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Abstract

The main contribution of this paper is the derivation of the asymptotic behaviour
of the out-of-sample variance, the out-of-sample relative loss, and of their empirical
counterparts in the high-dimensional setting, i.e., when both ratios p/n and p/m
tend to some positive constants as m — oo and n — oo, where p is the portfolio
dimension, while n and m are the sample sizes from the in-sample and out-of-
sample periods, respectively. The results are obtained for the traditional estimator
of the global minimum variance (GMV) portfolio, for the two shrinkage estimators
introduced by Frahm and Memmel (2010) and Bodnar et al. (2018), and for the
equally-weighted portfolio, which is used as a target portfolio in the specification
of the two considered shrinkage estimators. We show that the behaviour of the
empirical out-of-sample variance may be misleading is many practical situations.
On the other hand, this will never happen with the empirical out-of-sample relative
loss, which seems to provide a natural normalization of the out-of-sample variance
in the high-dimensional setup. As a result, an important question arises if this risk
meagsure can safely be used in practice for portfolios constructed from a large asset
universe.



1 Introduction

Mean-variance analysis of Markowitz is a well established tool for optimal portfolio se-
lection which is one of the most popular approaches today in financial literature (see,
e.g., Markowitz (1952), Markowitz (1959), Britten-Jones (1999), Ao et al. (2019), Bod-
nar et al. (2021d), Ding et al. (2021)). The idea behind the approach is to invest in
the portfolio which has the smallest variance for a given level of the expected return. In
the limiting case of the fully risk-averse investor, the so-called global minimum variance
(GMYV) portfolio is selected. The latter portfolio possesses the smallest variance among
all mean-variance optimal portfolios and lies on the vertex of the efficient frontier which
is a parabola in the mean-variance space (see, Merton (1972), Kan and Smith (2008),
Bodnar and Schmid (2009)).

One of the important challenges, which arise when the Markowitz theory is imple-
mented in practice, is related to the estimation error which appears when unknown pa-
rameters of the data-generating process are replaced by their sample counterparts in the
expressions of the optimal portfolio weights (see, Okhrin and Schmid (2006), El Karoui
(2010), Cai et al. (2020), Bodnar et al. (2021e), Bodnar et al. (2021a)). The impact of the
parameter uncertainty on the performance of optimal portfolios is usually comparable to
or even larger than the one described by the model uncertainty which is determined by us-
ing the covariance matrix in Markowitz optimization problem. Moreover, the estimation
error present in an estimator of the mean vector has even a larger influence on the per-
formance of optimal portfolios than the error related to the estimation of the covariance
matrix (see, e.g., Merton (1980), Best and Grauer (1991), Chopra and Ziemba (1993)).
This is usually used in financial literature as an argument to hold the GMV portfolio
whose weights only depends on the covariance matrix(Chan et al. (1999), Jagannathan
and Ma (2003), Frahm and Memmel (2010), Bodnar et al. (2021b)).

Let y denote the k-dimensional vector of the asset returns and let p = E(y) and
3 = Var(y) be its mean vector and covariance matrix. Then the expected return and
the variance of the portfolio with the weights w are given by

R, = w'p  and Vo = w'Ew,

respectively. The weights of the GMV portfolio are found by minimizing V), given that
the whole investor wealth is invested in the selected assets, i.e., under the constraint
w1 =1 where 1 denotes the p-dimensional vector of ones. They are given by

11
WaeMv = 1Ty-11° (1.1)

while the variance of the GMV portfolio is expressed as

1

T (1.2)

Veamy = Wy SwWeny =

We refer to wapsy and Vgagy as the population weights and the population variance of

the GMYV portfolio, since they both depend on the unknown parameter 3 of the data-

generating model. It has to be noted that Vg, is also called the in-sample variance in
financial literature (see, Frahm and Memmel (2010)).

In practical applications, the population GMV portfolio cannot be constructed since

its weights w1 depend on the unobservable quantity 3. Given historical realizations of



the asset returns, yi,...,yn, the population covariance matrix is estimated by its sample
counterpart expressed as

1 & ~ B ) B 1>
Sn = Z(Yz - Yn)(YZ - Yn>T with Yn=— ZyZ'- (13)
n—1 i=1 n =

Then, the traditional GMV portfolio is determined as the sample estimator of wgav

where the unknown X is replaced by S, i.e.,
S, 1

17S;'1

A~

Wn:s = (14)
If the portfolio dimension p is considerably smaller than the sample size n, then S,
consistently estimates 3 under weak conditions imposed on the data-generating model
of the asset returns and, consequently, the traditional GMV portfolio provides a good
approximation of the population GMV portfolio.

The situation is completely different in the high-dimensional setting when the portfolio
dimension is comparable to the sample size such that p/n — ¢ € [0,1) as n — oo where
the constant c is called the concentration ratio (see, Bai and Silverstein (2010), Bodnar
et al. (2019a)). In this case the sample covariance matrix S,, is not longer a consistent
estimator for 3. As a result, the traditional GMV portfolio might deviate considerably
from the population GMV portfolio. In order to ensure a good performance of the holding
portfolio, the weights of the traditional GMV portfolio have to be adjusted by taking the
parameter uncertainty into account (see, e.g., Jagannathan and Ma (2003), Bodnar et al.
(2019b), Ao et al. (2019), Cai et al. (2020), Ding et al. (2021)).

In order to define an improved estimator of the high-dimensional GMV portfolio,
i.e., when p is comparable to n, the optimization problem has to be formulated. As a
performance measure, the out-of-sample variance is usually used which is given by

Vi, = W, Zw,,, (1.5)

where w,, is an estimator of wgysy based on the asset returns yq,...,y,. Alternatively,
one can use the out-of-sample relative loss

‘/\?vn - VGMV

L, = =1"'S 1w Zw, — 1, (1.6)

Vemv
as a performance measure. By definitions of V5, and Ly, , one directly gets that the
portfolio which minimizes the out-of-sample variance also minimizes the out-of-sample
relative loss and vice versa.

