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Abstract

In this paper, we investigate the distributional properties of the

estimated tangency portfolio (TP) weights assuming that the asset

returns follow a matrix variate closed skew-normal distribution. We

establish a stochastic representation of the linear combination of the

estimated TP weights that fully characterize its distribution. Using

the stochastic representation we derive the mean and variance of the

estimated weights of TP which are of key importance in portfolio anal-

ysis. Furthermore, we provide the asymptotic distribution of the linear

combination of the estimated TP weights under the high-dimensional

asymptotic regime, i.e. the dimension of the portfolio p and the sample

size n tend to infinity such that p/n → c ∈ (0, 1). A good performance

of the theoretical findings is documented in the simulation study.

*Corresponding author: Erik Thorsén, erik.thorsen@math.su.se



1 Introduction

Modern portfolio theory, introduced by Markowitz (1952), has been a pin-

nacle of investment theory since its introduction in the 1950s. The problems

posed by Markowitz aim to find a portfolio that is characterized by the in-

vestor’s belief in risk and return. In an optimal fashion, the obtained portfolio

is then used by the investor to allocate her/his wealth. Tangency portfolio

(TP) is one of these optimal portfolios which determines how an investor

should allocate the wealth between the risk-free rate and some risky assets.

When an investor tries to construct a portfolio, either there is a need to spec-

ify all the parameters in the portfolio allocation procedure or to make use

of data to estimate them. We believe that the latter is more common than

the former and by doing so we introduce estimation uncertainty into the al-

location process. This uncertainty is paramount to quantify for the investors

since their expectations might not match with what the portfolio can deliver.

It is also essential to communicate to stakeholders and assert compliance to

regulatory frameworks which makes analytic results more compelling as these

are easy to reason about.

The implications of estimation uncertainty in modern portfolio theory,

in general, and in TP, in particular, have been extensively researched in the

literature. The research dates back as far as late 90s, see e.g. Britten-Jones

(1999), where the statistical test for the TP weights is derived. Okhrin and

Schmid (2006) continued on this path and derived the asymptotic distribution

for the portfolio weights. The moments of the TP weights were then later

characterized by Kan and Zhou (2007) under the assumption of normally

distributed returns. Bodnar and Okhrin (2011) derived statistical tests for

the composite hypothesis of the TP weights and Kotsiuba and Mazur (2016)

approximated the density using Taylor expansion. In Palczewski and Pal-

czewski (2014) the authors also investigated sampling distributions though

from the perspective of of the mean squared error loss function. Character-

ising uncertainty fits well into the Bayesian framework and along this line of

research, in Bauder et al. (2018) distributional properties of the TP weights
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are studied.1

Recent literature has continued to build upon the previously mentioned

works. Bodnar et al. (2019) extended the works of Okhrin and Schmid (2006)

and Bodnar and Okhrin (2011) to the scenario when both the population

and the sample covariance matrices are singular. This can be seen as a high-

dimensional setting where the sample size is comparable, or smaller, than the

portfolio size. Recently this topic has gained a lot of attention and a large

number of different approaches have been taken to construct statistical tests,

characterizing the distribution of the TP weights and functions thereof. Bod-

nar et al. (2021) derived the distribution in small and large dimension for a

large class of portfolios, including the normalised TP weights. In Muhinyuza

et al. (2020) and Muhinyuza (2020) the statistical test for the TP in small

and large dimension is derived to deduce whether the portfolio is efficient

or not. Karlsson et al. (2020) delivered the high-dimensional asymptotic

distribution of the estimated TP weights and high-dimensional asymptotic

test on the linear combination of the elements of TP weights. Javed et al.

(2021) obtained analytical expressions for the higher order moments of the

estimated TP weights. In Alfelt and Mazur (2020), the mean and variance

of the estimated TP weights are studied when the sample covariance matrix

is singular.

When the influence of uncertainty is to be understood in a finite-sample

setting, there is usually a need for a statistical model to account for it. The

chosen model should take into account the characteristics of asset returns,

which are usually known as the stylized facts (see e.g. Cont (2001)). One

such characteristic is skewness, which is quite often present in low-frequency

data, such as weekly, monthly or quarterly, and has been documented in the

literature (see e.g. Kraus and Litzenberger (1976), Alles and Kling (1994)

or Peiro (1999)). Following this line of research, Bodnar and Gupta (2015)

incorporated skewness into a portfolio allocation problem through the Closed

Skew-Normal (CSN) model. This model can incorporate many different as-

1In Bayesian framework, the posterior distribution of the TP weights is proportional to
the product of (singular) Wishart matrix and (singular) normal vector under the assump-
tion of normally distributed data. The distributional properties of these products are well
studied by Bodnar et al. (2013, 2014), Bodnar et al. (2018), Bodnar et al. (2019).
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pects of asset returns due to its flexible parameter structure.

Along this direction, in this article, we consider the CSN model for assets

returns with a focus on TP. Our contribution to the existing literature is as

follows. First, we derive a stochastic representation of the linear combination

of the TP weights that is a computationally effective tool for studying distri-

butional properties. Second, we deliver closed-form expressions for the mean

and variance of the TP weights. The moments are vital for quickly under-

standing the implications of estimation uncertainty in a portfolio. A plug-in

or sample version of the TP is one realisation from its distribution. The

moments would help quantify the overall uncertainty in the point estimate.

