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Abstract

In this paper, new results in random matrix theory are derived which allow us to construct
a shrinkage estimator of the global minimum variance (GMV) portfolio when the shrinkage
target is a random object. More specifically, the shrinkage target is determined as the holding
portfolio estimated from previous data. The theoretical findings are applied to develop theory
for dynamic estimation of the GMV portfolio, where the new estimator of its weights is shrunk
to the holding portfolio at each time of reconstruction. Both cases with and without overlapping
samples are considered in the paper. The non-overlapping samples corresponds to the case
when different data of the asset returns are used to construct the traditional estimator of the
GMV portfolio weights and to determine the target portfolio, while the overlapping case allows
intersections between the samples. The theoretical results are derived under weak assumptions
imposed on the data-generating process. No specific distribution is assumed for the asset returns
except from the assumption of finite 4 + ε, ε > 0, moments. Also, the population covariance
matrix with unbounded spectrum can be considered. The performance of new trading strategies
is investigated via an extensive simulation. Finally, the theoretical findings are implemented
in an empirical illustration based on the returns on stocks included in the S&P 500 index.

Keywords: Shrinkage estimator; high-dimensional covariance matrix; random matrix the-
ory; minimum variance portfolio; parameter uncertainty; dynamic decision making



1 Introduction
Global minimum-variance (GMV) portfolio is the one of the mostly used investment strategies
by both practitioners and researchers in finance. This portfolio possesses the smallest variance
among all optimal portfolios obtained as solutions of Markowitz’s mean-variance optimization
problem (cf., Markowitz (1952)). It solves the following problem

w>Σw→ min with w>1p = 1, (1.1)

where w denotes the vector of the portfolio weights which determines the structure of the investor
portfolio, the symbol 1p stands for the p-dimensional vector of ones, and Σ is the covariance
matrix of the p-dimensional vector of asset returns y = (y1, ..., yp)

>.
The solution of the optimization problem (1.1) is given by

wGMV =
Σ−11p

1>p Σ−11p
. (1.2)

The weights of the GMV portfolio have several nice properties, which simplify its applicability
in practice and, thus, make it a popular investment strategy. The weights of the GMV portfolio
do not depend on the mean vector of the asset returns, which we will denote by µ in the
following. This is the only mean-variance optimal portfolio whose weights are independent of
µ. Moreover, the GMV portfolio has a special location on the set of the mean-variance optimal
portfolios, which is a parabola in the mean-variance space and is known as the efficient frontier
(cf., Merton (1972)). Its mean and variance determines the location of the vertex of this parabola
(see, e.g, Kan and Smith (2008), Bodnar and Schmid (2009)).

The application of (1.2) requires the knowledge of Σ in practice, which is usually not pro-
vided. The covariance matrix Σ has to be estimated by using historical data of the asset returns,
before the GMV portfolio can be constructed. The quality of the estimator of Σ has a large
impact on the stochastic properties of the holding GMV portfolio and it leads to further uncer-
tainty in the investor decision problem, known as the estimation uncertainty. The estimation
uncertainty can have a great impact on the constructed portfolio which could be larger than the
one induced by the model uncertainty included in the optimization problem (1.1). The effect
becomes even stronger, when the portfolio dimension is comparable to the sample size used to
estimate Σ.

Traditionally, the covariance matrix is estimated by its sample counterpart given by

Sn =
1

n− 1

n∑
i=1

(yi − ȳn)(yi − ȳn)> =
1

n− 1
Yn

(
In −

1

n
1n1

>
n

)
Y>n with ȳn =

1

n

n∑
i=1

yi,

(1.3)
where y1, ..,yn denotes the sample of asset returns and Yn = (y1, ..,yn) denotes the data matrix.
The symbol In stands for the n-dimensional identity matrix. Then, the sample (also known) as
the traditional estimator of wGMV is obtained as

ŵS =
S−1n 1p

1>p S−1n 1p
. (1.4)

The distributional properties of ŵS have extensively been studied in statistical and econometric
literature. Jobson and Korkie (1980) derive the asymptotic distribution of ŵS assuming that
the asset returns are independent and normally distributed and the portfolio dimension is con-
siderably smaller than the sample size. Okhrin and Schmid (2006) obtain the exact distribution
of the sample estimator of the GMV portfolio weights assuming normality, while Bodnar and
Schmid (2008) extend these results to elliptically contoured distribution and develop a statistical
test theory on the GMV portfolio weights.
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However, when the portfolio dimension is comparable to the sample size, the results derived
under the classical asymptotic regime, that is when p is considerably smaller than n, cannot
longer be used. Moreover, the effect of dimensionality considerably influences the estimation of
the covariance matrix needed to determine the weights of the GMV portfolio. Using the recent
results of the random matrix theory several improved estimator for the weights of the GMV
portfolio has been suggested when the portfolio dimension is comparable to the sample size,
i.e., under the large-dimensional asymptotic regime (see, e.g., Bai and Silverstein (2010)). The
properties of high-dimensional optimal portfolio weights are also studied by Fan et al. (2012),
Hautsch et al. (2015), Ao et al. (2019), Kan et al. (2019), Bodnar et al. (2021a), Cai et al. (2020),
Ding et al. (2021), among others.

Shrinkage approach is one of the mostly used methods to construct an improved estimator
for the weights of the GMV portfolio. Shrinkage-type estimators were first proposed by Stein
(1956) with the aim to reduce the estimation error present in the sample mean vector computed
for a sample from a multivariate normal distribution. Recently, this procedure has also been
applied in the construction of the improved estimators of the high-dimensional mean vector
(cf, Chételat and Wells (2012), Wang et al. (2014), Bodnar et al. (2019b)), covariance matrix
(see, e.g., Ledoit and Wolf (2004), Ledoit and Wolf (2012), Bodnar et al. (2014)), inverse of
the covariance matrix (see, e.g., Wang et al. (2015), Bodnar et al. (2016)), as well as of the
optimal portfolio weights (see, Golosnoy and Okhrin (2007), Frahm and Memmel (2010), Ledoit
and Wolf (2017), Bodnar et al. (2018), Bodnar et al. (2021c)). Interval shrinkage estimators of
optimal portfolio weights have recently been derived by Bodnar et al. (2019a), Bodnar et al.
(2021b).

The shrinkage estimator for the weights of the GMV portfolio are obtained as a linear
combination of the sample estimator ŵS and the target portfolio b with b>1 = 1. The estimator
is expressed as (see, Bodnar et al. (2018))

ŵSH = ψ̂nŵS + (1− ψ̂n)b (1.5)

where

ψ̂n =
(1− cn)R̂b

cn + (1− cn)R̂b

with R̂b = (1− cn) b>Snb1>p S−1n 1p − 1 and cn =
p

n
. (1.6)

Bodnar et al. (2018) show that the shrinkage estimator outperforms the sample estimator of
the GMV portfolio weights in terms of minimizing the out-of-sample portfolio variance and the
difference becomes drastic when p approaches n. Moreover, the shrinkage estimator of the GMV
portfolio weights (1.5) provides a simple and a promising procedure how the one-period portfolio
choice problem based on minimizing the portfolio variance can be solved in practice.

Once an optimal portfolio is determined, an investor faces with the problem of optimal
portfolio reallocation in the next period of time. One of the important decision to be made
by the investor is to decide whether the holding portfolio is optimal or has to be adjusted
(see, e.g., Bodnar (2009)), while Golosnoy et al. (2019) consider the exponential smoothing
method to predict the weights of the GMV portfolio over some periods of time. In the current
paper we contribute to the literature by developing a dynamic GMV portfolio based on the
shrinkage approach. At each time point of the portfolio reconstruction the traditional estimator
of the GMV portfolio weights is shrunk towards the weights of the holding portfolio, which by
construction are the shrinkage estimator of the GMV portfolio from the previous period. The
practical advantage of the new dynamic trading strategy is two-fold: (i) First, it diminishes the
transaction costs required for the reconstruction of the holding portfolio; (ii) Second, it reduces
the out-of-sample variance of the constructed GMV portfolio by applying the shrinkage approach
in the estimation of the portfolio weights.

