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Abstract

We study market-consistent valuation of liability cash flows motivated
by current regulatory frameworks for the insurance industry. Building
on the theory on multiple-prior optimal stopping we propose a valuation
functional with sound economic properties that applies to any liability
cash flow. Whereas a replicable cash flow is assigned the market value of
the replicating portfolio, a cash flow that is not fully replicable is assigned
a value which is the sum of the market value of a replicating portfolio and
a positive margin. The margin is a direct consequence of considering a
hypothetical transfer of the liability cash flow from an insurance company
to an empty corporate entity set up with the sole purpose to manage the
liability run-off, subject to repeated capital requirements, and consider-
ing the valuation of this entity from the owner’s perspective taking model
uncertainty into account. Aiming for applicability, we consider a detailed
insurance application and explain how the optimisation problems over sets
of probability measures can be cast as simpler optimisation problems over
parameter sets corresponding to parameterised density processes appear-
ing in applications.

Keywords: market-consistent valuation; capital requirements; model uncer-
tainty; optimal stopping

1 Introduction

We consider the valuation of an aggregate insurance liability cash flow in run-off.
The valuation approach is a direct consequence of considering a hypothetical
transfer of the liability cash flow from an insurance company to an empty cor-
porate entity set up with the sole purpose to manage the liability run-off. The
owner of this entity needs to make sure at any time, in order to continue own-
ership of the entity, to pay claims and also to provide buffer capital according
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to the externally imposed solvency capital requirement (e.g. by a regulatory
framework such as Solvency II). The owner accepts ownership given a suitable
initial compensation from the original insurance company wanting to transfer
its liabilities. This compensation determine the value of the liability cash flow.
However, the owner has the right to, at any time, any surplus exceeding what is
required to manage the liability run-off and meet solvency capital requirements.
Therefore, the amount of compensation that the owner finds acceptable depends
of the owner’s view of such surplus.

The setting and the valuation approach we consider are similar to those con-
sidered in Engsner et al. [13]. An essential difference here is that we acknowledge
that an agent who assigns a value to possible future dividends and capital injec-
tions from managing a run-off of a liability may consider a valuation functional
depending on a set of pricing measures, in the incomplete market setting, rather
than a single one. The agent is uncertain about which pricing measure to use
and may change view depending on new information. Although this appears
to be a modest difference it on the one hand lead to significant mathemati-
cal challenges and on the other hand it means that the conservative valuation
functional, corresponding to expected discounted values according to the worst
pricing measure, can be applied to a wide range of liability cash flows rather
than having to be chosen in order to match a specific type of liability cash flow.
In order to make this statement clear we may think of cash flows from life insur-
ance. If the agent benefits from survival of policyholders, then a conservative
valuation from the agents perspective corresponds to choosing a pricing measure
Q that assigns higher probability to the occurrences of deaths compared to P.
However, if the agent instead benefits from deaths of policyholders, then such a
Q no longer corresponds to conservative valuation.

Insurance liability cash flows may be partly defined in terms of financial asset
prices, specific interest rates or inflations indices. For liability cash flows where
this is not the case, the cash flows may show significant correlation with market
prices. Therefore, any insurance liability valuation methodology must be such
not to introduce arbitrage opportunities and must consider replicating portfolios
that hedge the financial component of a liability cash flow, whenever that is
relevant. Consequently, there is a significant literature on market-consistent
insurance valuation covering single-period, multiple-period and continuous-time
valuation problems with varying assumptions on the financial market forming
the basis for designing replicating portfolios of varying degrees of sophistication.
We refer (in chronological order) to Grosen and Jørgensen [16], Malamud et
al. [19], Wüthrich et al. [27], Möhr [20], Tsanakas et al. [26], Wüthrich and
Merz [28], Pelsser and Stadje [21], Engsner et al. [14], Delong et al. [9], Barigou
and Dhaene [3], Engsner et al. [13], and references therein.

A common theme in the literature on market-consistent insurance valuation
is that the value assigned to a liability cash flow can be expressed as the sum of
a market price of a replicating portfolio and a value assigned to the replication
error (notice that a substantial replication error is a common feature of insurance
liabilities). The liability values in this paper are also of this kind. Rebalancing
times of a dynamic replicating portfolio means that the replication error has to
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be reassessed over time and taking this into consideration leads to the notion
of time-consistent valuation. Similarly, repeated capital requirements lead to
capital costs that are not known at the initial valuation time and taking such
costs into account appropriately also require time-consistent valuation. Time
consistency is a key concept in the literature on dynamic risk measurement. We
refer (in chronological order) to Riedel [22], Detlefsen and Scandolo [11], Rosazza
Gianin [25], Cheridito et al. [5], Artzner et al. [1], Bion-Nadal [4], Cheridito and
Kupper [6], Cheridito and Kupper [7], and references therein.

In Artzner et al. [2] and Deelstra et al. [8] it is argued that diversifiable in-
surance risk should only be assigned a value corresponding to the P-expectation
of such risk since the law of large numbers applies if the insurance company
may form arbitrarily large portfolios. In our setting this argument is not valid
since the corporate entity to which the insurance company’s aggregate liabil-
ity is transferred is a separate entity (referred to as reference undertaking in
Solvency II) that may not be merged with other corporate entities. In that
sense the entity to which the liabilities are transferred may be seen as a special
purpose vehicle. Although this entity benefits from diversification when capital
requirements are computed, it can not diversify the liability further.

Optimal stopping with multiple priors for agents assessing risk in terms of
dynamic convex risk measures is analyzed in Cheridito et al. [5]. Similar prob-
lems are analyzed in Engelage [12], where the framework of optimal stopping
with multiple priors in [23] is extended to so-called dynamic variational pref-
erences. From an applied perspective: whereas all priors/probability measures
in a given set of priors are treated as equally likely in the framework in Riedel
[23], introducing (dynamic) penalty terms as in Cheridito et al. [5] and Engelage
[12] means that the optimizing agent may assign different (dynamic) weights to
the priors in the optimization problem. Optimal stopping is a key element in
our approach to valuation since the owner of the entity managing the run-off of
the liability, just as shareholders in general, has limited liability. At any time,
taking the value of assets and future liability cash flows into account, if a capital
injection is needed to meet capital requirements, the owner may choose between
making a capital injection of not. Without such a capital injection, ownership
is terminated and the the remaining assets are transferred to policyholders.
Therefore, the rational owner determines optimal stopping times.

Although we assume that the replicating portfolio is chosen to ensure that
the valuation of the liability cash flow is market consistent, we do not discuss
market consistency in detail since this was treated in detail in Engsner et al. [13]
and the material on market consistency in Engsner et al. [13] applies without
any modification also in the present paper. However, we emphasise that we
advocate choosing a replicating portfolio in agreement with what recommended
by EIOPA in [10, Article 38] in Article 38(h) on the Reference Undertaking:
”the assets are selected in such a way that they minimise the Solvency Capital
Requirement for market risk that the reference undertaking is exposed to”. The
reference undertaking in Solvency II is similar in spirit to the corporate entity
managing the run-off of the liability in the present paper.

The paper is organised as follows. Section 2 presents the valuation frame-
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work. Basic assumptions, notation and terminology are introduced in Subsec-
tion 2.1. Subsection 2.2 introduces the agents involved and explains how capital
requirements and limited liability are key ingredients in the valuation philos-
ophy that originates from the idea of a hypothetical transfer of an insurance
company’s liabilities to an empty corporate entity. Definitions and results are
presented in Subsection 2.2 for very general capital requirements. Subsection
2.3 then specialises by considering capital requirements given in terms of con-
ditional monetary risk measures, in line with current regulatory frameworks.
Section 3 presents a general construction of a parametric set of priors that cover
natural choices for applications and shows that the set of priors satisfies the
properties making it suitable for optimal stopping with multiple priors. Sec-
tion 4 considers a specific insurance application that illustrates the use of the
valuation framework and the results presented.

2 The valuation framework

2.1 Preliminaries

We consider time periods 1, . . . , T , corresponding time points 0, 1, . . . , T , and a
filtered probability space (Ω,F ,F,P), where F = (Ft)Tt=0 with {∅,Ω} = F0 ⊆
· · · ⊆ FT = F , and P denotes the real-world measure. For p ∈ [1,∞), we write
Lp(Ft,P) for the normed linear space of Ft-measurable random variables X
with norm EP[|X|p]1/p. We write L∞(Ft,P) for the normed linear space of Ft-
measurable essentially bounded random variables. Equalities and inequalities
between random variables should be interpreted in the P-almost sure sense. A
stopping time is a function τ : Ω→ {0, 1, . . . , T}∪{+∞} such that {τ = t} ∈ Ft
for t = 0, 1, . . . , T .

For two probability measures Q(1),Q(2) equivalent to P and a stopping time

τ ≤ T , the probability measure Q(3)(A) := EQ(1)

[Q(2)(A | Fτ )], A ∈ FT , is
called the pasting of Q(1) and Q(2) in τ . It is often convenient to express the
pasting Q(3) of Q(1),Q(2) in τ in terms of the density processes D(1), D(2) with
respect to P,

D
(1)
t =

dQ(1)

dP

∣∣∣
Ft
, D

(2)
t =

dQ(2)

dP

∣∣∣
Ft
.