Third, we obtain the asymptotic distribution of the linear combination of the

TP weights under a high-dimensional asymptotic regime, i.e. both portfolio

size p and sample size n tend to infinity such that p/n → c ∈ (0, 1). There

have been a large number of portfolios derived to constrain higher order mo-

ments of the portfolio. For the interested reader, we recommend Harvey et al.

(2010) or Briec et al. (2013) and the references therein. However, one can see

this as an entirely different problem since it aims to constrain the portfolio

choice allocation problem. Our contribution helps investors to understand

the influence of skewness, and not constrain it.

This paper is organized as follows. In Section 2, we briefly introduce the

CSN model. Section 3 provides a framework for TP within the domain of

the CSN model together with numerous results for its sample counterpart

in small and high dimension. In Section 4, we study the performance of the

theoretical results through simulation. We finish the paper with discussion

in Section 5.

2 Skew-normal model

In this section, we will briefly present the matrix-variate closed skew-normal

(CSN) distribution and discuss its properties, especially in connection to asset

returns. For this, we need some notation, with which we start first. Let 1k

denotes a k-dimensional vector of ones, while 0k stands for a k-dimensional

vector of zeros. We would note that the vectors in this work are identified
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with single-column matrices. Let Ik stands for the identity matrix of size k.

The symbol ⊗ stands for the Kronecker product and vec(A) denotes the vec

operator, which vectorizes a matrix through stacking its columns, e.g. if A

is a k× p matrix then vec(A) = (a11, . . . , ak1, a12, . . . , ak2, . . . , a1p, . . . , akp)
⊤.

Furthermore, let
d
= denotes the equality in distributions. Finally, let A ≻ 0

implies that A is symmetric and positive definite.

Let

X =


x11 . . . x1p

...
. . .

...

xn1 . . . xnp

 = (x̃1, . . . , x̃p) =


x⊤
1
...

x⊤
n


be the n× p observation matrix of the asset returns, where each observation

x̃i is a n-dimensional vector of returns for the i:th asset, i = 1, . . . , p, while

xt is a p-dimensional vector of the asset returns at time point t, t = 1, . . . , n.

Throughout the paper we assume that the matrixX is random and follows

a matrix-variate CSN distribution (see e.g. Domı́nguez-Molina et al. (2007)),

denoted by X ∼ CSN n,p;1,1(1n ⊗ µ⊤, In ⊗Σ,1⊤
n ⊗ e⊤, 0, v), where µ is a p-

dimensional vector, Σ is a p × p symmetric positive definite matrix, 1n is a

n-dimensional vector, e is a p-dimensional vector and v is a strictly positive

number.

To discuss the parameters in detail, the density function of X is expressed

in terms of vec(X⊤) and is given by

fvec(X⊤)(y) = 2ϕnp(y; vec(1
⊤
n ⊗ µ),Σ⊗ In)Φ((e

⊤ ⊗ 1⊤
n )(y − vec(1⊤

n ⊗ µ)); 0, v),

(2.1)

where ϕk(y;m,A) and Φk(y;m,A) stand for the density function and cu-

mulative distribution function, respectively, of the k-dimensional normal dis-

tribution with mean m and covariance matrix A. The density function of

vec(X⊤) presented in (2.1) corresponds to the density function of multivariate

skew-normal distribution considered by Arellano-Valle and Azzalini (2006).

If there is no skewness, i.e. if e = 0p, then it leads us to the matrix-variate

normal distribution with mean matrix 1n⊗µ⊤ and covariance matrix In⊗Σ

denoted by Nn,p(1n⊗µ⊤, In⊗Σ). The parameter v is harder to reason about
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from the density since it is part of the CDF of the normal distribution. Due

to Proposition 2.1 Domı́nguez-Molina et al. (2007) the CSN distribution can

also be written by a stochastic representation as

vec(X⊤)
d
= vec(1⊤

n⊗µ)+

(
(In ⊗Σ)−1 +

(1n ⊗ e)(1⊤
n ⊗ e⊤)

v

)−1/2

z+
1n ⊗Σe√
v + ne⊤Σe

|z0|,

(2.2)

where z ∼ Nnp (0np, Inp) and z0 ∼ N (0, 1); moreover, z and z0 are indepen-

dent. The stochastic representation makes it easier to reason about v. The

random variable z0 is latent and represents the distortions that the consid-

ered data gets to experience. From the stochastic representation, we can

actually see that the parameter v represents the absence of the distortions.

The larger it becomes, the smaller the skewness will be.

As mentioned earlier, the CSN distribution is known to capture some

of the dynamics and stylized facts that asset returns are known to exhibit.

Specifically, the parameter vector e takes care of the skewness of the asset

returns and its influence is present in both the mean and the variance. The

larger it becomes the more dispersed the values of X will be. Depending on

the sign of e the mean will also change accordingly.

The flexibility of the matrix-variate CSN distribution can be seen from

these parameters. Given that our asset return distribution follows the stochas-

tic representation (2.2) we have from Bodnar and Gupta (2015, Section 2),

that the covariance for n different observations of ith asset class x̃i is equal

to

Cov[x̃i] = σiiIn −
2

π

(e⊤Σap;i)
2

σ2
ii(v + ne⊤Σe)

1n1
⊤
n ,

where σii is the ith diagonal element of Σ and ap;i = (0, . . . , 0, 1, 0, . . . , 0)⊤.

