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Abstract

We consider the Markovian SIR epidemic model but where indi-
viduals either recover naturally or are diagnosed, the latter implying
isolation and subject to being contact traced. More specifically, this
paper is concerned with two types of contact tracing: the classical
manual contact tracing and the more recent digital contact tracing
based on individuals using a tracing app, and investigates the preven-
tive effect of each, as well as their combined preventive effect. The
initial phase of an outbreak is approximated by a (two-type) branch-
ing process relying on a large community and under the simplifying
assumption that contact tracing happens without delay. The "types"
in the branching process are not individuals but rather "to-be-traced
components". It is shown that the fraction π of app-users for the digi-
tal contact tracing needs to be bigger than the fraction p of successfully
contact traced individuals in the manual contact tracing for the same
preventive effect. Further, the preventive effect of combining the two
contact tracing methods is shown to be bigger than the product of
each of the two preventive effects.



1 Introduction
One of the main reasons for modelling epidemics is to understand the effect
of different preventive measures, such as vaccination and non-pharmaceutical
interventions (NPI). During the recent Covid-19 pandemic, research about
the effect of various NPIs, including social distancing, case isolation, contact
tracing, lockdown, etc., has received much attention. Some related papers
(e.g., Ferguson et al. (2020); Flaxman et al. (2020); Longini et al. (2005))
have been highly influential on public health policies.

This paper focuses on the preventive measure: "contact tracing". Con-
tact tracing is traditionally performed by public health agency officers who
interview diagnosed individuals and then call the named contacts to advise
them to self-quarantine and to test, which is often referred as the manual
contact tracing. This type of contact tracing has been successful in reduc-
ing transmission in many epidemics like Ebola Swanson et al. (2018), SARS
Lloyd-Smith et al. (2003), Influenza Agarwal and Bhadauria (2012), and
Measles Liu et al. (2015). However, in the present paper, we also investigate
a different type of contact tracing: digital contact tracing. In the case of
Covid-19, Ferretti et al. (2020) suggested that manual contact tracing is not
rapid enough to control the Covid-19 epidemic, and the new idea of devel-
oping a "contact tracing app" was invented: once an app-user is diagnosed,
a warning message will be instantaneously sent out to all the app-users who
recently have been nearby for a sufficient duration with the confirmed case.
Such notified contacts are then advised to test and quarantine themselves.
Several contact tracing apps have been developed and released (e.g., in the
UK Ferretti et al. (2020); Wymant et al. (2021), in the Netherlands Klinken-
berg et al. (2021)).

There are several papers analysing digital contact tracing (e.g., Pollmann
et al. (2020); Kretzschmar et al. (2020); Kucharski et al. (2020); Barrat et al.
(2021)) focusing on simulation-based epidemic models, and the results of
Rizi et al. (2022) are based on a combination of simulations and mean-field
analysis of the related percolation problem. Several papers on digital contact
tracing analysing Covid-19 (e.g., Cencetti et al. (2021); Ferretti et al. (2020))
are based on the mathematical model first introduced by Fraser et al. (2004)
in terms of recursive equations for analyzing the timing of infectiousness and
the appearance of symptoms. In particular, the results from Ferretti et al.
(2020) showed that the Covid-19 epidemic was unlikely to be contained only
by manual tracing.

Modelling contact tracing is mathematically challenging and does not
easily lend itself to being analyzed using differential equations. Our focus in
this paper is on the beginning of an outbreak before a massive fraction have
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been infected. For this reason, we apply stochastic models, which are also
suitable because the outcome of contact tracing itself is random rather than
deterministic. The early phase of an epidemic without preventive measures
can often be approximated by a suitable branching process (e.g., Ball and
Donnelly (1995)) using the underlying model assumption stipulating that
once an individual has been infected, it behaves (transmits) independently
of its infector. When contact tracing is introduced, this independence breaks
down and other methods need to be developed. However, in the last decades
there has been some progress in more rigorous analyses of epidemic models
with manual contact tracing, e.g., Müller et al. (2000); Ball et al. (2011);
Barlow (2020).

