
Mathematical Statistics

Stockholm University

Efficient use of data for LSTM mortality
forecasting

Mathias Lindholm

Lina Palmborg

Research Report 2021:2

ISSN 1650-0377



Postal address:
Mathematical Statistics
Dept. of Mathematics
Stockholm University
SE-106 91 Stockholm
Sweden

Internet:
http://www.math.su.se



Mathematical Statistics
Stockholm University
Research Report 2021:2,
http://www.math.su.se

Efficient use of data for LSTM mortality
forecasting

Mathias Lindholm and Lina Palmborg

March 2021

Abstract

We consider a simple long-short term memory (LSTM) neural net-
work extension of the Poisson Lee-Carter model, with a particular
focus on different procedures for how to use training data efficiently,
combined with ensembling to stabilise the predictive performance. We
compare the standard approach of withholding the last fraction of ob-
servations for validation, with two other approaches: sampling a frac-
tion of observations randomly in time; and splitting the population
into two parts by sampling individual life histories. We provide em-
pirical and theoretical support for using these alternative approaches.

Furthermore, to improve the stability of long-term predictions, we
consider boosted versions of the Poisson Lee-Carter LSTM. In the
numerical illustrations it is seen that even in situations where mor-
tality rates are essentially log-linear as a function of calendar time,
the boosted model does not perform significantly worse than a sim-
ple random walk with drift, and when non-linearities are present the
predictive performance is improved. Moreover, boosting allows us to
obtain reasonable model calibrations based on as few data points as
20 years.



1 Introduction

The perhaps most famous mortality forecasting model is the Lee-Carter
model, see [16], which is a simple model for mortality rates. This model
assumes that the age and calendar time effects follow a log-linear relation-
ship, which makes parameter estimation very simple. That is, if we let µx,t

denote the mortality rate for age x during calendar year t, it is assumed that
given estimates µ̂x,t it holds that

log(µ̂x,t) = αx + βxκt,

for x ∈ X and t ∈ I, where X denotes observed ages, and I denotes observed
time points. When it comes to producing forecasts of future mortality the
“trick” used is to model the estimated κts as a univariate Gaussian process,
often a random walk with drift, i.e.

κ̂t+1 = γ + κ̂t + εt+1, (1)

where εt ∼ N(0, σ2) and i.i.d. The Gaussian process used to describe the
variation in the κts is easy to forecast into the future, and given these forecasts
it is straightforward to produce future values of µx,t.

The above outlined description of the Lee-Carter model is a model describing
the evolution of mortality rates, whereas what we observe are death counts.
[16] discuss ways for adjusting for this, but a more natural approach is the
one underlying the Poisson Lee-Carter model from [5]: Let Dx,t denote the
number of individuals dying being of age x during calendar year t, and let
rx,t denote the total exposure-to-risk for individuals being x years old during
calendar year t. It is then assumed that

Dx,t | rx,t ∼ Po(rx,tµx,t(θ)), (2)

where

µx,t(θ) := exp{θx,t} := exp{αx + βxκt}, (3)

which corresponds to a Poisson regression model with a log-link function,
whose parameters can be estimated using standard maximum likelihood the-
ory. Still, in order to be able to produce forecasts the estimated κts are
modelled as a one-dimensional (Gaussian) process, e.g. following (1).

If one wants to avoid the inconsistency of using the above described two-step
estimation procedure, first estimating parameters, and second treating the
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estimated parameters as outcomes of a stochastic process, one can use state-
space models, see e.g. [7] for the standard Lee-Carter model, and [1] for the
Poisson Lee-Carter model.

Apart from improving on the estimation procedure, another line of research
concerns using more flexible modelling approaches. From a constructive mod-
elling perspective the Poisson distribution assumption is natural, see e.g.
[5, 1], and one can hence consider the following generalisation concerning the
modelling of the κ̂ts:

Model (Generalised Lee-Carter).

κ̂t+1 = f(Ft;η) + εt+1, (4)

where εt ∼ N(0, σ2) and i.i.d., and where Ft = σ{κ̂s; s ≤ t} and

f(Ft;η) := E[κ̂t+1 | Ft](η).

The approach that will be taken in the present paper is to model f(Ft;η)
as a long-short term memory (LSTM) neural network, see e.g. [11] for a
general introduction to recurrent neural networks, and e.g. [21, 19] for LSTM
versions of [16] and [5] and e.g. [26, 24, 22, 12] for other neural network
models used for mortality forecasting, and e.g. [8, 17] for tree-based machine
learning techniques. Hence, we do not investigate the appropriateness of the
model structure in (2) and (3) as compared to other model structures or the
inconsistency of the two-step estimation procedure. Instead we see the model
structure and the MLE of θ as given, and focus on modelling the κ̂ts. In this
respect, the MLE of the κts can be regarded as ”data” when calibrating the
neural network model.

Important aspects of using neural network models is to decide on (i) the
architecture of the model, and (ii) the number of epochs to be used for cal-
ibrating the model. In the present paper we will illustrate the performance
for a number of architectures, not claiming to show the performance of the
best possible architecture. We will instead focus considerably more on (ii)
and, in particular, on the effect of using different amounts of data for cali-
bration. The reason for this is that LSTM neural network models tend to
have a large number of parameters that needs to be calibrated. This implies
that you need to have access to a rather large amount of data to be used
for calibration. Moreover, neural network models (in general) are calibrated
using iterative procedures and the question is for how long this iterative pro-
cedure should be carried out. The standard procedure of how to decide on
the number of iterations to be used is based on so-called “early stopping”
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where you have one set of data for in-sample training and another set of data
for validation (out-of-sample training), where you stop the iterative calibra-
tion procedure when the performance on the out-of-sample validation data
starts to deteriorate. An obvious risk with using early stopping is that the
optimisation method might have converged to a local minimum. One way of
reducing this problem is to average over a number of different models, using
random initialisation of the parameters. This is an example of an ensemble
model.

Further, in the present paper the primary interest is on one-dimensional
LSTM neural network models, where the only dimension is time. Based on
the discussion in the previous paragraph, this implies that we would expect
to need long time series in order to obtain reliable model calibrations. When
it comes to data for entire countries this may be feasible, but for e.g. life
insurers this may become problematic. Moreover, even if mortality data for
longer time periods is available, using the full historical data set might not
be appropriate when staying within the simple model structure in (2) and
(3), since when increasing the length of the time series, one also increases
the time period for which it should be reasonable to use constant αxs and
βxs. Thus a compromise is needed between having enough data to improve
the performance of the LSTM model, and at the same time ensuring that
the performance of the global model (2) and (3) does not degrade based on
the time window being too long.

For the calibration we will consider the following three approaches for split-
ting the data into data used for in-sample training and out-of-sample valida-
tion:

(i) The standard approach of withholding the last fraction of observations
(chronologically in time) as validation data.

(ii) Sampling the validation data randomly in time.

(iii) Sampling individuals and randomly assigning them to subsets of the
underlying population, where one subset is used for in-sample training
and another subset is used for out-of-sample validation, without splitting
the time dimension.

The idea behind approaches (ii) and (iii) is to make more efficient use of data,
considering that the amount of available information might be restricted.
The obvious drawback with approach (i) is that if we have a small data set
and split it into data for in-sample training and out-of-sample validation, the
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number of examples used for training will be reduced further. Furthermore,
if the validation set is inherently different from the rest of training data
or future data, then the model that minimises the error on the validation
set might not generalise well. With approach (ii), since we are sampling
validation data randomly in time, this approach will also reduce the number
of examples used for training, but here we have the ability to draw the
validation set randomly several times, and train a number of different models
on these different splits into training data and validation data. An ensemble
model based on these individual model calibrations will as a whole be trained
on the full data set and does, hence, not risk choosing one single validation set
which is not representative of the time series. Concerning approach (iii), this
allows us to use the whole time period for both in-sample training and out-
of-sample validation by sampling i.i.d. individual life histories. That is, since
both training and validation data are based on sampling i.i.d. individual life
histories, the calibrated κ̂t predictor from the training dataset should capture
the relevant time-dynamics in the validation dataset as well. In Section 3.1-
3.3 these three approaches are discussed in more detail.

Furthermore, it is worth noting that the methods contain different implicit
views on the (trend-)stationarity of data. Method (ii) and (iii) essentially
treat all observations in the time-dimension as equally relevant, which aligns
with the underlying model assumptions in (2) and (3). Method (i) instead
views the last observations as more relevant for the future, since the parame-
ters chosen are the ones that give the best performance on the validation set
only consisting of the last observations. Depending on the data, this might
be an appropriate assumption to make. However, such an assumption also
indicates that the underlying model defined by (2) and (3) is not suitable for
the task at hand.