From the perspectives of statistical theory, we develop new results that allow us to use
the shrinkage estimators with a random target. These estimators are obtained under weak
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conditions imposed on the data-generating process. In particular, only the existence of the
fourth moments is needed without explicit specification of the probability distribution assumed
for the asset returns. Moreover, no assumption about the spectrum of the population covariance
matrix is imposed in the paper. The eigenvalues of the covariance matrix can be as large as in
the factor models (see, e.g., Fan et al. (2008), Fan et al. (2013), Ding et al. (2021)). We only
require that the ratio of the variances of the target portfolio and the GMV portfolio is bounded.
Moreover, the derived theoretical results allow the application of the overlapping samples in the
determination of the target portfolio and in the construction of the traditional portfolio used in
the specification of the shrinkage GMV portfolio.

The rest of the paper is organized as follows. In Section 2, the main theoretical findings of
the paper are provided. The dynamic shrinkage estimator for the weights of the GMV portfolio
is derived in the case of non-overlapping samples in Section 2.1, while Section 2.2 presents the
results in the overlapping case. The performance of the new trading strategies is investigated
in Section 3 via an extensive simulation study, where the approaches are also compared to the
existing ones. In Section 4, the new approaches to estimate the GMV portfolio are implemented
to the real data consisting of the returns on stocks included in S&P 500 index. Concluding
remarks are given in Section 5, while the technical proofs are moved to the appendix.

2 Dynamic estimation of GMV portfolio
Throughout the paper we assume that the GMV portfolio is constructed at time point t1 by
using the sample of size n1, and then the investor updates the constructed GMV portfolio as
new information arrives on the capital market. The information set is presented as a sequence of
asset returns taken between time point ti−1 and ti for i = 2, ..., T . Between each pairs (ti−1, ti) it
is assumed that ni vectors of asset returns are available which are collected into the data matrix
Yni that is assumed to possess the following stochastic representation:

Yni = µ1>ni
+ Σ

1
2 Xni , (2.1)

where Xni is a p × ni matrix which consists of independent and identically distributed (i.i.d.)
real random variables with zero mean and unit variance. Also, we assume that the entries of
Xni , i = 1, ..., T , possess the 4+ε, ε > 0, moments, while no specific distributional assumption is
imposed on the element of Xni . To this end, it is assumed that Yni , i = 1, ..., T , are independent
random matrices.

We consider an investor who opts on the shrinkage estimation of the GMV portfolio weights
in each period of time ti. Namely, after constructing the shrinkage estimator of the GMV
portfolio as defined in (1.5) at time point t1, the investor updates the GMV portfolio weights by
shrinking their sample estimator computed at each time point ti to the holding GMV portfolio
determined at time point ti−1. Two estimation strategies are developed in this section, which
are based on non-overlapping and overlapping samples, respectively. The first procedure can be
related to the rolling window estimation but with probably different sample sizes. The main
advantage here is that smaller sample sizes are used in the construction of the sample weights
of the GMV portfolio and, thus, the extreme observation observed in the asset returns will
sooner be detected. Such a strategy might be recommendable during the turbulent period on
the capital market, since it allows a faster adjustment of the holding portfolio. In contrary,
when the stable period on the capital market is present, then the investor would prefer to use all
available information, which leas to the extended window estimation strategy. In this case the
part of data used in the construction of the GMV portfolio has already been used to determine
the currently holding portfolio to which the new estimator is shrunk and, consequently, we
have the case with overlapping samples. Both situations require completely different techniques
from random matrix theory to be developed in order to derive the stochastic properties of the
estimation procedures, which are developed in the consequent two subsections.
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2.1 Dynamic GMV portfolio with non-overlapping samples
Under the non-overlapping scenario, the investor uses the sample of asset returns collected in
Yni to construct the sample estimator of the GMV portfolio at each time point ti expressed as

ŵS;ni =
S−1ni

1p

1>p S−1ni 1p
with Sni =

1

ni − 1
Yni

(
Ini −

1

ni
1ni1

>
ni

)
Y>ni

. (2.2)

The shrinkage estimator of the GMV portfolio is then obtained at time point ti by shrinking
(2.2) to the weights of the holding portfolio, i.e., to the shrinkage estimator of the GMV portfolio
ŵSH;ni−1 constructed in the previous period, by minimizing the loss function determined as the
out-of-sample variance with respect to the shrinkage intensity ψni in the following way:

min
ψi

Li(ψi) = min
ψi

ŵ>SH;iΣŵSH;i (2.3)

with
ŵSH;ni = ψiŵS;ni + (1− ψi)ŵSH;ni−1 , (2.4)

where ŵSH;n0 = b is the shrinkage target used for the construction of the shrinkage estimator
for the GMV portfolio weights at time point t1.

Rewriting (2.3) we get

Li(ψi) = ψ2
i ŵ
>
S;ni

ΣŵS;ni + 2ψi(1− ψi)ŵ>S;ni
ΣŵSH;ni−1 + (1− ψi)2ŵ>SH;ni−1

ΣŵSH;ni−1 ,

which is minimized at

ψ∗ni
=

ŵ>SH;ni−1
Σ
(
ŵSH;ni−1 − ŵS;ni

)(
ŵSH;ni−1 − ŵS;ni

)>
Σ
(
ŵSH;ni−1 − ŵS;ni

) . (2.5)

In Theorem 2.1 we derive the asymptotic equivalent to ψ∗ni
which can be used in the con-

struction of the shrinkage estimator at time point ti.

Theorem 2.1. Let Yni possess the stochastic representation as in (2.1) and let b be the deter-
ministic shrinkage target for i = 1. Assume that the relative loss of portfolio b given by

r0 =
Vb

VGMV
− 1 = 1>p Σ−11pb

>Σb− 1 (2.6)

is uniformly bounded in p, where

Vb = b>Σb and VGMV = w>GMV ΣwGMV =
1

1>p Σ−11p
(2.7)

are the variances of the target portfolio b and of the population GMV portfolio, respectively.
Then it holds that ∣∣ψ∗ni

− ψ∗i
∣∣ a.s.→ 0 with ψ∗i =

(1− ci)ri−1
(1− ci)ri−1 + ci

(2.8)

for p/ni → ci ∈ (0, 1) as n → ∞ where ri is the asymptotic equivalent of the relative loss
rŵSH;ni

= 1>p Σ−11pŵ
>
SH;ni

ΣŵSH;ni − 1 of the portfolio with weights ŵSH;ni given by

ri = (ψ∗i )
2 ci
1− ci

+ (1− ψ∗i )2ri−1 (2.9)

for i = 1, ..., T .
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The proof of Theorem 2.1 is given in the appendix. Its results provide a simple recursive
algorithm how the shrinkage intensities have to be computed in practice. Independently of the
number of portfolio reallocations, T , the only unknown quantity in the algorithm is the relative
loss of of the target portfolio b used in the construction of the shrinkage estimator at time i = 1.
Using the sample Yn1 its consistent estimator is given by

r̂0 =

(
1− p

n1

)
1>p S−1n1

1pb
>Sn1b− 1. (2.10)

Then, the resulting (bona fide) shrinkage estimator of the GMV portfolio at time i is given by

ŵBF ;ni = ψ̂∗i ŵS;ni + (1− ψ̂∗i )ŵBF ;ni−1 with ψ̂∗i =
(ni − p)ri−1

(ni − p)ri−1 + p
, (2.11)

where r̂i is computed recursively by

r̂i = (ψ̂∗i )
2 p

ni − p
+ (1− ψ̂∗i )2r̂i−1 (2.12)

with r̂0 as in (2.10) and ŵBF ;n0 = b.
We conclude this section with several important remarks:

Remark 2.2. The deterministic target portfolio b can also be replaced by the sample GMV
portfolio computed by using data available before the sample Yn1 is taken. If we denote these
data by Yn0 , then the target weights b are replaced by

ŵS;n0 =
S−1ni

1p

1>p S−1n0 1p
with Sn0 =

1

n0 − 1
Yn0

(
In0 −

1

n0
1n01

>
n0

)
Y>n0

. (2.13)

In this case the relative loss r0 does not longer depend on the population covariance matrix Σ
and following the proof of Theorem 2.1 it is given by

r̃0 =
c0

1− c0
≈ p

n0 − p
.