The density process D(3) given by

D
(3)
t = I{t ≤ τ}D(1)

t + I{t > τ}D
(1)
τ D

(2)
t

D
(2)
τ

corresponds to the pasting Q(3) of Q(1),Q(2) in τ . Equivalently, we can write

D
(3)
t =

t∏
s=1

(
I{s ≤ τ} D

(1)
s

D
(1)
s−1

+ I{s > τ} D
(2)
s

D
(2)
s−1

)
.
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A set Q of probability measures equivalent to P is called stable under pasting
if for any Q(1),Q(2) ∈ Q and any stopping time τ ≤ T , the pasting Q(3) of
Q(1),Q(2) in τ is an element in Q. We call such a set stable under pasting.
Such sets are also referred to as m-stable, time consistent or rectangular in the
related literature.

We assume the existence of a financial market containing assets for which F-
adapted price processes (S0

t )Tt=0 and (Sit)
T
t=0, i = 1, . . . , d, are available. (S0

t )Tt=0

is the price process of a (predictable) locally riskless bond. The price processes
correspond to traded assets for which reliable price quotes are available. We take
the price process of the locally riskless bond as numéraire process and in what
follows all financial values are discounted by this numéraire. This saves us from
having to explicitly take interest rates processes into account and makes the
mathematical expressions less involved. We will also allow for F-adapted cash
flows that depend on insurance events independent of the filtration generated by
the traded assets. In particular, we consider an incomplete market setting. We
assume that the set P of equivalent martingale measures (for each Q ∈ P, Q is
equivalent to P and the (S0

t )Tt=0-discounted price processes are Q-martingales)
is non-empty. By Proposition 6.43 in Föllmer and Schied [15] the set P is stable
under pasting. We will consider a non-empty subset Q ⊂ P. We refer to Q ∈ Q
as a market risk neutral probability measure. We use the conventions

∑k−1
l=k := 0

and inf ∅ := +∞ for sums over an empty index set and the infimum of an empty
set. We use the notation (x)+ := max(0, x).

2.2 Valuation with general capital requirements

We consider an insurance company with an aggregate insurance liability cor-
responding to a liability cash flow given by the F-adapted stochastic process
Xo = (Xo

t )Tt=1. Regulation forces the insurance company to comply with exter-
nally imposed capital requirements. The requirements put restrictions on the
asset portfolio of the insurance company. A subset of the assets forms a repli-
cating portfolio with F-adapted cash flow Xr = (Xr

t )Tt=1 intended to, to some
extent, offset the liability cash flow. Depending on the degree of replicability of
the liability cash flow, the replicating portfolio could be anything from simply
a position in the numéraire asset to a portfolio that is rebalanced dynamically
according to some strategy. X := Xo−Xr is the residual liability cash flow. We
will, in accordance with current solvency regulation (Möhr [20] and prescribed
by EIOPA, see [10, Article 38]) define the value of the liability cash flow Xo

by considering a hypothetical transfer of the liability and the replicating port-
folio to a separate entity referred to as a reference undertaking. The reference
undertaking has initially neither assets nor liabilities and its sole purpose is to
manage the run-off of the liability. The benefit of ownership is the right to
receive certain dividends/surplus, defined below, until either the run-off of the
liability cash flow is complete or until letting the reference undertaking default
on its obligations to the policyholders. The term default means termination of
ownership of the reference undertaking. The precise details are as follows,
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• At time t = 0: The liabilities corresponding to the cash flow Xo, the repli-
cating portfolio corresponding to the cash flow Xr and an amount R0 in
the numéraire are supposed to be transferred from the insurance company
to the reference undertaking, where R0 is the amount making the reference
undertaking precisely meet the externally imposed capital requirement. In
return, an agent aspiring ownership of the reference undertaking must first
pay the original insurance company an amount C0 corresponding to the
value of receiving future dividends resulting from managing the run-off of
the liability. In case there are several agents aspiring ownership, the one
offering the highest amount C0 wins the ownership.

In summary: the new owner of the reference undertaking receives compen-
sation V0 := R0−C0 from the original insurance company as compensation
for accepting to receive the liabilities and replicating portfolio and agreeing
to manage the liability run-off.

• At time t = 0: By paying the amount C0 to the original insurance com-
pany, the owner receives full ownership of the reference undertaking. How-
ever, the cash-flow Xr of the replicating portfolio (possibly defined in
terms of a dynamic strategy) cannot be modified by the owner, for in-
stance in order to boost dividend payments in a way that may not be in
the interest of policyholders.

• At time t = 1: The owner has the option to either default on its obligations
to the policyholders or not to default.

The decision to default means to give up ownership and transfer R0 and
the replicating portfolio to the policyholders. The owner neither receives
any dividend payment nor incurs any loss upon a decision to default.

If T > 1 and given the decision not to default, a new amount R1 in the
numéraire asset is needed to make the reference undertaking precisely meet
the externally imposed capital requirement. If R0 − R1 −Xo

1 + Xr
1 ≥ 0,

then the positive surplus R0−R1−Xo
1 +Xr

1 ≥ 0 is paid to the owner and
Xo

1 , which the policyholders are entitled to, is paid to the policyholders.
If R0 − R1 − Xo

1 + Xr
1 < 0, then the owner faces a deficit that must be

offset by injecting −R0 +R1 +Xo
1 −Xr

1 > 0. Also in this case Xo
1 is paid

to the policyholders.

If T = 1, then the above description of cash flows to policyholders and
owner applies upon setting R1 = 0.

• At time t ∈ {2, . . . , T}: If the owner has not defaulted on its obligations,
then the situation is completely analogous to that at time t = 1 described
above.

From the above follows that the owner of the reference undertaking has to
decide on a decision rule defining under which circumstances default occurs.
The default time is a stopping time τ ∈ S1,T+1, where St,T+1 denotes the set
of F stopping times taking values in {t, . . . , T + 1}. The event {τ = T + 1}
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is to be interpreted as a complete liability run-off without default at any time.
Formally, St,T+1 := {τ : τ is a stopping time with τ ≥ t} ∧ (T + 1).

The cumulative cash flow to the owner can be written as

τ−1∑
t=1

(Rt−1 −Rt −Xt), Xt := Xo
t −Xr

t . (1)

For ease of notation, define the payoff process (Ht)
T
t=1 by

H1 := 0, Ht :=

t−1∑
s=1

(Rs−1 −Rs −Xs) for t > 1. (2)

Note that this payoff process is predictable. The conservative value of the cash
flow (1) is

inf
Q∈Q

EQ
0 [Hτ ]. (3)

We assume that the owner of the reference undertaking chooses a default time
τ maximizing the value (3). Consequently, the value at time 0 of the reference
undertaking is

sup
τ∈S1,T+1

inf
Q∈Q

EQ
0 [Hτ ]. (4)

For t ∈ {1, . . . , T}, the value of the reference undertaking at time t, given no
default at times ≤ t, is given by the completely analogous expression upon
replacing sup and inf in (4) by the essential supremum ess sup and essential
infimum ess inf (see Appendix A.5 in Föllmer and Schied [15] for details) and
conditioning on Ft rather than F0. Notice that since no cash flows occur at
times > T , the value of the reference undertaking is zero at time T . The value
of the reference undertaking can thus be identified as the value of an American
type derivative. Details on arbitrage-free pricing of American derivatives can
be found in Section 6.3 in [15].

Since we are considering sets Q of probability measures we need the cash
flows to be suitably integrable with respect to all Q ∈ Q. The following notion
of uniform integrability, from Riedel [23], will be used. The process (Ht)

T
t=1 in

(2) is bounded by a Q-uniformly integrable random variable in the sense that
there exists Z ≥ 0 such that

sup
t∈{1,...,T}

|Ht| ≤ Z and lim
K→∞

sup
Q∈Q

EQ[ZI{Z≥K}] = 0. (5)

We now define the value of the reference undertaking, corresponding to what
an external party would pay to become owner of the entity managing the run-off
of the liability, and also the value of the residual liability. The sum of the latter
and the market price of the replicating portfolio is the value of the original
liability to policyholders and therefore is a theoretical aggregate premium.
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Definition 1. Let Q be a set of market risk neutral probability measures. Con-
sider sequences (Xt)

T
t=1 and (Rt)

T
t=0 with Xt ∈ L1(Ft,Q) for t ∈ {1, . . . , T} for

every Q ∈ Q, RT = 0 and Rt ∈ L1(Ft,Q) for t ∈ {0, . . . , T − 1} for every
Q ∈ Q. Define CT := 0 and, for t ∈ {0, . . . , T − 1},

Ct := ess sup
τ∈St+1,T+1

ess inf
Q∈Q

EQ
t

[ τ−1∑
s=t+1

(Rs−1 −Rs −Xs)

]
. (6)

Ct is the value of the reference undertaking at time t given no default at times
≤ t. Vt := Rt−Ct is the value of the residual liability at time t given no default
at times ≤ t.