Finally, in order to try to keep the amount of information necessary for
calibration at a minimum, we will combine the above three approaches with
the following approach:

(iv) LSTM boosting of the standard Poisson Lee-Carter model from [5].

This means that we will use the estimated mean-function for the κ̂t process
from the standard Poisson Lee-Carter model from [5] as an intercept in the
LSTM model. Given that the mean-function from the Poisson Lee-Carter
model is reasonably representative for the observed data, the LSTM model
only needs to improve on this baseline model. This should be considerably
more stable than trying to learn all data dynamics from start when only
having access to a limited amount of data. Moreover, other potential benefits
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of using boosting is that this procedure likely will make the data fed into
the LSTM model approximately trend adjusted. This in turn may prove
beneficial when making long-term prediction. This is described in more detail
in Section 3.7.

The approach of modelling f(Ft;η) in (4) as an LSTM neural network is
the same as in [21, 19]. There are, however, some important differences in
both implementation and methodology. First, we ensure that there is a clear
distinction between the out-of-sample validation set, used when training the
model, and the test set representing future data used for evaluating the model
performance. This is important in order to ensure that the model evaluation
is not biased by the model having seen the test data during training. Sec-
ondly, we construct an LSTM model with lag order larger than one, to be able
to see if any improvement is due to using a recurrent network model, or if it
is only the effect of allowing for non-linearities. As discussed in Section 2, an
LSTM model where sequences are of length 1 is essentially no different from
a feedforward neural network model. Thirdly, we also evaluate the model
performance based on the log-likelihood of the full model, not only the MSE
of the κ̂ts, since the goal is to predict mortality rates. In particular, in our
numerical illustrations in Section 5 examples are given where the MSE based
on the κ̂ts contradict the log-likelihood for the observed deaths.

The remainder of the paper is organised as follows: Section 2 provides a
brief background to LSTM neural network models, Section 3 introduces the
different calibration procedures, model aggregation (ensembling), and boost-
ing, followed by a short section on likelihood considerations and performance
measures in Section 4. The effects of using the different calibration tech-
niques are illustrated on Swedish, Italian and US mortality data from [15],
which is done in Section 5. For more detailed numerical analyses and addi-
tional comparisons, see the Supplementary Materials [18]. The paper ends
with a number of closing remarks in Section 6.

2 LSTM neural network models

The long short-term memory (LSTM) neural network model belongs to a
specific type of recurrent neural networks (RNNs) called gated RNNs. RNNs
are a form of feedforward neural networks that are specialised at processing
sequential data. This means that the output of an RNN is determined based
on previous elements of the sequence, while the output of a standard feedfor-
ward neural network only depend on the current input. For an introduction
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to RNNs, see e.g. [11, Ch. 10]. However, in standard RNNs the same func-
tion is composed with itself many times, leading to the so-called vanishing
gradient problem, which makes it difficult for standard RNNs to learn long-
term dependencies. As a solution to this problem [14] developed the LSTM
model, which was later extended in [10] where the so-called forget gate was
introduced. Thus the LSTM model is a natural model class to consider for
time series modelling.

Let xt ∈ Rc be the input vector, and ht ∈ Rd the hidden layer vector, where
c is the number of features in the input data, and d is the number of neurons
in the hidden layer. Following a similar notation as [11, Ch. 10.10], an LSTM
cell is described by:

f t = σ
(
bf +U fxt +W fht−1

)
gt = σ

(
bg +U gxt +W ght−1

)
qt = σ

(
bq +U qxt +W qht−1

)
(5)

st = f t � st−1 + gt � φ
(
b+Uxt +Wht−1

)
ht = φ(st)� qt,

where � denotes the Hadamard product, f t is the forget gate, gt is the input
gate, qt is the output gate, σ(·) is the logistic sigmoid function, φ(·) is the
activation function, bf , bg, bq, and b denote the biases (∈ Rd), U f , U g,
U q, and U denote the input weights (∈ Rd×c), and W f , W g, W q, and W
denote the recurrent weights (∈ Rd×d). The initial values are h0 = 0 and
s0 = 0. Since the three gates are all defined in terms of the logistic sigmoid
activation function, they take values in (0, 1)d. Hence the gates control to
what degree information flows through the memory cell. st is the cell state,
hence the forget gate controls to what degree the previous cell state st−1 is
passed forward to the current state, while the input gate controls to what
degree the input at time t and the hidden layer vector at time t− 1 adjusts
the cell state. Finally, the output gate controls to what degree the current
cell state is passed forward to the current hidden layer output ht.

Due to the gates in an LSTM cell, each with its own biases, input weights
and recurrent weights, an LSTM model tends to have a large number of
parameters. To be precise, for each LSTM layer, the number of parameters
is 4((c+ 1)d+ d2). As an example, in a shallow LSTM model with 5 neurons
and 1-dimensional sequences, the LSTM layer would contribute with 140
parameters.
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Since the original LSTM model was introduced, many different variants have
been suggested. For an overview of different types of gated RNNs, see [11,
Ch. 10.10] and references therein. Here, we focus on the original LSTM
model defined above, and restrict our analysis to a shallow model with one
hidden LSTM layer.

Remark 1.

(a) In the original LSTM model, two different activation functions were used
for updating st and ht. In the description of an LSTM cell in (5), we
have chosen the same activation function φ(·), since this is consistent
with the implementation in the R package keras, see [6], used for the
numerical illustrations in Section 5.

(b) As in the original LSTM model, we use the logistic sigmoid func-
tion for the gate activation, implemented in the R package keras as
“recurrent activation”. In several recent papers using LSTM models
for forecasting of mortality rates, see e.g. [24, 19], the gate activation
has been set to the hyperbolic tangent function. With this choice of
gate activation the intuitive interpretation of the gates in the LSTM
model does not hold, since they will now take values in (−1, 1) instead
of (0, 1).

For time series modelling with an LSTM model, the look-back window of
length p of the time series will determine the length of the input sequences in
the time-dimension, and is thus a hyperparameter of the model. Let (yt)

n
t=1,

with yt ∈ Rc, be the time series. If the output target is yt, then the matrix
of inputs is X = (x1, . . . ,xp)

> = (yt−p, . . . ,yt−1)
> ∈ Rp×c. We illustrate the

recursions for a model with one LSTM layer when p = 2 and c = 1 in Figure
1. For this simple example, with output target yt, we have x1 = yt−2 and
x2 = yt−1, and the output is f(x1, x2;η) := E[Yt | x1, x2](η).

Remark 2.

(a) Note that the time step index t in the forward propagation equations
in (5) corresponds to the position in the sequence (xt)

p
t=1, and not the

time step index for the original time series. Furthermore, note that the
dimension of the weights (and thus the number of parameters) does not
depend on the length of the input sequences, hence the same weights are
used irrespective of the time step index t.
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h0 = 0
s0 = 0

h1

s1

h2

s2
f(x1, x2;η)

x1 x2

Figure 1: Recursions for model with one LSTM layer, p = 2 and c = 1.

(b) When the lag order p is set to 1, then the output will simply be a non-
linear transformation of the input x1, since the initial value of the hidden
layer vector and the cell state is zero. Hence for this case similar results
should be achievable with a standard feedforward neural network.

(c) When increasing the lag order p, the hidden layer vector represents the
internal short-term memory and the cell state represents the internal
long-term memory of previous positions in the sequence. It is for p > 1
that one can start taking advantage of the properties of an LSTM model.

The LSTM model is trained using stochastic gradient descent (SGD), hence
an estimate of the gradient of the loss function is computed based on a
random sample of observations drawn from the training data. Each random
sample formed in this way is called a minibatch. The parameter update at
each iteration of the SGD algorithm is based on the estimate of the gradient
using one minibatch. When the algorithm has cycled through all minibatches
in the training data, this constitutes one epoch. The number of epochs is
a hyperparameter of the model, and it is commonly determined based early
stopping, where training data is split into one set of data that is used for
in-sample training and another set of data used for validation. The number
of epochs is determined based on the performance on the validation set, with
the hope that this improves the performance on the (unseen) test set. Hence,
early stopping is a simple method used to prevent overfitting, and is, thus, a
form of regularisation.
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3 Model calibration, aggregation, and boost-

ing

The general problem that we want to address is how to make efficient use
of data for model calibration by analysing three different model calibration
procedures. In particular, we are interested in if it is possible to obtain a
procedure that produce reasonable model calibrations even when only having
access to a limited amount of data. This becomes even more demanding when
we want to use early stopping during the calibration of the LSTM model in
order to prevent overfitting. When using early stopping, the training data
needs to be split into two sets, one which is used for in-sample training,
and one which is used for validation (out-of sample training). It is the per-
formance on the out-of-sample validation data that determines when the
iterative calibration procedure should be stopped. For time series data, the
standard procedure is to withhold the last fraction of observations (chrono-
logically in time) for validation, e.g. according to a 80/20 split. However,
when the total number of observations is small, splitting the training data
in this way further reduces the number of observations the model can be
trained on, which might worsen the performance of the model. Furthermore,
there might be important information contained in the withheld observations
which the model is never trained on. The smaller the calibration data set,
the more likely that there is important information contained in the valida-
tion set that is not contained in the data used as input for training, hence
the model is never given the opportunity to learn this information.