The non-diagonal elements of the matrix Cov[x̃i] are non-zero and, therefore,

the elements of x̃i are dependent. For our special case of the matrix-variate
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CSN distribution, the model is stationary, since

E[xt] = µ+

√
2

π
(v + ne⊤Σe)−1/2e,

Var[xt] = Σ− 2

π

1

v + ne⊤Σe
ee⊤,

are independent of time.

3 Tangency portfolio under the skew normal-

ity

In this section, we will construct the TP as well as derive its properties using

the statistical model described in Section 2. Let x denotes the vector of asset

returns with mean vector η and covariance matrix Ψ, while rf stands for the

return on the risk-free asset, which can be the interest rate of a risk-free bond

or any other risk-free contract. Let w = (w1, w2, . . . , wp) denotes any vector

of portfolio weights where each element wi represents the amount allocated

in the i:th asset.

Mean-variance portfolios have been extensively studied since their in-

troduction in Markowitz (1952). The solution to these classical portfolio

selection problems is optimal in the sense that we can not expect to receive

more return without accepting more risk or vice versa. Many portfolio al-

location problems give solutions which are optimal in the same sense (see

e.g. Bodnar et al. (2013)). However, one specific portfolio is able to attain

all mean-variance efficient portfolios, namely the solution to maximizing the

expected quadratic utility. Assuming that the investor wants to use the ex-

pected quadratic utility to optimize the portfolio and include the risk-free

asset, then the investor will end up with what is known as the TP. The pre-

cense of a risk-free asset rf , implies that any portfolio can be obtained by

borrowing or placing a large enough portion on the risk-free asset. To see

this, consider the common portfolio constraint w0 +w⊤1p = 1, where w0 is

the amount allocated in the risk-free rate. The constraint can be removed

by considering w0 = 1−w⊤1p which implies that the portfolio return distri-
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bution will be given by xp = w0rf + w⊤x = w⊤(x − rf1p) + rf . Investing

nothing in the market, e.g. w = 0, results in the investor receiving the risk-

free rate as the portfolio return. Consider now the expected payoff for such a

portfolio, which is equal to µp = w⊤(η − rf1p) + rf . The mean of the assets

η are discounted according to the risk-free rate. Risk in this scenario is then

measured by the portfolio variance, σ2
p = w⊤Ψw.

Using the expected quadratic utility, the portfolio can be obtained through

the following unconstrained optimization problem

max
w

[
µp −

α

2
σ2
p

]
,

where α > 0 is the risk aversion coefficient, representing investor’s risk profile.

A large risk aversion represents a risk averse investor. The solution is given

by

wTP = α−1Ψ−1 (η − rf1p) .

In this paper, we focus on the linear combination of the TP weights

expressed as

θ := l⊤wTP = α−1l⊤Ψ−1 (η − rf1p) (3.1)

where l is a p-dimensional vector of constants. Since both parameters η and

Ψ are unknown in practice, they need to be estimated from historical data.

The most common estimators are sample mean vector and sample covariance

matrix that are given by

x̄ =
1

n

n∑
t=1

xt =
1

n
X⊤1n, (3.2)

S =
1

n− 1

n∑
t=1

(xt − x̄)(xt − x̄)⊤ =
1

n− 1
X⊤VX, (3.3)

where V = In − 1
n
1n1

⊤
n is a symmetric idempotent matrix, i.e. V = V⊤ and

V = V2. The sample estimator of θ can then be expressed as

θ̂ := l⊤ŵTP = α−1l⊤S−1 (x̄− rf1p) . (3.4)

The choice of l can represent the investors’ preference and interest in the
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portfolio. It can be used to understand what kind of contribution a certain

asset has to the portfolio performance or what performance one might achieve

by excluding (or including) a certain asset.

In the following proposition, we derive the distribution of the sample mean

vector and sample covariance matrix when asset returns follow a matrix-

variate CSN distribution.

Proposition 3.1. Let X ∼ CSN n,p;1,1(1n ⊗ µ⊤, In ⊗ Σ,1⊤
n ⊗ e⊤, 0, v) with

Σ ≻ 0. Then it holds that

(i) x̄ ∼ CSN p,1(µ,
1
n
Σ, ne⊤, 0, v);

(ii) (n−1)S ∼ Wp(n−1,Σ) (p-dimensional Wishart distribution when p ≤
n− 1 and p-dimensional singular Wishart distribution when p > n− 1

with n− 1 degrees of freedom and the parameter matrix Σ);

(iii) x̄ and S are independently distributed.

Proof. Since (Ip⊗1⊤
n ) is of full row rank, from Proposition 3.1 of Domı́nguez-

Molina et al. (2007) we have that

x̄ ∼ CSN p,1

(
µ,

1

n
Σ, ne⊤, 0, v

)
(3.5)

which shows the first part of the statement. To show the second and third

parts of the statement, we make use of the Sherman-Morrison formula (Harville,

1997, Corollary 18.2.10) on the matrix square root in (2.2) and get that

(
(In ⊗Σ)−1 +

(1n ⊗ e)(1⊤
n ⊗ e⊤)

v

)−1/2

=

(
In ⊗Σ− (1n1

⊤
n )⊗ (Σee⊤Σ)

v + ne⊤Σe

)1/2

.