As a result, the (bona fide) shrinkage estimator of the GMV portfolio weights is obtained as in
(2.11) and (2.12) with r̂0 replaced by r̃0 and ŵBF ;n0 = ŵS;n0 . In a similar way other random
targets can be employed into our model, e.g., nonlinear shrinkage Ledoit and Wolf (2012), but
then the asymptotics and estimation of r0 becomes highly nontrivial and one needs to handle
every of those targets separately. Thus, because of the large number of possible competitors we
leave this interesting topic on the choice of the vector b for the future research and for the sake
of brevity concentrate ourselves on the naive equally weighted target b = 1p/p in our simulation
and empirical studies.
Remark 2.3. The results of Theorem 2.1 are derived under very week conditions which require
the existent of 4 + ε, ε > 0, moments only. No structural assumption on Σ neither on b are
imposed.
Remark 2.4. Other consistent estimators for r0 can be constructed. For instance, we can update
our estimator at each time point ti as soon as new data of the asset returns become available.
Let Ni =

∑i
j=1 nj be the total number of asset return vectors available at time point ti and let

YNi be the p × Ni matrix of the asset returns up to time Ni that is YNi = (Yn1 Yn2 ...Yni ).
Then, at time point i, a consistent estimator for r0 is obtained by

r̂0;i =

(
1− p

Ni

)
1>p S−1Ni

1pb
>SNib− 1. (2.14)

where SNi is the sample covariance matrix based on the data matrix YNi as given in (1.3) with
n = Ni. Then, the (bona fide) shrinkage estimator of the GMV portfolio weights is computed
following (2.11) and (2.12) with r̂0 replaced by r̂0;i. Since larger dataset is used to estimate r0,
we expect that this approach will perform better as the one suggested in (2.10) - (2.12). On
the other side, the new method is more time demanding, since the recursion in (2.12) has to be
started from the beginning at each time ti.

6



2.2 Dynamic GMV portfolio with overlapping samples
In this section, we present the shrinkage estimator for the GMV portfolio which is constructed
based on the overlapping samples. In Remark 2.4 it is suggested to use all available data
Yn1 ,Yn2 , ...,Yni up to time point ti to determine a consistent estimator for the relative loss
r0 of portfolio b. Here, we use the similar idea in the construction of the sample estimator of
the GMV portfolio weights at time ti. Such an approach possesses an advantage that we only
require n1 > p, while the other sample sizes n2, ..., nT can also be smaller than the portfolio
dimension p.

Using the notations Ni, YNi , and SNi introduced in Remark 2.4, we define

ŵS;Ni =
S−1Ni

1p

1>p S−1Ni
1p
. (2.15)

as the sample estimator of the GMV portfolio weights based on data of the asset returns in-
cluded in YNi . Substituting ŵS;Ni instead of ŵS;ni in (2.4), the loss function Li(ψi) in (2.3) is
maximized at

Ψ∗Ni
=

ŵ>SH;Ni−1
Σ
(
ŵSH;Ni−1 − ŵS;Ni

)(
ŵSH;Ni−1 − ŵS;Ni

)>
Σ
(
ŵSH;Ni−1 − ŵS;Ni

) . (2.16)

In Theorem 2.5 we derive an iterative procedure for computing the deterministic equivalents
to Ψ∗Ni

for i = 1, ..., T . The proof of Theorem 2.5 is given in the appendix.

Theorem 2.5. Let Yni possess the stochastic representation as in (2.1) and let b be the de-
terministic shrinkage target for i = 1. Assume that the relative loss of portfolio b given by
R0 = 1>p Σ−11pb

>Σb− 1 is uniformly bounded in p. Then it holds that

∣∣Ψ∗Ni
−Ψ∗i

∣∣ a.s.→ 0 with Ψ∗i =
(Ri−1 + 1)−Ki

(Ri−1 + 1) + (1− Ci)−1 − 2Ki
, (2.17)

for p/Nj → Cj ∈ (0, 1) as Nj →∞, j = 1, ..., i and i = 1, ..., T where

Ki = β∗i−1;0 +

i−1∑
j=1

β∗i−1;jDj,i (2.18)

and
Ri = (Ψ∗i )

2 Ci
1− Ci

+ (1−Ψ∗i )
2Ri−1 + 2Ψ∗i (1−Ψ∗i )(Ki − 1), (2.19)

with

β∗0;0 = 1, β∗i−1;i−1 = Ψ∗i−1, and β∗i−1;j = (1−Ψ∗i−1)β
∗
i−2;j , j = 0, ...i− 2 (2.20)

and
Dj,i = 1− 2(1− Cj)

(1− Cj) + (1− Ci)Cj

Ci
+

√(
1− Cj

Ci

)2
+ 4(1− Ci)Cj

Ci

. (2.21)

Similarly, to the case with non-overlapping samples, the recursive procedure derived in The-
orem 2.5 depends only on a univariate unobservable quantity R0, which is the relative loss of
the target portfolio b at time point t1. Both approaches suggested in Section 2.1 can be used
to construct a consistent estimator for R0, and hence to obtain a (bona fide) estimator of the
GMV portfolio weights. These procedures are the following:
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• We estimate R0 by

R̂0 = r̂0 =

(
1− p

N1

)
1>p S−1N1

1pb
>SN1b− 1 (2.22)

as in (2.10). In this case the estimator for R0 is constructed by using the first sample YN1

only and the recursive procedure of Theorem 2.5 is then used leading to the (bona fide)
optimal shrinkage estimators for the weights at each time point ti, i ∈ 1, ..., T expressed
as

ŵBF ;Ni = Ψ̂∗i ŵS;Ni + (1− Ψ̂∗i )ŵBF ;Ni−1 (2.23)

where Ψ̂∗i is computed recursively as in Theorem 2.5 with R0 replaced by R̂0 and using
the empirical counterpart for Ci given by CNi = p/Ni.

• At each time point i, we use all available information to estimate R0, i.e.,

R̂0;i = r̂0;i =

(
1− p

Ni

)
1>p S−1Ni

1pb
>SNib− 1 (2.24)

and recompute the recursion of Theorem 2.5 at each time point ti. Since a larger dataset
is used to estimate R0, better results are expected although the computations becomes
more time demanding in the second case.

To this end, we note that the deterministic target portfolio b can be replaced by the sample
GMV portfolio computed by using data Yn0 available before the first sample YN1 as in (2.13)
of Remark 2.2. In this case we get

R̃0 =
p

n0 − p
,

which is used in the iterative computation of Theorem 2.5 instead of R0. Since no unknown
quantities are present in the definition of R̃0, the iterative procedure of Theorem 2.5 becomes
deterministic.

3 Finite-sample performance

3.1 Benchmark strategies and the setup of the simulation study
The suggested dynamic estimation strategies are compared to several benchmark strategies via
en extensive simulation study in this section, while the results of the empirical illustration are
provided in Section 4. The performance of the following seven dynamic trading strategies will
be established:

Strategy 1: Bona fide shrinkage estimator of the GMV portfolio (2.11) with (2.12) following
Theorem 2.1 where r0 is estimated from the first sample as in (2.10);

Strategy 2: Bona fide shrinkage estimator of the GMV portfolio (2.23) where Ψ̂∗i is computed
recursively as in Theorem 2.5 and R0 is estimated from the first sample as in (2.22);

Strategy 3: Bona fide shrinkage estimator of the GMV portfolio (2.11) with (2.12) following
Theorem 2.1 where r0 is recomputed as in (2.14) when a new sample becomes available;

Strategy 4: Bona fide shrinkage estimator of the GMV portfolio (2.23) where Ψ̂∗i is computed
recursively as in Theorem 2.5 and R0 is recomputed as in (2.24) when a new sample
becomes available;

Strategy 5: Sample estimator of the GMV portfolio computed at each time ti, i = 1, 2, ..., T ,
i.e., ψi = 1 in (2.4) for i = 1, 2, ..., T ;
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Strategy 6: Target portfolio b used at each time ti, i = 1, 2, ..., T , i.e., ψi = 0 in (2.4) for
i = 1, 2, ..., T ;

Strategy 7: One-period shrinkage estimator of the GMV portfolio (1.5) with (1.6) recon-
structed at each time ti, i = 1, 2, ..., T with equally-weighted portfolio as the target
portfolio.