For a neural network specialised at dealing with sequential data, the lag
order p of the model is a hyperparameter. If training data consists of the
one-dimensional time series (κ̂t)

n
t=1, then xt = (κ̂t−p, . . . , κ̂t−1)

> are the co-
variates for κ̂t, where t = p + 1, . . . , n. Hence training data consist of n− p
observations. For autoregressive data with lag order p, the standard way to
structure data is according to

K =


κ̂1 κ̂2 . . . κ̂p κ̂p+1

κ̂2 κ̂3 . . . κ̂p+1 κ̂p+2
...

...
. . .

...
...

κ̂n−p κ̂n−p+1 . . . κ̂n−1 κ̂n

 . (6)

The matrix K contains the training data for the neural network model, with
the first p columns corresponding to the input sequences and the last column
corresponding to the output that should be predicted by the model.
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We use three different methods for splitting the training data into data used
for in-sample training and out-of-sample validation; (i) the aforementioned
method of withholding the last fraction of rows of K for validation; (ii)
randomly sampling observations in the form of rows of K for validation;
and (iii) splitting the underlying population into sub-populations, using one
sub-population for in-sample training and one for out-of-sample validation.

3.1 Calibration LO – Withholding the last fraction of
observations

When validation data consist of the last 100α%, α ∈ (0, 1), of observations,
this means that the last [α(n− p)] rows of K will be kept aside as validation
data, and the first n − p − [α(n − p)] rows are used as input when training
the model, where [x] denotes the integer closest to x. Let I denote the set of
row indices of the matrix K, i.e. I := {t : 1 ≤ t ≤ n− p}. Let V denote the
set of row indices of K corresponding to the out-of-sample validation data.
Then V = {t : n−p− [α(n−p)] + 1 ≤ t ≤ n−p}, and the in-sample training
data has index set T := I \ V . Let (x∗t , κ̂

∗
t )t∈V denote the validation data.

The Calibration LO can then be described according to:

Model calibration.

(i) Let η̂(i) denote the estimate of η from f(xt;η), t ∈ T , of model (4) in
the ith calibration epoch.

(ii) Calculate the prediction error

(s(i))2 =
1

|V|
∑
t∈V

(κ̂∗t − f(x∗t ; η̂
(i)))2 (7)

and continue the updating procedure of η̂(i) as long as (s(i))2 is decreas-
ing.

3.2 Calibration RT – Sampling randomly in time

An alternative way of choosing the validation set is to sample [α(n − p)]
rows of K randomly. This method enables us to draw the validation data
several times and averaging over the models calibrated to each split into
training data and validation data, thus allowing us to utilise data better. An
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ensemble model formed in such a way will be trained on the whole training
set, given that each observation in the training set is contained in the training
examples used as input for the calibration of at least one individual model,
see further Section 3.5.

This somewhat unorthodox procedure means that the validation set and the
training set will be dependent, since one row of K drawn to be included
in the validation set will likely contain observations that are also in the
training set. As shown in [2] this type of procedure can still work well in the
context of cross-validation for general autoregressive models. The motivation
is that ε̂t = κ̂t−f(xt; η̂) are uncorrelated, provided that f(xt;η) is estimated
appropriately. That using this procedure for creating an ensemble model also
tends to work well within our setting is supported empirically by the results
in Section 5.

The calibration procedure for one calibration follows steps (i)-(iii) in the
previous section, with V consisting of the set of row indices of matrix K that
were sampled randomly.

3.3 Calibration SP – Splitting the population by sam-
pling individuals randomly.

Compared with many other time series data situations, such as e.g. stock
indices, mortality data is based on an underlying population of individuals,
which may be split into sub-populations. That is, by uniformly at random
assigning individuals into, e.g. either of two cohorts at birth, the resulting
sub-populations should consist of i.i.d. samples from the same underlying dis-
tribution. When it comes to mortality data this means that entire individual
life-histories are assigned to different groups.

Consequently, instead of splitting data in the time dimension, using one part
of the data for training and the other part for validation, we can split the
population in two parts. In the latter split the entire observed time interval
is used for training and validation, but based on different sets of individu-
als. This approach is particularly interesting in the situation where we have
a sufficiently large underlying population, but where the observed time in-
terval is short, which is a situation that is relevant for e.g. larger insurance
companies. Furthermore, it enables us to construct bootstrapped samples of
the original population, which makes it possible to form an ensemble model
using bagging, see e.g. [3], [13, Ch. 8.7], something that is in general not pos-
sible for time series data, since we would normally only have access to one
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realisation from the underlying stochastic process. This is discussed further
in Section 3.5.

For model (4) the calibrating procedure based on a single split is focused on
the κ̂ts:

Creating calibration data.

(i) Split the total population into two subpopulations producing the two
datasets (Dx,t, rx,t) and (D∗x,t, r

∗
x,t), x ∈ X , t ∈ I.

(ii) Calculate θ̂ = (α̂, β̂, κ̂) based on (Dx,t, rx,t), and calculate θ̂
∗

based on
(D∗x,t, r

∗
x,t).

Model calibration.

(iii) Let η̂(i) denote the estimate of η from f(xt;η), t ∈ I, of model (4) in
the ith calibration epoch.

(iv) Calculate the prediction error

(s(i))2 =
1

|V|
∑
t∈V

(κ̂∗t − f(x∗t ; η̂
(i)))2 (8)

where x∗t = (κ̂∗t−p, . . . , κ̂
∗
t−1)

>, V = I, and continue the updating pro-

cedure of η̂(i) as long as (s(i))2 is decreasing.

Remark 3. Note that for this calibration procedure the full parameter vector
θ = (α,β,κ) will be re-estimated for the two populations. Since θ̂ and θ̂

∗
are

estimated based on two independent subpopulations for the whole training
period I, η̂(i) will be independent of κ̂∗, and thus (x∗t , κ̂

∗
t ) for t ∈ I.

3.4 Early stopping rule

If we consider an estimate of η, without stressing which epoch it is related
to, and let

et := κ̂∗t − f(x∗t ; η̂), t ∈ V
it follows that (7) and (8) can be expressed as

s2 =
1

|V|
∑
t∈V

e2t . (9)
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Further,
E[e2t | x∗t ] = σ2 + Bias2t (η, σ

2;x∗t ) + Vart(η, σ
2;x∗t )

where
Bias2t (η, σ

2;x∗t ) = E[(f(x∗t ;η)− E[f(x∗t ; η̂)])2 | x∗t ],
Vart(η, σ

2;x∗t ) = E[(E[f(x∗t ; η̂)]− f(x∗t ; η̂))2 | x∗t ],
which gives us that

E[s2] = σ2 +
1

|V|
∑
t∈V

E[Bias2t (η, σ
2;x∗t )] +

1

|V|
∑
t∈V

E[Vart(η, σ
2;x∗t )

= σ2 + Bias
2
(η, σ2) + Var(η, σ2).

When using early stopping, training will be stopped after the number of
epochs at which s2 is minimised. Hence using early stopping corresponds to
finding the optimal balance between the the prediction bias and the variance.