Hence, using Proposition 2.1 in Domı́nguez-Molina et al. (2007), it holds that

(n− 1)S
d
= X⊤VX

d
= Y⊤VY,

where Y ∼ Nn,p (1n ⊗ µ, In ⊗Σ). Therefore, we get that (n−1)S ∼ Wp(n−
1,Σ). Next, let us note that the stochastic representation of x̄ has the
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following form

x̄
d
= µ+

(
nΣ−1 +

n2

v
ee⊤

)−1/2

z̃+
Σe√

v + ne⊤Σe
|z̃0|,

where z̃ ∼ Np(0p, Ip) and z̃0 ∼ N (0, 1); moreover, z̃ and z̃0 are independent.

Since the distribution of S doesn’t depend on z̃0, we get that x̄ and S are

independently distributed. The proposition is proved.

From Proposition 3.1 we get that the sample mean vector follows multi-

variate CSN distribution, while the sample covariance matrix follows regular

Wishart distribution when p ≤ n−1 and singular Wishart distribution when

p > n− 1. It also holds that the sample mean vector and sample covariance

matrix are independent. In what follows, we focus on the case when p ≤ n−1

since it guarantees us that the sample covariance matrix is not singular and

its regular inverse can be taken. For the case when p > n − 1, there is a

need for deriving distributional properties of the generalized inverse Wishart

matrix and it is not a trivial task.2

From Proposition 3.1 we can also see that the introduction of skewness in

the data-generating process will affect the mean of the estimators but not the

sample covariance matrix. That is, for investors using this type of model for

investment, there is a need to adjust their expectations since currently the

sample mean is not centred around the true mean and will experience shocks,

modelled by the parameter e and v. The influence of the latent variable scales

with n, so the larger the sample size is, the smaller the skewness parameter

is expected to be.

2Additionally assuming that rank(Σ)=r ≤ n−1, Bodnar et al. (2016, 2017) and Bodnar
et al. (2019) employed the Moore-Penrose inverse in the portfolio context. One can also
make use of different regularization methods such as the ridge-type approach (Tikhonov
and Arsenin, 1977), the Landweber-Fridman algorithm (Kress, 1999), the spectral cut-off
approach (Chernousova and Golubev, 2014), the Lasso-type method (Brodie et al., 2009),
and an iterative method based on a second order damped dynamical systems (Gulliksson
and Mazur, 2020; Gulliksson et al., 2021).
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3.1 Finite sample results

The sampling distribution of the TP can be derived in many ways. Here,

we derive the stochastic representation of the linear combination of the TP

weights that fully describes the distribution. This result is delivered in the

next theorem.

Theorem 3.2. Let X ∼ CSN n,p;1,1(1n ⊗ µ⊤, In ⊗ Σ,1⊤
n ⊗ e⊤, 0, v) with

n > p and Σ ≻ 0. Also, let l be a p-dimensional vector of constants and

Rl := Σ−1 −Σ−1ll⊤Σ−1/l⊤Σ−1l. Then the stochastic representation of θ̂ =

l⊤ŵTP is given by

θ̂
d
= α−1n− 1

ξ

l⊤Σ−1z̄+ t0

√√√√ l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1

 (3.6)

where ξ ∼ χ2
n−p, t0 ∼ t(n−p+1, 0, 1), and z̄ ∼ CSN p,1(µ−rf1p,

1
n
Σ, ne⊤, 0, v)

and ξ, t0, z̄ are mutually independent.

Proof. From Proposition 3.1 we know that S and x̄ are independently dis-

tributed. Consequently, it follows that the conditional distribution of θ̂|x̄ =

x̄∗ is equal to the distribution of θ̆ := α−1l⊤S−1z̄∗ with z̄∗ := (x̄∗ − rf1p).

Moreover, θ̆ can be rewritten as

θ̆
d
= α−1z̄∗⊤Σ−1z̄∗

l⊤S−1z̄∗

z̄∗⊤S−1z̄∗
z̄∗⊤S−1z̄∗

z̄∗⊤Σ−1z̄∗
. (3.7)

Now, we shall show that z̄∗⊤Σ−1z̄∗·l⊤S−1z̄∗/z̄∗⊤S−1z̄∗ and z̄∗⊤S−1z̄∗/z̄∗⊤Σ−1z̄∗

are independently distributed and derive their distributions.

Let M = (l, z̄∗)⊤ such that l ̸= z̄∗. Through the application of Theorem

3.2.11 in Muirhead (1990), we obtain that

(n− 1)(MS−1M⊤)−1 ∼ W2

(
n− p+ 1, (MΣ−1M⊤)−1

)
,

and, through Theorem 3.4.1 in Gupta and Nagar (2018), we receive

(n− 1)−1MS−1M⊤ ∼ IW2

(
n− p+ 4,MΣ−1M⊤

)
,
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i.e. (n−1)−1MS−1M⊤ has a 2-dimensional inverse Wishart distribution with

n − p + 4 degrees of freedom and the parameter matrix MΣ−1M⊤. It also

holds that

MS−1M⊤ =

 l⊤S−1l l⊤S−1z̄∗

z̄∗⊤S−1l z̄∗⊤S−1z̄∗

 . (3.8)