Notice that

Vt := Rt − Ct

= Rt − ess sup
τ∈St+1,T+1

ess inf
Q∈Q

EQ
t

[ τ−1∑
s=t+1

(Rs−1 −Rs −Xs)

]

= ess inf
τ∈St+1,T+1

ess sup
Q∈Q

EQ
t

[
Rt −

τ−1∑
s=t+1

(Rs−1 −Rs −Xs)

]

= ess inf
τ∈St+1,T+1

ess sup
Q∈Q

EQ
t

[ τ−1∑
s=t+1

Xs +Rτ−1

]

≤ ess sup
Q∈Q

EQ
t

[ T∑
s=t+1

Xs

]
=: V t.

The general upper bound

V 0 := sup
Q∈Q

EQ
0

[ T∑
s=1

Xs

]
≥ V0 (7)

does neither depend on the filtration nor on the capital requirements, and is
typically much easier to compute than V0. Therefore, this upper bound pro-
vides a useful conservative estimate of V0. This statement is illustrated in the
numerical example in Section 4. Notice that in general

Vt = ess inf
τ∈St+1,T+1

ess sup
Q∈Q

EQ
t

[ τ−1∑
s=t+1

Xs +Rτ−1

]

≥ ess sup
Q∈Q

ess inf
τ∈St+1,T+1

EQ
t

[ τ−1∑
s=t+1

Xs +Rτ−1

]
=: V t. (8)

In particular, the general lower bound

V 0 := sup
Q∈Q

inf
τ∈S1,T+1

EQ
0

[ τ−1∑
s=1

Xs +Rτ−1

]
≤ V0 (9)
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may be attractive since it is typically easier to compute than V0, see Section 4
for an illustration. Computing V 0 means solving a standard optimal stopping
problem for each Q ∈ Q followed by finding the maximum of the obtained values
V Q

0 .
Notice that the value L0 of the original liability cash flow Xo follows directly

from the procedure for transferring the liabilities and replicating portfolio to
an external party (the new owner of the reference undertaking) accepting the
transfer: L0 equals the sum of the market value of the replicating portfolio and
the value V0 of the residual liability:

L0 = EQ
0

[ T∑
s=1

Xr
s

]
+ V0,

where Q is any market risk neutral probability measure making the expectation
equal the market value of the replicating portfolio. For details on the market
consistency of the value L0 we refer to the material on market consistency in
Engsner et al. [13].

We intend to build on the theory of multiple prior optimal stopping in Riedel
[23] where four assumptions on a set Q of probability measures are imposed in
order for key results to hold. These assumptions are Q-uniform integrability
together with properties (i)-(iii) of the following definition.

Definition 2. A set Q of probability measures is suitable for multiple prior
optimal stopping if the following properties hold. (i) Each Q ∈ Q is equivalent
to P; (ii) Q is stable under pasting; (iii) For each t ∈ {0, . . . , T},{

dQ
dP

∣∣∣∣
Ft

: Q ∈ Q
}

is weakly compact in L1(FT ,P).

Remark 1. If Q satisfies the properties (i)-(iii) in Definition 2, then it follows
from Theorem 2 in Riedel [23] that the lower bound V 0 in (9) equals V0. This
holds since for such Q the inequality in (8) is in fact a minimax identity. Notice
also that for an arbitrary Q equivalent to P, {Q} satisfies properties (i)-(iii) in
Definition 2.

As a basis for applying the theory to be presented, we will later in Section 3
explicitly construct a useful set Q satisfying the properties in Definition 2 and
present a detailed numerical example in Section 4.

We are now ready to state a key result which shows that (Ct, Vt) defined in
terms of a multiple prior optimal stopping problem may equivalently be defined
as the solution to a backward recursion.

Theorem 1. Let Q be a set of probability measures satisfying properties (i)-(iii)
of Definition 2. Consider sequences (Xo

t )Tt=1, (Xr
t )Tt=1, (Rt)

T
t=0 with Xo

t , X
r
t ∈

L1(Ft,Q) for t ∈ {1, . . . , T} for every Q ∈ Q, RT = 0 and Rt ∈ L1(Ft,Q) for
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t ∈ {0, . . . , T−1} for every Q ∈ Q. Set Xt := Xo
t −Xr

t and assume that (Ht)
T
t=1

in (2) is bounded by a Q-uniformly integrable random variable. Then
(i) If the sequences (Ct)

T
t=0 and (Vt)

T
t=0 are given by Definition 1, then

Ct = ess inf
Q∈Q

EQ
t [(Rt −Xt+1 − Vt+1)+], CT = 0, (10)

Vt = ess sup
Q∈Q

(
Rt − EQ

t [(Rt −Xt+1 − Vt+1)+]
)
, VT = 0. (11)

(ii) The stopping times (τ∗t )T−1
t=0 given by

τ∗t = inf{s ∈ {t+ 1, . . . , T} : Rs−1 −Xs − Vs < 0} ∧ (T + 1)

are optimal in (6).
(iii) If the sequences (Ct)

T
t=0 and (Vt)

T
t=0 are given by (10) and (11), then,

for t ∈ {0, . . . , T − 1}, Ct is given by (6) and Vt = Rt − Ct.

Remark 2. Stability under pasting of Q is a necessary requirement in Theorem
1. However, we show later in Theorem 6 that instead of the weak compactness
property (iii) in Definition 2, which is assumed in Theorem 1, it is sufficient
to verify weak relative compactness together with some natural additional prop-
erties. Notice that a bounded and uniformly integrable subset of L1(Ft,P) is
weakly relatively compact in L1(Ft,P) (Theorem A.70 in [15]). Without weak
compactness we can however not guarantee that there exists a Q∗ ∈ Q which
solves the optimization problems (10) and (11).

Proof of Theorem 1. We will first consider the problem

ess sup
τ∈St,T+1

ess inf
Q∈Q

EQ
t [Hτ ]. (12)

We define the multiple prior Snell envelope of H with respect to Q as in [23] by

UQT+1 := HT+1, UQt := max
{
Ht, ess inf

Q∈Q
EQ
t [UQt+1]

}
for t ≤ T. (13)

We know from Theorem 1 in [23] that

UQt = ess sup
τ∈St,T+1

ess inf
Q∈Q

EQ
t [Hτ ] (14)

and that τ∗t := inf{s ≥ t : UQs = Hs} is an optimal stopping time that solves

(12). Define ŨQ by

ŨQt := ess sup
τ∈St+1,T+1

ess inf
Q∈Q

EQ
t [Hτ ].

We claim that the relation ŨQt = ess infQ∈Q EQ
t [UQt+1] holds. Indeed, from (14),

UQt = max
{
Ht, ess sup

τ∈St+1,T+1

ess inf
Q∈Q

EQ
t [Hτ ]

}
= max

{
Ht, Ũ

Q
t

}
.
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Therefore, from (13), we have the relation

max
{
Ht, ess inf

Q∈Q
EQ
t [UQt+1]

}
= max

{
Ht, Ũ

Q
t

}
.

Since this holds for arbitrary adapted H, the claim is proved and gives

Ct = ŨQt −Ht+1 = ess inf
Q∈Q

EQ
t [UQt+1]−Ht+1

= ess inf
Q∈Q

EQ
t [max{Ht+1, ess inf

Q∈Q
EQ
t+1[UQt+2]} −Ht+1]

= ess inf
Q∈Q

EQ
t [max{0, ess inf

Q∈Q
EQ
t+1[UQt+2]−Ht+1}]

= ess inf
Q∈Q

EQ
t [max{0, Ct+1 +Ht+2 −Ht+1}]

= ess inf
Q∈Q

EQ
t [(Rt −Xt+1 − Vt+1)+].

Hence, we have shown (10) from which (11) is an immediate consequence. This
concludes the proof of statement (i).

2.3 Valuation with capital requirements by conditional
monetary risk measures

We now consider the valuation problem in the setting where the capital require-
ments are given in terms of conditional monetary risk measures.

Definition 3. For p ∈ [0,∞] and t ∈ {0, . . . , T − 1}, a conditional monetary
risk measure is a mapping ρt : Lp(Ft+1,P)→ Lp(Ft,P) satisfying

if λ ∈ Lp(Ft,P) and Y ∈ Lp(Ft+1,P), then ρt(Y + λ) = ρt(Y )− λ, (15)

if Y, Ỹ ∈ Lp(Ft+1,P) and Y ≤ Ỹ , then ρt(Y ) ≥ ρt(Ỹ ), (16)

ρt(0) = 0. (17)

A sequence (ρt)
T−1
t=0 of conditional monetary risk measures is called a dynamic

monetary risk measure.

The natural conditional monetary risk measures corresponding to current
regulatory frameworks are defined in terms of conditional quantile functions.
For integer t ≥ 0, x ∈ R, u ∈ (0, 1) and Ft+1-measurable Z, let

Ft,−Z(x) := Pt(−Z ≤ x),

F−1
t,−Z(1− u) := ess inf{m ∈ L0(Ft,P) : Ft,−Z(m) ≥ 1− u}

and define the conditional versions of value-at-risk and average value-at-risk as

V@Rt,u(Z) := F−1
t,−Z(1− u), AV@Rt,u(Z) :=

1

u

∫ u

0

V@Rt,v(Z)dv.

