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Abstract

In this paper, a new way to integrate volatility information for es-
timating value at risk (VaR) and conditional value at risk (CVaR) of
a portfolio is suggested. The new method is developed from the per-
spective of Bayesian statistics and it is based on the idea of volatility
clustering. By specifying the hyperparameters in a conjugate prior
based on two different rolling window sizes, it is possible to quickly
adapt to changes in volatility and automatically specify the degree of
certainty in the prior. This constitutes an advantage in comparison to
existing Bayesian methods that are less sensitive to such changes in
the market and also usually lack standardized ways of expressing the
degree of belief. We illustrate our new approach using both simulated
and empirical data and conclude that it provides a good alternative
for risk estimation, especially during turbulent periods.



1 Introduction

Bayesian statistics was introduced in portfolio analysis in the 1970s with
the pioneering works of Winkler (1973), Barry (1974), and Klein and Bawa
(1976). One of the main advantages of the Bayesian approach compared
to traditional plug-in methods is that the Bayesian methodology makes it
possible to employ useful prior information. How to include such prior in-
formation has been a topic of interest during the last decades and several
different approaches have been suggested. A well known method was pro-
posed by Black and Litterman (1992) who provided an informal Bayesian
model based on market equilibrium arguments. Another popular approach
was suggested by Pástor (2000) and Pástor and Stambaugh (2000) in which
asset pricing models were used to include prior information. Tu and Zhou
(2010) also suggested a Bayesian model where priors were imposed on the so-
lution of a problem rather than on the original model parameters. Although
these methods provide good ways to specify the prior belief, they do not
enable a systematic quantification of the certainty in that belief. This puts
the investor in a difficult position since it is generally not obvious how cer-
tain he or she should be in the prior. Moreover, these methods focus mainly
on finding optimal portfolio weights and it is not easy to calibrate them for
different purposes, such as risk estimation.

Since more than a decade, the Basel regulations require banks to use value
at risk (VaR) and conditional value at risk (CVaR) in their risk assessments
(The Basel Committee on Banking Supervision 2019). All trading desks that
are bounded by these regulations must perform regular backtesting of their
risk models. The backtesting procedure required by Basel is based on a bi-
nomial test of a ’hit sequence’ where each number in the sequence is 1 if the
daily VaR has been exceeded and 0 if it has not been exceeded. Hence it
resembles the testing procedure suggested by Christoffersen (1998). Based
on the outcome of the test, different capital requirements are imposed on the
bank and models that perform badly will even be prohibited. Many alter-
native ways of performing VaR and CVaR backtesting have recently been
suggested in the literature (see, e.g., Escanciano and Pei (2012), Ziggel et al.
(2014), Kratz et al. (2018), and references therein). However, no matter the
backtesting procedure, the estimation of VaR and CVaR remains a challeng-
ing task, especially, when considering a portfolio consisting of several assets
since the number of parameters to estimate grows very fast.

An important factor which determines the forecast quality is estimation
error and its impact on the forecasting procedure. Recently, Kerkhof and
Melenberg (2004) and Du and Escanciano (2017) investigated what effect
the estimation uncertainty has on exceedances of VaR in the case of a single
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asset. Both papers derived the variance of the asymptotic distributions of
the suggested test statistics. They deduced that the effect can be large,
depending on the ratio of the out-of-sample and in-sample period. However,
the application of Bayesian methods completely avoids this issue, since it
automatically takes the estimation error into account.

Another reason why risk determination is a challenging task is because
the asset returns are not homogeneous. A well-known characteristic of asset
returns is that large or small deviations tend to group together in time. This
can clearly be seen in financial data from, for instance, the financial crises
in 2008 or, more recently, the Covid-19 outbreak in 2020. This phenomenon
is known as volatility clustering and it has been documented in numerous
articles (see, e.g., Ding et al. 1993, Ding and Granger 1996). Different mod-
els have been suggested to cope with this, most notably the GARCH model
(Engle 1982). However, due to the dimensionality issue of the full multi-
variate GARCH model, the less general DCC-GARCH model is commonly
used to model multiple financial assets (Engle 2002). The model has also
been applied to estimate VaR and CVaR of portfolios (see, e.g., Lee et al.
2006, Santos et al. 2013). However, fitting a DCC-GARCH model is still
quite computationally demanding since it usually involves maximizing a po-
tentially complicated likelihood function. Moreover, there is no guarantee
that a global optimum is reached.