Unfortunately, due to the presence of ¥ in (1.5) and in (1.6), both the performance
measures can only be used in theoretical derivations or in the comparison study based
on the simulated data where the covariance matrix X is known. In practice, X is usually
replaced by its estimator S, ,, constructed by using the asset returns y,ii,...,¥n+m
from time n + 1 to n + m and defined by

1 n—+m - - ) - 1 n+m

Sn—l—l:n—l—m = m Z (yi_Yn+1:n+nz)(Yi_Y7L+1:n+m)T Wlth Yot+intm = E Z Y.
i=n+1 i=n+1

(1.7)



Consequently, the out-of-sample variance and the out-of-sample relative loss are replaced
by the sample counterparts, the so-called empirical out-of-sample variance and the em-
pirical out-of-sample relative loss expressed as

~

Vvirn;m - W;Sn+1:m+1wn7 (18)
and
2 V\?v —(1-c 71‘771 n+m;
Lwn;m = ( C)A Hhntmi GV = (1_6)1TS'r_L—&1—1:m+11VAV:L—STL+11m+1Wn_ ]-7 (19)

(1— 6)71Vn+1:n+m;GMV
respectively, with p/m — ¢ as m — oo. In (1.9), (1 — 5)Vn+1;n+m;GMv is a consistent
estimator for Vgpv in the high-dimensional setting (see, Lemma 1.3 in Bodnar et al.
(2021e)).

We contribute in this paper by deriving the asymptotic behaviour of the out-of-sample
variance, of the out-of-sample relative loss, and of their empirical counterparts in the high-
dimensional setting, i.e., when p/n — ¢ as n — oo and p/m — ¢ as m — oo. The results
are obtained for the sample estimator (1.4) of the GMV portfolio (1.1), for two shrinkage
estimators introduced by Frahm and Memmel (2010) and Bodnar et al. (2018), and for the
equally-weighted portfolio, which is used as a target portfolio in the specification of the
considered two shrinkage estimators. We show that the empirical out-of-sample variance
might tend to zero independently of chosen estimator of the GMV portfolio, which make
hard to distinguish between the estimators in practice. In contrast, the empirical out-
of-sample losses of the considered estimators of the GMV portfolio tend to deterministic
finite quantities. As such, a decision about the ranking of the estimators can be drawn.
Moreover, one needs milder conditions for the derivation of the asymptotic properties
of the empirical out-of-sample relative loss in comparison to the empirical out-of-sample
variance, which is an additional advantage for the application of the former in practice.

Statistical methods used in the derivation of improved estimators of optimal portfolio
weights and of the performance measures are closely related to the approaches applied
in statistical signal processing. In particular, the GMV portfolio is linked to the Capon
or minimum variance spatial filter in signal processing literature (see, e.g., Verdu (1998),
Van Trees (2002)). Rubio et al. (2012), Yang et al. (2018), Li et al. (2004) studied the
estimation risk in the case of the high-dimensional minimum variance beamformer, while
Mestre and Lagunas (2006) investigate the finite-sample size effect on minimum variance
filter. Zhang et al. (2013) discuss the improved estimation of the inverse covariance matrix
from signal processing perspectives. Finally, applications of random matrix theory to
signal processing and portfolio optimization are provided in Feng and Palomar (2016),
among others.

The rest of the paper is structured as follows. In Section 2, the asymptotic behaviour
of the out-of-sample variance and of the out-of-sample relative loss is established for the
traditional sample estimator and for the two shrinkage approaches. Section 3 presents the
corresponding results in the case of the empirical performance measures. The results of a
comprehensive simulation study are provided in Section 4, while the theoretical findings
are implemented to real data in Section 5. Concluding remarks are drawn in Section 6.
The proofs of the theoretical results are postponed to the appendix (Section 7).



2 QOut-of-sample variance and relative loss

Let the vector of asset returns, yi,...,¥n, Ynil, ---, Ynem be independent and identically
distributed with the following stochastic representation

ye=p+ XV, (2.1)

where the components of x; are independent and identically distributed with zero mean,
unit variance, and finite 4 + ¢ moments for some ¢ > 0. No specific distributional as-
sumptions are imposed on the components of x;,. The symbol X'/2 denotes the square
root of a positive definite matrix X, i.e., ¥ = XY/2(X!/2)T, Finally, we note that only y;,
t=1,...,n + m, are observable, while pu, 3, and x;, t = 1,...,n + m, are all unknown.

Depending on the performance measure different assumptions on the covariance ma-
trix 3 and on the weights b of the target portfolio are imposed. They are summarized
as follows:

(A1) The variance of the GMV portfolio Vv as given in (1.2) is uniformly bounded
in p.

(A2) The variance of the target portfolio 13, = b' Xb is uniformly bounded in p.

(A3) The relative loss of the target portfolio

W —Vouv

Ly = =1"2"11b"Sb -1,

Vamv

is uniformly bounded in p.

The considered assumptions are very general and are fulfilled in many applications.
For instance, all three assumptions are fulfilled when the eigenvalues of ¥ are uniformly
bounded in p and the Fuclidean norm of the target vector b is uniformly bounded in p.
Assumptions (A1) and (A2) will be needed when the out-of-sample variance (1.5) and
its empirical counterpart (1.8) are analyzed, while Assumption (A3) is required only in
the case of the out-of-sample relative loos (1.6) and of the empirical out-of-sample relative
loss (1.9). This is not surprising, since the relative loss functions are already normalized
and for that reason less restrictive assumptions are needed to study their asymptotic
behaviour. Furthermore, the normalization constant does not depend on an estimator of
the GMV portfolio weights and thus, the normalization has no impact on the selected
estimator.

Two shrinkage estimators for the GMV portfolio weights were derived in Frahm and
Memmel (2010) and Bodnar et al. (2018), and they are given by

Wn;FM = OA[n;FMVAVn;S + (1 - &n;FM)b (22)
with
. p—3 Tq-11RhT -1
ey =1——L"2 (17Ts"1bTS,b—1) . 2.3
An; F M n—pt2 ( n ) ( )
and
Wn;BPS = dn;BPSwn;S + (]- - dn;BPS)b (24)
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with

PR Ul 0 ((1—p/n)17S;'1b7S,b 1)
MEPS T pin+ (1= p/n) (1 —p/n)17S;11bTS,b — 1)’

(2.5)

respectively.

Next, we present the asymptotic behaviour of the out-of-sample variance (Theorem
2.1) and of the out-of-sample relative loss (Theorem 2.2) calculated for the sample esti-
mator Ww,.s of the GMV portfolio weights and for two shrinkage estimators W,,.ry; and
Wp.pps In the high-dimensional setting. The proofs of the theorems are given in the
appendix. To this end, we note that the out-of-sample variance and the out-of-sample
loss of the target portfolio b are, by definition, expressed as

Vb, =b'Eb (2.6)
and
Vi
Ly=—2--1=1"%""1b'%b -1, (2.7)
VG]V[V
respectively.