Applying Theorem 3(d) of Bodnar and Okhrin (2008), we have that

z̄∗⊤S−1z̄∗ is independent of l⊤S−1z̄∗/z̄∗⊤S−1z̄∗. Therefore, z̄∗⊤S−1z̄∗/z̄∗⊤Σ−1z̄∗

is independent of z̄∗⊤Σ−1z̄∗ · l⊤S−1z̄∗/z̄∗⊤S−1z̄∗. Moreover, from Theorem

3.2.12 of Muirhead (1990), we get that

(n− 1)
z̄∗⊤Σ−1z̄∗

z̄∗⊤S−1z̄∗
∼ χ2

n−p

that is also independent of z̄∗. This implies that z̄⊤S−1z̄/z̄⊤Σ−1z̄ is indepen-

dent of z̄⊤Σ−1z̄ · l⊤S−1z̄/z̄⊤S−1z̄, where z̄ := x̄− rf1p.

From the proof in Theorem 1 of Bodnar and Schmid (2008) we obtain

z̄∗⊤Σ−1z̄∗
l⊤S−1z̄∗

z̄∗⊤S−1z̄∗
∼ t

(
n− p+ 1, l⊤Σ−1z̄∗,

l⊤Σ−1l · z̄∗⊤Rlz̄
∗

n− p+ 1

)

with Rl := Σ−1 −Σ−1ll⊤Σ−1/l⊤Σ−1l. Hence, the stochastic representation

of θ̆ can be further simplified to

θ̆
d
= α−1n− 1

ξ

l⊤Σ−1z̄∗ + t0

√√√√ l⊤Σ−1l · z̄∗⊤Rlz̄∗

n− p+ 1

 (3.9)

where ξ ∼ χ2
n−p and t0 ∼ t(n−p+1, 0, 1) which are independently distributed.

Finally, since z̄ ∼ CSN p(µ−rf1p,
1
n
Σ, ne⊤, 0, ṽ) (see Genton (2004, Chapter

2.3)), the stochastic representation of θ̂ follows straightforward. The theorem

is proved.

From Theorem 3.2, we can observe that the stochastic representation of

θ̂ is expressed as a function of independent univariate random variables that

follow χ2 and t distributions and random vector that follows multivariate

CSN distribution. This result helps us to speed up the simulation of θ̂ as
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we shouldn’t simulate the inverse of the sample covariance matrix S−1 that

is a computationally heavy task, especially in high dimensions. Let us note

that the obtained stochastic representation plays a fundamental role in the

derivations of the mean and covariance of ŵTP , and of the asymptotic dis-

tribution of θ̂ under a high-dimensional asymptotic regime. We can also use

equation (3.6) to compute what influence a certain asset has on the portfolio

and what would happen if it was to be excluded. If we let lj = 1p − bj,

where bj is the canonical basis in R
p then we would be investigating how the

portfolio size is affected by the exclusion of the j:th asset.

To this end, we further simplify the portfolio diagnostics for the investor

by deriving the moments of the portfolio weights distribution. By doing so,

the investor can compare several assets in a portfolio and their corresponding

returns through a small number of quantities.

Theorem 3.3. Let X ∼ CSN n,p;1,1(1n⊗µ⊤, In⊗Σ,1⊤
n ⊗e⊤, 0, v) with n > p

and Σ ≻ 0. Also, let l be a p-dimensional vector of constants, µ̃ := µ− rf1p

and ẽ := α−1
√
2/π(v + ne⊤Σe)−1/2e. Then it holds that

E[ŵTP ] =
n− 1

n− p− 2
(wTP + ẽ)

and

Var[ŵTP ] = c1 (wTP + ẽ) (wTP + ẽ)⊤ − c2ẽẽ
⊤

+c3

(
1− 2

n
+ µ̃⊤Σ−1µ̃+ 2αẽ⊤µ̃

)
Σ−1

with

c1 =
(n− 1)2(n− p)

(n− p− 1)(n− p− 2)2(n− p− 4)
,

c2 =
(n− 1)2

(n− p− 1)(n− p− 4)
,

c3 =
c1(n− p− 2)

α2(n− p)
.

13



Proof of Theorem 3.3. First, we shall evaluate E[θ̂]. Application of Theorem

3.2 leads us to

E[θ̂] = E

α−1n− 1

ξ

l⊤Σ−1z̄+ t0

√√√√ l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1




=
n− 1

α
E

[
1

ξ

]
l⊤Σ−1 E[z̄], (3.10)

where the last equality follows from the fact that ξ, t0, and z̄ are mutually

independent, and E[t0] = 0. Since ξ ∼ χ2
n−p, it holds that 1/ξ ∼ Inv −

χ2
n−p (inverse-chi-squared distribution with n− p degrees of freedom). From

Gelman et al. (2013, p. 575) it follows that

E

[
1

ξ

]
=

1

n− p− 2
. (3.11)

Next, we shall evaluate E(z̄) using the moment generating function of z̄

which is given by

mz̄(t) = 2Φ1

(
e⊤Σt; 0, v + ne⊤Σe

)
exp

(
µ̃⊤t+

1

2n
t⊤Σt

)

for t ∈ Rp (see Genton (2004, Lemma 2.2.2)). Therefore, E[z̄] can be evalu-

ated as

E[z̄] =
∂mz̄(t)

∂t

∣∣∣∣∣∣
t=0

= 2

ϕ1

(
e⊤Σt; 0, ṽ + ne⊤Σe

)
Σe

+Φ1

(
e⊤Σt; 0, v + ne⊤Σe

)(
µ̃+

1

n
Σt
)

× exp
(
µ̃⊤t+

1

2n
t⊤Σt

) ∣∣∣∣∣∣
t=0

=

√
2

π
(v + ne⊤Σe)−1/2Σe+ µ̃. (3.12)
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Substituting (3.11) and (3.12) in (3.10) and using the fact that l is an arbi-

trary vector show the first part of the theorem.