This paper contributes to the current literature on Bayesian portfolio
analysis and risk estimation by suggesting a new and simple algorithm for
specifying the hyperparameters in a conjugate prior which takes volatility
clustering into account. The new method also enables automatic specification
of the degree of belief in the prior, hence it resolves the current issue of
uncertainty specification. Simulated and empirical data from S&P 500 are
used to illustrate how the suggested method performs and how it compares
to other well-known methods with respect to Basel backtesting, especially
during the ongoing Covid-19 outbreak

The paper is organized as follows. In Section 2, we present a Bayesian
model of portfolio returns and we provide expressions of VaR and CVaR
derived by using the posterior predictive distribution. Section 3 presents the
new algorithm for specifying the hyperparameters in the conjugate prior. In
Section 4, the Basel procedure for backtesting VaR and CVaR is described.
Section 5 contains a simulation study where the new method is compared to
other existing approaches. The comparison is continued in Section 6 with
real market data. Finally, Section 7 contains the conclusions.
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2 A Bayesian model of portfolio returns and

estimation of VaR and CVaR

Let xt be the k-dimensional vector of asset returns at time t and let x(t−1) =
(xt−n, ...,xt−1) stand for the observation matrix of the asset returns xt−n, ...,
xt−1 taken from time t − n until t − 1. The vector of portfolio weights is
denoted by w and it determines how much the investor owns of each asset.
We assume that the whole investor’s wealth is shared between the selected
assets, i.e., 1>k w = 1 where 1k denotes the k-dimensional vector of ones. The
return of the portfolio with weights w at time point t is then given by

XP,t = w>xt. (2.1)

From the Bayesian perspective, the posterior predictive distribution of
XP,t, i.e., the conditional distribution of XP,t given x(t−1), is computed by
(see, e.g., p. 244 in Bernardo and Smith 2000)

f(xP,t|x(t−1)) =
∫
θ∈Θ

f(xP,t|θ)π(θ|x(t−1))dθ, (2.2)

where Θ denotes the parameter space, f(·|θ) is the conditional density of
XP,t given θ, and π(θ|x(t−1)) stands for the posterior distribution of θ given
x(t−1). The posterior predictive distribution possesses a number of applica-
tions, especially in the prediction of the future realization of the portfolio
return. In fact, any Bayesian point estimate, like the posterior predictive
mean, posterior predictive mode, or posterior predictive median, reflects the
investor expectation about the future portfolio return.

Assume that the asset returns xi, i ∈ {t − n, ..., t}, are multivariate nor-
mally distributed and independent when conditioning on mean vector µ and
covariance matrix Σ. The conjugate prior is then given by

µ|Σ ∼ Nk

(
m0,

1

r0

Σ
)

and Σ ∼ IWk(d0,S0), (2.3)

where m0, r0, S0 and d0 are hyperparameters, |Σ| is the determinant of Σ,

Nk

(
m0,

1
r0

Σ
)

denotes the multivariate normal distribution with mean vector

m0 and covariance matrix 1
r0

Σ, and IWk(d0,S0) denotes the inverse Wishart
distribution with d0 degrees of freedom and parameter matrix S0.

It can be shown that the posterior predictive distribution (2.2) under
these assumptions is a generalized Student’s t-distribution when using the
conjugate prior (see, e.g., Winkler 1973, Bodnar et al. 2020). More pre-
cisely, let X̂P,t be a random variable which follows the posterior predictive
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distribution, then

X̂P,t
d
= wT x̄t−1 + τ(dk,n)

√
rk,n

√
wTSt−1w, (2.4)

where τ(dk,n) denotes a random variable following the standard t-distribution
with dk,n = n+ d0 − 2k degrees of freedom and

rk,n =
n+ r0 + 1

(n+ r0)(n+ d0 − 2k)
, x̄t−1 =

nx̄+ r0m0

n+ r0

, (2.5)

St−1 =
t−1∑
i=t−n

(xi − x̄)(xi − x̄)T + S0 + nr0
(m0 − x̄t−1)(m0 − x̄t−1)>

n+ r0

, (2.6)

where x̄ = 1
n

∑t−1
i=t−n xi denotes the sample mean.