Theorem 2.1. Lety;, t = 1,...,n follow model (2.1). Then,

(i) under Assumption (A1), for the out-of-sample variance of the sample GMV port-
folio W,.s it holds that

‘VWR;S - (1 - C)ilvGMV (E) 07 (28)

(ii) under Assumptions (A1) and (A2), for the out-of-sample variance of the shrinkage
GMYV portfolio W,.pps it holds that

C a.s.
‘Vv“vaps — (VGMV + OéQBPSmVGMV + (1 —apps)* (Vb — VGMV))’ =0 (2.9)

with
(1 - C) Lb

c+(1—c)Lp’ (210)

apps =

(111) under Assumptions (A1) and (A2), for the out-of-sample variance of the shrinkage
GMYV portfolio W par it holds that

c a.s.
‘VWn;FNI - (VGMV + a%Mli_CVGMV + (1= arm)* (Vb — VGMV)) =50 (2.11)
with
arp=1— (11— Ly+1)—1)"t = Lo (2.12)
l1—c Ly +c’

for p/n — c€ (0,1) as n — oo.

Theorem 2.2. Lety;, t = 1,...,n follow model (2.1). Then,
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(i) for the out-of-sample relative loss of the sample GMV portfolio W,.s it holds that

C
Wn.s
n;S 1_C

a.s.

30, (2.13)

i

(7i) under Assumption (A3), for the out-of-sample relative loss of the shrinkage GMV
portfolio Wy.gpps it holds that

%0, (2.14)

C
‘LWn;BPS - (04231351_6 +(1- O‘BPS)ZLb>

(11i) under Assumption (A3), for the out-of-sample relative loss of the shrinkage GMV
portfolio Wy.par it holds that

50, (2.15)

C
‘Lwn;FJ\/I - <a§7M1_C + (1 - CVFM)sz>

for p/n — ¢ € (0,1) as n — 0o where agps and apy are given in (2.10) and (2.12),
respectively.

The findings of Theorem 2.2 shows that the relative loss of shrinkage portfolios is
present as a linear combination of the relative loss of the corresponding target portfolio
and of the limiting relative loss of the traditional GMV portfolio. The relative loss of the
traditional GMV portfolio W, s tends to a constant ¢/(1 — ¢) that does not depend on
the covariance matrix of the asset returns. Moreover, if ¢ tends to 1, then the relative
loss of the traditional GMV portfolio tends to infinity showing that the impact of the
estimation error could be drastically large in the high-dimensional setting. Furthermore,
using (2.10) and (2.12) the limiting values of relative loss computed for two shrinkage
estimators can be rewritten as

2 2
9 c 9 L c c
—— + (1 - Ly, =
My + (1 — apm) Ly (c+Iy?l—c + (c+ Lu)?

Ly (2.16)

for the shrinkage estimator of Frahm and Memmel (2010) and

. e ) (1-0)L} c?
g I — L 2.1

for the shrinkage estimator of Bodnar et al. (2018). As a result, expressions (2.16) and
(2.17) show that the out-of-sample relative loss of the shrinkage estimator (2.2) tends to
infinity as ¢ approaches one, similarly to the traditional estimator W,.s, while the out-
of-sample relative loss of the shrinkage estimator (2.4) tends to the relative loss of the
target portfolio when ¢ tends to one.

The results of Theorem 2.2 lead also to some dominance statements presented Corol-
lary 2.3 in terms of the out-of-sample relative loss. Due to the relationship between the
out-of-sample variance and the out-of-sample loss the same statements also hold for the
out-of-sample variance by using the findings of Theorem 2.1.

Corollary 2.3. Lety;, t = 1,...,n follow model (2.1). Then, under Assumption (A3) it
holds that



2 L L
C£>_C(C‘i‘ b t¢C b>20,f0r£—>66(071)03n_>00’
n

L o
w12 0) (e + Ly)?

—L

Wn;S

with equality if and only if c = 0 or Ly = 00, t.e., when the sample size is consid-
erably larger than the portfolio dimension or the target portfolio deviates too strong
from the true GMV portfolio;

(i)

) as ¢ Zof0r8—>ce(0,1)asn—>oo,
n

Ly Wn;BPS (1 _ C)(c + (1 — C)Lb)

n;S

with equality if and only if c = 0 or Ly, = 00, i.e., when the sample size is consid-
erably larger than the portfolio dimension or the target portfolio deviates too strong
from the true GMYV portfolio;

(iii)

4712
I a.s c Lb

L Wipps 7 (I1—=c)(c+ Lp)?(c+ (1 —c)Lp)

Wrar 20f0r%—>c€(0,1) as n — 0o,
with equality if and only if c=0 orc >0, Ly, =0 or ¢ > 0, Ly, = 00, i.e., when the
target portfolio coincides with the true GMYV portfolio or the target portfolio deviates
too strong from the true GMYV portfolio when the concentration ratio is positive.

The findings of Corollary 2.3 show that the shrinkage estimator of Bodnar et al.
(2018) outperforms the other two estimators, while the shrinkage estimator of Frahm
and Memmel (2010) is always better than the sample estimator W,.s. The exception
is present when the sample size n is considerably larger than the portfolio dimension p
such that the concentration ratio is equal to zero or when the target portfolio is very
poorly chosen such that its relative loss is infinity. In the latter situation, the investor
might consider a different target portfolio in order to get the advantage of the shrinkage
approaches over the sample estimator. Interestingly, when the target portfolio coincide
with the population GMV portfolio, then both shrinkage estimators perform similarly.

3 Empirical out-of-sample variance and relative loss

The results of Theorems 2.1 and 2.2 cannot be used in practice, since the definitions
of both the out-of-sample variance and the out-of-sample relative loss depend on the
unknown population covariance matrix 3. As a result, different portfolio strategies are
compared between each other based on the empirical counterparts of the out-of-sample
performance measures as presented in (1.8) and (1.9), respectively, where the sample of
the asset returns y,, 11, ..., Ynem is used to construct an estimator of the covariance matrix
denoted by S, 41.nem as in (1.7).

