (2), the dimension of the

sample space subsets with probability mass is mn − n(n − 1)/2. As such, with

m = 50, the actual dimension of the sample space for the SCAW model is 1209,

while it is 50 for the multivariate GARCH model. Hence the values of the density

functions tend to be considerably smaller for the SCAW models, in general. Thus

the values of all three performance measure can be compared only within the class

of the two considered matrix-variate time series models.

Table 4 displays the estimates for the parameters estimates of the SCAW model
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with the most favourable MLL, AIC and BIC values, that is in the case of SCAW-

SSCT(2, 2) process. We observe that all parameters are statistically significant at 1%

level. Moreover, the estimated elements of the matrices B̃1 and B̃2 are uniformly

larger than the entries in the matrices Ã1 and Ã2, indicating larger effect of the

previous values of the conditional mean matrices in comparison to the previous

values of realized covariance matrices. This result is in line to the findings usually

observed when a multivariate GARCH model is fitted to data.

5.4 Forecasting

The last 10% of the time series, 499 trading days, is used to compute out-of-sample

forecast accuracy for the models discussed in Section 5.2. For each of the models,

the `-step-ahead forecast is computed recursively as

E[Rt+`|Ft] = E[St+`|Ft] = PΛ1/2P′ E[Gt+`|Ft]PΛ1/2P′, with (32)

E[Gt+`|Ft] =

Im −
p∑
i=1

B̃iB̃
′
i −

q∑
j=1

ÃjÃ
′
j

+

+

p∑
i=1

B̃i E[Gt+`−i|Ft]B̃′i +

q∑
j=1

Ãj E[Et+`−j |Ft]Ã′j , (33)

E[Et+`−j |Ft] = E[Gt+`−j |Ft], (34)

where the parameter matrices are estimated as described in Section 4 and Section

5.3. The specification SCAW-SS-HARCT(q, h) is computed similarly, employing

that it can be represented in the form of (21).

The forecast accuracy of R̂t+` = E[Rt+`|Ft] is evaluated using three measures.

First, the average Frobenius norm of the `-step-ahead forecast error is computed as

FN` =
1

T`

∑
t

||R̂t+` −Rt+`||, (35)

where T` is the sample-size for `-step-ahead forecasts and ||M|| denote the Frobenius

norm of the matrix M. Further, in practice, one is often interested in applying

covariance matrix forecasts in a portfolio setting. As such, we also compute mean

squared error of the standard deviation of an equally weighted (EW) portfolio, a
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popular portfolio in financial literature (see, DeMiguel et al. (2009)), using the

obtained covariance forecast and the realized covariance:

SDEW,` =
1

T`

∑
t

1

m2

(√
1′R̂t+`1−

√
1′Rt+`1

)2

.

Another important portfolio is the global minimum variance (GMV) portfolio

(cf., Frahm and Memmel (2010), Glombeck (2014), Bodnar et al. (2018), Bodnar

et al. (2019), Ding et al. (2020)). This portfolio has the lowest risk of all possible

portfolios of risky assets, and its weight vector is solely determined by the covariance

matrix of asset returns. We employ the l-step ahead forecast of the covariance

matrix R̂t+` produced by each model for the computation of the weights of the

GMV portfolio expressed as

ŵt+` = R̂−1t+`1/(1
′R̂−1t+`1). (36)

As a performance measure of the constructed portfolio for different models, we use

the standard deviation of the GMV portfolio of future time periods given by

SDGMV,` =
1

T`

∑
t

√
ŵ′t+`Rt+`ŵt+`.

The quantity SDGMV,` measures the average forecasted standard deviation of the

GMV portfolios in the out-of-sample period. Hence, SDEW,` and SDGMV,` illustrate

the ability of each model to forecast different things. The former is a measure of the

squared difference between the predicted standard deviation of the equally weighted

portfolio, and the observed standard deviation of the equally weighted portfolio. The

latter measures the predicted standard deviation of the GMV portfolio. For this

measure, more accurate predictions will result in lower values, and the minimum

value is obtained when inserting R̂t+` = Rt+` into (36). An accurate prediction of

this quantity has considerable economic value, since the standard deviation of the

GMV portfolio is a key input value in many financial applications.