Using (2.4), it follows directly by the definitions of VaR and CVaR at
level α ∈ (0.5, 1) that the portfolio risk using these risk measures (commonly
denoted by Q) is given by

Qt−1(w) = −wT x̄t−1 + qα
√
rk,n

√
wTSt−1w, (2.7)

where qα depends on if VaR or CVaR is considered. More precisely, let
dα(dk,n) be the α quantile of the t-distribution with dk,n degrees of freedom.
Then qα = dα(dk,n) when considering VaR, and

qα =
1

1− α
Γ
(
dk,n+1

2

)
Γ
(
dk,n

2

)√
πdk,n

dk,n
dk,n − 1

(
1 +

(dα(dk,n))2

dk,n

)− dk,n−1

2

(2.8)

when considering CVaR (see, Bodnar et al. 2020, for details).

3 Volatility sensitive conjugate hyperparam-

eters

The conjugate prior defined in (2.3) is an informative prior which has been
used extensively in the Bayesian financial literature and many different ways
have been suggested on how to specify its four hyperparameters. Some of the
methods use only historical data of the assets returns following the empirical
Bayes approach (see, e.g., Frost and Savarino 1986, Kolm and Ritter 2017,
Bauder et al. 2021) whereas others use additional input, for instance, from
asset pricing models (see, e.g., Pástor 2000, Pástor and Stambaugh 2000).

Using only historical data where all vectors of the asset returns are of
equal importance, as in the empirical Bayes approach, works well when the

5



market conditions are stable. However, it is well known that markets be-
have irregularly and volatility clustering is often observed in financial data.
Existing asset pricing models usually focus on the mean behaviour of asset
returns, while a little attention is paid to capture volatility clustering (see,
e.g, Pástor 2000). Manually expressing the hyperparameters based on a per-
sonal belief is also very difficult. For moderate portfolio sizes the covariance
matrix is hard to specify, as it includes a positive definite constraint which is
highly nonlinear. Moreover, it is very difficult to specify the degree of belief
in the covariance matrix.

We suggest a new automatic way to specify the hyperparameters which
deals with all of the above issues. In order to capture volatility clustering it
is of particular importance to specify the hyperparameters d0 and S0 since
they determine the prior distribution of Σ. The idea behind the suggested
approach is to make the specification of these parameters based on a com-
parison of the long and short term behaviour of the capital market. Let n
be the period corresponding to the long term and let nr < n correspond to
the most recent period. The new method of specifying d0 and S0 can then
be defined as in Algorithm 1.

Algorithm 1: Volatility sensitive conjugate hyperparameters

1. Calculate the sample estimates σ of the stock volatilities using the
recent n observation vectors of the asset returns.

2. Calculate the sample estimates σr of the stock volatilities using the
recent nr observation vectors of the asset returns.

3. Define D to be a diagonal matrix with diagonal elements given by
σr/σ, where the division is element-wise.

4. Calculate the sample covariance matrix Σ̂ using the recent n
observation vectors of the asset returns.

5. Set d0 = max
(
k + 2, n

(
max

(
1, mean(σr)

mean(σ)

))h (
max

(
1, mean(σ)

mean(σr)

))l)
,

where mean(·) denotes the average of the elements in a vector.

6. Set S0 = (d0 − k − 1)DΣ̂D.

Specifying S0 according to Algorithm 1 means that our prior belief about
Σ is that the variances will be similar to what has been observed recently
whereas the prior correlations are based on the long term behaviour of the
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stocks. Thus, in practise, we try to compensate for a possibly faulty speci-
fication of the window size n by ’adding’ observations similar to the recent
ones. Hence we tackle the same problem as Anderson and Cheng (2016) but
using a completely different method.