Next, we shall evaluate Var[θ̂]. Let us recall that

Var[θ̂] = E[θ̂2]− (E[θ̂])2,

where E[θ̂] is known from above, while E[θ̂2] should be evaluated. From

Theorem 3.2 we get that

E[θ̂2] = E

α−2 (n− 1)2

ξ2

l⊤Σ−1z̄+ t0

√√√√ l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1


2

=
(n− 1)2

α2
E

[
1

ξ2

](
E
[
(l⊤Σ−1z̄)2

]
+

l⊤Σ−1l

n− p− 1
E
[
z̄⊤Rlz̄

])
,(3.13)

where the last equality follows from the fact that ξ, t0, and z̄ are mutually

independent, and E[t0] = 0, E[t20] =
n−p+1
n−p−1

. From Gelman et al. (2013, p.

575), we obtain that

E

[
1

ξ2

]
=

1

(n− p− 2)(n− p− 4)
(3.14)

while through the application of Lemma 5.1 it holds that

E
[
(l⊤Σ−1z̄)2

]
= E

[
z̄⊤Σ−1ll⊤Σ−1z̄

]
= (µ̃⊤Σ−1l)2 +

l⊤Σ−1l

n
+ 2

√
2

π

e⊤ll⊤Σ−1µ̃

(v + ne⊤Σe)1/2

= (αθ)2 +
l⊤Σ−1l

n
+ 2

√
2

π

αθe⊤l

(v + ne⊤Σe)1/2
(3.15)

and

E
[
z̄⊤Rlz̄

]
= µ̃⊤Rlµ̃+

p− 1

n
+ 2

√
2

π

e⊤ΣRlµ̃

(v + ne⊤Σe)1/2

= µ̃⊤Σ−1µ̃− (αθ)2

l⊤Σ−1l
+

p− 1

n
+ 2

√
2

π

e⊤ΣRlµ̃

(v + ne⊤Σe)1/2
.(3.16)
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Hence, through (3.14), (3.15) and (3.16), we receive

E[θ̂2] =
(n− 1)2

α2(n− p− 2)(n− p− 4)

(αθ)2 + l⊤Σ−1l

n
+ 2

√
2

π

αθe⊤l

(v + ne⊤Σe)1/2

+
l⊤Σ−1l

n− p− 1

µ̃⊤Σ−1µ̃− (αθ)2

l⊤Σ−1l
+

p− 1

n
+ 2

√
2

π

e⊤ΣRlµ̃

(v + ne⊤Σe)1/2


=

(n− 1)2

α2(n− p− 1)(n− p− 2)(n− p− 4)

×

(n− p− 2)α2

θ + 1

α

√
2

π

e⊤l

(v + ne⊤Σe)1/2

2

− 2(n− p− 2)

π

(
e⊤l

)2
v + ne⊤Σe

+

n− 2 + nµ̃⊤Σ−1µ̃+ 2

√
2

π

ne⊤µ̃

(v + ne⊤Σe)1/2

 l⊤Σ−1l

n

 .
Therefore, we get that

Var[θ̂] = E[θ̂2]−
(
E[θ̂]

)2
= c1

θ + 1

α

√
2

π

e⊤l

(v + ne⊤Σe)1/2

2

− c2
2

α2π

(e⊤l)2

v + ne⊤Σe

+c3

1− 2

n
+ µ̃⊤Σ−1µ̃+ 2

√
2

π

e⊤µ̃

(v + ne⊤Σe)1/2

 l⊤Σ−1l

with c1, c2 and c3 which are the same as in the formulation of the theorem.

Finally, using the fact that l is an arbitrary vector we arrive the statement

of the theorem.

From Theorem 3.3 we can clearly see that our estimates are biased when

returns follow the CSN distribution. Any increase in the elements of e will

increase that bias and an increase in the sample size n or v will decrease that

bias. We can also see that it is quite hard to disentangle the parameters e

and v. It is not surprising since the definition of the distribution is in terms

of shocks based of the matrix 1⊤ ⊗ e⊤ and v.
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3.2 Asymptotic distribution under double asymptotic

regime

Today investors need to traverse large asset universes, trying to convey which

assets to be included in the portfolio and which not. This often implies

that their portfolio grows in relation to the number of samples they can

obtain for the specific asset classes. When the asset universe is large, the

number of parameters that need to be estimated grow respectively, especially

in comparison to the sample size. It is therefore of interest to study the

influence of the number of assets included in the portfolio and what happens

in the limit.

In the high-dimensional setting, both n and p grow towards infinity such

that p/n = c ∈ (0, 1). The following are some necessary assumptions for the

existence of the asymptotic distribution.

(A1) There exists a constant M1 such that maxi |µi| ≤ M1 uniformly in p.