In Zhang and Britton (2022) we considered a Markovian SIR epidemic
model with manual contact tracing by assuming that once individuals are
diagnosed, they perform manual tracing without delay, thus reaching each
contact with probability p. The model was analyzed by means of a branching
process where the "individuals" of the branching processes corresponded to
"to-be-traced" components, which grew and decreased over time until they
eventually disappeared.

In the present paper, we first analyse a similar model as in Zhang and
Britton (2022) but now with digital contact tracing by assuming that a frac-
tion π of individuals installs a contact tracing app (and follows the advice
if notified). Once an app-user is diagnosed, all its app-using contacts are
notified, with the result that they isolate and test themselves without delay.
For those who test positive, their app-using contacts are also notified, and
so on. Furthermore, for both manual and digital contact tracing, we assume
that traced individuals who have recovered naturally are also identified and
are subject to contact tracing.

Using large population approximations, we approximate the early epi-
demic process with digital tracing by a two-type branching process where
type-1 "individuals" are app-using components (in terms of app-users) and
type-2 are non-app-users. We then analyse the model having both types of
contact tracing in place, i.e., reaching a fraction p of all contacts using manual
contact tracing and additionally all app-using contacts if the tested individ-
ual is an app-user (making up a fraction π in the community). The limiting
process in this case is shown to be a two-type branching process, where both
the type-1 and type-2 "individuals" are the to-be-traced components, but
type-1 starts with an app-user and type-2 with a non-app-user.

One important conclusion from the analysis is that the combined effect
is better than if the two types of contact tracing act independently. More
precisely, let rM be the reduction (of the basic reproduction number) from
manual contact tracing, rD from digital contact tracing, and rDM be the
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combined reduction. If the manual and digital tracing acts independently,
then we would have 1 − rDM = (1 − rM)(1 − rD), but in fact, our analysis
shows that rDM > 1− (1− rM)(1− rD).

In Section 2, we define the digital contact tracing model as well as the
model having both manual and digital contact tracing. In Section 3, we
present and prove the main result approximating the initial phase of the
epidemic in a large population (Section 3.1 for digital tracing only, Section
3.2 for both types of tracing). Then, in Section 4 we illustrate our results
numerically, compare the effect of manual and digital contact tracing and
investigate their combined effect. Finally, we summarize our conclusions and
discuss potential improvements of the present models in Section 5.

2 Epidemic models with contact tracing

2.1 The epidemic model

First, we consider a Markovian SIR (Susceptible → Infectious → Recovered)
epidemic spreading in a closed and homogeneous mixing population with
fixed size n. Initially, there is one infectious individual, and the rest are
susceptible. An infectious individual has infectious contacts with each sus-
ceptible individual randomly in time according to independent Poisson pro-
cesses with rate β/n, so β is the overall rate of contacts. Only contacts with
susceptibles result in infection. An infectious individual recovers naturally
at rate γ.

Additionally, we assume that infectious individuals are tested positive and
are immediately isolated (we refer to this as "diagnosed" in our paper) at
rate δ. In conclusion, infectious individuals could stop spreading disease either
from natural recovery (rate γ) or diagnosis (rate δ). The infectious periods
are assumed to be independent of each other and the Poisson processes.

For this epidemic model (with testing but without contact tracing), each
infectious period follows the exponential distribution with intensity (γ + δ).
Hence, it is straightforward to compute the mean number of secondary in-
fections produced by one single infective before recovery or diagnosis:

R0 =
β

γ + δ
. (1)

Somewhat incorrectly, we refer to this as our basic reproduction number R0

in this paper, even though R0 equals β/γ when there is no testing.
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2.2 The epidemic model with digital contact tracing

We add digital contact tracing to the epidemic model in Section 2.1 by as-
suming that a fraction π of individuals use the tracing app (and follow the
recommendations), and that individuals mix uniformly irrespective of using
the app or not.