Finally, it is relevant to see if the difference in a forecast accuracy measure

between the SCAW model and its benchmark is statistically significant. To this
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end, a two-sided paired t-test is applied to the sample of terms in FN`, SDEW,` or

SDGMV,` for the SCAW model, and to the sample of terms for the same measure

in the equivalent MGARCH specification. Significance level 0.01 is used for all the

applied tests.

5.5 Results

Tables 5-7 summarizes the forecasts performance of the models discussed in Section

5.2, with forecast horizons ` = 1, 5, 10. Within each set of model types, SCAW and

MGARCH, the most favorable value in each column is highlighted in bold. A star

next to a forecast value indicates that the model’s forecast value is lower than the

equivalent value of the other model type, with statistical significance at the 0.01

level.

Table 5 summarizes the forecast accuracy result in terms of FN` for the con-

sidered models. The model SCAW-SSCT(1, 2) performs best for each forecast hori-

zon, and among all considered specifications. The models SCAWCT(0, 1), SCAW-

SSCT(0, 1) and SCAW-SSCT(1, 2) outperform the benchmark model of equivalent

specification with statisticance significance on the 0.01-level.

Table 6 summarizes the forecast accuracy result in terms of SDEW,` for the

considered models. With regards to this measures of portfolio forecast accuracy,

SCAW-SS-HARCT(1, 20) produce the lowest forecast error for each horizon. The

SCAW models outperform the MGARCH counterpart for each specification and

forecast horizon, and all of the differences are statistically significant at the 0.01

level.

Table 7 summarizes the forecast accuracy result in terms of SDGMV,` for the

considered models. With regards to this measures of portfolio forecast accuracy,

SCAW-SSCT(1, 1) produce the lowest forecast accuracy for each horizon. The SCAW

models outperform the MGARCH counterpart for each specification and forecast

horizon. Furthermore, all of the differences are statistically significant at the 0.01

level, except in two cases for the longest forecast horizon of 10 days.

In general, it is noteworthy that for each forecast evaluation measure, a single

model dominates for all considered forecast horizons, suggesting that these models
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are consistently superior regarding that measure. Three different models, SCAW-

SSCT(1, 2), SCAW-SS-HARCT(1, 20) and SCAW-SSCT(1, 1) have the best perfor-

mance for the three different measures FN`, SDEW,` and SDGMV,`, respectively.

This implies that different SCAW models may be suitable, depending on the appli-

cation at hand.

Finally, it is notable that the specifications SCAW-SSCT(1, 1), SCAW-SSCT(1, 2),

SCAW-SSCT(2, 2) and SCAW-SS-HARCT(1, 20) outperform both SCAWCT(0, 1)

and SCAWCT(1, 1) in terms of either AIC, BIC or one of the forecast measures

FN`, SDEW,` and SDGMV,`, ` = 1, 5, 10, despite using a lower number of parameters

(24, 36, 48 and 24 versus 50 and 100, respectively). This suggest that the sector-wise

approach introduced in Section 3.2 indeed can be useful.

To summarize, the SCAW approach seems to perform well comparing to the

benchmark, in terms of out-of-sample forecast accuracy for the time period studied.

Among the various SCAW-specifications, the sectorwise parameterization, SCAW-

SSCT(p, q), and the sectorwise specification with an HAR-extension, SCAW-SS-

HARCT(q, h), displays the most favourable results. The performance of these spec-

ifications are important, since the number of parameters of the sectorwise approach

is independent of the number of assets m. As such, it is likely to be a feasible

parameterization when very large asset portfolios are considered.