(A2) Let λ1 and λp denote the largest and smallest eigenvalue of Σ. There

exist constants M2 and M3 such that M2 < λ1, λp < M3 uniformly in

p.

(A3) There exists a constant M4 such that maxi |ei| ≤ M4.

The assumptions (A1) and (A2) concern the mean vector and covariance

matrix in high dimensions (see, Ledoit and Wolf (2017) or Bodnar et al.

(2021)). As for (A1), it is empirically and intuitively justified, there does

not exist an asset return with infinite mean, if so, the whole market would

converge to that asset. If the mean would be negative enough then, in a

limiting case, the asset will not survive in the market as no investor would

invest in it. As for (A2), it covers the fluctuations of classes of asset returns

along the axis of their eigenvectors. The eigenvectors are in turn a rotation

to make the assets uncorrelated. The assumption (A3) is due to the fact

that CSN model depends on several parameters and can be interpreted as

the skewness for each individual asset in the portfolio needs to be bounded,

it can not grow with n or p. It is merely a technicality since infinite skewness

has little economical interpretation.
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Let X
a.s.→ x denotes almost sure convergence of a random variable X to a

quantity x and X
d→ F denotes convergence in distribution. Define L = {z :

zi < ∞ ∀ i = 1, 2, ..., p, z⊤1p < ∞} as a feasible set of linear combinations.

Assuming that l ∈ L, we limit the investor to choose the combinations to

make inference of. This is a technicality since in most practical applications

especially in higher dimensions, the vector l will be sparse. In the following

theorem, we present results for θ̂ in the high-dimensional setting.

Theorem 3.4. Let X ∼ CSN n,p;1,1(1n⊗µ⊤, In⊗Σ,1⊤
n ⊗e⊤, 0, v) with n > p

and Σ ≻ 0. Also, let l ∈ L. Then, under the assumptions (A1)-(A3), it holds

that

θ̂
a.s.→ 1

1− c
θ

and √
n− p

σ̃

(
θ̂ − 1

1− p/n
θ

)
d→ N (0, 1)

with

σ̃2 =
α−2

(1− c)2

[
2 (αθ)2 + l⊤Σ−1l

(
(1− c) + (µ− rf1p)

⊤Rl(µ− rf1p)
)]

for p/n → c ∈ (0, 1) as p → ∞ and n → ∞.

Proof. From Theorem 3.2 we know that

θ̂
d
= α−1n− 1

ξ

l⊤Σ−1z̄+ t0

√√√√ l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1

 (3.17)

where ξ ∼ χ2
n−p, t0 ∼ t(n−p+1, 0, 1), and z̄ ∼ CSN p,1(µ−rf1p,

1
n
Σ, ne⊤, 0, v);

moreover, ξ, t0 and z̄ are mutually independent.

Through the properties of the χ2-distribution we have that

ξ

n− p
a.s.→ 1 (3.18)

for p/n → c ∈ (0, 1) as p → ∞ and n → ∞ (Bodnar and Reiß, 2016, Lemma

3). From Proposition 2.1 of Domı́nguez-Molina et al. (2007) we have that z̄
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permits the following stochastic representation

z̄
d
= µ− rf1p +

(
nΣ−1 +

n2

v
ee⊤

)−1/2

z̃+
Σe√

v + ne⊤Σe
|z̃0|

= µ− rf1p +
1√
n

(
Σ− Σee⊤Σ

v
n
+ e⊤Σe

)1/2

z̃+
Σe√

v + ne⊤Σe
|z̃0|,(3.19)

where z̃ ∼ Np(0, Ip), z̃0 ∼ N (0, 1) and they are independently distributed.

We would note that in the last equality we used the Sherman-Morrison in-

version formula (Sherman and Morrison (1950)). From (3.19), under the

assumptions (A1)-(A3), we obtain that

l⊤z̄
a.s.→ l⊤(µ− rf1p) (3.20)

for p/n → c ∈ (0, 1) as p → ∞ and n → ∞.

Therefore, through (3.18), (3.20) and assumptions (A1)-(A3), we get

θ̂
d
= α−1n− 1

n− p

1

ξ/(n− p)

l⊤Σ−1z̄+ t0

√√√√ l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1


d→ 1

1− c
θ.

Since convergence in distribution to a point implies convergence almost surely,

we receive, through the continuous mapping theorem (Billingsley (2013)),

that the one dimensional objects in (3.17) converge to their desired compo-

nents. The first part of the theorem is shown.

Next, we derive the high-dimensional asymptotic distribution of θ̂. For

sufficiently large n and p, through the stochastic representation θ̂ given in
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Theorem 3.2, we have that

√
n− p

(
θ̂ − 1

1− p/n
θ

)

d
=

√
n− p

α−1n− 1

ξ

l⊤Σ−1z̄+ t0

√√√√ l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1

− α−1

1− p/n
l⊤Σ−1(µ− rf1)


≈ α−1

ξ/(n− p)

√
n− p

1− p/n

l⊤Σ−1

(
z̄− ξ

n− p
(µ− rf1p)

)
+ t0

√√√√ l⊤Σ−1l · z̄⊤Rlz̄

n− p+ 1

 .(3.21)
Furthermore, by (3.19) we have that

z̄− ξ

n− p
(µ− rf1p) =

(
ξ

n− p
− 1

)
(rf1p − µ) +

1√
n

Σ− Σee⊤Σ
v
(n

+ e⊤Σe

1/2

z̃

+
Σe√

v + ne⊤Σe
|z̃0|. (3.22)