Strategy 8: Ledoit-Wolf nonlinear shrinkage estimator of the GMV portfolio (see, Ledoit and
Wolf (2017)) computed at each time ti, i = 1, 2, ..., T ;

The first four strategies are based on the theoretical results derived in Sections 2.1 and
2.2 where two different methods for constructing bona fide shrinkage estimators of the GMV
portfolio weights are explored following the discussion after Theorems 2.1 and 2.5, respectively.
Strategies 5 to 7 are the benchmark strategies which are based on the traditional estimator of
the GMV portfolio, on the target portfolio, and on the one-period shrinkage estimator. The last
Strategy 8 is the recent state-of-the-art method of Ledoit and Wolf (2017), which efficiently
applies the nonlinear shrinkage estimator of the covariance matrix on the GMV portfolio weights.

Since the GMV portfolio is the solution of the portfolio optimization problem with the aim
to minimize the portfolio variance, the relative loss in the out-of-sample variance is used as a
performance measure in this comparison study which for the portfolio with the estimated weights
ŵ is expressed as:

Relative loss (w) =
ŵ>Σŵ − VGMV

VGMV
= 1>Σ−11ŵ>Σŵ − 1, (3.1)

where we use the formula for the global minimum variance VGMV given in (2.7).
In the simulation study, we will look at two investment horizons T = 10 and T = 20. For

each segment we let ni = 250, which would correspond to an investor who rebalances the holding
portfolio on a yearly basis. The parameters of the listed below models are simulated according
to µ = (µ1, ..., µp)

> with µi ∼ U(−0.2, 0.2) and the covariance matrix Σ is configured such that
20% of the eigenvalues are equal to 0.2, 40% equal to one and 40% equal to 4, whereas the
eigenvectors are generated from the Haar distribution. Following this simulation setup Σ will
have the same spectral distribution for all considered values of the concentration ratio cn.

Four different stochastic models for the data-generating process will be considered, which
are listed below:

Scenario 1: t-distribution The elements of xt are drawn independently from t-distribution
with 5 degrees of freedom, i.e., xtj ∼ t(5) for j = 1, ..., p, while yt is constructed according
to (2.1).

Scenario 2: CAPM The vector of asset returns yt is generated according to the CAPM (Cap-
ital Asset Pricing Model), i.e.,

yt = µ + βzt + Σ1/2xt,

with independently distributed zt ∼ N(0, 1) and xt ∼ Np(0, I). The elements of vector β
are drawn from the uniform distribution, that is βi ∼ U(−1, 1) for i = 1, ..., p.

Scenario 3: CCC-GARCH model of Bollerslev (1990) The asset returns are simulated
according to

yt|Σt ∼ Np(µ,Σt)

where the conditional covariance matrix is specified by

Σt = D
1/2
t CD

1/2
t with Dt = diag(h1,t, h2,t, ..., hp,t),

9



where

hj,t = αj,0+αj,1(yj,t−1−µj)2+βj,1hj,t−1, for j = 1, 2, ..., p, and t = 1, 2, ..., ni, i = 1, ..., T.

The coefficients of the CCC model are sampled according to αj,1 ∼ U(0, 0.1) and βj,1 ∼
U(0.6, 0.7) which implies that the stationarity conditions, αj,1 + βj,1 < 1, are always
fulfilled. The intercept αj,0 is thereafter chosen such that the unconditional covariance
matrix is equal to Σ.

Scenario 4: VARMA model The vector of asset returns yt is simulated according to a

yt = µ + Γyt−1 + Σ1/2xt with xt ∼ Np(0, I)

for t = 1, ..., ni, i = 1, ..., T , where Γ = diag(γ1, γ2, ..., γp) where γi ∼ U(−0.9, 0.9) for
i = 1, ..., p.

Scenario 1 and Scenario 2 fulfill the conditions imposed on the data-generating model
in Section 2. The application of both scenarios result in samples that consist of independent
random vectors with finite 4 + ε, ε > 0, moments. Furthermore, the covariance matrix possesses
finite eigenvalues in Scenario 1, while it has an unbounded spectrum in Scenario 2 (cf., Fan
et al. (2013)). On the other side, the samples obtained following Scenario 3 and Scenario 4
consist of dependent observations. In Scenario 3 the random vector are uncorrelated although
a non-linear dependence is present in the time series structure of the model, while the elements
of the samples obtained from Scenario 4 are strongly linearly dependent.

For each segment of the time partition we generate a new sample of n = 250 observations,
which is applied in the computation of µ̂, Ŝni , ŜNi , ŵS;ni , and ŵSH;ni . As a target portfolio
we use the equally weighted portfolio with the weights b = 1p/p. The results of the simulation
study are based on 5000 independent runs from which the average relative loss is computed for
each scenario, strategy and several values of the concentration ratio c.

3.2 Performance of the trading strategies
Figures 1 to 4 present the results of the simulation study for i = 3, i = 6, and i = 10 when T = 10
and for i = 6, i = 13 and i = 20 when T = 20. Interestingly, the computed average loss show a
similar behaviour independently of the data-generating model used to draw the samples. This
observation also holds in the case of Scenario 3 and Scenario 4, which by construction do not
fulfill the assumptions imposed on the data-generating model in the derivation of the theoretical
results. As such, one can conclude that the presence of non-linear dependence structure between
the observation vectors or even strong linear dependence has only minor impact on the validity
of the results derived in Theorem 2.1 and Theorem 2.5.

The best performance is obtained for Strategy 2, Strategy 3, and Strategy 4, which
are followed by Strategy 1. The differences between the computed values for Strategies 2
to 4 are very small and are present at the fourth decimal. All dynamic estimation strategies
considerably outperform the four considered benchmark strategies, independently of the scenario
used to generate samples. On the third place we rank the nonlinear shrinkage estimator, i.e.,
Strategy 8, while the single-period shrinkage estimator is ranked on the place four. Finally,
we note that for Scenarios 1-4 the traditional estimator performs better than the portfolio
strategy based on the target portfolio, when the concentration ratio c is smaller than 0.75, while
it produces extremely large values of relative losses, when c approaches one. This observation
becomes even more prominent in case of the Scenario 4, where a strong autocorrelation was
employed. Here already for c = 0.5 the target portfolio starts outperforming the traditional
estimator. To this end, we conclude that the dynamic re-estimation of the relative loss of
the target portfolio b shows a significant improvement when non-overlapping samples are used
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and the concentration ratio c is relative large. In contrast, the application of the dynamic re-
estimation of the relative loss in the case of overlapping samples leads to the considerably large
computation time without large improvements. Finally, the increase of the trading horizon T
has only a minor impact on the plots presented in Figures 1 to 4. The larger value of T slightly
reduces the computed average relative losses in the case of Strategy 1, while they become a
slightly large for the single-period shrinkage approach.

Figure 1: Relative losses for the different time steps i and investment horizons T . Data
were simulated following Scenario 1 for different values of c.

4 Application to stocks included in S&P 500
In this section we will apply the suggested new approaches and the benchmark strategies pre-
sented in Section 3 on daily market data.

4.1 Data description
We will use daily returns on 348 stocks included in the S&P500 index from March 2011 up until
March 2020. The stocks were chosen by the availability of their price data during the trading
period. Two portfolios of size p = 100 (high-dimensional case) and p = 50 (low-dimensional case)
are considered, where 50 stocks are chosen randomly from 348 stocks included in the empirical
study for the first portfolio, while the second one contains the first 50 stocks in the alphabetic
order of the former portfolio. We set c = 0.25 or c = 0.5 and will therefore use ni = 200 trading
days for each year i.