3.5 Model aggregation

It has long been known that model aggregation, or ensembling, can improve
the accuracy of predictions in both classification and regression problems, se
e.g. [23, 9, 20]. Hence, to get more stable predictions, we create an ensemble

model, by aggregating over m model calibrations. If η̂
(j)
0 is the optimally

stopped estimate of η in model calibration j, the aggregated predictor is
defined as

f̄
(
xt; (η̂

(j)
0 )mj=1

)
:=

1

m

m∑
j=1

f(xt; η̂
(j)
0 ). (10)

For a single time point t, the prediction error of the ensemble model will
always be less than or equal to the average of the prediction errors of the
individual models. Let (κ̃t)

l
t=1 denote observations from the test data (future

data), and let x̃t = (κ̃t−1, . . . , κ̃t−p)
>. Define κ̄t := f̄

(
x̃t; (η̂

(j)
0 )mj=1

)
. Then,

for a single time point t,

1

m

m∑
j=1

E[(κ̃t − f(x̃t; η̂
(j)
0 ))2 | x̃t] = E

[
1

m

m∑
j=1

(
κ̄t − f(x̃t; η̂

(j)
0 ) + κ̃t − κ̄t

)2

| x̃t

]

=
1

m

m∑
j=1

E[(κ̄t − f(x̃t; η̂
(j)
0 ))2 | x̃t]

+ E[(κ̃t − κ̄t)2 | x̃t]

≥ E[(κ̃t − κ̄t)2 | x̃t].
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Furthermore, as shown in [23], if the error terms e
(i)
t and e

(j)
t are uncorrelated

for i 6= j, then

E[(κ̃t − κ̄t)2 | x̃t] =
1

m2

m∑
j=1

E[(κ̃t − f(x̃t; η̂
(j)
0 ))2 | x̃t],

i.e. the prediction error is reduced by a factor 1/m when ensembling as com-
pared to the average of the prediction errors of the individual models. If the
error terms of the individual models are perfectly correlated and have the
same variance, then there is no gain from ensembling, since then

E[(κ̃t − κ̄t)2 | x̃t] = E[(κ̃t − f(x̃t; η̂
(1)
0 ))2 | x̃t].

Hence, when constructing an ensemble model, we would like the individ-
ual models to be diverse, in the sense that the correlations between the
error terms of the models are low. There are several different methods for
constructing ensembles, see e.g. [9]. We focus on the methods of injecting
randomness and manipulating training examples, and our choice will depend
on the calibration method used, since manipulating training examples is not
straightforward for all calibration methods.

Calibration LO – using the last fraction of observations as valida-
tion data. We construct the ensemble by injecting randomness into the
learning algorithm. When using neural network regression models, each time
the model is calibrated we will get a slightly different prediction due to the
random initialisation of the calibration, and due to using stochastic gradi-
ent descent. However, each individual model will use the same training and
validation data. Hence, for this case each parameter estimate η̂

(j)
0 in the

aggregated predictor in (10) has been determined according to steps (i) - (ii)
in Section 3.1, over the same sets T and V . In [25] this is what is called the
nagging predictor, from combining networks and aggregating, as opposed to
bagging, combined bootstrapping and aggregation.

Calibration RT – sampling the validation data randomly in time.
We will combine the method of injecting randomness through the random
initialisation of the calibration, and using stochastic gradient descent, with
manipulating training examples. In each run this is done by drawing a new
sample for the validation data. Hence, for each model calibration, the set
V(j) consists of a random sample of row indices of matrix K, and η̂

(j)
0 , the

optimally stopped estimate of η for model calibration j, will depend both on
the random initialisation of the calibration, and the random split of the row
indices of matrix K into V(j) and T (j) := I \ V(j). By both injecting ran-
domness and manipulating training examples, we make the individual models
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more diverse. Furthermore, by randomly drawing a different validation set
for each model we can utilise data better in the sense that the ensemble
model will have used most observations both for training and validation.

Calibration SP – creating validation data by splitting the popu-
lation by sampling individuals. We again combine injecting random-
ness via random initialisation with manipulating training examples, but in a
slightly different way as compared to the second calibration method. Since
we here sample individuals randomly, we are able to manipulate training ex-
amples through bootstrapping, which is not straightforward for the other two
calibration methods where the training data is split in the time dimension.
Hence our ensemble model in this case will be a combination of injecting
randomness via random initialisation and population bagging, see [3]. Thus,
instead of splitting the total population into two subpopulations, we sample
individuals at random with replacement of the same population size as the
original population, and then split this bootstrapped population into two
subpopulations. This can also be combined with subsampling, where the
sampled number of individuals is less than the original population size. This
strategy can be used to prevent overfitting for the case when the total popu-
lation is very large, thus essentially leading to κ̂ and κ̂∗ being equal if using
the original population (or a bootstrapped population of the same size) as a
starting point when making the population split. Furthermore, subsampling
also has the benefit of creating more diverse models, since the training sets
used for each individual model will be less similar when using subsampling
for large populations. Examples of subsampling are given in Section 5.

Variance parameter estimation and simulation of ensemble models.
For repeated one-step simulations of future data, assuming having an esti-
mate of variance parameter, the simulated future outcome from the ensemble
model at time step t− 1 is used as an observation when predicting the value
at time t. Hence, for the jth trajectory and t > n,

κ̃
(j)
t = f̄

(
(x̃

(j)
t ); (η̂

(i)
0 )mi=1

)
+ εt,

where εt ∼ N(0, σ2
ens) and i.i.d., and

x̃
(j)
n+1 = xn+1 = (κ̂n, . . . , κ̂n+1−p)

>

x̃
(j)
n+2 = (κ̃

(j)
n+1, κ̂n . . . , κ̂n+1−p)

>

...

x̃
(j)
n+p = (κ̃

(j)
n+p−1, . . . , κ̃

(j)
n+1, κ̂n)>
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and x̃
(j)
t = (κ̃

(j)
t−1, . . . , κ̃

(j)
t−p)

> for t > n + p. Finally, the prediction of the
ensemble model at time step t over N simulated trajectories is given by

the median of (f̄
(
(x̃

(j)
t ); (η̂

(i)
0 )mi=1

)N
j=1

, and in a similar manner prediction

intervals can be constructed. Note that since the estimated predictor f̂ in
general will be highly non-linear, it is important not to make predictions by
directly inserting x̂t corresponding to expected values into f .

Concerning the estimation of σ2
ens, the natural estimator is to use the in-

sample variance s̄2:

s̄2 =
1

|I|
∑
t∈I

(
κ̂t − f̄

(
xt; (η̂

(j)
0 )mj=1)

))2

.

Similarly as when looking at the prediction error, let ˆ̄f(xt) := f̄
(
xt; (η̂

(j)
0 )mj=1),

and it follows that

1

m

m∑
j=1

(
κ̂t − f(xt, η̂

(j)
0

)2
=

1

m

m∑
j=1

(
κ̂t − ˆ̄f(xt) + ˆ̄f(xt)− f(xt, η̂

(j)
0

)2
= (κ̂t − ˆ̄f(xt))

2 +
1

m

m∑
j=1

( ˆ̄f − f(xt; η̂
(j)
0 ))2

≥ (κ̂t − ˆ̄f(xt))
2,

hence

(s̄)2 =
1

|I|
∑
t∈I

(κ̂t − ˆ̄f(xt))
2 ≤ 1

m

m∑
j=1

(s(j))2

where (s(j))2 is the in-sample variance for model calibration j:

(s(j))2 =
1

|I|
∑
t∈I

(κ̂t − f(xt, η̂
(j)
0 )2.

Moreover, similarly to Section 3.4, although defined in-sample, one can note
that E[(s̄)2] is equal to σ2, here referring to the σ2 from (4), plus a (reducible)
error part.

3.6 Relating calibration RT to calibration LO

When creating the validation data by withholding the last fraction of ob-
servations, we will have the same in-sample training data and out-of-sample
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validation data for each of the individual models that make up the ensemble
model. If we disregard any differences of the models due to the random ini-
tialisation of the calibration, each model will give the same estimate η̂LO

0 of
η, where LO, as above, refers to the Calibration LO (“last observations”).
Hence, the ensemble model in (10) using this calibration method becomeŝ̄fLO(xt) := f̄(xt; η̂

LO
0 ) = f(xt; η̂

LO
0 ).

When we create the validation data by sampling observations randomly in
time, we get the estimates η̂

(j)
0 , j = 1, . . . ,m of η, and the ensemble model

is given by (10), ̂̄fRT(xt) := f̄(xt; (η̂
(j)
0 )mj=1),

where RT refers to Calibration RT (“random time”).

If E[(κ̃t − ̂̄fLO(x̃t))
2 | x̃t] ≥ E[(κ̃t − f(x̃t; η̂

(j)
0 ))2 | x̃t] for j = 1, . . . ,m, where

(κ̃t, x̃t)
l
t=1 is unseen future data, then

E[(κ̃t − ̂̄fLO(x̃t))
2 | x̃t] ≥

1

m

m∑
j=1

E[(κ̃t − f(x̃t; η̂
(j)
0 ))2 | x̃t]

≥ E[(κ̃t − ̂̄fRT(x̃t))
2 | x̃t].