6 Conclusion

In this paper, we present the Singular Conditional Autoregressive Wishart (SCAW)

model to capture the temporal dynamics for time series of singular realized co-

variance matrices. The model employs a BEKK-type specification, thus ensuring

positive definitiveness, and allowing for straight forward estimation through the

maximum likelihood method. Since the case of singular realized covariance is closely

related to large portfolio dimensions, we also introduce methods to maintain par-

simony in large dimensions. First, a covariance targeting approach adapted to the

matrix case is presented. Second, we propose a sectorwise specification, utilizing

asset homogeneity within market sectors. As an additional extension, the well-
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established HAR-approach is adapted to our model. These approaches results in a

model well adapted for large or extremely large portfolio sizes.

The SCAW model is further estimated to 50 stocks in a time series covering 20

years, and moreover evaluated out-of-sample with Multivariate GARCH models of

similar specifications as benchmark. This study reveals that the SCAW models in-

deed outperform the benchmark model in the vast majority of the forecast accuracy

measures, with high statistical significance. Furthermore, it suggests that the sec-

torwise specification and HAR-extensions shows great promise, greatly improving

both in-sample and out-of-sample performances in relation to the baseline model,

while using only a fraction of the number of parameters. This is important, since

again these specifications have good scaling properties with regards to portfolio size.

Future venues of research include extension of the SCAW model by for example

the MIDAS-extension employed in Golosnoy et al. (2012), or an adaptation including

the leverage effect in the spirit of Anatolyev and Kobotaev (2018).
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Appendix

Lemma 1. Given that E[rtr
′
t] exists,

vec(E[rtr
′
t]) = (Ω + Ik2)vec(E[sts

′
t]). (37)

Proof. We have rt = vech(Rt) = Lmvec(Rt), and as such the conditional variance
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of rt can be expressed as

V[rt | Ft−1] = V[Lmvec(Rt) | Ft−1]

= LmV[vec(Rt) | Ft−1]L′m. (38)

Equation (4), expressing the conditional covariance of the singular Wishart distri-

bution, can further be written as (see e.g. Muirhead (1982), p. 90)

V[vec(Rt) | Ft−1] =
1

n
(Im2 + Km,m)(St ⊗ St), (39)

where Km,m is the commutation matrix. Using relationships between the Kroe-

necker product and the vec(·) operator, we obtain from (38) and (39) that

vec(V[rt | Ft−1]) =
1

n
(Lm ⊗ Lm)vec [(Im2 + Km,m)(St ⊗ St)]

=
1

n
(Lm ⊗ Lm) [Im2 ⊗ (Im2 + Km,m)] vec(St ⊗ St)

=
1

n
(Lm ⊗ Lm) [Im2 ⊗ (Im2 + Km,m)]×

×(Im ⊗Km,m ⊗ Im) [vec(St)⊗ vec(St)]

=
1

n
(Lm ⊗ Lm) [Im2 ⊗ (Im2 + Km,m)]×

×(Im ⊗Km,m ⊗ Im)(Dm ⊗Dm)vec(sts
′
t)

= Ωvec(sts
′
t), (40)

with Ω defined as in (15). By the tower property we get E[rtr
′
t] = E[V[rt | Ft−1]] +

E[sts
′
t]. Vectorizing this expression and applying (40) yield

vec(E[rtr
′
t]) = vec(E[V[rt | Ft−1]]) + vec(E[sts

′
t])

= E[vec(V[rt | Ft−1])] + vec(E[sts
′
t])

= Ωvec(E[sts
′
t]) + vec(E[sts

′
t])

= (Ω + Ik2)vec(E[sts
′
t]),

completing the proof.

Proof of Proposition 1. Taking the expectation of the VARMA representation
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in (8) yields

E[rt] = c +

max(p,q)∑
i=1

(Ai + Bi)E[rt],

since E[vt] = 0. Inserting E[rt] = r̄ leads to the solution expressed as

r̄ =

Ik −
max(p,q)∑
i=1

(Ai + Bi)

−1 c,

if and only if each eigenvalue of the matrix Ψ1 =
∑max(p,q)

i=1 (Ai + Bi) is less than 1

in modulus.

Proof of Proposition 2. Inserting E[vtv
′
t] = E[rtr

′
t]−E[sts

′
t] into the autocovari-

ance function (14) yields

E[rtr
′
t] =

∞∑
i=0

Φi

(
E[rtr

′
t]− E[sts

′
t]
)
Φ′i + r̄tr̄t

′.