Figure 5 presents the descriptive statistics computed for the univariate series of the randomly
chosen 100 stocks. Namely, the first four (centralized) sample moments of the univariate time
series of asset returns are depicted in the figure, which are computed for the whole period from
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Figure 2: Relative losses for the different time steps i and investment horizons T . Data
were simulated following Scenario 2 for different values of c.

Figure 3: Relative losses for the different time steps i and investment horizons T . Data
were simulated following Scenario 3 for different values of c.

12



Figure 4: Relative losses for the different time steps i and investment horizons T . Data
were simulated following Scenario 4 for different values of c.

March 2011 up until March 2021. The returns are on average positive over this period, while
the sample skewness is on average negative with the sample distribution to be skewed to the
left and with a few assets having very large (negative) values. The largest negative skewness
corresponds to the Mondelez International, Inc. (ticker MDLZ) which is also among those
assets with highest kurtosis. Finally, we note that the computed kurtosis are relatively large for
the considered stocks, showing that the assumption of normality might not be fulfilled for the
considered data.

4.2 Results of the empirical illustration
A consequence of the exponential weighting schemes to which the shrinkage estimators belong
to, is that the portfolio structure changes by smaller increments. As a result, we expect that the
portfolio turnover of the dynamic (estimated) GMV portfolios based on the introduced shrinkage
approaches to be smaller in comparison to the unconstrained strategy (ψi = 1), but to be larger
in comparison to the static portfolio choice (ψi = 0). For each strategy k introduced in Section
3.1, let w(k) denote the vector of the weights induced by the kth strategy and let w(k)

i,j stand for
the weight for the j-th asset after the i-th portfolio rebalancing.

For each strategy k the turnover is defined by (see e.g. Golosnoy et al. (2019))

Turnover(k) =
1

T

T∑
i=1

||w(k)
i −w

(k)
i−1||1. (4.1)

The turnover can be seen as the cost for transitioning from one portfolio to another, given that
the transaction costs are constant for all assets and time periods. The amount of turnover will
affect the development of wealth of the portfolio. Moreover, following Golosnoy et al. (2019),
we will compute the average absolute values of holding portfolio weights, the average minimum
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Figure 5: First four moments for the univariate time series of the asset returns from 100
randomly selected assets of the S&P500 index. The data consist of daily returns from
March of 2011 to March of 2021.

and maximum portfolio weights, the average sum of negative weights in the portfolio, and the
average fraction of negative weights in the portfolio as further performance measures. They are
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given by

|w(k)| = 1

Tp

T∑
i=1

p∑
j=1

|w(k)
i,j |, (4.2)

max w(k) =
1

T

T∑
i=1

(
max
j
w

(k)
i,j

)
, (4.3)

min w(k) =
1

T

T∑
i=1

(
min
j
w

(k)
i,j

)
, (4.4)

w
(k)
i 1(w

(k)
i < 0) =

1

T

T∑
i=1

p∑
j=1

w
(k)
i,j 1(w

(k)
i,j < 0), (4.5)

1(w
(k)
i < 0) =

1

Tp

T∑
i=1

p∑
j=1

1(w
(k)
i,j < 0). (4.6)

Moreover, we also consider important classical portfolio performance measures: total excess
portfolio return, out-of-sample variance and average Sharpe ratio. The computed values of the
introduced performance measures are summarized in Table 1 for Strategies 1 to 8 over the
entire period. The corresponding values for Strategy 6 are also included in the table but many
of its entries are zero since

|w(k)| = max w(k) = min w(k) =
1

p
and w

(k)
i 1(w

(k)
i < 0) = 1(w

(k)
i < 0) = Turnover(k) = 0.

(4.7)
It is noted that all performance measures from (4.1) and (4.2)-(4.6) decrease in absolute value
with p. There seems to be a natural ordering to the different strategies in terms of their perfor-
mance measures. Of course, Strategy 6 has the smallest values of them all. This finding is not
surprising since this strategy is constant over time and will introduce no turnover. Similarly, no
negative weights are present in the target portfolio since each asset will be assigned a weight of
1/p.

Furthermore, in terms of the other portfolio performance measures Strategy 2 and Strat-
egy 4 have the largest portfolio return, while Strategy 3 beats all of other strategies in terms
of portfolio variance. At the same time Strategy 5 is generating quite large turnover. The
smallest turnover however is giving Strategy 2. Although the nonlinear shrinkage estimator is
clearly underperforming in terms of the aforementioned measures, it has the most stable port-
folio weights (except of Strategy 6, of course) over all of the competitors, which indicates that
this portfolio could be used as a target portfolio instead of 1/p.
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Among the four shrinkage-based trading strategies, the ones based on the overlapping sam-
ples produce considerably smaller values of Turnover(k) and the largest portfolio return, while
the application of Strategy 1 and Strategy 3 leads to the slightly more stable portfolio weights
(see, Table 1). When comparing Strategy 1 to Strategy 3, we conclude that the reestimation
of the relative risk of the target portfolio at the end of each year only slightly decreases the
turnover. Taking into account that Strategy 3 is considerably more computationally intensive
than Strategy 1, the advantage of its application becomes questionable. Moreover, Strategy 2
has actually smaller turnover then the corresponding more computationally intensive Strategy
4. Even though Strategy 4 obeys the smallest Sharpe-Ratio over all portfolios, the difference
with Strategy 2 is around 0.0001, which could be statistically not significant.

The far worst strategy is Strategy 5, which uses the latest yearly data of the asset returns
to estimate the GMV portfolio. Especially, one can see that for the low-dimensional case p = 50
it has still the smallest variance, while it increases significantly in case of high-dimensional
situation p = 100. From the one side this classic strategy has the most flexibility, while from
the other side this flexibility often leads to unnecessary reconstruction of the holding portfolio,
thus significantly increasing the values of the performance measures in comparison to the other
strategies. For example, for increasing p it is generating a large turnover, which becomes even
more extreme in case of p/n close to one. Finally, Strategy 7 and Strategy 8, which are
based on the single-period shrinkage approaches, show the performance that lies between the
dynamic shrinkage trading strategies and holding the sample GMV portfolio reestimated at the
end of each year. Although the application of Strategy 7 improves the performance of the
sample GMV portfolio, the values of the performance measures computed for this strategy are
still considerably larger then the ones obtained for the dynamic shrinkage portfolios. Although
Strategy 8 based on the nonlinear shrinkage technique is clearly better than Strategy 7,
which is expected, it can not beat the dynamic strategies in terms of portfolio return, variance,
Sharpe-Ratio and turnover. From the other side, because the weights of Strategy 8 are the
most stable ones (except of Strategy 6), one could think about combining it in the future with
the dynamic portfolio strategies presented in this paper (see, e.g., Remark 2.2).

The development of the investors wealth for the eight trading strategies introduced in Section
3.1 over 10 years is depicted in Figure 6. The wealth is computed according to a buy-and-hold
strategy. That is we rebalance the holding portfolio by using one year data of the asset returns
at the end of each year and hold the new portfolio for subsequent year. On the other side,
the wealth is accumulated on a daily basis which corresponds to the frequency of data used to
construct the portfolio.

We consider the cases of p = 50 (low-dimensional, p/ni = 0.25), p = 100 (high-dimensional,
p/ni = 0.5), and p = 190 (high-dimensional, p/ni = 0.95) and see that the trading strategies
based on the dynamic shrinkage approach produce the largest wealth at the end of the investing
period over all dimensions p. For example, with dimensions p = 50 and 100 Strategy 2 and
Strategy 4 show the best performance followed by Strategy 1, Strategy 2 and Strategy 8.
To illustrate a very high dimensional case we also include a portfolio with p = 190 in Figure
8. When p = 190, the best performing strategies are close to a tie between Strategies 1 to 4
with Strategy 2 being slightly better as others. Taking into account the values of the turnover
presented in Table 1, Strategy 2 can be considered to be the best approach in this case. The
Strategy 7 is clearly better than Strategy 5 but they seem to go in unison with each other for
p = 50 and p = 100. For high-dimensions the worst in terms of the wealth is Strategy 6 that
is based on the target equally weighted portfolio for all dimensions p. Nevertheless, Strategy 5
seems to be significantly worse than all of the considered cases if p = 190, which is not wondering
because of the closeness to singularity of the sample covariance matrix. Indeed, in case p = 190
the advantage of the single-period shrinkage Strategy 7 becomes significant also over nonlinear
shrinkage Strategy 8.