Conversely, if E[(κ̃t − ̂̄fLO(x̃t))
2 | x̃t] ≤ E[(κ̃t − f(x̃t; η̂

(j)
0 ))2 | x̃t] for j =

1, . . . ,m, then

E[(κ̃t − ̂̄fLO(x̃t))
2 | x̃t] ≤

1

m

m∑
j=1

E[(κ̃t − f(x̃t; η̂
(j)
0 ))2 | x̃t]

=
1

m

m∑
j=1

E[(̂̄fRT(x̃t)− f(x̃t; η̂
(j)
0 ))2 | x̃t]

+ E[(κ̃t − ̂̄fRT(x̃t))
2 | x̃t].

Hence, if ̂̄fLO(·) is the worst individual model, in the sense that this model

achieves the largest out-of-sample error, then ̂̄fRT(·) will be better. If, on

the other hand, ̂̄fLO(·) is the best individual model, i.e. achieves the smallest
out-of-sample error, it is still not guaranteed to be better than the ensemble

model ̂̄fRT(·), since this will depend on how much better it is compared to the

individual models that make up the ensemble model ̂̄fRT(·), as well as how
large the correlation is between the error terms of the individual models.

To conclude, unless there is reason to believe that ̂̄fLO(·) will produce a
substantially better model than the models based on sampling the validation
set randomly in time, essentially “putting all eggs in one basket”, a more

agnostic alternative is to use the ensemble model ̂̄fRT(·).
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3.7 LSTM boosting

Regardless of how data is split and used for model calibration / assessment,
once the amount of data being used is reduced, it becomes even more impor-
tant to have good starting values for the κ̂t-process. The idea with boosting
is as follows:

(i) Decide on a reference time series model for the κ̂ts, thinking of this as
a “standard” time series model, e.g. an ARIMA model. Let h(Ft−1; ξ)
denote the mean-function of the reference model, i.e.

κ̂t+1 := h(Ft; ξ) + ε̃t+1,

where ε̃t ∼ N(0, χ2) and i.i.d.

(ii) Obtain an estimate ξ̂ of ξ.

(iii) Given ξ̂, introduce the version of the LSTM neural network model (4)
defined by

κ̂t+1 = h(Ft; ξ̂) + f(Ft;η) + εt+1, (11)

where εt ∼ N(0, σ2) and i.i.d., and where h(Ft; ξ̂) acts like an Ft-
measurable (non-trainable) intercept function in the LSTM model.

The above boosting procedure is exemplified for model (4), but the steps
hold verbatim for generalisations of this model as well.

4 Likelihoods and performance measures

As discussed in the introduction, the starting point for the modelling is the
Poisson Lee-Carter model from [5], see (2) and (3), whose log-likehood is
given by

l(θ) =
∑
x,t

(−rx,t exp{αx + βxκt}+ dx,t(αx + βxκt)), (12)

which gives us the MLE of θ.

Next, if we introduce randomness by treating the κ̂ts as outcomes of a stochas-
tic process, whose parameters are contained in η together with the relevant

19



filtration given by the Fts, it follows that the complete data likelihood, when
treating the estimated κts as observations, is given by

L(α,β,η) =
∏
x,t

p(dx,t | rx,t;αx, βx, κ̂t)q(κ̂t;Ft−1,η), (13)

where p(·) corresponds to the probability mass function of the Poisson dis-
tribution and where q(·) corresponds to Gaussian densities.

The corresponding incomplete data likelihood, when we only observe death
counts, is given by

L∗(α,β) = Eκ

∏
x,t

p(dx,t | rx,t;αx, βx, κ̂t)

 , (14)

where Eκ[·] corresponds to the expectation taken over the joint distribution
of the κ̂ts. Thus, by simulating κ̂ts from q(·;Ft−1, η̂) it is possible to estimate
L∗(α,β), which, after taking the logarithm, is comparable with (12).

However, when computing (14) in practice, using the average over all trajec-
tories will often turn out to be numerically unstable. The reason for this is
that by sampling κ̂t trajectories without conditioning on the observed death
counts, only a small fraction of trajectories will be in reasonable agreement
with the deaths actually observed. Due to this the contribution to the like-
lihood will for most simulated trajectories be zero, hence leading to a very
unstable estimate of (14). Phrased differently, this procedure can be thought
of as a very naive Monte Carlo importance sampling procedure, where the
sampling weights are uniform, leading to a low effective number of sampled
trajectories. Because of this we instead evaluate different models in Section 5
based on the median of incomplete likelihoods per trajectory given by

L̃∗(α,β) = medianκ

∏
x,t

p(dx,t | rx,t;αx, βx, κ̂t)

 , (15)

which will indicate the typical performance of the κt-models. Moreover, note
that (15) is

(i) computable for any κ̂t-model, and that it is possible to compute both
in-sample and out-of-sample, given the rx,ts,

(ii) smaller or equal to the corresponding likelihood consistent with (12),
with equality if and only if the κ̂t process is degenerate putting all
probability mass in the points corresponding to the κ̂ts from the MLE
of θ.
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Remark 4. In Section 5 we also plot the incomplete data log-likelihood per
age x, and per time t. For age x we define

L∗x(αx, βx) = Eκ

[∏
t

p(dx,t | rx,t;αx, βx, κ̂t)

]
,

and plot logL∗x(αx, βx) as a function of x, and similarly for each time point
t. However ∑

x

logL∗x(αx, βx) 6= logL∗(α,β),

hence this should only be seen as an indication of for which ages and time
points the fit is better or worse for each model and does not completely
align with the log-likelihood defined by (14). Due to this it is not possible
to ascertain that the incomplete log-likelihood marginalised w.r.t. time or
age should be lower than the corresponding saturated log-likelihood. This is
also the case when changing from (14) to (15). However, when comparing
the log-likelihood defined by (14) for each model, this will never exceed the
log-likelihood for the saturated model.

Henceforth, we call the model with estimates of κt corresponding to the κ̂ts
from the MLE of θ the saturated model. This is since this choice of κt
corresponds to perfect fit within our model structure, where θ̂ = (α̂, β̂, κ̂)
are seen as given, and we want to find a suitable model for the κ̂ts in order
to forecast them into the future. Hence, the κ̂ts correspond to the best fit we
can achieve based on observed death count data, given the model structure
and the estimates (α̂, β̂). Furthermore, for the prediction period we define
the saturated model as the one with estimates of κt corresponding to the
MLE of κt based on mortality data for the prediction period, given (α̂, β̂)
estimated for the in-sample period. Hence, we maximise the log-likelihood in
(12) over κ for the prediction period, using the previous estimates of (α,β).
Thus, if we could look into the future, but were restricted by our model
choice and the previous estimates of (α,β), these estimates of the κts give
the best possible fit to data.

Note, however, that even if we may compute (15) based on observed death
counts, we still only use the inner Gaussian likelihood when optimising η in
the κ̂t-model, i.e. by minimising the (validation) MSE. This is in line with
e.g. [21]. Naturally, due to this it is not necessarily the best κ̂t-model chosen
w.r.t. the minimal (validation) MSE that will maximise the incomplete data
likelihood (15). In Section 5 we give an example of when this occurs.
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Remark 5 (MSE for the different calibration approaches). The validation
MSEs for the three different calibration approaches are not comparable with
each other, since the validation sets are different. This is especially true
for calibration SP compared to the other two approaches, since for this ap-
proach the validation set consists of the same number of observations as the
full training set, due to not splitting the observations in the time dimension.
Thus, it is only the test MSEs that are comparable between the calibration
approaches. Still, the validation MSE can, of course, be used when compar-
ing different models that are based on the same calibration approach, e.g.
models with different number of neurons in the LSTM layer or using different
activation functions.

5 Numerical illustrations

We will now illustrate the methods for calibration based on data from the [15]
for Italy, Sweden, and the USA. As mentioned early on, the ambition in the
current section is not to obtain optimal model architectures, but rather to
find architectures that work reasonably well for all populations. Moreover,
the numerical illustrations are only used to highlight certain observations
and artefacts of the methods used, but more details can be found in the
Supplementary Materials [18] (available online).

Concerning estimation, the first step is to estimate all (αx, βx)x and κts using
the Poisson Lee-Carter model defined by (2) and (3) using the R package
StMoMo, see [27]. Given these initial estimates, the κ̂ts are in a second step
modelled as a univariate Gaussian LSTM model defined by (4) using the R

package keras, see [6].