11



Both V@Rt,u and AV@Rt,u are conditional monetary risk measures in the
sense of Definition 3 for p ≥ 1. Given conditional monetary risk measures
ρt : L1(Ft+1,P)→ L1(Ft,P) we consider here

Rt := ρt(−Xt+1 − Vt+1), RT := 0. (18)

Notice that if Rt+1 is given and Ct+1 is given by Definition 1, then also Vt+1 :=
Rt+1−Ct+1 is given and therefore Rt is well defined by setting Rt := ρt(−Xt+1+
Vt+1). Moreover, we may write

Vt := ϕt(Xt+1 + Vt+1), VT := 0, (19)

where

ϕt(Y ) := ρt(−Y )− ess inf
Q∈Q

EQ
t [(ρt(−Y )− Y )+].

Theorem 2. Let ρt : L1(Ft+1,P) → L1(Ft,P) be a conditional monetary risk
measure in the sense of Definition 3 and let ϕt : L1(Ft+1,P) → L1(Ft,P) be
given by (19). Then

if λ ∈ Lp(Ft,P) and Y ∈ Lp(Ft+1,P), then ϕt(Y + λ) = ϕt(Y ) + λ, (20)

if Y, Ỹ ∈ Lp(Ft+1,P) and Y ≤ Ỹ , then ϕt(Y ) ≤ ϕt(Ỹ ), (21)

ϕt(0) = 0. (22)

Moreover, if ρ̃t : L1(Ft+1,P) → L1(Ft,P) is a conditional monetary risk mea-
sure in the sense of Definition 3 such that ρt ≤ ρ̃t, then

ϕ̃t(Y ) := ρ̃t(−Y )− ess inf
Q∈Q

EQ
t [(ρ̃t(−Y )− Y )+]

satisfies ϕt ≤ ϕ̃t.

Proof of Theorem 2. The properties (20), (21) and (22) follow immediately by
arguments similar to those in the proof of Proposition 1 in Engsner et al. [14].
The final property follows immediately from the inequality

(R̃− Y )+ ≤ (R− Y )+ + R̃−R for R̃ ≥ R.

Theorem 2 has consequences that should be seen as necessary requirements
of any sound valuation method. If X1 + · · ·+XT = c for some constant c, then
the corresponding value V0 = c. If we consider two residual liability cash flows
(Xt)

T
t=1 and (X̃t)

T
t=1 such that Xt ≤ X̃t for every t, then the corresponding

values satisfy V0 ≤ Ṽ0. Similarly, if the sequence of conditional monetary risk
measures (ρt)

T−1
t=0 are replaced by a more prudent choice (ρ̃t)

T−1
t=0 such that

ρt ≤ ρ̃t for every t, then the corresponding values satisfy V0 ≤ Ṽ0.

12



Let (V St )Tt=0 be given by V St =
∑t
u=1Xu + Vt, where VT = 0,

Vt = Rt − ess inf
Q∈Q

EQ
t [(Rt −Xt+1 − Vt+1)+], Rt = ρt(−Xt+1 − Vt+1),

where ρt is a suitable conditional monetary risk measure such as V@Rt or
AV@Rt. It is reasonable to require that V S is a P-supermartingale which is
equivalent to Vt ≥ EP

t [Xt+1 + Vt+1] which implies Vt ≥ EP
t [Xt+1 + · · ·+XT ]. In

particular, the P-supermartingale property guarantees the existence of a non-
negative “risk margin” Vt − EP

t [Xt+1 + · · ·+XT ] ≥ 0.

Theorem 3. Let Xt ∈ L1(Ft,P) for t = 1, . . . , T . Let L1(Ft+1,P) 3 Yt+1 7→
ρt(−Yt+1) ∈ L1(Ft,P), for t = 0, . . . , T − 1, be a conditional monetary risk
measure such that

EP
t [ρt(−Yt+1)− Yt+1] > 0 or Pt(ρt(−Yt+1)− Yt+1 = 0) = 1. (23)

Then there exists a set Q of probability measures such that (V St )Tt=0 is a P-
supermartingale.

Proof of Theorem 3. Notice that the supermartingale requirement is equivalent
to

ess inf
Q∈Q

EQ
t [(Rt −Xt+1 − Vt+1)+] ≤ EP

t [Rt −Xt+1 − Vt+1] (24)

It is sufficient to find some Q such that the statement holds for Q = {Q}. We
construct this Q by defining a suitable P-martingale (Dt)

T
t=0 corresponding to

the change of measure from P to Q.
Let Wt+1 := Rt − Xt+1 − Vt+1, let Gt(x) := Pt(Wt+1 ≤ x) denote the Ft-

conditional distribution function of Wt+1, and let pt := Gt(0). Let (Dt)
T
t=0,

with D0 = 1, be a P-martingale satisfying

Dt+1

Dt
=

{
1 if pt ∈ {0, 1},
exp

(
λtΦ

−1(Ut+1)− λ2
t/2
)

if pt ∈ (0, 1),

where Ut+1 is independent of Ft and uniformly distributed on (0, 1) and, con-
ditional of Ft, Ut+1 and Wt+1 are countermonotone. Let λt be some Ft-
measurable random variable satisfying

exp
(
λtΦ

−1(1− pt)− λ2
t/2
)
EP
t

[
W+
t+1

]
≤ EP

t

[
Wt+1

]
on {pt ∈ (0, 1)}.

By construction,

EP
t

[
Dt+1

Dt
W+
t+1

]
= EP

t

[
Wt+1

]
on {pt ∈ {0, 1}}.

13



Moreover, on {pt ∈ (0, 1)},

EP
t

[
Dt+1

Dt
W+
t+1

]
=

∫ 1−pt

0

exp
(
λtΦ

−1(u)− λ2
t/2
)
G−1
t (1− u)du

≤ exp
(
λtΦ

−1(1− pt)− λ2
t/2
) ∫ 1−pt

0

G−1
t (1− u)du

= exp
(
λtΦ

−1(1− pt)− λ2
t/2
)
EP
t

[
W+
t+1

]
≤ EP

t

[
Wt+1

]
.

Property (23) in Theorem 3 is satisfied by AV@Rt,u which is an example
of so-called strictly expectation bounded risk measures, see Definition 5 and
Example 3 in Rockafellar et al. [24].

The following lemma is useful for constructing a bounding Q-uniformly in-
tegrable random variable.

Lemma 1. For any Q-uniformly integrable Z ≥ 0, ess supQ∈Q EQ
t [Z] is a Q-

uniformly integrable random variable.

Proof of Lemma 1. We need to show that

lim
K→∞

sup
Q∈Q

EQ
[

ess sup
Q∈Q

EQ
t [Z]I{ess supQ∈Q EQ

t [Z]≥K}

]
= 0.

If we set X = ZI{ess supQ∈Q EQ
t [Z]≥K}, then X is Q-uniformly integrable since it

is of the form ZIA. Hence by the law of iterated expectations for Q-uniformly
integrable random variables (Lemma 1 in [23]),

sup
Q∈Q

EQ
[

ess sup
Q∈Q

EQ
t [Z]I{ess supQ∈Q EQ

t [Z]≥K}

]
= sup

Q∈Q
EQ
[

ess sup
Q∈Q

EQ
t [X]

]
= sup

Q∈Q
EQ[X].

Notice that supQ∈Q EQ[Z] <∞ since for any r > 0,

sup
Q∈Q

EQ[Z] ≤ r + sup
Q∈Q

EQ[|Z|I|Z|>r]

and, due to Q-uniformly integrability of Z, we may choose r to make the second
term on the right-hand side sufficiently small. Since

sup
Q∈Q

EQ
[

ess sup
Q∈Q

EQ
t [Z]

]
= sup

Q∈Q
EQ[Z] <∞,

the events An = {ess supQ∈Q EQ
t [Z] ≥ n} satisfy supQ∈QQ(An)→ 0 as n→∞.

For any Q ∈ Q and rn > 0,

sup
Q∈Q

EQ
[
ZIAn

]
≤ rn sup

Q∈Q
Q(An) + sup

Q∈Q
EQ
[
|Z|I{|Z|>rn}

]
. (25)
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Consider a sequence (rn)∞n=1 such that rn → ∞ and rn supQ∈QQ(An) → 0 as
n → ∞. Applying this sequence to (25), taking the supremum over Q and
letting n→∞ proves the statement of the lemma.

The following theorem says that if the conditional monetary risk measures
ρt defining Rt in (18) satisfy natural and verifiable bounds, then statements in
Theorem 1 hold also in this setting.