In Theorems 3.1 and 3.2 we derive the asymptotic properties of the empirical out-
of-sample variance and of the empirical out-of-sample relative loss computed for the
four portfolios discussed in Section 2. The proofs of the theorems are presented in the
appendix. It is remarkable that the results of Theorems 3.1 and 3.2 are deduced under



the same conditions as given in the statements of Theorems 2.1 and 2.2, even though
additional randomness is taken into account in the derivations of the results. Moreover,
both the empirical out-of-sample variances and the out-of-sample relative losses converge
to the same limiting values as given in Theorems 2.1 and 2.2.

Theorem 3.1. Lety;, t = 1,...,n+m follow model (2.1). Then,

(i) under Assumption (A1), for the empirical out-of-sample variance of the sample
GMYV portfolio W,.s it holds that

~

VWn;S§m - (1 - C)_IVGMV‘ (L;S}. 07 (31)

(i1) under Assumption (A2), for the empirical out-of-sample variance of the target port-
folio b it holds that

~

Vi — V| 30, (3.2)

(11i) under Assumptions (A1) and (A2), for the empirical out-of-sample variance of the
shrinkage GMYV portfolio W,.pps 1t holds that

~

C a.s.
Vv"vn;Bps;m - <VGMV + &%PST — CVGMV + (1 — OéBps)2(Vb — VG’MV))‘ $ O, (33)

with apps as in (2.10),

(iv) under Assumptions (A1) and (A2), for the empirical out-of-sample variance of the
shrinkage GMYV portfolio W,.par it holds that

~

c a.§.
Virmarim — (VGMV + Q%MEVGMV + (1 —apm)* (Vo — VGMV)) =0, (3.4)

with apy as in (2.12),
for p/n —c€ (0,1) and p/m — ¢ € (0,00) as n — oo.
Theorem 3.2. Lety;, t =1,...,n+m follow model (2.1). Then,

(i) under Assumption (A3), for the empirical out-of-sample relative loss of the sample
GMYV portfolio W,.s it holds that

~ C
LWn;S;"n -

=30 (3.5)

1—c¢

(7i) under Assumption (A3), for the empirical out-of-sample relative loss of the target
portfolio b it holds that

~

Lin — Lp| ©3 0, (3.6)

(7ii) under Assumptions (A3), for the empirical out-of-sample relative loss of the shrink-
age GMYV portfolio W,.pps it holds that

30, (3.7)

N c
LWn;BPs;m - (O‘QBPSl_C + (1 - O‘BPS)QLb)

with agps as in (2.10),



(iv) under Assumptions (A8), for the empirical out-of-sample relative loss of the shrink-
age GMYV portfolio W,,.par it holds that

T C O
L, parm = (a%‘M .t (1- aFM)QLb> ‘ =0, (3.8)

with apy as in (2.12),

forp/n — c € (0,1) and p/m — c € (0,1) as n,m — 0.

~

Since the empirical out-of-sample losses Ewn:s;m, Ly, 5psms and IA/VAV”: »ar:m DOssess the
same high-dimensional asymptotic behaviour as the corresponding out-of-sample losses
L, s» L, pps» and L in Theorem 2.2, the results of Corollary 2.3 remain also valid.
Namely, we get

Wi FM

Corollary 3.3. Let y;, i = 1,...,n + m follow model (2.1). Then, under Assumption
(A3) it holds that

(i)

: P ey Clet ytcly)
B _p. >0
n;Sim n;FM;m 1 — C) (C —|— Lb>2 -

for p/n — c € (0,1), p/m — ¢ € (0,1) as n,m — oo, with equality if and only if
c=0 or Ly = 00, i.e., when the sample size is considerably larger than the portfolio
dimension or the target portfolio deviates too strong from the true GMYV portfolio;

(i)

62

[A/‘x, - Lw CL_% =0
n;S;m n;BPS;m (I1—c¢)(c+(1—c)Ly) —

for p/n — c € (0,1), p/m — ¢ € (0,1) as n,m — oo, with equality if and only if
c =0 or Ly = 00, i.e., when the sample size is considerably larger than the portfolio
dimension or the target portfolio deviates too strong from the true GMV portfolio;

(iii)
R ALE

Le ~La 3 >0
n; FM;m n;BPS;m (1 _ C)(C + Lb>2(c + (1 o C)Lb) -

for p/n — c € (0,1), p/m — ¢ € (0,1) as n,m — oo, with equality if and only if
c=0o0rc>0,L,=0o0rc>0, Ly, =00, i.e., when the target portfolio coincides
with the true GMYV portfolio or the target portfolio deviates too strong from the true
GMYV portfolio when the concentration ratio is positive.

Corollary 3.3 provides the limiting behaviour of the differences of the empirical out-
of-sample losses and, consequently, the same ranking between the three estimators of
the GMV portfolio weights as previously obtained in Corollary 2.3. Furthermore, the
difference between the asymptotic behaviour of the three estimator is negligible only
when the concentration ratio is zero, i.e., the portfolio size is considerably smaller than
the sample size, or when the target portfolio is poorly chosen such that its relative loss
becomes infinity.

10
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Figure 1: Asymptotic differences between the empirical out-of-sample relative losses limits
from Corollary 3.3 for ¢ € (0,1) and L; € (0,50).

The asymptotic differences between the relative losses of these three estimators are
depicted as functions in ¢ € (0,1) for several values of Ly, € (0,50) in Figure 1. Larger
differences are observed when the shrinkage estimator of Bodnar et al. (2018) is compared
to the traditional estimator and the shrinkage estimator of Frahm and Memmel (2010),
especially when c is close to one. On the other side, the asymptotic difference between
the empirical out-of-sample relative loss functions computed for the traditional estimator
and the shrinkage estimator of Frahm and Memmel (2010) is large only when L; is close
to zero, i.e., when the target portfolio b is close to the true population GMV portfolio.

4 Simulation study

In this section we will investigate the finite sample behaviour of the high-dimensional
asymptotic results presented in Corollary 3.3 via an extensive Monte Carlo study. The
aim of the study is twofold: (i) first, we investigate how fast the difference of the empirical
out-of-sample relative loss functions tend to the corresponding limiting value provided in
the statement of Corollary 3.3; (ii) second, we study the impact of the presence of linear
and non-linear time dependence in the data-generating model on the performance of the
three considered trading strategies.