Vectorizing this expression and plugging in vec(E[rtr
′
t]) = (Ω+Ik2)vec(E[sts

′
t]) from

Lemma 1 further gives

(Ω + Ik2)vec(E[sts
′
t]) =

∞∑
i=0

(Φi ⊗Φi)Ωvec(E[sts
′
t]) + vec(r̄tr̄t

′)

vec(r̄tr̄t
′) =

[
(Ω + Ik2)−

∞∑
i=0

(Φi ⊗Φi)Ω

]
vec(E[sts

′
t])

vec(r̄tr̄t
′) =

[
Ik2 −

∞∑
i=1

(Φi ⊗Φi)Ω

]
vec(E[sts

′
t]), (41)

where the last equality is due to the fact that Φ0 = Ik. Equation (41) can be solved

for vec(E[sts
′
t]) as

vec(E[sts
′
t]) =

[
Ik2 −

∞∑
i=1

(Φi ⊗Φi)Ω

]−1
vec(r̄tr̄t

′) (42)

if and only if the eigenvalues of the matrix Ψ2 =
∑∞

i=1(Φi⊗Φi)Ω are less than 1 in

modulus. Inserting (42) into the expression of Lemma 1 then gives the result.
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Proof of Proposition 3. Vectorizing Equation (14) yields

vec(E[(rt − r̄)(rt−τ − r̄)′]) =
∞∑
i=0

(Φi ⊗Φi+τ )vec(E[vtv
′
t]). (43)

Furthermore, the application of (7) and Lemma 1 leads to

vec(E[vtv
′
t]) = vec(E[rtr

′
t])− vec(E[sts

′
t])

= (Ik2 − (Ω + Ik2)−1)vec(E[rtr
′
t]),

and inserting this into (43) and applying Proposition 2 we get

vec(E[(rt − r̄)(rt−τ − r̄)′]) =
∞∑
i=0

(Φi ⊗Φi+τ )(Ik2 − (Ω + Ik2)−1)×

×vec(E[rtr
′
t])

=
∞∑
i=0

(Φi ⊗Φi+τ )(Ik2 − (Ω + Ik2)−1)×

×(Ω + Ik2)

(
Ik2 −

∞∑
i=1

(Φi ⊗Φi)Ω

)−1
vec(r̄r̄′)

=

∞∑
i=0

(Φi ⊗Φi+τ )Ω×

×

(
Ik2 −

∞∑
i=1

(Φi ⊗Φi)Ω

)−1
vec(r̄r̄′),

which completes the proof.
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Asset symbol Sector Mean Median Std.dev. Skewness Kurtosis