The hyperparameter d0 is the degrees of freedom in the inverse Wishart
distribution and thus reflects how certain we are about our prior specifica-
tion of the covariance matrix. There is no guarantee that recent high or
low volatilities reflect an actual change in the market conditions. The spec-
ification of d0 according to Algorithm 1 implies that our degree of belief is
determined by how much the recent volatility deviates from the long term
volatility. Hence more pronounced deviations from historical data could mo-
tivate a greater or smaller belief in the recent observations depending on the
signs of l and h.

The hyperparameters r0 and m0 are of less importance for capturing
volatility clustering and thus are not included in Algorithm 1. These can be
specified using, for instance, market equilibrium arguments or capital asset
pricing models (see, e.g., Black and Litterman 1992, Pástor and Stambaugh
2000). It is also possible to specify them using the empirical Bayes approach
by setting m0 to 1

n

∑t−1
i=t−n xi and setting r0 to some constant (Frost and

Savarino 1986, Bauder et al. 2021).
The new method of setting the hyperparameters in the conjugate prior

requires the specification of three additional parameters: nr, h and l. The
parameter nr controls how long the short term period should be whereas the
parameters h and l determine how much recent high or low volatilities (com-
pared to the long run) should impact our certainty. In general, a cautious
investor would put a greater belief in the covariance matrix based on the re-
cent period if the recent volatilities are higher than the long term volatilities
since this could indicate a high volatility period.

4 Basel backtesting of VaR and CVaR

Basel requires banks to report CVaR at the 97.5 % level and do backtesting
of it using VaR estimates at levels 97.5 % and 99 % (The Basel Committee
on Banking Supervision 2019). The test is commonly referred to as the
’traffic light test’ since the outcome of the test is classified as different colors.
Basically, the test is a standard binomial test based on a hit sequence, i.e., a
series indicating exceedance or non-exceedance of VaR for each trading day.
Let {Vt}0≤t≤T denote such a hit sequence between times 0 and T , i.e., each
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element Vt is1 if the portfolio return at time t is smaller than the estimated -VaR,

0 otherwise.

(4.1)
By definition, 1− α of the portfolio returns should be smaller than -VaR at
level α when VaR is correctly determined. The test hypotheses expressing
the probability of ’success’ in the binomial distribution are

H0 : pV = 1− α against H1 : pV 6= 1− α. (4.2)

Basel requires banks to calculate the number of VaR exceedances during
one year (about 250 trading days), i.e., the number of cases when the method
of VaR estimation fails to provide a good forecast. Let CT =

∑T
t=1 Vt with

usually T = 250 and let c denote the observed value of CT computed by
using the data at hand. Then the cumulative probability of the number of
exceedances, i.e., the number of method failures, is computed under the null
hypothesis and it is given by

PT = IP (CT ≤ c) with CT ∼ Binomial(T, 1− α).

If the probability for the number of exceedances PT is smaller than 95 %, then
the result is classified as ’Green’. It is classified as ’Amber’ if the probability
PT is between 95 % and 99.99 %. Otherwise, if the probability PT is greater
than 99.99 %, the result is classified as ’Red’1. The number of exceedances
and the classification zones will impact the capital requirements and possibly
make a model invalid to use.

5 Simulation study

We now illustrate how the new approach performs with respect to VaR es-
timation when using a portfolio consisting of several assets. Three different
simulation scenarios are considered and the proposed approach is compared
to three other VaR estimation methods using the Basel backtest.

5.1 Simulation setup

Different simulation scenarios for the stock returns are considered in order
to see how the new approach performs under different market assumptions.
The three scenarios are referred to as:

1Basel only explicitly specify the colors for VaR backtests at the 99 % level but we
have generalized it also to the 97.5 % level since this level is also required when doing
backtesing.
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1. Multivariate normal distribution (MVN)

2. Perturbed multivariate normal distribution (PMVN)

3. Multivariate GARCH (MGARCH)

In the MVN scenario, the simulated returns follow a multivariate normal
distribution with fixed mean vector and covariance matrix.