For each fixed value of the portfolio size p we first simulated the elements of the mean
vector p as p; ~ U(—0.1,0.1), i = 1,2, ..., p and the elements of the covariance matrix X
using the RandCovMtrx function from the HDShOP package (Bodnar et al. (2021¢)). Then

11



these values were used in simulating samples of the asset returns from the following three
data-generating models:

Scenario 1: t-distribution The elements of x; are drawn independently from the ¢-
distribution with 5 degrees of freedom, that is z4; ~ t(5) for j = 1,...,p, while y,
is constructed according to (2.1). Moreover since the variance of the t-distribution
with 5 degrees of freedom is equal to 5/3 we, additionally multiply the vector x; in

(2.1) by /3/5. As such, all \/3/5z;; have mean zero and variance one.

Scenario 2: VAR model The vector of asset returns y; is simulated according to a
yi=p+T(y, 1 —p)+ %%, with x, ~ N,(0,1)

for t = 1,...,n +m, where I' = diag(y1, 72, .., Vp) with 73 ~ U(—0.9,0.9) for i =
1,....,p. We note that in the case of the VAR model, the covariance matrix of y;
is computed as vec(Var(y)) = (I =T ® I')"'vec(X) where vec denotes the vec
operator. This matrix is used in the computation of the limiting differences from
Corollary 3.3.

Scenario 3: CCC-GARCH model of Bollerslev (1990) The asset returns are sim-
ulated according to

Vi3 ~ Np(l"l’a )

where the conditional covariance matrix is specified by
3, = D;’CD,”? with Dy = diag(h1s, hoy, ..., hyy),
with
hie = ajo+ aji(yje1 — p;)° + Binhje1, for j=1,2,...p, and t =1,2, ..n+m.

The coefficients of the CCC-GARCH model are generated by «;; ~ U(0,0.1) and
Bi1 ~ U(0.6,0.7) which implies that the stationarity conditions, a1+ ;1 < 1, are
always fulfilled. The intercepts a;o, j = 1,...,p is thereafter chosen such that the
unconditional covariance matrix is equal to X.

The model under scenario 1 fulfills the assumptions imposed in Section 2 by drawing
the vector x; independently each of other. In contrast, scenarios 2 and 3 possess some
time dependence structure, thus violating the assumption imposed on the data-generating
model in Section 2. While the VAR model from scenario 2 is used to investigate the
performance of three portfolio selection strategies when the asset returns y; are assumed
to be autocorrelated, a more complicated non-linear time dependence structure is assumed
in scenario 3 which is accompanied with conditionally time-dependent covariance matrix
3. Finally, the equally weighted portfolio is used as a target portfolio in all scenarios.

In Figures 2 to 4 we present the relative differences of empirical out-of-sample losses as
considered in Corollary 3.3 divided by the corresponding asymptotic limit determined for
each difference in the statement of the corollary in the right hand-side of each inequality.
For each scenario we set n = {100, 250, 500, 750, 1000}, ¢ = {0.5,0.9} and ¢ = {0.5,0.9}.
The portfolio size p and the sample size m are thereafter determined by p = nc and in
turn m = p/é. If necessary we round to the closest integer. The results in the figures are
based on the 1000 independent repetitions and present the corresponding average values.
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Figure 2: Relative differences in the empirical out-of-sample losses divided by
the corresponding asymptotic lower bound as given in Corollary 3.3 for n =
{100, 250, 500, 750, 1000}, ¢ = {0.5,0.9} and ¢ = {0.5,0.9}. The samples of asset re-
turns are drawn following scenario 1.

Figure 2 depicts the results of the simulation study obtained under scenario 1. The
relative differences in the empirical out-of-sample losses converge quickly to one, indi-
cating that the results of Corollary 3.3 may also be used when samples of asset returns
of moderate size are used. As expected, the fastest convergence is observed in the case
¢ = ¢ = 0.5, while the largest deviations from one is present in the case of ¢ = 0.5 and
¢ = 0.9, when the sample size is small. Finally, we note that all computed values in the
plots are positive and, as such, the shrinkage estimator of Bodnar et al. (2018) outper-
forms the other two trading strategies followed by the shrinkage approach of Frahm and
Memmel (2010) in all of the considered cases.

In Figure 3 the results of the simulation study obtained under scenario 2 are present.
This scenario imposes linear time dependence structure on the vector of asset returns
and, thus, it breaks the model assumption that Corollary 3.3 is derived from. This can
also be seen in the computed relative differences of losses. In contrast to the values shown
in Figure 2 the empirical out-of-sample relative losses do not converge to one in Figure 3.
This indicates that the presence of linear time dependencies has an impact on the limiting
properties on the empirical out-of-sample loss functions. On the other hand, the relative
differences depicted in Figure 3 are all positive and thus the ranking between the three
estimation strategies remains unchanged. Moreover, the relative differences converge to
the values which are larger than one, meaning that the derived limiting values in Corollary
3.3 can still be employed as lower bounds.

Figure 4 illustrates the results of the simulation study under the last scenario. In this
setting the returns are simulated from a CCC-GARCH model which captures volatility
clustering and also introduces a non-linear time dependence structure in the vectors of
the asset returns. Similarly to scenario 2, the relative differences do not converge to
one, although the departure from one is considerably smaller as observed in the case

13
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Figure 3: Relative differences in the empirical out-of-sample losses divided by
the corresponding asymptotic lower bound as given in Corollary 3.3 for n =
{100, 250, 500, 750, 1000}, ¢ = {0.5,0.9} and ¢ = {0.5,0.9}. The samples of asset re-
turns are drawn following scenario 2.

of scenario 2. As such, a conclusion can be drawn that the presence of linear time
dependence structure has larger impact on the asymptotic behaviour of the empirical
out-of-sample losses than the non-linear one. Also, in scenario 3, the relative losses
converge to the values which are larger one and the computed values are all positive. As
such, the ranking between the three trading strategies is preserved and one can also us
the expression of the limiting values of Corollary 3.3 as the corresponding lower bounds
for the differences under the assumption of the CCC-GARCH model.