From Bodnar and Reiß (2016, Lemma 3) we have that

√
n− p

(
ξ

n− p
− 1

)
d→ N (0, 2)

and, therefore, it holds that

√
n− pl⊤Σ−1

(
z̄− ξ

n− p
(µ− rf1p)

)
d→
√
2l⊤Σ−1 (µ− rf1) z̃1+

√
1− cl⊤Σ−1/2z̃,

where we used the fact that −z̃1
d
= z̃1 if z̃1 ∼ N (0, 1) and that the depen-

dence on z̃0 vanishes asymptotically. By assumptions (A1)-(A3) together

with (3.22) it holds that

z̄⊤Rlz̄
P→ (µ− rf1p)

⊤Rl(µ− rf1p).
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Thus, we have that (3.21) converges in distribution towards

α−1

1− c

√2l⊤Σ−1 (µ− rf1) z̃1 +
√
1− cl⊤Σ−1/2z̃

+
√
l⊤Σ−1l

√
(µ− rf1p)⊤Rl(µ− rf1p)z̃2

, (3.23)

where z̃ ∼ Np(0p, Ip), z̃1 ∼ N (0, 1), and z̃2 ∼ N (0, 1); moreover, z̃, z̃1 and

z̃2 are mutually independently distributed. Evaluating the variance of (3.23)

we receive the desired statement. The theorem is proved.

4 Simulation study

In this section, we will investigate how well the high-dimensional asymptotic

distribution approximates the finite-sample distribution given by Theorem

3.4 and 3.2, respectively. A number of parameters are simulated to analyze

it. The following setup for the simulation study is applied. We set α = 2,

rf = 0.01 and v = 3. For each combination of n ∈ {50, 120, 250, 500} and

c ∈ {0.1, 0.3, 0.7, 0.9}, we

1. simulate a random matrix Y of size p × n with entries following a

centered normal distribution with standard deviation 0.2 and fix Σ =

YY⊤;

2. simulate the elements of the mean vector µ according to µj ∼ U(−0.1, 0.1),

j = 1, 2, . . . , p;

3. simulate the elements of the skewness parameter e from a standard

t-distribution with 5 degrees of freedom;

4. simulate 104 observations from the sampling distribution of θ̂ given by

Theorem 3.2.

In Figure 1 we compare the quantiles of the empirical sampling distribution

and its high-dimensional asymptotic distribution for the different cases of

n ∈ {50, 120, 250, 500}. We can see that for small values of c (the two first
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(a) n = 50 (b) n = 120

(c) n = 250 (d) n = 500

Figure 1: QQ-plot of realisations of θ̂. In this Figure, we compare the empir-
ical distribution to its theoretical high dimensional asymptotic distribution.
On the right hand, we display the quantity cn = p/n for each simulated sce-
nario.

rows of each subfigure), the approximation works well. The only occasion

where the approximation does not seem sufficient, is for n = 50. However,

for larger values of n it does not seem to be an issue. For c closer to 1 the

asymptotic distribution fails to account for the tails and there are a number

of explanations for this. The effective sample size is very small since the

number of parameters we need are estimating is large. In each scenario we

are estimating p quantities in the mean vector and p(p−1)/2 elements of the

covariance matrix to construct the tangency portfolio.

5 Conclusions

In this paper, we investigated the implications of skewness on the sample TP

weights within the context of the CSN distribution. Using the finite-sample
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distribution we computed the first two moments of the TP weights. Through

these, we can see that skewness has implications on the estimated TP. They

are biased, which means that the investor doesn’t hold the correct portfolio,

on average. If returns are CSN distributed then holding the sample TP

implies that the investor holds the wrong portfolio. In the high-dimensional

asymptotic setting, the TP is especially sensitive to the concentration ratio,

the ratio between the number of assets and the number of observations used

to estimate the parameters. If the concentration ratio is close to one, then our

portfolio weights are extremely biased. This is common in high dimensional

asymptotics, see e.g. Karlsson et al. (2020).
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Appendix

In this section we state some results necessary for deriving the results in this

paper.
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Lemma 5.1. Let X ∼ CSN n,p;1,1(1n ⊗µ⊤, In ⊗Σ,1⊤ ⊗ e⊤, 0, v) with n > p

and Σ ≻ 0. Also, let z̄ := x̄ − rf1p, where x̄ = X⊤1p/n. Furthermore, let

µ̃ := µ− rf1p and B be a p× p symmetric matrix. It then holds that

E
[
z̄⊤Bz̄

]
= µ̃⊤Bµ̃+

tr(ΣB)

n
+ 2

√
2

π

e⊤ΣBµ̃

(v + ne⊤Σe)1/2
. (5.1)

Proof of Lemma 5.1. From the properties of the trace we have that

E
[
z̄⊤Bz̄

]
= E

[
tr
(
z̄⊤Bz̄

)]
= E

[
tr
(
Bz̄z̄⊤

)]
= tr

(
BE

[
z̄z̄⊤

])
= tr (BVar(z̄)) + tr

(
BE [z̄] E [z̄]⊤

)
.

Using the moments from (3.1), we receive the desired results.
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