The structure of the numerical illustrations is as follows:

Base case. The base case is to use death count data from 1950 - 1999 for
training and to use 2000 - 2016 for out-of-sample testing. That is, the data
from 1950 - 1999 will be split into in-sample training and validation sets
in different ways depending on the different calibration procedures (i.e. LO,
RT, or SP). The reason for not using data older than 1950 is in order to
avoid the influence of WWII. Moreover, the assumption of having (αx, βx)xs
independent of time will provide a poor model fit when using longer time
periods. This is due to structural breaks in data.

Long-term predictions. After having analysed the base case, which focus
on short to medium range predictions, we move on to analysing the influence
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of the calibrations on long term predictions. In this situation the focus is on
the predictions themselves, since we lack suitable test data.

Calibration using a limited amount of data. The last part focus on the
situation when having small amounts of data to be used for calibration. The
data periods used are 1970 - 1989 for training together with 1990 - 2006 for
testing, and 1980 - 1999 for training together with 2000 - 2016 for testing.

Before going into the numerical examples, we start with discussing a number
of considerations necessary for the LSTM implementation and the calibration
procedures.

5.1 Comments on architecture and implementation

We will now discuss a number of hyperparameters used to define the LSTM
architecture, for all other hyperparameters than those discussed below, the
default values of R package keras are being used and we refer to [6] for
more details. However, it is important to note that we have not tried to
optimise performance by tuning these parameters. Instead, our focus has
been to choose parameters that work reasonably well for all populations that
are being considered, in order to illustrate the performance of the different
calibration methods. It is possible that other choices of these parameters
could improve the performance of the model, and is something that should
be investigated further before using these models in practice.

5.1.1 Lags

Lag 5 is used for all methods and time periods. In [21] lag 1 is used, but
this choice of lag does not fully exploit the properties of an LSTM model,
as discussed in Section 2. Furthermore, we have compared results with lag 1
and 5, and this limited analyses indicate that a lower MSE on the validation
set is obtained when using lag 5. This also holds true on the test set. One
can also mention that others consider different lags, see e.g. [24, 22].

5.1.2 Activation function

As a starting point the ReLu activation function is used, which is in ac-
cordance with [21]. This seems to work reasonably well on “raw”, unscaled
data. This choice will, however, turn out to be problematic for long-term
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predictions. Due to this, we also consider the tanh activation, which turn
out to work well given that data is scaled / pre-processed.

5.1.3 Number of neurons

We set the number of neurons to equal the number of observations used for
the initial parameter estimation in the Poisson Lee-Carter model. This gives
us a simple rule for determining the number of neurons when varying the
time-window for training data. The heuristic underlying this simple rule,
is that when having fewer data points it will become increasingly harder to
avoid overfitting. The choice of 50 neurons for the longer time-window and
20 neurons for the shorter time-window is based on this simple rule, hence it
is possible that other number of neurons might achieve better performance.

5.1.4 Number of hidden layers

Our analysis is restricted to a shallow model with one hidden LSTM layer.
We have done some experimenting with two layers, without seeing any im-
proved performance.

5.1.5 Batch size

In order to use SGD, a batch size smaller than the number of observations
in the training set is needed. We have simply set the batch size equal to one.
This is based on that we have a very limited number of observations in the
training set, hence the batch size needs to be small for it to have any effect.
Another option would be to set the batch size to the number of observations
in the training set, in this way using standard gradient descent with random
weight initialisation. Since we achieved a lower MSE on the validation set
averaged over all the model calibrations in each ensemble with batch size
one, we decided to focus on this batch size without investigating if there are
other batch sizes between one and the number of observations in the training
set that produces a lower validation error.
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5.1.6 Number of model calibrations in each ensemble

The number of calibrations used in each ensemble is a parameter that needs
to be decided upon. By including more calibrations one expect that the
predictive performance should stabilise, but at the cost of having a com-
putationally more expensive model. As with the other hyperparameters we
want to use a number of calibrations that work reasonably for all popula-
tions and calibration methods. Not surprisingly the effect of including more
calibrations into the ensemble will diminish, and we have settled on using 20
calibrations in each ensemble. The choice of using 20 calibrations is perhaps
a bit low for Calibration SP, but as will be seen below, the results for this
calibration method will still be satisfactory. For more on how to decide on
the number of calibrations in each ensemble, see the Supplementary Mate-
rials [18]. In a non-life insurance setting, [25] saw stability after about 20
calibrations. Within the context of mortality modelling, [22] settled on 10
calibrations for their ensemble model.

5.1.7 Data pre-processing

As described in Section 5.1.2, in some examples we use data pre-processing.
One form of data pre-processing is to use boosting, which attempts to remove
the trend from data. When this procedure is used, we also pre-process data
by using min-max-scaling, thus scaling data so that all values are in the range
[−1, 1]. Transformations of this type is generally recommended to improve
the training of neural networks, see e.g. [13, Ch. 11.5.3]. However, we consider
this form of scaling of data as inappropriate to use unless the trend is has
been removed from data first, since otherwise the predicted values will tend
to consistently lie outside of the interval [−1, 1].

5.1.8 Subsampling

For Calibration SP (“split population”) it is not recommended to merely split
the population in two, if the population size is too large. For the Swedish
population, which is approximately 4-5 million females and males over the
analysed time period, our analyses indicate that it works reasonably well to
split the population in two parts, where 80 % is used for training and 20
% is used for testing. Due to this, when using Calibration SP for the other
countries, subsampling producing an effective sample of size approximately
4-5 million is used. This motivates that we have used a 20 % subsampling
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for Italy and a 5 % subsampling for the USA.

Concerning optimisation routines, we use the Nesterov Adam optimiser, i.e.
stochastic gradient descent with Nesterov momentum, see [11, Ch. 8.3] for
an overview, and see [6] for the implementation in the R package keras. The
method of early stopping is used throughout to prevent overfitting. We have
not investigated the use of other regularisation methods, e.g. dropout, see
e.g. [11, Ch. 7.12], hence it is possible that the network performance could
be improved further.

N.B. All model parameters are summarised in Appendix A.

5.2 Data analyses and predictive performance

5.2.1 Base case

As discussed in Section 5.1.2 we start by considering the ReLu activation
function when using un-scaled data (no pre-processing). Further, since lag
5 is being used, the effective training data consists of the time period 1955
- 1999. In Table 1 the total MSE for the κ̂t ensemble models used with
Calibration LO, SP, and RT are shown, with the MSE for the best performing
model of the three marked in bold for each population. As a point of reference
a standard Gaussian random walk with drift model (RWD) for the κ̂t process
is used. The MSE for the RWD is underlined for the populations where
the RWD outperforms the LSTM models. From Table 1 it is seen that
Calibration SP in general outperforms the RWD in the test set. The only
exceptions being Swedish females, where the trend is very close to linear,
and for USA males and females, where the performance of the RWD is good
by chance. That is, the κ̂t processes for USA females and males exhibit
structural breaks that are un-reasonable to capture based on the training
data, see Figure 2. Concerning Calibration RT it is seen that it overall
performs well. When turning to Calibration LO, this calibration produces
the best test MSE for Italian females and males, but the closeness to the RWD
for females indicates a quite linear evolution of the κ̂t process, whereas the
dynamics for males is less linear. Still, the performance of the LO calibration
in these cases is comparable with those from Calibration RT and SP. On the
other hand, it is clear that Calibration LO is considerably worse for Swedish
males, indicating that the last observations are not too representative for the
future evolution of the κ̂t process, see Figure 3. The goal with the predictive
modelling is of course to forecast mortality rates. One way of doing this is
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to take into account not only the variation in the κ̂t process in (3), but also
the Poisson variation in the number of deaths in (2). This is discussed in [1,
Eq. (16)] where a two-step procedure is used. In the first step the κ̂t process
is simulated and µx,t from (3) is calculated for each trajectory, denoted µ∗x,t,
and in the second step the number of deaths D∗x,t are simulated, given µ∗x,t
according to (2). Combining this, the predicted simulated mortality rates
are calculated according to

µ̂∗x,t =
D∗x,t
rx,t

. (16)

Figure 4 shows the predicted simulated mortality rates for age 55 and 85
calculated according to (16), for calibration approach LO and RT. Clearly the
predicted mortality rates for calibration LO are far too low, while calibration
RT works fairly well.