5 Empirical illustration

In the empirical application we use 10 years of daily data for 100 and 190 stocks included
in the S&P500 index from the first of June 2011 to the seventh of January 2021. During
the considered period of time, 380 stocks were continuously included in the the S&P500
index from which we randomly choose 100 and 190 stocks to build the GMV portfolio.
The first n = 200 observations were used to estimate the weights of the GMV portfolio
by employing the traditional estimator and the two shrinkage estimators introduced in
Section 2, while the next m = 200 observations were used to compute the values of the
empirical out-of-sample variances and the empirical out-of-sample relative loses for each
trading strategy. Then, using the rolling window approach the same computations are
subsequently performed over the time period from the fourteenth of February, 2013 to the
seventh of January 2021. As a target portfolio in the construction of the two shrinkage
estimator, the equally weighted portfolio was used.

Figure 5 depicts the values of the empirical out-of-sample variances and of the em-
pirical out-of-sample relative losses computed for three estimators of the GMV portfolio
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Figure 4: Relative differences in the empirical out-of-sample losses divided by
the corresponding asymptotic lower bound as given in Corollary 3.3 for n =
{100, 250, 500, 750, 1000}, ¢ = {0.5,0.9} and ¢ = {0.5,0.9}. The samples of asset re-
turns are drawn following scenario 3.

considered in the paper. The result are presented for two portfolio sizes which corre-
spond to ¢ = ¢ = 0.5 and ¢ = ¢ = 0.95. A considerable increase in both the empirical
out-of sample variances and losses of each estimator is observed in March 2020 which
corresponds to the crisis on international financial market caused by the beginning of
COVID-19 spread over the world. The rapid increase of volatility is more pronounced
in the case of the smaller dimensional portfolio, i.e., when p = 100. In the case of the
portfolio which is based on p = 190 stocks the jump in the values of the two consid-
ered performance measures is smoothed due to higher variability of these two measures
presented during the whole period of observation. Another rapid increase in the loss
functions for p = 100 occurs in late December 2020. This date can be related to the
second wave of the COVID-19 spread. Similar increases in the behaviour of the relative
loss function are also present for the portfolio consisting of p = 190 stocks, although they
are somehow hidden by the more volatile behavior of the loss function in the latter case.

In general, the results in Figure 5 confirms the ordering of the three trading strategies
which is deduced in Corollary 3.3 and confirmed in the finite-sample case in the simulation
study of Section 4. Namely, the shrinkage estimator of Bodnar et al. (2018) shows the
smallest values of both the empirical out-of-sample variance and the empirical out-of-
sample relative loss, while the shrinkage estimator of Frahm and Memmel (2010) is ranked
on the second place. On the other side, when the empirical out-of-sample variance is
used as a performance measure, the distinction between the strategies become visually
negligible in almost all cases presented for p = 100 and in majority of cases when the
portfolio with p = 190 is constructed. This empirical finding can be explained by noting
that most of the values of the empirical out-of-sample variance were computed during the
stable period on the capital market and as such, the true value of the global minimum
variance was very small at that time. In contrast, the usage of the empirical out-of-
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Figure 5: Empirical out-of-sample variance and out-of-sample relative loss of the the
traditional GMV portfolio and the two shrinkage estimators based on the rolling window

approach with window size equal 200 and computed for two portfolios which consist of
100 and 190 stocks traded in the S&P 500 index.

sample loss can lead to the obvious conclusion about the performance of each of the
considered three trading strategies. Finally, the impact of portfolio dimensionality which
is accompanied with a huge amount of estimation error becomes more pronounced when
the empirical relative loss is used, especially during the turbulent period on the capital
market.

6 Summary

The sample variance of the GMV portfolio is known to be biased and to significantly
underestimate the true population variance of this portfolio, especially when the portfolio
size is comparable to the sample size. In many practical situations it is not a good measure
for the portfolio performance and the out-of-sample variance is usually used instead.

In this paper we derive the asymptotic properties of the out-of-sample variance and
of the out-of-sample relative loss as well as of their empirical counterparts. Under weak
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conditions imposed on the data-generating model it is shown that the out-of-sample
variance and the empirical out-of-sample variance might tend to zero independently of
chosen estimator of the GMV portfolio weights, which can make the comparison between
the trading strategies intractable. This is not, however, an issue when the out-of-sample
relative loss and the empirical out-of-sample relative loss are used instead. In the latter
case a clear ordering between the estimators of the three considered estimator can be
made.

As a by product of the derived theoretical findings, we also prove that the shrink-
age estimator of Bodnar et al. (2018) outperforms the shrinkage estimator of Frahm and
Memmel (2010) and the traditional estimator of the GMV portfolio. Moreover, we quan-
tify the difference in the performance of the three trading strategies by deducing the
asymptotic difference of their empirical out-of-sample relative loss functions. Within a
comprehensive numerical study it is shown that the derive asymptotic limits can still be
used when the sample of moderate size is present and when the asset returns possess both
linear and non-linear time dependence structure.

7 Appendix

Proof of Theorem 2.1. (i) Tt holds that

17S; 13811

Ve (17S;11)? )

— %! ~ _
n;S Wn;SEWmS -

where (see, proof of Lemma 1.3 in Bodnar et al. (2021¢))

17S'2S 11 — (1 —¢) 7?1721 22 0,

17S; "1 — (1—¢) 172 11 %0,
for p/n — ¢ € (0,1) as n — oo. Combining these two results we get the first
statement of the theorem.
(ii) It holds that
V\?vn;Bps = (OAén;BPSVAVn;S + (1 - OAén;BPS)b)T X (OAén;BPSVAVn;S + (1 - CAYn;BPS>b>
= & ppsWa.sXWis + 2Gm;5ps(1 — Gupps)W,.g3b + (1 — du,pps)°b ' b,

where from part (i)

|VAV7-|;SEWn;S — (1 =) WVauv| 20 for p/n — c€ (0,1) as n — oco.
Moreover, we get (see, Theorem 2.1 in Bodnar et al. (2018))

(1 — C)Lb

A a.s.
On:BPS — QBps = ——— 7
" c+ (1 — C)Lb

and
1TS;12b as. (1—c¢)t

AT
g2b = = =V
Wi 17S-11  (1—o1Tx-11 oM

for p/n — c € (0,1) as n — co. Putting these results together we get the statement
of Theorem 2.1.(ii).
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(iii) The result of part (iii) follows from the proofs of parts (i) and (ii).
[

Proof of Theorem 2.2. The results of Theorem 2.2 follows from Theorem 2.1 and the
definition of the relative loss. O]

In the proofs of Theorems 3.1 and 3.2 we use the results of two technical lemmas
presented below. Let