The PMVN scenario is similar to the MVN scenario with the exception
that the standard deviations corresponding to the multivariate normal dis-
tribution potentially deviate from the basis values during certain periods of
time. The first step when implementing this scenario is to randomly se-
lect a period length. The length of a period is either three, four or five
days with equal probabilities. Next, the period is classified as ’low volatil-
ity’, ’normal volatility’ or ’high volatility’ with probabilities 0.05, 0.9 and
0.05, respectively. If the period is classified as a ’low volatility’ period, the
basis standard deviations are multiplied by uniformly distributed random
variables that take values between 0.5 and 0.7. Similarly, if it is a ’high
volatility’ period, the standard deviations are scaled up by factors that are
uniformly distributed between 1.5 and 3. During ’normal volatility’ periods
the standard deviations are not scaled at all.

The MGARCH method uses the DCC-GARCH(1,1) method with nor-
mally distributed residuals to generate vectors of the asset returns.

The parameters of the models in the different simulation scenarios are
determined by the corresponding estimators obtained by fitting the model
to real market data. We use randomly selected market data from stocks
in the S&P 500 index between 2018 and 2020. Once the parameters have
been estimated, 500 returns are generated using the simulation scenario in
consideration of which the last 250 are used to evaluate the models VaR
estimations according to Basel with a rolling window size of 250 days. In
addition to the new approach based on the conjugate prior, the VaR models in
consideration are the Bayesian approach based on the noninformative Jeffreys
prior (see, Bodnar et al. 2020), the method based on the samples estimates
(see, e.g, Alexander and Baptista 2002) and the DCC-GARCH(1,1) method
(see, e.g., Lee et al. 2006).

Equally weighted portfolios of three different sizes are considered, namely
5, 10 and 15. For each portfolio size and simulation scenario we generate 100
series of returns. This is to make the comparison more rigorous and avoid
the common mistake of sherry picking stocks or parameters. Hence in total
we get 100 outcomes from the Basel backtest for each simulation scenario
and each VaR estimation model.
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Two different parameter combinations of nr, h and l are considered in
the conjugate prior. In the first combination we use nr = 4, h = 4 and l = 1
and it is referred to as Conjugate(4,4,1). This should reflect the parameters
of an investor who is risk averse since the risk is scaled up quickly when high
volatilities are observed but it is not scaled down so much when the recent
volatilities are low. In the second combination we use nr = 4, h = 0 and
l = 0 and it is referred to as Conjugate(4,0,0). This should reflect the setting
of an investor who has a fixed degree of belief in the prior distribution of
the covariance matrix. In both cases we use the empirical Bayes approach to
specify m0 and we set r0 equal to n.

5.2 Simulation results

Table 1 shows the proportion of VaR estimations classified as ’Green’, ’Am-
ber’ and ’Red’ in the Basel backtest using the different estimation methods
when returns are simulated using MVN. It is observed in Table 1 that all risk
estimation methods perform quite similarly when the returns follow a multi-
variate normal distribution. However, a close look reveals that the estimation
methods based on the conjugate prior and the Jeffreys prior might slightly
overestimate the risk whereas the methods based on the sample estimates
and DCC-GARCH(1,1) might slightly underestimate the risk.
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Table 1: Proportion of VaR estimations classified as ’Green’, ’Amber’
and ’Red’ in the Basel backtest using different portfolio sizes (k) and
VaR estimation methods for simulated multivariate normal returns.

VaR
level

k
Basel
zone

Conjugate
(4,4,1)

Conjugate
(4,0,0)

Jeffreys Sample
DCC-

GARCH
(1,1)