Further, as discussed in Section 4, the MSE does not provide the full picture.
In Table 2 the total log-likelihood based on (15) for test data is summarised
together with the saturated model based on the raw estimates of (αx, βx)x
and (κt)t. From Table 2 it is seen that the general ordering of the predictive
performance of using the different calibrations remain essentially the same.
Note, however, that for Swedish females all three LSTM models are better
than the Poisson Lee-Carter, whereas the RWD outperformed the LSTM
models in terms of MSE in Table 1. This illustrates the importance of as-
sessing the global performance of the model in terms of deaths (or mortality
rates), not only focusing on the inner κ̂t process. The reason for that Cali-
bration SP has a higher log-likelihood than the Poisson Lee-Carter model is
explained by that it captures the dynamics in older ages better. This is illus-
trated for Calibration SP and RT compared to the Poisson Lee-Carter model
in Figure 5. See also the simulated predicted mortality rates for Swedish
females for age 55 and 85 in Figure 6.

To conclude this far, Calibration RT and SP tend to perform best, and rarely
considerably worse than Calibration LO. For Calibration LO we have seen
examples where its predictive performance deteriorates, when at the same
time Calibration RT and SP produce reasonable predictions.

5.2.2 Long-term predictions

Compared with standard time-series models it is not obvious whether an
LSTM model calibration will produce predictions that are “non-explosive”,
i.e. not tending to ±∞. In Section 5.2.1 it was seen that the LSTM model
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RWD LO RT SP
ITA male 489.55 25.37 49.00 30.12
ITA female 35.65 19.07 30.60 25.79
SWE male 459.02 5 008.94 75.99 133.12
SWE female 3.31 17.62 21.86 4.97
USA male 32.11 104.36 110.37 36.85
USA female 10.37 146.86 127.88 178.39

Table 1: Out-of-sample MSE (2000-2016) for LSTM-ensemble trained on
“raw data” (no pre-processing) with activation function ReLu. Full set of
parameters are given in Appendix A.
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Figure 2: USA females: κt in-sample and out-of-sample. Bold solid black
line shows raw (“observed”) estimates. Thin solid black lines correspond to
median, 2.5 and 97.5 percentiles for the LSTM-ensembles trained on “raw
data” (no pre-processing) with activation function ReLu. Thin dashed red
lines correspond to median and percentiles for the RWD. Data to the right
of the last vertical dashed line correspond to test data. For calibration LO,
the area between the vertical dashed lines show in-sample validation data.

may be calibrated successfully in order to produce short to medium-term pre-
dictions that out-performed an RWD, when only looking at the κ̂t process,
or the Poisson Lee-Carter model when considering actual death counts or
mortality rates. As an example, all calibrations, LO, RT, and SP, produced
reasonable predictions for Italian males in the short to medium term. This is,
however, not the case when pushing the predictions further into the future,
see Figure 7, where all calibrations decrease super linearly producing mor-
tality rates that are practically zero – including extremely narrow prediction
intervals. This indicates that even if we have used early stopping based on
validation data when calibrating the LSTM model, all calibrations seem to
have overfitted to non-linearities in the training data.

28



1950 1970 1990 2010

−
2
5
0

−
1
5
0

−
5
0

0

Year

S
im

u
la

te
d
 k

_
t

LSTM LO

Po−LC

1950 1970 1990 2010

−
2
5
0

−
1
5
0

−
5
0

0
Year

S
im

u
la

te
d
 k

_
t

LSTM RT

Po−LC

1950 1970 1990 2010

−
2
5
0

−
1
5
0

−
5
0

0

Year

S
im

u
la

te
d
 k

_
t

LSTM SP

Po−LC

Figure 3: Swedish males: κt in-sample and out-of-sample. Bold solid black
line shows raw (“observed”) estimates. Thin solid black lines correspond to
median, 2.5 and 97.5 percentiles for the LSTM-ensembles trained on “raw
data” (no pre-processing) with activation function ReLu. Thin dashed red
lines correspond to median and percentiles for the RWD. Data to the right
of the last vertical dashed line correspond to test data. For calibration LO,
the area between the vertical dashed lines show in-sample validation data.

Saturated Po-LC LO RT SP
ITA male -57 996 -105 612 -60 624 -62 480 -60 948
ITA female -13 284 -23 112 -16 243 -17 294 -16 477
SWE male -10 462 -16 183 -57 265 -11 387 -12 089
SWE female -7 116 -8 019 -7 641 -7 762 -7 312
USA male -189 392 -224 054 -290 696 -297 490 -227 014
USA female -60 155 -78 182 -185 238 -168 599 -210 614

Table 2: Log-likelihood calculated according to (15) out-of-sample (2000-
2016) for the Poisson Lee-Carter model and for the LSTM-ensemble trained
on “raw data” (1950-1999) with activation function ReLu.

This dramatic deterioration of the long-term predictions can, at least partly,
be diminished by using boosting, as discussed in Section 3.7, and scaling.
That is, we first fit an RWD to the original κt estimates, and only feed the
resulting residuals, scaled to lie between [−1, 1] using the min-max-scaler,
to the LSTM. This boosted LSTM model turns out to work best with tanh
as activation function, instead of the previously used ReLu activation. The
performance of boosted SP calibrations for Italian and Swedish males are
given in Figure 8, where it is clearly seen that the boosted models provide
a reasonable compromise between the (possibly very) non-linear pure LSTM
model and the linear RWD model. Here one can note that when the RWD
and pure LSTM are in conflict, the prediction intervals will be wider, see
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Figure 4: Swedish males: Observed mortality rates 1950-2016, and predicted
simulated mortality rates calculated according to (16). Top: Age 55. Bottom:
Age 85. Right: Calibration LO. Left: Calibration RT. Bold solid black
line shows observed mortality rates. Thin solid black lines correspond to
median, 2.5 and 97.5 percentiles for the LSTM-ensembles trained on “raw
data” (no pre-processing) with activation function ReLu. Thin dashed red
lines correspond to median and percentiles for the Poisson Lee-Carter model.

the analysis for USA women in the Supplementary Materials [18]. Similarly,
when the RWD and the pure LSTM are aligned, the prediction intervals may
still be narrow, see the analysis for Swedish women in the Supplementary
Materials [18].

A summary of test log-likelihoods calculated according to (15) for all pop-
ulations is given in Table 3, which compared with Table 2 show that the
boosted models in general provide good predictive performance.

Before ending this section, it is worth stressing that you can, of course, use
another model than a simple RWD as the basis for boosting such as more
general ARIMA models. Another simple generalisation is to boost squared
residuals, in this way creating an ARCH type LSTM model.
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Figure 5: Top: Swedish women. Bottom: Italian women. Left: κt in-sample
and out-of-sample. Bold solid black line shows raw (“observed”) estimates.
Thin solid black lines correspond to median, 2.5 and 97.5 percentiles for the
LSTM-ensembles trained on “raw data” (no pre-processing) with activation
function ReLu. Thin dashed red lines correspond to median and percentiles
for the RWD. Data to the right of the last vertical dashed line correspond to
test data. Right: log-likelihood per age, calculated in agreement with (15),
out-of-sample. The solid black line corresponds to the LSTM-ensembles,
the dashed red line corresponds to the Poisson Lee-Carter model, and the
dash-dotted blue line corresponds to the saturated model.

The conclusion in the current section is again that Calibration RT and SP
tend to outperform the standard LO calibration.

5.2.3 Calibration using a limited amount of data

As already discussed in Section 5.2.2, by using boosting the predictive per-
formance becomes a compromise between a simpler model (here RWD) and
a complex non-linear model (here LSTM). This approach tends to stabilise
long-term predictions, and if the two model types are in “conflict” the pre-

31



1950 1970 1990 2010

0
.0

0
3

0
.0

0
5

0
.0

0
7

Year

S
im

u
la

te
d
 r

a
te

s

LSTM LO

Po−LC

1950 1970 1990 2010

0
.0

0
3

0
.0

0
5

0
.0

0
7

Year

S
im

u
la

te
d
 r

a
te

s

LSTM RT

Po−LC

1950 1970 1990 2010

0
.0

0
3

0
.0

0
5

0
.0

0
7

Year

S
im

u
la

te
d
 r

a
te

s

LSTM SP

Po−LC

1950 1970 1990 2010

0
.0

6
0
.1

0
0
.1

4
0
.1

8

Year

S
im

u
la

te
d
 r

a
te

s

LSTM LO

Po−LC

1950 1970 1990 2010

0
.0

6
0
.1

0
0
.1

4
0
.1

8

Year

S
im

u
la

te
d
 r

a
te

s

LSTM RT

Po−LC

1950 1970 1990 2010

0
.0

6
0
.1

0
0
.1

4
0
.1

8

Year

S
im

u
la

te
d
 r

a
te

s

LSTM SP

Po−LC

Figure 6: Swedish females: Observed mortality rates 1950-2016, and pre-
dicted simulated mortality rates calculated according to (16). Top: age 55.
Bottom: age 85. Bold solid black line shows observed mortality rates. Thin
solid black lines correspond to median, 2.5 and 97.5 percentiles for the LSTM-
ensembles trained on “raw data” (no pre-processing) with activation function
ReLu. Thin dashed red lines correspond to median and percentiles for the
Poisson Lee-Carter model.