Theorem 4. Let Q be a set of probability measures satisfying properties (i)-
(iii) of Definition 2. Consider sequences (Xo

t )Tt=1, (Xr
t )Tt=1, with Xo

t , X
r
t ∈

L1(Ft,Q) for t ∈ {1, . . . , T} for every Q ∈ Q, RT = 0 and Rt ∈ L1(Ft,Q)
for t ∈ {0, . . . , T − 1} for every Q ∈ Q. Let Xt := Xo

t − Xr
t and let (Rt)

T
t=0

be defined by (18). Assume that
∑T
t=1 |Xt| is Q-uniformly integrable. If the

conditional monetary risk measures ρt in (18) satisfy either

|ρt(Z)| ≤ Kρ ess sup
Q∈Q

EQ
t [|Z|] for some Kρ ∈ (1,∞) (26)

or

P ∈ Q and |ρt(Z)| ≤ KρEP
t [|Z|] for some Kρ ∈ (1,∞), (27)

then (Ht)
T
t=0 defined in (2) satisfies that ess supt=1,...T Ht is bounded by a Q-

uniformly integrable random variable. In particular, the statements in Theorem
1 hold.

Proof of Theorem 4. Set

ST := 0, St := ess sup
Q∈Q

EQ
t

[ T∑
u=t+1

|Xu|
]

for t = 0, 1, . . . , T − 1.

By Lemma 1 all variables St are Q-uniformly integrable. We will show by
induction that, for all t, there exist constants KV,t,KR,t ∈ (1,∞) such that

|Vt| ≤ KV,tSt, |Rt| ≤ KR,tSt (28)

from which the statement of the theorem follows. Note that (28) trivially holds
for t = T . In order to show the induction step, assume that (28) holds with t
replaced by t+ 1. If (27) holds, then

|Rt| = |ρt(−Xt+1 − Vt+1)|
≤ KρEP

t [|Xt+1|+ |Vt+1|]
≤ KρEP

t [|Xt+1|+KV
t+1St+1]

≤ KρKV,t+1 ess sup
Q∈Q

EQ
t [|Xt+1|+ St+1]

= KρKV,t+1St,
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where the law of iterated expectations for Q-uniformly integrable random vari-
ables (Lemma 1 in [23]) was used in the last step. If (26) holds, then similarly

|Rt| = |ρt(−Xt+1 − Vt+1)|
≤ KρEQ

t [|Xt+1|+ |Vt+1|]
≤ KρEQ

t [|Xt+1|+KV,t+1St+1]

≤ KρKV,t+1 ess sup
Q∈Q

EQ
t [|Xt+1|+ St+1]

= KρKV,t+1St.

We also note that

Ct = ess sup
Q∈Q

EQ
t [(Rt −Xt+1 − Vt+1)+]

≤ |Rt|+ ess sup
Q∈Q

EQ
t [|Xt+1|+ |Vt+1|]

≤ (Kρ + 1)KV,t+1St

which implies |Vt| ≤ |Rt|+Ct ≤ (2Kρ + 1)KV,t+1St. We have proved that (28)
holds, i.e. the induction step. By the induction principle (28) holds for all t and
the proof is complete.

3 Construction of sets of probability measures
for multiple prior optimal stopping

Our aim here is to define a useful set Q of parametric probability measures that
enables the analysis of a wide range of models and that provide solutions to the
multiple-prior optimization problem (6). In particular, the set Q constructed
below will imply that optimization over Q can be reduced to optimization over
the set of parameters, see Theorem 6 for the precise statement.

We will define a useful set of probability measures, satisfying all the require-
ments for applying key results on multiple prior optimal stopping, by defining
the corresponding set of density processes (Dλ,t)

T
t=0 of the form

Dλ,0 := 1, Dλ,t :=

t∏
s=1

∫
Θ

fs(θ)λs(dθ) for t ∈ {1, . . . , T},

where Θ is a set of parameters and (fs)
T
s=1 and (λs)

T
s=1 are defined below.

On (Ω,FT ), a probability measure Q absolutely continuous with respect to
P corresponds to a Radon-Nikodym derivative DT ∈ L1(FT ,P) and together
with the filtration (Ft)Tt=0 give rise to the density process (Dt)

T
t=0 given by

Dt = EP
t [DT ]. Similarly, a set Q of probability measures, absolutely continuous

with respect to P, corresponds to the set DT ⊂ L1(FT ,P) of Radon-Nikodym
derivatives. Write DT for the L1 closure of DT and let Q be the set of proba-
bility measures corresponding to the Radon-Nikodym derivatives DT . For two
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probability measures Q(1),Q(2) with Radon-Nikodym derivatives D
(1)
T , D

(2)
T the

Radon-Nikodym derivative of the pasting of Q(1),Q(2) in τ is

D(1)
τ

D
(2)
T

D
(2)
τ

.

The following result is both of independent interest and will be relevant for
constructing stable sets of probability measures, depending on a parameter,
that are useful for multiple prior optimal stopping problems.

Theorem 5. Given (Ω,F , (Ft)Tt=0,P), let Q be a set of probability measures
equivalent to P that is convex and stable under pasting. Let DT be the corre-
sponding set of Radon-Nikodym derivatives and let DT be the L1 closure of DT .
Let Dt := {Dt = EP

t [DT ] : DT ∈ DT } and Dt := {Dt = EP
t [DT ] : DT ∈ DT }.

Then

(i) The set Q corresponding to DT is convex and stable under pasting.

(ii) For each t, Dt is convex and closed in L1(FT ,P).

(iii) If DT is P-uniformly integrable, then for each t, Dt is weakly relatively
compact in L1(FT ,P) and Dt is weakly compact in L1(FT ,P).

(iv) If DT is P-uniformly integrable, then, for any Ft+1-measurable Q-uniformly
integrable random variable Yt+1,

ess inf
Q∈Q

EQ
t

[
Yt+1

]
= ess inf

Q∈Q
EQ
t

[
Yt+1

]
and similarly with ess inf replaced by ess sup.

Remark 3. Since EP[D] = 1 for D ∈ DT (and similarly for DT ), by Lemma
4.10 in Kallenberg [17], DT is uniformly integrable if

lim
P(A)→0

sup
Q∈Q

Q(A) = 0

(and similarly for DT ).

Proof of Theorem 5. For both statements (i) and (ii), it is straightforward to
verify that convexity holds so we only prove the remaining claims.

To prove (i), consider any stopping time τ and D
(1)
T , D

(2)
T ∈ DT . Take

(D
(1)
n,T )n≥1, (D

(2)
n,T )n≥1 ⊂ DT such that D

(1)
n,T → D

(1)
T and D

(2)
n,T → D

(2)
T in L1.

Since D
(1)
n,T , D

(2)
n,T ∈ DT and Q is stable under pasting, the Radon-Nikodym

derivative of the pasting of D
(1)
n,T , D

(2)
n,T ∈ DT in τ is also an element in DT .

Therefore, statement (i) is proved if we show that there exists a subsequence
(ni) such that

D(1)
ni,τ

D
(2)
ni,T

D
(2)
ni,τ

→ D(1)
τ

D
(2)
T

D
(2)
τ

in L1. (29)
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Since, for k = 1, 2,

EP[|D(k)
n,T −D

(k)
T |] = EP[EP

τ [|D(k)
n,T −D

(k)
T |]]

≥ EP[|EP
τ [D

(k)
n,T −D

(k)
T ]|]

= EP[|D(k)
n,τ −D(k)

τ |],

we see that D
(k)
n,τ → D

(k)
τ in L1. Since convergence in L1 implies convergence

in probability which in turn implies a.s. convergence along some subsequence
(ni), we have

D(1)
ni,τ

D
(2)
ni,T

D
(2)
ni,τ

→ D(1)
τ

D
(2)
T

D
(2)
τ

a.s.,

where we used the fact that D
(2)
ni,τ and D

(2)
τ are strictly positive a.s. Since the

terms of the sequence on the left-hand side are positive and all have expected
values equal to 1, this sequence is uniformly integrable. Therefore, by Propo-
sition 4.12 in [17], the a.s. convergence can be replaced by convergence in L1,
i.e. (29) holds.

We now prove (ii). Consider an L1 convergent sequence (Dn,t)n≥1 ⊂ Dt
with limit Dt. We will prove that Dt ∈ Dt. Take an arbitrary D′T ∈ DT and
let D′t := EP

t [D
′
T ]. Set

Dn,T := Dn,t
D′T
D′t

, DT := Dt
D′T
D′t

.

By construction (Dn,T )n≥1 ⊂ DT and Dn,T → DT in L1. Hence, DT ∈ DT .
Since Dt = EP[DT ] ∈ Dt and Dn,t → Dt in L1 the proof of (ii) is complete.

We now prove (iii). From (i) and (ii) follow that Q is convex and stable
under pasting and, for each t, Dt is a convex and closed subset of L1(FT ,P). A
convex and closed subset of L1(FT ,P) is weakly closed (Theorem A.63 in [15]).
A bounded and uniformly integrable subset of L1(FT ,P) is weakly relatively
compact (Theorem A.70 in [15]). Each Dt is a bounded subset of L1(FT ,P):

sup
Dt∈Dt

‖Dt‖L1 = sup
Dt∈Dt

EP[Dt] = 1.

Hence, weak relative compactness of Dt follows if Dt is uniformly integrable.
Similarly for Dt. Moreover, Dt is uniformly integrable if DT is uniformly
integrable, as the following argument shows. By Lemma 4.10 in [17], since
supD∈DT EP[D] = 1, DT is P-uniformly integrable if and only if

lim
P(A)→0

sup
D∈DT

EP[D;A] = 0.