All portfolios are hit quite heavily by COVID in the early 2020, which is indicated by a
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Figure 6: Development of the investor wealth based on the dynamic trading strategies
described in Section 3.1. In this figure the portfolio size is equal to 50.

dashed line on the 1st of March, 20201. The investment into the equally weighted portfolio, i.e.
Strategy 6, is hit quite hard by COVID though it seems to have a very steep ascent after it.
The same situation is observed for the nonlinear shrinkage Strategy 8 in case p = 190.

This results are in line with the previous empirical findings of Bodnar et al. (2021b) who
document that the equally weighted portfolio performs well in the stable period on the capital
market, but its performance is very bad during the turbulent periods. Finally, a notable feature
of Strategy 5 is that it does not vary that much when COVID hits. This could be due to its
flexibility and that it can rely on the latest set of data only to estimate the optimal portfolio.
On the other side, the application of Strategy 5 leads to considerably larger transaction costs
and portfolio weights as shown in Table 1.

To conclude, all four of the proposed dynamic shrinkage strategies show impressively good
performance over the state-of-the-art static portfolios especially in case when p becomes close
no ni.

1This is of course somewhat arbitrary since it is hard to specify a certain day that COVID hits the
market.
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Figure 7: Development of the investor wealth based on the dynamic trading strategies
described in Section 3.1. In this figure the portfolio size is equal to 100.

5 Summary
In many practical situation an investor after constructing an optimal portfolio faces the problem
of the portfolio reallocation based on the new data which arrive on the capital market after the
portfolio was built. We deal with challenging task in the current paper by developing several
dynamic optimal shrinkage estimators for the weights of the GMV portfolio. In the derivation
of the theoretical findings, new results in random matrix theory are deduced which allow us
to obtained optimal shrinkage estimator in both important cases with and without overlapping
samples. In the case of non-overlapping samples, the investor uses the data of asset returns
after the last reconstruction of the portfolio, while the whole data might be used in the case of
overlapping samples. It is remarkable that the two settings require different theoretical results in
random matrix theory to be derived results and they result in quite different optimal shrinkage
intensities. Moreover, only minor distribution assumption are imposed on the data-generating
process, like the existence of 4 + ε, ε > 0, moments are required only. Also, the covariance
matrix might have an unbounded spectrum.

The results of the simulation study show that the dynamic shrinkage procedures derived in
the paper are robust against violations of the model assumptions. In particular, we conclude
based on the results of the simulation study, that the performance of the suggested dynamic
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Figure 8: Development of the investor wealth based on the dynamic trading strategies
described in Section 3.1. In this figure, the portfolio size is equal to 190.

approach will not be strongly influenced when the asset returns are generated from a multi-
variate GARCH model and from a VARMA model. Although, both multivariate times series
model assume that the asset returns are time dependent, it has only a minor influence the
suggested trading strategies. Finally, we apply the new approaches to real data of returns on
stocks included in the S&P 500 index and compare them with several benchmark approaches,
consisting of investing into the target portfolio, the sample GMV portfolio, and the single-period
GMV portfolio. Several performance measures are considered and it is shown that the dynamic
shrinkage portfolio constructed by using overlapping samples possesses the best performance in
terms of the turnover and the development of the portfolio weights.

The dynamic strategies based non-overlapping sample are simple to implement and they
provide drastically less turnover in comparison to the benchmark approaches. Although the
approaches based on the overlapping estimators are harder to implement, they decrease the
turnover by 50% in comparison to the corresponding non-overlapping strategies with no signifi-
cant loss in wealth. Furthermore, they require that the sample size is larger than the portfolio
dimension only when the portfolio is constructed for the first time, while the non-overlapping
approaches need the sample size to be larger than the portfolio dimension by each reconstruction
of the portfolio.

No portfolio is ever static. Making optimal transitions are therefore of great interest to any
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investor. These results provide a fully data-driven dynamic approaches how the GMV portfolio
can be rebalanced. In many practical applications the investors might want to have more assets
in their portfolios than the available sample size. This demands a special attention since the
sample covariance matrix is singular in this case and its inverse does not exist any longer. This
challenging problem has not been treated in the paper and is left for future research.
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Appendix
In this section the proofs of the theoretical results are given. We first state several lemmas which
will be used in the proofs of the theorems.

For any integer n > 2, we define

Vn =
1

n− 1
Xn

(
In −

1

n
1n1

>
n

)
X>n and Ṽn =

1

n− 1
XnX

>
n , (5.1)

where Xn is given in (2.1) for the special case n = ni. Hence,

Sn = Σ1/2VnΣ
1/2 = Σ1/2ṼnΣ

1/2 − n

n− 1
Σ1/2x̄nx̄

>
nΣ1/2

with x̄n = 1
nXn1n = Σ−1/2ȳn.

The statement of Lemma 5.1 is derived as Lemma 5.3 in Bodnar et al. (2021c)

Lemma 5.1. Let ξ and θ be two nonrandom vectors with bounded Euclidean norms. Then it
holds that ∣∣∣ξ>V−1n θ − (1− c)−1ξ>θ

∣∣∣ a.s.→ 0 (5.2)∣∣∣ξ>V−2n θ − (1− c)−3ξ>θ
∣∣∣ a.s.→ 0 (5.3)

for p/n→ c ∈ (0, 1) as n→∞.

Lemma 5.2. Let ξ and θ be two nonrandom vectors with bounded Euclidean norms and let
m,n > 1. Then it holds that ∣∣∣ξ>Ṽ−1n Ṽ−1n+mθ − dn,n+mξ>θ

∣∣∣ a.s.→ 0, (5.4)

for p/n→ c ∈ (0, 1) as n→∞ with

dn,n+m =
bn,n+m
an,n+m

(1− p

n

)−1
− 2

(
1− p

n
+ an,n+m +

√(
1− p

n
− an,n+m

)2
+ 4an,n+m

)−1 ,

(5.5)
where

an,n+m =
n+m− p
n+m

n+m− 1

n− 1
and bn,n+m =

n+m− 1

n− 1
. (5.6)
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Proof of Lemma 5.2. It holds that∣∣∣ξ>Ṽ−1n Ṽ−1n+mθ − dn,n+mξ>θ
∣∣∣

≤

∣∣∣∣∣∣∣
ξ>Ṽ−1n Ṽ−1n+mθ√
ξ>Ṽ−2n ξ

√
θ>θ

−
ξ>Ṽ−1n

(
n−1

n+m−1Ṽn + n+m−p
n+m I

)−1
θ√

ξ>Ṽ−2n ξ
√

θ>θ

∣∣∣∣∣∣∣
√
ξ>Ṽ−2n ξ

√
θ>θ

+

∣∣∣∣∣ξ>Ṽ−1n

(
n− 1

n+m− 1
Ṽn +

n+m− p
n+m

I

)−1
θ − dn,n+mξ>θ

∣∣∣∣∣ , (5.7)

where θ>θ < ∞ by the assumption and by Lemma 5.2 of Bodnar et al. (2021c) we get
ξ>Ṽ−2n ξ

a.s.→ (1− c)−3ξ>ξ.
Let Ṽn+1:n+m = 1

m−1Xn+1:n+mX>n+1:n+m where Xn+1:n+m stands for the submatrix of
Xn+m consisting of its last m columns. Since Xn and Xn+1:n+m are independent, Ṽn and
Ṽn+1:n+m are also independent. Moreover, we get

Ṽn+m =
n− 1

n+m− 1
Ṽn +

m− 1

n+m− 1
Ṽn+1:n+m.