— 1
Vl:n = *XlanT with Xl:n = <X17 ) Xn>7
n

1in
_ 1 . .
Vn+1:n+m = %Xn—i—l:n—i-mxn-s-l:n—km with Xn+1:n+m = (Xn—i-la X Xn+m)a
and define
1 no_ . _ 1
Vl:n = 7X1nXIn - 7X1:nxir;n with X1in = *Xlznln
n—1 n—1 n
and
1 m - 1

T — — —
Vn+1:n+m = m — 1Xn+1:n+an+1;n+m_m _ 1Xn+1:n+mxn+1;n+ma Xn+1lntm = EXn+1:n+m1m~
Then, we have
1/2 1/2 1/2 1/2
Sl:n =3 / Vl:nz / and Sn+1:n+m =X / Vn-l—l:n—‘rmz / . (71)

Lemma 7.1. Let & and 0 be two nonrandom wvectors with bounded Fuclidean norms.
Assume that m,n > 1. Then it holds that

€TV Voiinim V0 = (1= ) 9¢70] ¥ 0, (7.2)

and

€TV Viiinim® — (1-¢)'€70 %3 0, (7.3)

forp/n— c€(0,1) and p/m — ¢ € (0,00) as n — oo.
Proof of Lemma 7.1. It holds that
€V VeV, 10— (1—0) %616
< VI Vi V10— €TV 20| + €7V, 20 — (1) ¢ 6

)

where

€TV,20 — (1-¢c)%76) “3 0

for p/n — ¢ € (0,1) as n — oo by applying Lemma 1.3 in Bodnar et al. (2021e).
Furthermore, using the equality

— — 1 ntm — —
£V, Vit V0= — 3 xV, 106V, 'x;
j=n+1
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and the fact that v; 10£TV; ! possesses the bounded trace norm which is asymptotically

bounded by \/OTV;QH\/ﬁTfo, the application of Lemma 4 in Rubio and Mestre (2011)
leads to

’ETvglfvvn-i-l:n-me;lg — ETV;QO ai>. O,

for p/m — ¢ € (0,00) as m — oo for any large enough n. The second statement (7.3)
can similarly be proved. This completes the proof of the lemma. O

Lemma 7.2. Let & and 0 be two nonrandom wvectors with bounded Fuclidean norms.
Assume that m,n > 1. Then it holds that

€TV V10— (1— )6

%0, (7.4)
and

€TV Vit — (1-0)'¢"0

%0, (7.5)
forp/n—c€(0,1) and p/m — ¢ € (0,00) as n,m — oo.

Proof of Lemma 7.2. The application of the Sherman?”Morrison formula leads to

(n—1)*m — -1~ —~

—1
STV;1Vn+1:n+mV;10 = mET (Vn - ini;lr> Vn+1:n+m (Vn — }an(:l) 6
n—1)*m i B B
2 Ve RS V70
(n — 1)2m TF—15> —_1 €Tv_1xnx—rv_lvn+l:n+mv_l0
_ o Umrgay  yoig g 98 Va XX Vi V ;
nz(m _ 1) £V, +1:n+ n 0+ - i;vgl)—(n

TN -1l T\ -1\7 vV-ls o Tyv-1
&'V, 'x.x,V, ' Vii1nimV,, ' X,X,V 0

(1 -%]V,1%,)?

Tyv-lo T 1
+ o £ Vn Xn+1tﬂ+mxn+1:n+mvn 0)

By definition /mX, 1.,1m consists of elements with are independent and identically
distributed with zero mean and variance equal one. Then, conditionally on Xj., it holds
that (see, Theorem in Dette and Dérnemann (2020))

VR 1 im Vy 0 X 1 5 N (0,67V,%0) as p— oo

and, consequently, X!, V10 =3 0 for p/m — ¢ as m — oo. Finally, the applications
of Lemma 5.2 in Bodnar et al. (2021e) and Lemma 7.1 completes the proof of the lemma.
Similarly, the result (7.5) is deduced. O

Proof of Theorem 8.1. (i) We get with (7.1) that

’ - ~ ]-TS;lSn-ﬁ-l:n—i—mS;l]-
Vv*vn;s;m = W'r—l;SSn—‘rl:n—i—mWn;S = (17S.11)2
1T271/2V;1Vn+1:n+mvgl271/2]— a.s. (1 - 0)731T2711 1
- (1TE_1/2V_1E—1/21)2 — (1 _ C)_2(1T2_11)2 = (1 - C) Vamv

for p/n — ¢ € (0,1) and p/m — ¢ € (0,00) as n,m — oo by using Lemma 7.2 and
Lemma 1.3 in Bodnar et al. (2021e).
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(ii) The result of part (ii) follows from the proof of Theorem 3.2 of Bodnar et al. (2014).
(i) We get

~

Vinprs = (QnBpsWis + (1 — dn;BPS)b)T Snt1mtm (CnBPsWiis + (1 — Gnpps)b)

~2 ~ T o A 21. T
an;BPSWn;SSn—l-l:n+7rLW7L;S + (]- - a?L;BPS) b Sn+1:n+mb

A A ~ T
+ 20én;BPs(1 - Oén;BPS)Wn;SSn+1:n+mb
A2 v .S A 1—a 'S b
an;BPSwn;S n+1:n+mwn;5’ + ( - a?L;BPS) n+1l:n+m
Ts1—1/2v7—1 1/2
1"S7Y2VAV, 0 m 2%

17S;11

+  2Gy,,5prs(l — Gnps)

N
n

1
Q%PSEVGMV + (1 — apps)®Wb + 2apps(1 — apps)Vauv
c
= Vomv + agpsﬁVGMV + (1 = asprs)’ (Vb — Vauv)
for p/n — ¢ € (0,1) and p/m — ¢ € (0,1) as n,m — oo by applying Lemma 7.2,
Lemma 1.3 of Bodnar et al. (2021e), and the results from parts (i) and (ii).

(iv) The result of part (iv) follows from the proofs of parts (i) and (ii).
[

Proof of Theorem 3.2. The results of the theorem follows from Lemma 1.3 of Bodnar
et al. (2021e) by noting that

lTS;—&l-lzm—&—ll

~—1| a.s.

Ty (1—¢)7 =0
p/m — ¢ € (0,1) as m — 0. O
References

Ao, M., Yingying, L., and Zheng, X. (2019). Approaching mean-variance efficiency for
large portfolios. The Review of Financial Studies, 32(7):2890-2919.