If the latter holds, then in particular limr→∞ supD∈DT EP[D;EP
t [D] > r] = 0

which is equivalent to

lim
r→∞

sup
D∈DT

EP[EP
t [D];EP

t [D] > r] = 0.
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Hence, Dt is P-uniformly integrable if DT is P-uniformly integrable. By the same
argument, Dt is uniformly integrable if DT is uniformly integrable. However,
DT is uniformly integrable since it is the closure of a uniformly integrable set
in L1. Hence, Dt is weakly compact in L1(FT ,P) for every t. The proof of (iii)
is complete.

It remains to prove (iv). Notice first that

ess inf
Q∈Q

EQ
t [Yt+1] = ess inf

D∈DT

1

Dt
EP
t [DYt+1] = ess inf

D∈DT

1

Dt
EP
t [Dt+1Yt+1].

Take D∗ ∈ DT and (Dn) ⊂ DT with Dn → D∗ in L1. Therefore, Dn
P→ D∗

which implies DnYt+1
P→ D∗Yt+1. Moreover, Dn,t

P→ D∗t since Dn,t = EP
t [Dn],

D∗t = EP
t [D

∗] and

EP[|EP
t [Dn]− EP

t [D
∗]|] ≤ EP[EP

t [|Dn −D∗|]] = EP[|Dn −D∗|]→ 0

and convergence in L1 implies convergence in probability. Since Yt+1 is Q-
uniformly integrable, {DYt+1 : D ∈ DT } is P-uniformly integrable. Therefore,

DnYt+1
P→ D∗Yt+1 implies DnYt+1 → D∗Yt+1 in L1. This further implies that

EP
t [DnYt+1]→ EP

t [D
∗Yt+1] in L1 since

EP[|EP
t [DnYt+1]− EP

t [D
∗Yt+1]|] ≤ EP[EP

t [|DnYt+1 −D∗Yt+1|]]
= EP[|DnYt+1 −D∗Yt+1|]→ 0.

In particular,

1

Dn,t
EP
t [DnYt+1]

P→ 1

D∗t
EP
t [D

∗Yt+1]

which implies that there exists a subsequence (ni) such that

1

Dni,t
EP
t [DniYt+1]

a.s.→ 1

D∗t
EP
t [D

∗Yt+1].

Therefore, for any D∗ ∈ DT ,

1

D∗t
EP
t [D

∗Yt+1] ≥ ess inf
D∈DT

1

Dt
EP
t [DYt+1].

The same argument shows the corresponding identity for ess sup. The proof is
complete.

Consider a parameter set Θ which is taken to be a subset of a complete and
separable metric space. For each t ∈ {1, . . . , T}, let ft ≥ 0 be a measurable
function on Ω × Θ such that ω 7→ ft(ω, θ) is Ft-measurable for each θ ∈ Θ. It
is assumed that the Ft-measurable random variables ft(θ) satisfy

ess inf
θ∈Θ

ft(θ) > 0 P-a.s. for t ∈ {1, . . . , T}, (30)

EP
t−1[ft(θ)] = 1 for (t, θ) ∈ {1, . . . , T} ×Θ. (31)
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For each t ∈ {1, . . . , T}, let λt be an Ft−1-measurable random element in the
space P(Θ) of probability measures on Θ equipped with the topology of weak
convergence. Let Λt be the set of all such random probability measures. For
λt ∈ Λt for all t, let

Dλ,T :=

T∏
t=1

∫
Θ

ft(θ)λt(dθ), Dλ,t := EP
t [Dλ,T ] for t < T. (32)

Notice that, due to properties (30) and (31), (Dλ,t)
T
t=0 is a positive P-martingale

with EP[Dλ,t] = 1. Let

Df,T :=

{ T∏
t=1

ft(θ) : θ ∈ Θ

}
, D̃f,T :=

{
Dλ,T : λt ∈ Λt for all t

}
and let Df,T be the L1-closure of Df,T . For t = 0, 1, . . . , T − 1, let

Df,t :=
{
Dt = EP

t [DT ] : DT ∈ Df,T
}

and let D̃f,t and Df,t be defined analogously.

Definition 4. Denote by QΘ, Q̃Θ,QΘ the sets of probability measures corre-
sponding to the sets Df,T , D̃f,T ,Df,T of Radon-Nikodym derivatives with respect
to P.

Notice that QΘ corresponds to only considering measures λt(·) = 1{θ}(·)
in (32). We will show in Theorem 6 that QΘ has the properties assumed in

Theorem 1. We also show that Theorem 1 holds also for Q̃Θ.

Theorem 6. Consider the sets QΘ, Q̃Θ,QΘ and Df,T , D̃f,T ,Df,T in Definition
4.

(i) The sets Q̃Θ and QΘ are convex and stable under pasting.

(ii) For every t ∈ {1, . . . , T}, Df,t is closed in L1(FT ,P).

(iii) If D̃f,T is P-uniformly integrable, then D̃f,t is weakly relatively compact
in L1(FT ,P) and Df,t is weakly compact in L1(FT ,P) for every t ∈
{0, . . . , T}.

(iv) If D̃f,T is P-uniformly integrable, then, for any Ft+1-measurable Q̃Θ-
uniformly integrable random variable Yt+1,

ess inf
Q∈QΘ

EQ
t

[
Yt+1

]
= ess inf

Q∈Q̃Θ

EQ
t

[
Yt+1

]
= ess inf

Q∈QΘ

EQ
t

[
Yt+1

]
= ess inf

θ∈Θ
EP
t

[
Yt+1ft+1(θ)

]
and similarly with ess inf replaced by ess sup.
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Proof of Theorem 6. We first prove (i). We first prove convexity and stability
under pasting for the set of probability measures with Radon-Nikodym deriva-
tives DT ∈ D̃f,T with respect to P. We first prove convexity. Note that for a

density process (Dt)
T
t=0 with DT ∈ D̃f,T ,

Dt+1

Dt
=

∏t+1
s=1

∫
Θ
fs(θ)λs(dθ)∏t

s=1

∫
Θ
fs(θ)λs(dθ)

=

∫
Θ

ft+1(θ)λt+1(dθ).

Consider density processes D(1), D(2) with D
(1)
T , D

(2)
T ∈ D̃f,T , let c ∈ (0, 1) and

set D(3) := cD(1) + (1− c)D(2). Then

D
(3)
t+1

D
(3)
t

=
1

D
(3)
t

(
cD

(1)
t

∫
Θ

ft+1(θ)λ
(1)
t+1(dθ) + (1− c)D(2)

t

∫
Θ

ft+1(θ)λ
(2)
t+1(dθ)

)
=

∫
Θ

ft+1(θ)

(
1

D
(3)
t

(
cD

(1)
t λ

(1)
t+1 + (1− c)D(2)

t λ
(2)
t+1

)
(dθ)

)
and the convexity property follows since

1

D
(3)
t

(
cD

(1)
t λ

(1)
t+1 + (1− c)D(2)

t λ
(2)
t+1

)
∈ Λt+1.

We now prove stability under pasting. Consider density processes D(1), D(2)

with D
(1)
T , D

(2)
T ∈ D̃f,T , and let τ be a stopping time. Then

D
(3)
t :=

t∏
s=1

(
I{s ≤ τ} D

(1)
s

D
(1)
s−1

+ I{s > τ} D
(2)
s

D
(2)
s−1

)

=

t∏
s=1

∫
Θ

fs(θ)
(
I{s ≤ τ}λ(1)

s + I{s > τ}λ(2)
s

)
(dθ)

and since I{s ≤ τ}, I{s > τ} are Fs−1-measurable,

I{s ≤ τ}λ(1)
s + I{s > τ}λ(2)

s ∈ Λs,

which proves stability under pasting. Theorem 5(i) completes the proof of (i).
Notice that (ii) follows immediately from (i) together with Theorem 5(ii).

Similarly, (iii) follows immediately from (i) together with Theorem 5(iii).
It remains to prove (iv). The two last identities in (iv) follow from the

definition of QΘ and Q̃Θ:

ess inf
Q∈Q̃Θ

EQ
t

[
Yt+1

]
= ess inf
λt+1∈Λt+1

EP
t

[
Yt+1

∫
Θ

ft+1(θ)λt+1(dθ)

]
= ess inf

θ∈Θ
EP
t

[
Yt+1ft+1

(
θ
)]
.

The first identity follows from Theorem 5(iv). The proof is complete.
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4 Gaussian example

In this section we consider an application illustrating the general theory pre-
sented up to this point. We consider a setting where the liability cash flow is
Gaussian, both under P and under any Qθ ∈ QΘ. We consider two cases:

Case 1 In this case we assume that Q = QΘ. Recall that QΘ is not stable
under pasting: this decision maker does not consider probability measures
corresponding to switching between probability measures inQΘ depending
on information revealed over time.

Case 2 In this case we assume that Q = Q̃Θ. This decision maker exhibits a
behaviour that is time consistent. Notice that Q̃Θ is considerably larger
than QΘ ⊂ Q̃Θ.