Following Theorem 1 in Rubio and Mestre (2011) conditionally on Ṽn, we get that∣∣∣∣∣∣∣
ξ>Ṽ−1n Ṽ−1n+mθ√
ξ>Ṽ−2n ξ

√
θ>θ

−
ξ>Ṽ−1n

(
n−1

n+m−1Ṽn + kn,n+mI
)−1

θ√
ξ>Ṽ−2n ξ

√
θ>θ

∣∣∣∣∣∣∣ a.s.→ 0

for p/m→ c̃ ∈ (0,∞) as m→∞ where kn,n+m is found as the solution of the equation

m

p
(k−1n,n+m − 1) =

1

p
tr

(
m

n+m− 1

(
n− 1

n+m− 1
Ṽn + kn,n+m

m

n+m− 1
I

)−1)
(5.8)

a.s.→ 2
m

n

(
1− p

n
+ kn,n+m

m

n
+

√(
1− p

n
− kn,n+m

m

n

)2
+ 4kn,n+m

m

n

)−1
Using that for a, b ∈ R we have(

(a+ b) +
√

(a− b)2 + 4b
)(

(a+ b)−
√

(a− b)2 + 4b
)

= 4b(a− 1),

the identity (5.8) is equivalent to

2
m

n
(kn,n+m − 1) = 1− p

n
+ kn,n+m

m

n
−
√(

1− p

n
− kn,n+m

m

n

)2
+ 4kn,n+m

m

n
or √(

1− p

n
− kn,n+m

m

n

)2
+ 4kn,n+m

m

n
= 1− p

n
+ 2

m

n
− m

n
kn,n+m,

whose solution is given by
kn,n+m =

n+m− p
n+m

.

For the second summand in (5.7) we get that

ξ>Ṽ−1n

(
n− 1

n+m− 1
Ṽn +

n+m− p
n+m

I

)−1
θ = bn,n+mξ

>Ṽ−1n

(
Ṽn + an,n+mI

)−1
θ

=
bn,n+m
an,n+m

(
ξ>Ṽ−1n θ − ξ>

(
Ṽn + an,n+mI

)−1
θ

)
a.s.→ bn,n+m

an,n+m

(1− p

n

)−1
− 2

(
1− p

n
+ an,n+m +

√(
1− p

n
− an,n+m

)2
+ 4an,n+m

)−1 ξ>θ
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using Lemma 5.1 in Bodnar et al. (2021c) two times.

Lemma 5.3. Let ξ and θ be two nonrandom vectors with bounded Euclidean norms and let
m,n > 1. Then it holds that ∣∣∣ξ>V−1n V−1n+mθ − dn,n+mξ>θ

∣∣∣ a.s.→ 0, (5.9)

for p/n→ c ∈ (0, 1) as n→∞ where dn,n+m is defined in (5.5).

Proof of Lemma 5.3. The application of the Sherman–Morrison formula leads to

ξ>V−1n V−1n+mθ = ξ>
(

Ṽn −
n

n− 1
x̄nx̄

>
n

)−1(
Ṽn+m −

n+m

n+m− 1
x̄n+mx̄>n+m

)−1
θ

= ξ>Ṽ−1n Ṽ−1n+mθ +
n+m

n+m− 1

ξ>Ṽ−1n Ṽ−1n+mx̄n+mx̄>n+mṼ−1n+mθ

1− n+m
n+m−1 x̄>n+mṼ−1n+mx̄n+m

+
n

n− 1

ξ>Ṽ−1n x̄nx̄
>
n Ṽ−1n Ṽ−1n+mθ

1− n
n−1 x̄>n Ṽ−1n x̄n

+
n

n− 1

n+m

n+m− 1

ξ>Ṽ−1n x̄nx̄
>
n Ṽ−1n Ṽ−1n+mx̄n+mx̄>n+mṼ−1n+mθ

(1− n
n−1 x̄>n Ṽ−1n x̄n)(1− n+m

n+m−1 x̄>n+mṼ−1n+mx̄n+m)
.

The applications of Lemma 5.2 in Bodnar et al. (2021c) and Lemma 5.2 completes the proof.

Proof of Theorem 2.1. Rewriting (2.5) we get

ψ∗ni
=

ŵ>SH;ni−1
ΣŵSH;ni−1 −

ŵ>SH;ni−1
ΣS−1

ni
1p

1>p S−1
ni

1p

ŵ>SH;ni−1
ΣŵSH;ni−1 − 2

ŵ>SH;ni−1
ΣS−1

ni
1p

1>p S−1
ni

1p
+

1>p S−1
ni

ΣS−1
ni

1p

(1>p S−1
ni

1p)2

=
hni

gni

with

hni = 1>p Σ−11pŵ
>
SH;ni−1

ΣŵSH;ni−1 −
1>p Σ−11p

1>p S−1ni 1p
ŵ>SH;ni−1

ΣS−1ni
1p

and

gni = 1>p Σ−11pŵ
>
SH;ni−1

ΣŵSH;ni−1 +
1>p S−1ni

ΣS−1ni
1p

1>p Σ−11p

(
1>p Σ−11p

1>p S−1ni 1p

)2

− 2
1>p Σ−11p

1>p S−1ni 1p
ŵ>SH;ni−1

ΣS−1ni
1p

The application of Lemma 5.1 with ξ = θ =
Σ−1/21p
1>p Σ−11p

leads to

1>p S−1ni
1p

1>p Σ−11p

a.s.→ (1− ci)−1 and
1>p S−1ni

ΣS−1ni
1p

1>p Σ−11p

a.s.→ (1− ci)−3 (5.10)

for p/ni → ci ∈ (0, 1) as ni →∞.
Since the variance of the GMV portfolio is equal to 1/(1>p Σ−11p), we have that

1>p Σ−11pŵ
>
SH;ni−1

ΣŵSH;ni−1 =
ŵ>SH;ni−1

ΣŵSH;ni−1

1/1>p Σ−11p
= 1 + rŵSH;ni−1

≥ 1,
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where rŵSH;ni−1
is the relative loss of the portfolio with weights ŵSH;ni−1 computed with respect

to the variance of the GMV portfolio. Next, we recursively derive the asymptotic behaviour of
rŵSH;ni−1

.
For i = 1 the sample estimator of the GMV portfolio weights ŵS;ni is shrunk to the deter-

ministic target b, i.e., ŵSH;n0 = b. In this case the relative loss is given by

rŵSH;n0
= r0 = 1>p Σ−11pb

>Σb− 1,

which is bounded uniformly on p following the assumption of the theorem and

b>ΣS−1n1
1p

√
b>Σb

√
1>p Σ−11p

a.s.→ (1− c1)−1
1

√
b>Σb

√
1>p Σ−11p

= (1− c1)−1
1√
r0 + 1

,

using Lemma 5.1 with ξ =
Σ1/2b√
b>Σb

and θ =
Σ−1/21p
1>p Σ−11p

. Combining these results with (5.10)

leads to
ψ∗n1

a.s.→ ψ∗1

for p/n1 → c1 ∈ (0, 1) as n1 →∞ with

ψ∗1 =
(r0 + 1)− 1

(r0 + 1) + (1− c1)−1 − 2
=

(1− c1)r0
(1− c1)r0 + c1

.

Moreover, the relative loss of the portfolio ŵSH;ni−1 tends to

rŵSH;n1
= 1>p Σ−11p

(
(ψ∗n1

)2ŵ>S;n1
ΣŵS;n1 + 2ψ∗n1

(1− ψ∗n1
)ŵ>S;n1

Σb + (1− ψ∗n1
)2b>Σb

)
− 1

= (ψ∗n1
)2

1>p S−1n1
ΣS−1n1

1p

1>p Σ−11p

(
1>p Σ−11p

1>p S−1n1 1p

)2

+ 2ψ∗n1
(1− ψ∗n1

)1>p S−1n1
Σb

1>p Σ−11p

1>p S−1n1 1p
+ (1− ψ∗n1

)2(r0 + 1)− 1

a.s.→ (ψ∗1)2(1− c1)−1 + 2ψ∗1(1− ψ∗1) + (1− ψ∗1)2(r0 + 1)− 1

= (ψ∗1)2
c1

1− c1
+ (1− ψ∗1)2r0 = r1,

for p/n1 → c1 ∈ (0, 1) as n1 →∞.
Using the last result we get for i = 2 that

1>p Σ−11pŵ
>
SH;n1

ΣŵSH;n1

a.s.→ r1 + 1.