AAPL Technology 7.50 3.24 16.32 20.96 717.68

ACGL Finance 5.88 1.22 17.43 9.47 148.73

ADSK Technology 6.93 3.46 14.14 20.00 750.00

AEIS Capital Goods 14.82 7.90 23.74 6.96 87.48

ALKS Health Care 14.57 7.05 78.40 62.26 4198.73

ALXN Health Care 16.73 5.57 42.68 22.04 889.67

AMAT Technology 6.95 3.54 10.17 5.12 47.30

AMD Technology 13.96 8.15 24.28 12.08 250.71

AMGN Health Care 3.84 1.94 6.59 9.91 203.10

AMZN Consumer Services 11.53 3.75 28.18 14.43 383.06

BIIB Health Care 9.49 3.55 19.43 8.67 128.95

BLDP Energy 20.62 12.33 33.13 10.30 206.96

LAMR Consumer Services 7.25 2.76 15.82 10.33 184.48

MAR Consumer Services 4.17 2.04 7.55 10.84 225.43

MAT Consumer Non-Durables 4.76 2.26 15.05 34.39 1594.72

MNST Consumer Non-Durables 27.05 4.60 182.58 59.89 3981.45

MSFT Technology 2.83 1.49 4.40 6.44 70.66

MU Technology 12.70 6.99 20.07 6.92 81.74

MVIS Capital Goods 36.22 21.45 110.05 50.61 3130.91

MYL Health Care 5.81 2.80 21.90 43.36 2467.91

NBIX Health Care 21.72 8.95 43.53 9.62 180.42

NDSN Capital Goods 7.17 3.56 11.57 6.76 89.07

NKTR Health Care 16.57 8.66 36.92 25.14 1034.04

NTAP Technology 13.93 4.37 36.38 20.80 804.59

NTRS Finance 4.12 1.78 13.89 35.61 1827.34

NWBI Finance 15.05 3.60 119.05 63.19 4280.99

ODP Consumer Services 12.66 6.00 32.41 13.46 282.85

ONB Finance 4.67 2.20 8.61 6.61 70.38

PAAS Basic Industries 17.23 8.47 24.45 4.34 33.21

PAYX Consumer Services 5.02 1.86 8.71 6.26 78.72

PDCO Health Care 4.69 1.93 8.85 7.31 105.74

PDLI Health Care 19.64 6.77 43.73 10.12 192.87

QCOM Technology 6.79 2.80 12.15 5.28 44.64

RMBS Technology 19.00 7.08 132.51 62.13 4185.96

RRD Miscellaneous 5.31 2.56 43.34 47.42 2326.36

RYAAY Transportation 16.24 3.73 63.71 18.54 476.35

SBUX Consumer Services 5.04 2.53 7.72 5.68 54.07

SEIC Finance 7.20 2.65 13.35 5.83 56.30

SIVB Finance 9.23 3.37 29.89 21.26 649.90

SLGN Consumer Durables 10.37 2.61 75.15 54.69 3459.49

TIVO Miscellaneous 17.50 4.87 143.80 38.89 1665.27

TRMB Capital Goods 12.52 4.18 27.89 12.68 311.98

TRMK Finance 6.44 2.70 15.61 16.45 457.88

UBSI Finance 6.15 2.82 12.74 16.75 545.36

WABC Finance 4.52 2.31 8.81 14.04 374.78

WBA Health Care 3.34 1.84 7.07 27.64 1237.02

VOD Public Utilities 4.11 1.42 8.59 8.30 125.28

VRTX Health Care 12.84 6.53 21.14 7.33 101.82

WTFC Finance 7.07 2.49 18.93 19.20 627.96

ZION Finance 6.87 2.29 19.76 12.72 252.23

Table 1: Summary statistics for the realized variance (multiplied by 104) of the 50 assets
considered.
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Sector Nr.assets Mean Median Std.dev. Skewness Kurtosis

Basic Industries 1 17.23 8.47 24.45 4.34 33.21

Capital Goods 4 17.68 7.61 59.31 82.02 9377.41

Consumer Durables 1 10.37 2.61 75.15 54.69 3459.49

Consumer Non-Durables 2 15.90 2.96 130.01 83.19 7769.35

Consumer Services 6 7.61 2.98 19.80 18.38 629.25

Energy 1 20.62 12.33 33.13 10.30 206.96

Finance 11 7.02 2.43 39.47 159.67 32358.94

Health Care 11 11.75 4.48 36.99 63.56 8048.78

Miscellaneous 2 11.41 3.44 106.37 49.79 2823.32

Public Utilities 1 4.11 1.42 8.59 8.30 125.28

Technology 9 10.06 4.23 48.09 146.27 26943.34

Transportation 1 16.24 3.73 63.71 18.54 476.35

Table 2: Summary statistics for the realized variance (multiplied by 104) of the assets in
each of the 12 market sectors considered.