The liability cash flow is assumed to be fully nonhedgeable by financial assets
and consequently we take Xr = 0 which means that X = Xo. In order to make
the illustration clear, we choose T = 2. Let Ci,k := Corig

i,k /vi denote the exposure
adjusted cumulative amount of payments to policyholders for accident year i,
where vi is a known exposure measure for accident year i. The evolution of the
exposure adjusted cumulative amounts is assumed to satisfy

Ci,1 = βP
0 +

σP
0√
vi
εi,1, Ci,2 = βP

1Ci,1 +
σP

1√
vi
εi,2,

where all εi,k are independent and N(0, 1) with respect to P. Suppose that
we are uncertain about the parameter values and want to consider probability
measures Qθ, θ = (β0, σ0, β1, σ1), such that

Ci,1 = β0 +
σ0√
vi
εθi,1, Ci,2 = β1Ci,1 +

σ1√
vi
εθi,2,

where all εθi,k are independent and N(0, 1) with respect to Qθ. We choose a

parameter set Θ ⊂ (0,∞)4 that describes the uncertainty about the parameter
values.

Suppose that Ci,k with i+ k ≤ 0 are observed at time 0 and that Ci,k with
i+ k = t, t = 1, 2, are observed at times t > 0 and therefore contain cash flows
that are part of the outstanding liability to the policyholders. The (incremental)
liability cash flow X = (X1, X2) is given by

X =

(
v−1(C−1,2 − C−1,1) + v0C0,1, v0(C0,2 − C0,1)

)
.

Notice that C−1,1 is here considered to be a known constant. Direct computa-
tions give

EP[X1 +X2] = v−1(βP
1 − 1)C−1,1 + v0β

P
0β

P
1 ,

EQθ [X1 +X2] = v−1(β1 − 1)C−1,1 + v0β0β1.
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The filtration is given by the σ-algebras F0 = {∅,Ω}, F1 = σ(ε−1,2, ε0,1) and
F2 = σ(ε0,2) ∨ F1. In order to have the correct evolution with respect to Qθ of
the cumulative amounts it is seen that we must require that

Qθ(ε−1,2 ∈ · | F0) ∼ N(µ−1,2, σ
2
−1,2), µ−1,2 =

β1 − βP
1

σP
1/
√
v−1

C−1,1, σ−1,2 =
σ1

σP
1

,

Qθ(ε0,1 ∈ · | F0) ∼ N(µ0,1, σ
2
0,1), µ0,1 =

β0 − βP
0

σP
0/
√
v0
, σ0,1 =

σ0

σP
0

,

Qθ(ε0,2 ∈ · | F1) ∼ N(µ0,2, σ
2
0,2), µ0,2 =

β1 − βP
1

σP
1/
√
v0
C0,1, σ0,2 =

σ1

σP
1

.

This corresponds to, in the setting of Section 3, choosing

f1(θ) =
ϕ(ε−1,2;µ−1,2, σ

2
−1,2)ϕ(ε0,1;µ0,1, σ

2
0,1)

ϕ(ε−1,2; 0, 1)ϕ(ε0,1; 0, 1)
, (33)

f2(θ) =
ϕ(ε0,2;µ0,2, σ

2
0,2)

ϕ(ε0,2; 0, 1)
,

where ϕ(x;µ, σ2) denotes the density function of N(µ, σ2). By Remark 3, the

set D̃f,2 is P-uniformly integrable if

lim
P(A)→0

sup
Q∈Q̃Θ

Q(A) = 0

which holds here since σP
k/σk and |βk−βP

k | both take values in bounded intervals
bounded away from 0. The sets A ∈ F2 are of type {(ε−1,2, ε0,1, ε0,2) ∈ B} for
measurable sets B ⊂ R3 such that P((ε−1,2, ε0,1, ε0,2) ∈ B) → 0. Therefore, it

follows from Theorem 6 that the set Q̃Θ in Definition 4 satisfies the requirements
for multiple prior optimal stopping. In particular, Theorem 1 holds with Q =
Q̃Θ.

Θ can be chosen to reflect parameter uncertainty. To illustrate how such a
choice may be implemented, consider the regression estimators from Lindholm
et al.[18] based on data from accident years i = i0, . . . ,−1:

β̂P
0 =

∑−1
i=i0

viCi,1∑−1
i=i0

vi
, (̂σP

0)2 =
1

−i0 − 1

−1∑
i=i0

vi(Ci,1 − β̂P
0 )2,

β̂P
1 =

∑−2
i=i0

viCi,1Ci,2∑−2
i=i0

viC2
i,1

, (̂σP
1)2 =

1

−i0 − 2

−2∑
i=i0

vi(Ci,2 − β̂P
1Ci,1)2.

Here i0 denotes the index of the first accident year observed. These estimators
are unbiased and uncorrelated. We now proceed with a numerical illustration,
with parameter values (βP

0 , σ
P
0 , β

P
1 , σ

P
1) = (2/3, 1/5, 3/2, 1/5), i0 = −10, and

vi = 1 for i = −10, . . . , 0. Based on these parameter values and a large num-
ber n of simulated independent standard normal εi,j , leading to n iid copies of
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C−10,1, . . . , C−1,1, C−10,2, . . . , C−2,2, we estimate (βP
0 , σ

P
0 , β

P
1 , σ

P
1) n times. Fig-

ure 1 presents scatter plots, which suggests that the iid vectors of estimators
are approximately N4(µ,Σ)-distributed, where µ and Σ are the sample mean
and sample covariance matrix. We can therefore shape an approximative con-
fidence region with confidence level p of the parameter values by the squared
Mahalanobis distance as

Θ =
{
z ∈ R4 : (z − µ)TΣ−1(z − µ) ≤ F−1

χ2(4)(p)
}

=
{
µ+ rLs ∈ R4 : r2 ≤ F−1

χ2(4)(p), s ∈ S3
}
,

where L is the (lower triangular) Cholesky decomposition of LLT = Σ, Fχ2(4)

is the distribution function of the χ2(4) and S3 is the unit sphere in R4. For
the evaluation at time 1, only (β1, σ1) needs to be considered, leading to a set
Θβ1,σ1 ⊂ R2 satisfying that

{(0, 0, β1, σ1) : (β1, σ1) ∈ Θβ1,σ1}

is the orthogonal projection of Θ onto the (β1, σ1) coordinate plane: β0 = σ0 =
0. Explicitly,

Θβ1,σ1 =
{
z ∈ R2 : (z − µβ1,σ1)TΣ−1

β1,σ1
(z − µβ1,σ1) ≤ F−1

χ2(4)(p)
}

=
{
µβ1,σ1 + rLβ1,σ1s ∈ R2 : r2 ≤ F−1

χ2(4)(p), s ∈ S1
}
,

where S1 is the unit sphere in R2, µβ1,σ1
is the subvector of the last two entries

of µ and Lβ1,σ1
is the Cholesky decomposition of the submatrix Σβ1,σ1

of Σ.
Similarly, to compute the upper bound of V0 in (34), only (β0, β1) need to be
considered, leading to a similar set Θβ0,β1 ⊂ R2.

The left plot in Figure 1 shows a scatted plot of 1000 iid estimates of (βP
0 , β

P
1 )

together with boundaries ∂Θβ0,β1
for p = 0.1 (blue) and for p = 0.9 (red). The

right plot in Figure 1 shows a scatted plot of 1000 iid estimates of (βP
1 , σ

P
1)

together with boundaries ∂Θβ1,σ1
for p = 0.1 (blue) and for p = 0.9 (red).

Let ρ0, ρ1 be conditional monetary risk measures defined in terms of con-
ditional quantiles with respect to P, such as, for t = 0, 1, ρt = V@Rt,p or
ρt = AV@Rt,p. In both cases, c := ρ0(eP1) = ρ1(eP2) is a constant for an Ft+1-
measurable ePt ∼ N(0, 1) and independent of Ft with respect to P. Then

R1 = ρ1(−X2) = ρ1(−EP
1[X2] + VarP1(X2)1/2eP2) = EP

1[X2] + VarP1(X2)1/2c

= v0(βP
1 − 1)C0,1 +

√
v0σ

P
1c.

4.1 Case 1: computing upper and lower bounds for V0

In this case Q = QΘ does not satisfy the conditions of Theorem 1 and therefore
we can not compute V0 by backward recursion. However, upper and lower
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Figure 1: Scatter plots of 1000 iid estimates of (βP
0 , β

P
1 ) (left) and of (βP

1 , σ
P
1)

(right), together with boundaries of the parameter regions Θβ0,β1 (left) and
Θβ1,σ1

(right) for p = 0.1 (blue) and for p = 0.9 (red).

bounds for V0 are easily computed. From (7) we have the upper bound

V0 ≤ sup
Q∈QΘ

EQ[X1 +X2]

= sup
{
v−1(β1 − 1)C−1,1 + v0β0β1 : (β0, σ0, β1, σ1) ∈ Θ

}
=: V 0. (34)

From (9) we have the lower bound

V0 ≥ sup
Q∈QΘ

inf
τ∈S1,T+1

EQ
0

[ τ−1∑
s=1

Xs +Rτ−1

]
=: V 0.