97.5 %

5

Green 0.98 0.98 0.96 0.94 0.94
Amber 0.02 0.02 0.04 0.06 0.06

Red 0.00 0.00 0.00 0.00 0.00

10

Green 0.99 0.99 0.97 0.92 0.92
Amber 0.01 0.01 0.03 0.08 0.08

Red 0.00 0.00 0.00 0.00 0.00

15

Green 1.00 0.99 0.99 0.97 0.95
Amber 0.00 0.01 0.01 0.03 0.05

Red 0.00 0.00 0.00 0.00 0.00

99 %

5

Green 0.91 0.91 0.94 0.89 0.92
Amber 0.09 0.09 0.06 0.11 0.08

Red 0.00 0.00 0.00 0.00 0.00

10

Green 0.94 0.92 0.91 0.87 0.87
Amber 0.06 0.08 0.09 0.13 0.13

Red 0.00 0.00 0.00 0.00 0.00

15

Green 0.99 0.99 0.96 0.88 0.88
Amber 0.01 0.01 0.04 0.12 0.12

Red 0.00 0.00 0.00 0.00 0.00

Similar results but using the perturbed multivariate normal distribution
to generate the returns are shown in Table 2. We observe that the dif-
ferent methods perform quite similarly for the lower VaR level when using
perturbed multivariate normal returns, although the methods based on the
conjugate prior might be a bit too risk conservative. For the higher VaR
level we note that the estimation methods based on the conjugate prior have
a clear advantage. This is because these methods can easily capture rapid
changes in the market conditions corresponding to the ’high volatility’ pe-
riods. Surprisingly, the DCC-GARCH(1,1) which is also a heteroscedastic
model, does not seem to capture such changes better than the method based
on the sample estimates.
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Table 2: Proportion of VaR estimations classified as ’Green’, ’Amber’
and ’Red’ in the Basel backtest using different portfolio sizes (k) and
VaR estimation methods for simulated perturbed multivariate normal
returns.

VaR
level

k
Basel
zone

Conjugate
(4,4,1)

Conjugate
(4,0,0)

Jeffreys Sample
DCC-

GARCH
(1,1)

97.5 %

5

Green 0.99 0.98 0.95 0.93 0.94
Amber 0.01 0.02 0.05 0.07 0.06

Red 0.00 0.00 0.00 0.00 0.00

10

Green 0.99 0.98 0.96 0.94 0.95
Amber 0.01 0.02 0.04 0.06 0.05

Red 0.00 0.00 0.00 0.00 0.00

15

Green 0.97 0.97 0.95 0.91 0.92
Amber 0.03 0.03 0.05 0.09 0.08

Red 0.00 0.00 0.00 0.00 0.00

99 %

5

Green 0.86 0.84 0.77 0.73 0.74
Amber 0.14 0.16 0.23 0.27 0.26

Red 0.00 0.00 0.00 0.00 0.00

10

Green 0.89 0.88 0.85 0.80 0.82
Amber 0.11 0.12 0.14 0.19 0.17

Red 0.00 0.00 0.01 0.01 0.01

15

Green 0.89 0.91 0.87 0.81 0.78
Amber 0.11 0.09 0.13 0.19 0.22

Red 0.00 0.00 0.00 0.00 0.00

The simulation results using the MGARCH scenario are presented in Ta-
ble 3. We see that the methods based on the conjugate prior seem to slightly
overestimate the risk whereas the other methods seem to underestimate the
risk. It is interesting to note that even the DCC-GARCH(1,1) method, which
in this case corresponds to the true underlying process, does not perform very
well when the portfolio size is large in relation to the sample size. The latter
result can be explained by the increasing impact of the estimation error on
the VaR forecast when the portfolio size, i.e., the number of model parame-
ters, becomes large.
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Table 3: Proportion of VaR estimations classified as ’Green’, ’Amber’
and ’Red’ in the Basel backtest using different portfolio sizes (k) and
VaR estimation methods for simulated MGARCH returns.

VaR
level

k
Basel
zone

Conjugate
(4,4,1)

Conjugate
(4,0,0)

Jeffreys Sample
DCC-

GARCH
(1,1)

97.5 %

5

Green 0.98 0.98 0.83 0.81 0.97
Amber 0.02 0.02 0.16 0.18 0.03

Red 0.00 0.00 0.01 0.01 0.00

10

Green 1.00 0.99 0.90 0.84 0.97
Amber 0.00 0.01 0.09 0.15 0.03

Red 0.00 0.00 0.01 0.01 0.00

15

Green 0.97 0.95 0.85 0.78 0.91
Amber 0.03 0.05 0.15 0.19 0.09

Red 0.00 0.00 0.00 0.03 0.00

99 %

5

Green 0.98 0.93 0.76 0.72 0.91
Amber 0.02 0.07 0.21 0.23 0.09

Red 0.00 0.00 0.03 0.05 0.00

10

Green 0.97 0.97 0.75 0.72 0.88
Amber 0.03 0.03 0.24 0.27 0.12

Red 0.00 0.00 0.01 0.01 0.00

15

Green 0.92 0.87 0.73 0.65 0.86
Amber 0.08 0.13 0.24 0.30 0.14

Red 0.00 0.00 0.03 0.05 0.00

6 Empirical analysis

We now present how the new volatility sensitive Bayesian method performs
compared to other methods when using real market data from 2019 and 2020.