Model Parameters MLL AIC BIC

SCAWCT(0, 1) 50 -5517572 11035244 11035565

SCAWCT(1, 1) 100 -4364220 8728640 8729281

SCAW-SSCT(0, 1) 12 -5579755 11159534 11159611

SCAW-SSCT(1, 1) 24 -4400358 8800764 8800918

SCAW-SSCT(1, 2) 36 -4349293 8698658 8698889

SCAW-SSCT(2, 2) 48 -4298311 8596718 8597026

SCAW-SS-HARCT(1, 5) 24 -4684222 9368492 9368646

SCAW-SS-HARCT(1, 20) 24 -4608871 9217790 9217944

MGARCHCT(0, 1) 50 -131196 262492 262813

MGARCHCT(1, 1) 100 -116313 232826 233467

MGARCH-SSCT(0, 1) 12 -131448 262920 262997

MGARCH-SSCT(1, 1) 24 -117795 235638 235792

MGARCH-SSCT(1, 2) 36 -112502 225076 225307

MGARCH-SSCT(2, 2) 48 -106728 213552 213860

MGARCH-SS-HARCT(1, 5) 24 -127951 255950 256104

MGARCH-SS-HARCT(1, 20) 24 -122686 245420 245574

Table 3: Summary of the estimation results for the considered models, with various values
of p, q and h. The columns display, in order, the number of parameters, the maximum log-
likelihood value (MLL), the Akaikes Information Criterion value (AIC) and the Bayesian
Information Criterion value (BIC), for each specification. Within each type of model,
SCAW and MGARCH, the most favourable value in each column is emphasized in bold.
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Sector Nr. elements Ã1 Ã2 B̃1 B̃2

Basic Industries 1 0.15*** 0.17*** 0.73*** 0.65***

Capital Goods 4 0.22*** 0.06*** 0.61*** 0.76***

Consumer Durables 1 0.24*** 0.21*** 0.65*** 0.69***

Consumer Non-Durables 2 0.32*** 0.22*** 0.61*** 0.69***

Consumer Services 6 0.27*** 0.099*** 0.63*** 0.72***

Energy 1 0.36*** 0.32*** 0.59*** 0.61***

Finance 11 0.28*** -0.15*** 0.64*** 0.7***

Health Care 11 0.25*** -0.14*** 0.7*** 0.66***

Miscellaneous 2 0.21*** 0.35*** 0.59*** 0.68***

Public Utilities 1 0.13*** 0.24*** 0.65*** 0.71***

Technology 9 0.19*** 0.1*** 0.74*** 0.64***

Transportation 1 0.28*** 0.26*** 0.63*** 0.67***

Table 4: Estimates for the parameter matrices of SCAW-SSCT(2, 2). Three stars next to
the estimate indicates that the estimate is significant at the 0.01 level.

Model FN`

` = 1 5 10

SCAWCT(0, 1) 0.018 0.0173∗ 0.0175∗
SCAWCT(1, 1) 0.0176 0.0177 0.0176

SCAW-SSCT(0, 1) 0.0176 0.0174∗ 0.0176∗
SCAW-SSCT(1, 1) 0.0175 0.0175 0.0173

SCAW-SSCT(1, 2) 0.0161∗ 0.0163∗ 0.0165∗
SCAW-SSCT(2, 2) 0.018 0.0182 0.0183

SCAW-SS-HARCT(1, 5) 0.0181 0.018 0.0176

SCAW-SS-HARCT(1, 20) 0.0182 0.0186 0.0188

MGARCHCT(0, 1) 0.0181 0.0184 0.0185

MGARCHCT(1, 1) 0.017 0.0174 0.0176

MGARCH-SSCT(0, 1) 0.018 0.0184 0.0185

MGARCH-SSCT(1, 1) 0.0165 0.0169 0.0172

MGARCH-SSCT(1, 2) 0.0175 0.0178 0.0179

MGARCH-SSCT(2, 2) 0.0177 0.0182 0.0184

MGARCH-SS-HARCT(1, 5) 0.0178 0.0183 0.0185

MGARCH-SS-HARCT(1, 20) 0.0175 0.018 0.0182

Table 5: Summary of the forecast accuracy of FN` for the considered models, with various
values of p, q, h and foreacst horizon `. Within each type of model, SCAW and MGARCH,
the most favourable value in each column is emphasized in bold. A star indicates that the
model’s forecast value is lower than the equivalent value of the other model type, with
statistical significance at the 0.01 level.
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Model SDEW,`