Bai, Z. and Silverstein, J. W. (2010). Spectral Analysis of Large Dimensional Random
Matrices. Springer.

Best, M. J. and Grauer, R. R. (1991). On the sensitivity of mean-variance-efficient
portfolios to changes in asset means: some analytical and computational results. The
review of financial studies, 4(2):315-342.

Bodnar, O., Bodnar, T., and Parolya, N. (2021a). Recent advances in shrinkage-based
high-dimensional inference. Journal of Multivariate Analysis, page 104826.

Bodnar, T., Dette, H., and Parolya, N. (2019a). Testing for independence of large di-
mensional vectors. The Annals of Statistics, 47(5):2977-3008.

Bodnar, T., Dette, H., Parolya, N., and Thorsén, E. (2021b). Sampling distributions
of optimal portfolio weights and characteristics in low and large dimensions. Random
Matrices: Theory and Applications, page 2250008.

20



Bodnar, T., Dmytriv, S., Okhrin, Y., Otryakhin, D., and Parolya, N. (2021c). HDShOP:
High-Dimensional Shrinkage Optimal Portfolios. R package version 0.1.1.

Bodnar, T., Dmytriv, S., Okhrin, Y., Parolya, N., and Schmid, W. (2021d). Statistical
inference for the expected utility portfolio in high dimensions. IEEE Transactions on
Signal Processing, 69:1-14.

Bodnar, T., Dmytriv, S., Parolya, N., and Schmid, W. (2019b). Tests for the weights of the
global minimum variance portfolio in a high-dimensional setting. IEEE Transactions
on Signal Processing, 67(17):4479-4493.

Bodnar, T., Gupta, A. K., and Parolya, N. (2014). On the strong convergence of the
optimal linear shrinkage estimator for large dimensional covariance matrix. Journal of
Multivariate Analysis, 132:215-228.

Bodnar, T., Okhrin, Y., and Parolya, N. (2021e). Optimal shrinkage-based portfolio
selection in high dimensions. Journal of Business & Economic Statistics, to appear.

Bodnar, T., Parolya, N., and Schmid, W. (2018). Estimation of the global minimum
variance portfolio in high dimensions. Furopean Journal of Operational Research,

266(1):371-390.

Bodnar, T. and Schmid, W. (2009). Econometrical analysis of the sample efficient frontier.
The European Journal of Finance, 15(3):317-335.

Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates:
a multivariate generalized arch model. The Review of Economics and Statistics,

72(3):498-505.

Britten-Jones, M. (1999). The sampling error in estimates of mean-variance efficient
portfolio weights. The Journal of Finance, 54(2):655-671.

Cai, T. T., Hu, J., Li, Y., and Zheng, X. (2020). High-dimensional minimum vari-
ance portfolio estimation based on high-frequency data. Journal of Econometrics,
214(2):482—-494.

Chan, L. K., Karceski, J., and Lakonishok, J. (1999). On portfolio optimization: Fore-
casting covariances and choosing the risk model. The Review of Financial Studies,
12(5):937-974.

Chopra, V. K. and Ziemba, W. T. (1993). The effect of errors in means, variances, and
covariances on optimal portfolio choice. Journal of Portfolio Management, 19(2):6-11.

Dette, H. and Dérnemann, N. (2020). Likelihood ratio tests for many groups in high
dimensions. Journal of Multivariate Analysis, 178:104605.

Ding, Y., Li, Y., and Zheng, X. (2021). High dimensional minimum variance portfolio
estimation under statistical factor models. Journal of Econometrics, 222(1):502-515.

El Karoui, N. (2010). High-dimensionality effects in the markowitz problem and other
quadratic programs with linear constraints: Risk underestimation. The Annals of
Statistics, 38(6):3487-3566.

21



Feng, Y. and Palomar, D. P. (2016). A Signal Processing Perspective on Financial Engi-
neering. now Publishers Inc., Boston and Delft.

Frahm, G. and Memmel, C. (2010). Dominating estimators for minimum-variance port-
folios. Journal of Econometrics, 159:289-302.

Jagannathan, R. and Ma, T. (2003). Risk reduction in large portfolios: Why imposing
the wrong constraints helps. The Journal of Finance, 58(4):1651-1683.

Kan, R. and Smith, D. R. (2008). The distribution of the sample minimum-variance
frontier. Management Science, 54(7):1364-1380.

Li, J., Stoica, P., and Wang, Z. (2004). Doubly constrained robust capon beamformer.
IEEE Transactions on Signal Processing, 52(9):2407-2423.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1):77-91.

Markowitz, H. (1959). Portfolio selection: efficient diversification of investments. John
Wiley & Sons, Inc and Chapman & Hall, Ltd.

Merton, R. C. (1972). An analytic derivation of the efficient portfolio frontier. The
Journal of Financial and Quantitive Analysis, 7(4):1851-1872.

Merton, R. C. (1980). On estimating the expected return on the market: An exploratory
investigation. Journal of Financial Economics, 8(4):323-361.

Mestre, X. and Lagunas, M. (2006). Finite sample size effect on MV beamformers: opti-
mum diagonal loading factor for large arrays. IEEE Transactions on Signal Processing,
54(1):69-82.

Okhrin, Y. and Schmid, W. (2006). Distributional properties of portfolio weights. Journal
of Econometrics, 134(1):235-256.

Rubio, F. and Mestre, X. (2011). Spectral convergence for a general class of random
matrices. Statistics & Probability Letters, 81(5):592-602.

Rubio, F., Mestre, X., and Palomar, D. P. (2012). Performance analysis and optimal
selection of large minimum variance portfolios under estimation risk. IEEFE Journal of
Selected Topics in Signal Processing, 6(4):337-350.

Van Trees, H. L. (2002). Optimum Array Processing. Wiley.
Verdd, S. (1998). Multiuser Detection. Cambridge Univ. Press.

Yang, L., McKay, M. R., and Couillet, R. (2018). High-dimensional MVDR beamforming:
Optimized solutions based on spiked random matrix models. IEEE Transactions on
Signal Processing, 66(7):1933-1947.

Zhang, M., Rubio, F., Mestre, X., and Palomar, D. (2013). Improved calibration of high-
dimensional precision matrices. IEEE Transactions on Signal Processing, 61(6):1509—
1519.

22