6.1 Setup of empirical study

In the empirical comparison we use daily stock returns from randomly se-
lected stocks in the S&P 500 index. As in the simulation study, we consider
portfolios of three different sizes, namely 5, 10 and 15. The assets in the
portfolios are selected at random to avoid picking assets that are not repre-
sentative for the rest of the market. For each portfolio size, 100 groups of
assets are selected from S&P 500 at the beginning of either 2019 or 2020,
and 100 equally weighted portfolios are constructed that remain unchanged
throughout the year. For each portfolio, we estimate VaR on a daily bases
using a rolling window size of n = 250 and we consider the same estimation
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methods as in the simulation study. At the end of the year we calculate the
number of VaR exceedances at the 97.5 % and 99 % levels and classify the
result according to the Basel backtest.

The years 2019 and 2020 were selected for the empirical comparison since
they are the two most recent complete years. Moreover, the former can be
considered a typical stable year, whereas the latter includes a very turbulent
period in March due to the Covid-19 outbreak. Hence they should theoreti-
cally be representative for different kinds of market conditions.

6.2 Empirical results

Table 4 shows the proportion of portfolios classified in the ’Green’, ’Amber’
and ’Red’ zones using the different VaR estimation methods in 2019. As can
be seen in Table 4, all of the methods perform quite similarly during 2019
with respect to the Basel backtest. All of them show good results at the
97.5% VaR level whereas the result looks slightly worse at the 99% level.
Especially the DCC-GARCH(1,1) method seems to underestimate the risk
at this level during this year by having many portfolios in the ’Amber’ zone.
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Table 4: Proportion of VaR estimations classified as ’Green’, ’Amber’
and ’Red’ in the Basel backtest using different portfolio sizes (k) and
VaR estimation methods in 2019.

VaR
level

k
Basel
zone

Conjugate
(4,4,1)

Conjugate
(4,0,0)

Jeffreys Sample
DCC-

GARCH
(1,1)

97.5 %

5

Green 0.97 0.98 0.99 0.99 0.97
Amber 0.03 0.02 0.01 0.01 0.03

Red 0.00 0.00 0.00 0.00 0.00

10

Green 1.00 1.00 1.00 1.00 0.98
Amber 0.00 0.00 0.00 0.00 0.02

Red 0.00 0.00 0.00 0.00 0.00

15

Green 1.00 1.00 1.00 1.00 1.00
Amber 0.00 0.00 0.00 0.00 0.00

Red 0.00 0.00 0.00 0.00 0.00

99 %

5

Green 0.70 0.68 0.64 0.59 0.50
Amber 0.30 0.32 0.36 0.41 0.50

Red 0.00 0.00 0.00 0.00 0.00

10

Green 0.69 0.69 0.73 0.62 0.47
Amber 0.31 0.31 0.27 0.38 0.53

Red 0.00 0.00 0.00 0.00 0.00

15

Green 0.84 0.77 0.85 0.74 0.55
Amber 0.16 0.23 0.15 0.26 0.45

Red 0.00 0.00 0.00 0.00 0.00

Figure 1 further illustrates how the models behave by showing how the
returns and VaR estimates evolve over time in 2019 for a single portfolio
of size 10. Figure 1 confirms the similarity between the different methods
in 2019. However, although all of the VaR estimates are quite similar, the
methods based on the conjugate prior and the DCC-GARCH(1,1) give rise
to more time varying estimates.
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Figure 1: Returns and negative VaR estimates for one portfolio in 2019.