Since non-overlaping samples Yn1 Yn2 are used in the computation of the ŵSH;n1 and Sn2 ,
these two random objects are independent. The application of Lemma 5.1 conditionally on Yn1

leads to ∣∣∣∣∣∣ ŵ>SH;n1
ΣS−1n2

1p√
ŵ>SH;n1

ΣŵSH;n1

√
1>p Σ−11p

− (1− c2)−1√
ŵ>SH;n1

ΣŵSH;n1

√
1>p Σ−11p

∣∣∣∣∣∣ a.s.→ 0,

and, hence,∣∣∣ŵ>SH;n1
ΣS−1n2

1p − (1− c2)−1
∣∣∣

=

∣∣∣∣∣∣ ŵ>SH;n1
ΣS−1n2

1p√
ŵ>SH;n1

ΣŵSH;n1

√
1>p Σ−11p

√
ŵ>SH;n1

ΣŵSH;n1

√
1>p Σ−11p − (1− c2)−1

∣∣∣∣∣∣ a.s.→ 0,
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since ŵ>SH;n1
ΣŵSH;n11

>
p Σ−11p = OP (1) The last results together with (5.10) yields

ψ∗n2

a.s.→ ψ∗2 =
(r1 + 1)− 1

(r1 + 1) + (1− c2)−1 − 2
=

(1− c2)r1
(1− c2)r1 + c2

for p/n2 → c2 ∈ (0, 1) as n2 →∞.
Finally, the relative loss of the portfolio ŵSH;n2 tends to

rŵSH;n2
= 1>p Σ−11p

(
(ψ∗n2

)2ŵ>S;n2
ΣŵS;n2 + 2ψ∗n2

(1− ψ∗n2
)ŵ>S;n2

ΣŵSH;n1

+ (1− ψ∗n2
)2ŵ>SH;n1

ΣŵSH;n1

)
− 1

= (ψ∗n2
)2

1>p S−1n2
ΣS−1n2

1p

1>p Σ−11p

(
1>p Σ−11p

1>p S−1n2 1p

)2

+ 2ψ∗n2
(1− ψ∗n2

)1>p S−1n2
ΣŵSH;n1

1>p Σ−11p

1>p S−1n2 1p
+ (1− ψ∗n2

)2(rŵSH;n1
+ 1)− 1

a.s.→ (ψ∗2)2(1− c2)−1 + 2ψ∗2(1− ψ∗2) + (1− ψ∗2)2(r1 + 1)− 1

= (ψ∗2)2
c2

1− c2
+ (1− ψ∗2)2r1 = r2,

for p/n2 → c2 ∈ (0, 1) as n2 →∞.
Repeating the above steps for i = 3, ..., T leads to the statement of the theorem.

Proof of Theorem 2.5. We get

Ψ∗Ni
=

ŵ>SH;Ni−1
ΣŵSH;Ni−1 −

ŵ>SH;Ni−1
ΣS−1

Ni
1p

1>p S−1
Ni

1p

ŵ>SH;Ni−1
ΣŵSH;Ni−1 − 2

ŵ>SH;Ni−1
ΣS−1

ni
1p

1>p S−1
Ni

1p
+

1>p S−1
Ni

ΣS−1
Ni

1p

(1>p S−1
Ni

1p)2

=
HNi

GNi

with

HNi = 1>p Σ−11pŵ
>
SH;Ni−1

ΣŵSH;Ni−1 −
1>p Σ−11p

1>p S−1Ni
1p

ŵ>SH;Ni−1
ΣS−1Ni

1p

and

GNi = 1>p Σ−11pŵ
>
SH;Ni−1

ΣŵSH;Ni−1 +
1>p S−1Ni

ΣS−1Ni
1p

1>p Σ−11p

(
1>p Σ−11p

1>p S−1Ni
1p

)2

− 2
1>p Σ−11p

1>p S−1Ni
1p

ŵ>SH;Ni−1
ΣS−1Ni

1p

From Lemma 5.1 we have

1>p S−1Ni
1p

1>p Σ−11p

a.s.→ (1− Ci)−1 and
1>p S−1Ni

ΣS−1Ni
1p

1>p Σ−11p

a.s.→ (1− Ci)−3 (5.11)

for p/Ni → Ci ∈ (0, 1) as Ni →∞.
The recursive structure of ŵSH;Ni−1 implies that

ŵSH;Ni−1 =

i−1∑
j=0

β∗Ni−1;Nj
ŵNj with ŵN0 = b,
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where β∗Ni−1;Nj
are computed recursively by

β∗N0;N0
= 1, β∗Ni−1;Ni−1

= Ψ∗Ni−1
, and β∗Ni−1;Nj

= (1−Ψ∗Ni−1
)β∗Ni−2;Nj

, j = 0, ...i− 2.

Hence,

ŵ>SH;Ni−1
ΣS−1Ni

1p = β∗Ni−1;N0
b>ΣS−1Ni

1p +
i−1∑
j=1

β∗Ni−1;Nj

1>p S−1Nj
ΣS−1Ni

1p

1>p S−1Nj
1p

Let Ψ∗i−1 denote the deterministic asymptotic limit of Ψ∗Ni−1
, whose recursive computation

is discussed below. We also define

β∗0;0 = 1, β∗i−1;i−1 = Ψ∗i−1, and β∗i−1;j = (1−Ψ∗i−1)β
∗
i−2;j , j = 0, ...i− 2.

Then, the application of Lemma 5.3 yields

ŵ>SH;Ni−1
ΣS−1Ni

1p
a.s.→ (1− Ci)−1Ki with Ki = β∗i−1;0 +

i−1∑
j=1

β∗i−1;jDj,i

for p/Nj → Cj ∈ (0, 1) as Nj →∞, j = 1, ..., i− 1, where

Dj,i = 1− 2(1− Cj)

(1− Cj) + (1− Ci)Cj

Ci
+

√(
1− Cj

Ci

)2
+ 4(1− Ci)Cj

Ci

.

Moreover, the relative loss of the portfolio with weights ŵSH;Ni is asymptotically given by

RŵSH;Ni
= 1>p Σ−11p

(
(Ψ∗Ni

)2ŵ>S;ni
ΣŵS;Ni + 2Ψ∗Ni

(1− ψ∗Ni
)ŵ>S;Ni

ΣŵSH;Ni−1

+ (1−Ψ∗Ni
)2ŵ>SH;Ni−1

ΣŵSH;Ni−1

)
− 1

= (Ψ∗Ni
)2

1>p S−1Ni
ΣS−1Ni

1p

1>p Σ−11p

(
1>p Σ−11p

1>p S−1Ni
1p

)2

+ 2Ψ∗Ni
(1−Ψ∗Ni

)1>p S−1Ni
ΣŵSH;Ni−1

1>p Σ−11p

1>p S−1Ni
1p

+ (1−Ψ∗Ni
)2(rŵSH;Ni−1

+ 1)− 1

a.s.→ Ri = (Ψ∗i )
2(1− Ci)−1 + 2Ψ∗i (1−Ψ∗i )Ki + (1−Ψ∗i )

2(Ri−1 + 1)− 1

= (Ψ∗i )
2 Ci
1− Ci

+ (1−Ψ∗i )
2Ri−1 + 2Ψ∗i (1−Ψ∗i )(Ki − 1).

Finally, we get

Ψ∗Ni

a.s.→ Ψ∗i with Ψ∗i =
(Ri−1 + 1)−Ki

(Ri−1 + 1) + (1− Ci)−1 − 2Ki
,

for p/Nj → Cj ∈ (0, 1) as Nj → ∞, j = 1, ..., i. As a result, the computation of Ψ∗i is
performed in the following recursive way: (i) first, we compute R0 = 1>p Σ−11pb

>Σb − 1 and
K1 = (1 − C1)

−1 which are used to obtain Ψ∗1; (ii) second, using R0 and Ψ∗1 we find R1 and
K1 = (1−C1)

2 used in the computation of Ψ∗2 and proceed the recursive procedure for i = 3, ..., T .
The boundedness of R0 ensures that all computed values are finite as well.
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