` = 1 5 10

SCAWCT(0, 1) 2.10e−5∗ 3.08e−5∗ 3.19e−5∗
SCAWCT(1, 1) 1.26e−5∗ 1.52e−5∗ 1.64e−5∗
SCAW-SSCT(0, 1) 2.10e−5∗ 3.17e−5∗ 3.21e−5∗
SCAW-SSCT(1, 1) 1.30e−5∗ 1.55e−5∗ 1.70e−5∗
SCAW-SSCT(1, 2) 1.47e−5∗ 1.60e−5∗ 1.72e−5∗
SCAW-SSCT(2, 2) 1.64e−5∗ 1.86e−5∗ 2.03e−5∗
SCAW-SS-HARCT(1, 5) 1.30e−5∗ 1.94e−5∗ 2.42e−5∗
SCAW-SS-HARCT(1, 20) 1.19e−5∗ 1.44e−5∗ 1.55e−5∗

MGARCHCT(0, 1) 5.25e−5 5.37e−5 5.36e−5

MGARCHCT(1, 1) 3.53e−5 3.75e−5 3.89e−5

MGARCH-SSCT(0, 1) 5.28e−5 5.37e−5 5.36e−5

MGARCH-SSCT(1, 1) 3.30e−5 3.53e−5 3.72e−5

MGARCH-SSCT(1, 2) 3.28e−5 3.44e−5 3.56e−5

MGARCH-SSCT(2, 2) 3.30e−5 3.55e−5 3.76e−5

MGARCH-SS-HARCT(1, 5) 4.95e−5 5.28e−5 5.36e−5

MGARCH-SS-HARCT(1, 20) 4.41e−5 4.62e−5 4.79e−5

Table 6: Summary of the forecast accuracy of SDEW,` for the considered models, with
various values of p, q, h and forecast horizon `. Within each type of model, SCAW and
MGARCH, the most favourable value in each column is emphasized in bold. A star indi-
cates that the model’s forecast value is lower than the equivalent value of the other model
type, with statistical significance at the 0.01 level.

Model SDGMV,`

` = 1 5 10

SCAWCT(0, 1) 6.10e−3∗ 6.45e−3∗ 6.51e−3∗
SCAWCT(1, 1) 5.75e−3∗ 5.84e−3∗ 5.93e−3∗
SCAW-SSCT(0, 1) 6.10e−3∗ 6.48e−3∗ 6.52e−3

SCAW-SSCT(1, 1) 5.52e−3∗ 5.64e−3∗ 5.71e−3∗
SCAW-SSCT(1, 2) 5.82e−3∗ 5.90e−3∗ 5.94e−3∗
SCAW-SSCT(2, 2) 5.62e−3∗ 5.68e−3∗ 5.71e−3∗
SCAW-SS-HARCT(1, 5) 5.74e−3∗ 5.91e−3∗ 6.09e−3∗
SCAW-SS-HARCT(1, 20) 5.72e−3∗ 5.96e−3∗ 6.20e−3

MGARCHCT(0, 1) 6.54e−3 6.67e−3 6.68e−3

MGARCHCT(1, 1) 6.35e−3 6.54e−3 6.55e−3

MGARCH-SSCT(0, 1) 6.56e−3 6.67e−3 6.68e−3

MGARCH-SSCT(1, 1) 6.04e−3 6.24e−3 6.29e−3

MGARCH-SSCT(1, 2) 6.23e−3 6.44e−3 6.47e−3

MGARCH-SSCT(2, 2) 6.27e−3 6.50e−3 6.51e−3

MGARCH-SS-HARCT(1, 5) 6.48e−3 6.65e−3 6.67e−3

MGARCH-SS-HARCT(1, 20) 6.38e−3 6.51e−3 6.56e−3

Table 7: Summary of the forecast accuracy of SDGMV,` for the considered models, with
various values of p, q, h and forecast horizon `. Within each type of model, SCAW and
MGARCH, the most favourable value in each column is emphasized in bold. A star indi-
cates that the model’s forecast value is lower than the equivalent value of the other model
type, with statistical significance at the 0.01 level.
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