Table 5 shows how the different models compare during a more turbulent
year as in 2020. We observe a clear advantage of the methods based on the
conjugate prior, particularly Conjugate(4,4,1). At the 97.5 % level, almost all
of the test results are classified as ’Green’ when using this method whereas the
other methods result in a majority of the results being classified as ’Amber’
or ’Red’. At the 99 % level we see that the new method gives rise to some
’Amber’ results, but still none of the results are classified as ’Red’. The other
methods have basically no results in the ’Green’ zone at the 99 % level. Even
the DCC-GARCH(1,1) method, which is also a heteroscedastic model, fails
to estimate VaR during very turbulent periods.
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Table 5: Proportion of VaR estimations classified as ’Green’, ’Amber’
and ’Red’ in the Basel backtest using different portfolio sizes (k) and
VaR estimation methods in 2020.

VaR
level

k
Basel
zone

Conjugate
(4,4,1)

Conjugate
(4,0,0)

Jeffreys Sample
DCC-

GARCH
(1,1)

97.5 %

5

Green 0.98 0.91 0.00 0.00 0.12
Amber 0.02 0.09 0.85 0.79 0.88

Red 0.00 0.00 0.15 0.21 0.00

10

Green 0.99 0.94 0.00 0.00 0.09
Amber 0.01 0.06 0.88 0.84 0.89

Red 0.00 0.00 0.12 0.16 0.02

15

Green 0.99 0.86 0.00 0.00 0.03
Amber 0.01 0.14 0.92 0.83 0.94

Red 0.00 0.00 0.08 0.17 0.03

99 %

5

Green 0.68 0.26 0.00 0.00 0.01
Amber 0.32 0.74 0.05 0.02 0.69

Red 0.00 0.00 0.95 0.98 0.30

10

Green 0.59 0.03 0.00 0.00 0.00
Amber 0.41 0.97 0.01 0.00 0.66

Red 0.00 0.00 0.99 1.00 0.34

15

Green 0.59 0.01 0.00 0.00 0.00
Amber 0.41 0.97 0.00 0.00 0.43

Red 0.00 0.02 1.00 1.00 0.57

Figure 2 provides a deeper insight into how the different models behave
by showing how the returns and VaR estimates evolve over time in 2020 for a
single portfolio of size 10. It shows that the new method based on the conju-
gate prior can quickly adapt to changing market conditions as in March 2020.
The homoscedastic models are not at all suitable in such circumstances, indi-
cated by their very moderate increase in VaR. The DCC-GARCH(1,1) model
seems to scale up VaR during the turbulent period but evidently not enough.
However, it is interesting to note that the VaR estimates based on the con-
jugate prior and DCC-GARCH(1,1) method behave very synchronously.
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Figure 2: Returns and negative VaR estimates for one portfolio in 2020.

To sum up, during a stable year such as 2019 all of the considered methods
perform quite well in terms of VaR estimation. Due to the lack of rapid
changes in the market conditions, methods that account for heteroscedacity
are not advantageous. However, during turbulent years such as 2020, we see
a clear advantage of heteroscedastic models. In terms of VaR estimation, the
new method based on the conjugate prior gives the best results.

7 Conclusion

When working with financial data it is important to keep in mind that there
exists no perfect model. A model can only be considered ’better’ or ’worse’
based on historical data and some statistical measures. Many of the standard
statistical tests would reject several of the models used by practitioners, but
that does not necessarily mean that the models that they use are useless. In
reality, usefulness is a tradeoff between accuracy, simplicity and speed.

In this paper, we have suggested a new way to specify the hyperparame-
ters in the conjugate prior which makes it possible to capture volatility clus-
tering in financial data. The new method is simple and very fast. Moreover,
it solves the problem of certainty specification by automatically setting the
degree of belief depending on how risk cautious the investor is. It has been
illustrated using both simulated and real market data that the new method
estimates VaR very accurately when using the Basel backtest. Since CVaR is
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backtested in terms of VaR, this also qualifies the model for providing good
CVaR estimates according to Basel.

Although the new method shows promising results in terms of VaR esti-
mation, it is likely possible to improve it by considering dynamic correlations
in the specification of the prior. This would lead to an even more flexible
model which could be used for other purposes such as portfolio construction.
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