In the setting of Section 3, for each θ ∈ Θ, with V θT = RθT = 0, we solve the
backward recursion

Rθt = ρt(−Xt+1 − V θt+1),

V θt = Rθt − EQθ
t [(Rθt −Xt+1 − V θt+1)+],

and then compute

V 0 = sup
θ∈Θ

V θ0 .

Notice that V θt , R
θ
t corresponds to the quantities Vt, Rt in the special case Q =

{Qθ}. Computing V 0 is simpler than computing V0 since the former involves just
one optimisation over the parameter set Θ rather than T nested optimisations
for the latter.

We now demonstrate how V 0 is computed in the current Gaussian setting.
As shown above Rθ1 = v0(βP

1 − 1)C0,1 +
√
v0σ

P
1c (which does not depend on θ)

25



and

Cθ1 = EQθ
1

[(
ρ1(−X2)−X2

)+]
= EQθ

1 [
(
a(θ, C0,1)− b(θ)eθ2

)+
],

where eθ2 ∼ N(0, 1) with respect to Qθ and independent of F1, and

a(θ, C0,1) = −EQθ
1 [X2] + EP

1[X2] + VarP1(X2)1/2ρ1(eP2)

= v0(βP
1 − β1)C0,1 +

√
v0σ

P
1c,

b(θ) = VarQθ1 (X2)1/2 =
√
v0σ1.

Straightforward calculations show that

EQθ
1 [
(
a(θ, C0,1)− b(θ)eθ2

)+
] = a(θ, C0,1)Φ

(
a(θ, C0,1)

b(θ)

)
+ b(θ)ϕ

(
a(θ, C0,1)

b(θ)

)
=: g(θ, C0,1).

Consequently,

X1 + V θ1 = X1 +Rθ1 − Cθ1
= v−1(β1 − 1)C−1,1 +

√
v−1σ1ε

θ
−1,2 +

√
v0σ

P
1c

+ βP
1

(
v0β0 +

√
v0σ1ε

θ
0,1

)
− g
(
θ, v0β0 +

√
v0σ1ε

θ
0,1

)
= v−1(βP

1 − 1)C−1,1 +
√
v−1σ

P
1ε−1,2 +

√
v0σ

P
1c

+ βP
1

(
v0β

P
0 +
√
v0σ

P
1ε0,1

)
− g
(
θ, v0β

P
0 +
√
v0σ

P
1ε0,1

)
from which Rθ0 = ρ0(−X1 − V θ1 ) can be estimated with arbitrary accuracy by
simulating iid copies of X1 +V θ1 with respect to P and computing the empirical
estimate, and Cθ0 = EQθ [(Rθ0 −X1 − V θ1 )+] can be estimated similarly by simu-
lating iid copies with respect to Qθ and approximating the expectation by the
empirical mean. Finally,

V 0 = sup
θ∈Θ

(
Rθ0 − Cθ0

)
= sup
θ∈∂Θ

(
Rθ0 − Cθ0

)
.

Table 1 shows numerical values for lower bounds V 0 and for upper bounds
V 0. These values are based on v−1 = v0 = 1, C−1,1 = βP

0 , ρt = V@Rt,q with
q = 0.005, 0.01, 0.05, 0.10 and parameters sets Θ of varying size corresponding
to r2 ≤ F−1

χ2(4)(p) with p = 0.1, 0.5, 0.9. The main message of Table 1 is that the

intervals (V 0, V 0) are very narrow for q small and therefore the upper bound
V 0 is an accurate estimate of V0 when q is small. Notice that the upper bound
is both easily computed and has attractive theoretical properties.

4.2 Case 2: computing V0 and an upper bound for V0

In this case Q = Q̃Θ and the general lower bound V 0 coincides with V0 and
therefore its computation by backward recursion is somewhat involved. How-
ever, the upper bound is still fairly straightforward to compute. Notice that the
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lower bound computed for Case 1 is a lower bound for V0 in the current Case 2
since QΘ ⊂ Q̃Θ.

We begin by computing the upper bound using the law of iterated expecta-
tions, extended to the multiple prior setting, and Theorem 6:

V 0 = sup
Q∈Q̃Θ

EQ
0 [X1 +X2]

= sup
Q∈Q̃Θ

EQ
0 [X1 + ess sup

Q′∈Q̃Θ

EQ′

1 [X2]]

= sup
Q∈QΘ

EQ
0 [X1 + ess sup

Q′∈QΘ

EQ′

1 [X2]].

Notice that, with β1,min > 1,

ess sup
Q′∈QΘ

EQ′

1 [X2] = v0(β1,max − 1)C0,1I{C0,1≥0} + v0(β1,min − 1)C0,1I{C0,1<0},

where β1,max := max{β1 : (β0, σ0, β1, σ1) ∈ Θ} and similarly for β1,min. There-
fore,

V 0 = sup
(β0,σ0,β1,σ1)∈Θ

(
v−1(β1 − 1)C−1,1 + v0β0

+ v0(β1,max − 1)
(
β0 + σ0Φ(−β0/σ0)

)
− v0(β1,min − 1)σ0Φ(−β0/σ0)

)
R1 is calculated explicitly as above. Computing C1 means computing

C1 = ess sup
θ1∈∂Θβ1,σ1

g(θ1, C0,1),

where, with some abuse of notation, we consider g to be defined for parameters
θ1 ∈ Θβ1,σ1

rather than θ ∈ Θ. In practice, this means determining a function
h : R → R such that h(Ck0,1) = maxθ1∈∂Θβ1,σ1

g(θ1, C
k
0,1) for suitably many

simulated iid copies C1
0,1, . . . , C

n
0,1 of C0,1 and approximating C1 ≈ h(C0,1).

Given the choice of h, R0 = ρ0(−X1−R1 +C1) is approximated by its empirical
estimate based on simulated iid copies with respect to P of

v−1(βP
1 − 1)C−1,1 +

√
v−1σ

P
1ε−1,2 +

√
v0σ

P
1c

+ βP
1

(
v0β

P
0 +
√
v0σ

P
1ε0,1

)
− h
(
v0β

P
0 +
√
v0σ

P
1ε0,1

)
Similarly, C0 is approximated by, for each θ in a dense subset of ∂Θ, simulating
iid copies with respect to Qθ of

v−1(β1 − 1)C−1,1 +
√
v−1σ1ε

θ
−1,2 +

√
v0σ

P
1c

+ βP
1

(
v0β0 +

√
v0σ1ε

θ
0,1

)
− h
(
v0β0 +

√
v0σ1ε

θ
0,1

)
,
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estimating EQθ [(R0 −X1 − R1 + C1)+] by the empirical mean, and computing
the minimum of these expectations over the θ values. Finally, V0 is estimated
by the difference of the estimates of R0 and C0.

Table 1 shows numerical values for lower bounds V 0 and for upper bounds
V 0 with the same parameter values as those considered for Case 1. Similarly
to Case 1, the intervals (V 0, V 0) are very narrow for q small and therefore the
upper bound V 0 is an accurate estimate of V0 when q is small.

Case 1
p = 0.1 p = 0.5 p = 0.9

q = 0.10 (1.452, 1.491) (1.562, 1.624) (1.686, 1.787)
q = 0.05 (1.473, 1.491) (1.592, 1.624) (1.730, 1.787)
q = 0.01 (1.490, 1.491) (1.618, 1.624) (1.772, 1.787)
q = 0.005 (1.491, 1.491) (1.622, 1.624) (1.780, 1.787)

Case 2
p = 0.1 p = 0.5 p = 0.9

q = 0.10 (1.470, 1.513) (1.595, 1.666) (1.734, 1.856)
q = 0.05 (1.491, 1.513) (1.628, 1.666) (1.786, 1.856)
q = 0.01 (1.509, 1.513) (1.656, 1.666) (1.835, 1.856)
q = 0.005 (1.511, 1.513) (1.661, 1.666) (1.845, 1.856)

Table 1: Case 1 and Case 2: lower and upper bounds (V 0, V 0) rounded to three
decimals, where the size of the parameter uncertainty region is determined by
r2 ≤ F−1

χ2(4)(p) and ρt = V@Rt,q. Empirical estimates were based on iid samples

of size 105.
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[20] Möhr, C.: Market-consistent valuation of insurance liabilities by cost of
capital. ASTIN Bulletin 41, 315-341, 2011

[21] Pelsser, A., Stadje, M.: Time-consistent and market-consistent evaluations.
Mathematical Finance 24, 25-65, 2014

[22] Riedel, F.: Dynamic coherent risk measures. Stochastic Processes and their
Applications 112, 185-200, 2004

[23] Riedel, F.: Optimal stopping with multiple priors. Econometrica 77, 857-
908, 2009

[24] Rockafellar, R. T., Uryasev, S., Zabarankin, M.: Generalized deviations in
risk analysis. Finance and Stochastics 10 51-74, 2006

[25] Rosazza Gianin, E.: Risk measures via g-expectations. Insurance: Mathe-
matics and Economics 39, 19-34, 2006.
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[27] Wüthrich, M. V., Embrechts, P., Tsanakas, A.: Risk margin for a non-life
insurance runoff. Statistics and Risk Modeling 28, 299-317, 2011
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