Saturated Po-LC LO RT SP
ITA male -57 996 -105 612 -91 232 -78 431 -78 139
ITA female -13 284 -23 112 -19 012 -17 614 -16 986
SWE male -10 462 -16 183 -13 580 -14 062 -12 947
SWE female -7 116 -8 019 -9 303 -7 616 -8 170
USA male -189 392 -224 054 -218 720 -220 277 -236 334
USA female -60 155 -78 182 -95 775 -85 316 -82 625

Table 3: Log-likelihood calculated according to (15) out-of-sample (2000-
2016) for the Poisson Lee-Carter model and for the LSTM-ensemble trained
on residual after boosting and scaling (1950-1999) with activation function
tanh.

diction intervals widens, whereas if they are “aligned” it is possible to still
obtain reasonably narrow prediction intervals. Due to this, we only consid-
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Figure 7: Italian males: κt long-term prediction. Bold solid black line shows
raw (“observed”) estimates. Thin solid black lines correspond to median, 2.5
and 97.5 percentiles for the LSTM-ensembles trained on “raw data” (no pre-
processing) with activation function ReLu. Thin dashed red lines correspond
to median and percentiles for the RWD. Data to the right of the last vertical
dashed line correspond to test data. For calibration LO, the area between
the vertical dashed lines show in-sample validation data.

ered boosted models when reducing the amount of data used for calibration
even more than previously. In the current section we will consider two differ-
ent situations: training based on 1970 - 1989 together with testing on 1990 -
2006, and training based on 1980 - 1999 together with testing based on 2000 -
2016. The results for the test log-likelihoods calculated according to (15) for
all calibrations are summarised in Table 4 and 5. As in Section 5.2.2 it is seen
that the boosted RT and SP calibrations generally outperform Calibration
LO. Further, for many of these populations the κ̂t processes are essentially
linear, but the overall boosted model is similar to or only slightly worse than
a standard RWD, see the analysis for e.g. Italian and Swedish women in
the Supplementary Materials [18]. On the other hand, when there are non-
linearities, the boosted models seem to capture these patterns reasonably
well. Furthermore, by using boosted models the long-term predictions are
reasonable as well.

6 Concluding remarks

In this paper, we focus on how to use data efficiently together with an LSTM
neural network extension of the Poisson Lee-Carter model. We introduce
alternative methods for calibration of the model, combined with ensembling,
and illustrate that Calibration RT and SP are viable alternatives to the more
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Figure 8: κt long-term prediction with Calibration SP. Top: Italian men.
Bottom: Swedish men. Left: LSTM-ensemble trained on “raw data” (no pre-
processing) with activation function ReLu. Right: LSTM-ensemble trained
on residual after boosting and scaling with activation function tanh. Bold
solid black line shows raw (“observed”) estimates. Thin solid black lines
correspond to median, 2.5 and 97.5 percentiles for the LSTM-ensembles.
Thin dashed red lines correspond to median and percentiles for the RWD.
Data to the right of the last vertical dashed line correspond to test data.

standard LO calibration. This can at least partly be motivated theoretically,
see Section 3.6. The general approach to calibration, using LO, RT or SP,
is of course not only applicable to LSTM neural network models, but can
be used with other models as well, with obvious modifications. The need
for using these alternative calibration procedures might be larger when the
number of observations in available or relevant data is limited.

Furthermore, as seen in Section 5.2.2, when using boosting and applying
the calibration methods to the residuals produced by first using a simpler
model, as described in Section 3.7, we obtain more robust models that provide
reasonable predictions for long-term forecasting horizons, without degrading
the performance too much in the short-term. In our numerical illustrations
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Saturated Po LO RT SP
ITA male -46 210 -56 707 -49 449 -60 846 -53 002
ITA female -16 514 -24 465 -24 760 -20 969 -19 362
SWE male -8 967 -12 122 -17 843 -10 007 -9 522
SWE female -7 362 -8 634 -8 015 -9 009 -8 867
USA male -87 053 -93 583 -94 232 -92 548 -91 304
USA female -53 194 -145 147 -80 830 -85 327 -61 746

Table 4: Log-likelihood calculated according to (15) out-of-sample (1990-
2006) for the Poisson Lee-Carter model and for the LSTM-ensemble trained
on residual after boosting and scaling (1970-1989) with activation function
tanh.

Saturated Po LO RT SP
ITAmale -54 346 -59 985 -64 402 -62 182 -61 686
ITAfemale -18 477 -29 229 -23 731 -22 634 -21 341
SWEmale -8 721 -9 636 -9 261 -9 098 -8 929
SWEfemale -7 068 -8 169 -8 414 -7 478 -7 623
USAmale -193 619 -201 830 -199 872 -203 877 -232 155
USAfemale -87 416 -108 992 -159 287 -133 011 -161 754

Table 5: Log-likelihood calculated according to (15) out-of-sample (2000-
2016) for the Poisson Lee-Carter model and for the LSTM-ensemble trained
on residual after boosting and scaling (1980-1999) with activation function
tanh.

these models consist of a compromise between a linear RWD model used for
boosting, and a non-linear LSTM model. The resulting forecasts are close
to the ones from a simple RWD when mortality rates are essentially log-
linear, but can still capture some of the non-linearity in data when sufficiently
strong non-linearities are present, without producing unreasonable long-term
predictions. Additionally, boosting combined with Calibration RT and SP
enables us to produce reasonable forecasts based on training data consisting
of as few as 20 observations, though perhaps one should still be careful when
attempting to use highly complex models when data is scarce.

Note that all figures in Section 5.2 only contain future evolutions of processes
given point estimates. That is, we have not accounted for any estimation
error in the prediction intervals. One way of including this is to use the
bootstrap procedure described for the Poisson Lee-Carter model in [4]. How-
ever, this procedure would become computationally heavy when applied to
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the ensemble models used in the present paper, which have been introduced
to enhance the stability of the predictions.

Finally, the analysis in the present paper is based on that the simple model
structure (3) and (2) is good enough to capture the dynamics in mortality
data. Hence, the model used is rather inflexible when it comes to structural
changes over time, since the estimates (αx, βx) will be fixed over the whole
time period. It is thus too much to hope that this model will be able to
produce reasonable results when trained on data over long time periods, giv-
ing part of the motivation behind trying to fit the model to limited data,
even for cases where data for longer time horizons might be available. This
problem can be seen for e.g. simulated in-sample mortality rates for USA fe-
males during 1950-1999, even though the corresponding κt process behaviour
is reasonable, see the Supplementary Materials.

The focus in the present paper has been on one-dimensional models in a Pois-
son setting. A natural continuation would be to consider higher-dimensional
versions of this type of Poisson Lee-Carter models. This might in itself lead
to richer data, increasing the possibility of obtaining reliable model calibra-
tions without having to increase the length of the time series in the time
dimension.
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A Parameters and listings

For all calibrations and time periods, the following parameters were used:
lag 5, recurrent activation function sigmoid, 1 hidden layer, batch size 1,
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20 model calibrations in each ensemble, patience 50 for the early stopping
callback, and maximum 10 000 epochs.

The code listings below illustrate the different parameter values used in the
different calibrations, depending on the length of the time period used for
training, and whether boosting and scaling is used or not.

Listing 1: 1950-1999, “raw data”
1 model_lstm = keras_model_sequential () %>%

2 layer_lstm(units = 50, input_shape = c(5, 1),

3 activation = "relu", recurrent_activation = "sigmoid") %>%

4 layer_dense(units = 1, activation = "linear")

Listing 2: 1950-1999, boosting & scaling
1 model_lstm = keras_model_sequential () %>%

2 layer_lstm(units = 50, input_shape = c(5, 1),

3 activation = "tanh", recurrent_activation = "sigmoid") %>%

4 layer_dense(units = 1, activation = "linear")

Listing 3: 1970-1989 and 1980-1999, boosting & scaling
1 model_lstm = keras_model_sequential () %>%

2 layer_lstm(units = 20, input_shape = c(5, 1),

3 activation = "tanh", recurrent_activation = "sigmoid") %>%

4 layer_dense(units = 1, activation = "linear")
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