Once an infectious app-user is diagnosed, all app-using contacts of the
infective will be notified, with the result that they test and isolate themselves
without delay if infectious. The contacts who have been infected, including
also those who have recovered, are then also assumed to trigger digital tracing
among their contacts according to the same procedure, and so on.

2.3 The epidemic model with digital and manual con-
tact tracing

Finally, we describe the epidemic model with both types of contact tracing
and call this the combined model. First, a community fraction π are app-
users and follow the instructions. If such an app-user is diagnosed, then all
of its app-using contacts (on average being a fraction π of all contacts) will be
traced. To this, we now add the manual contact tracing Zhang and Britton
(2022) by assuming that once an infectious individual is diagnosed, app-user
or not, each of its contacts will be reached by manual tracing independently
with probability p. It means that for diagnosed app-users, all app-using
contacts will be traced, and each non-app-using contact will be traced with
probability p. For diagnosed non-app-users, each contact, app-user or not,
will be traced with probability p. Like before, all traced individuals are tested
and isolated without delay if testing positive. Traced individuals who test
positive, including also those who have recovered, are then contact traced in
the same manner without delay, and so on.

In the case of π = 0, this model corresponds to our earlier model with
manual tracing only in Zhang and Britton (2022), and if p = 0 it corresponds
to the model with digital tracing only in Section 2.2. The model parameters
are summarized in Table 1.

3 Approximation of the initial phase in a large
community

When the population size n is large, it is very unlikely that infectious con-
tacts will be with already infected people. In fact, the first contact with
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Table 1 Table of Model Parameters

Parameter Notation

size of population n
transmission rate β
rate of natural recovery γ
rate of diagnosis δ
community fraction using the contact tracing app π
(and following the advice)
probability that contact is manually traced successfully p
or naturally recovered contact manually

someone who has already been infected will happen when around
√
n in-

dividuals have been infected (see, e.g., Andersson and Britton (2000) page
25). Consequently, at the beginning of the epidemic in a large community,
individuals will infect approximately independently of each other while in-
fectious, which can be made precise using coupling methods (see Ball and
Donnelly (1995)). However, also in the limit as n → ∞ infectious individuals
will not behave completely independently since an infectious individual may
be contact traced by its infector or one of its infectees.

As a consequence, when contact tracing is introduced, the limiting pro-
cess of infectious individuals will not be a branching process as is usually
the case for epidemic models. For this reason, we consider ”to-be-traced”
components as "macro-individuals" since these components will behave in-
dependently between generations. In the following sections, we first describe
the limiting branching processes for the model with digital tracing and then
for the combined model.

3.1 The epidemic model with digital contact tracing

When digital tracing is in place, the population comprises app-users and non-
app-users. A given infectious app-user has the possibility of being traced and
hence stops being infectious when one of its app-using contacts is diagnosed.
It implies that infectious app-users no longer infect independently of each
other in our model.

Instead of describing the limiting process in terms of the actual indi-
viduals, we consider to-be-traced components as "macro-individuals": since
contact tracing will never happen between such components, these compo-
nents behave independently of each other and may hence be approximated
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by a branching process (see Zhang and Britton (2022)). Here we focus on the
so-called app-using components (to-be-traced components in terms of app-
users). Such app-using components will start with one infectious app-user
infected by a non-app user (we call this the root of the component) but can
later grow to include the app-users infected by the root and app-users they
infected, and so on. Eventually, the whole app-using component will die
out (i.e., stop spreading the infection) either by someone being diagnosed
(when immediately the whole component gets traced and diagnosed) or if all
individuals in the component have recovered naturally. While the compo-
nent has infectious individuals, the component can also infect non-app-users.
Non-app-users can, in turn, infect other non-app-users as well as app-users,
and in the latter case, new app-using components are created.

In Figure 1, we show how the two types of "individuals": app-using
components (surrounded by dashed lines) and non-app-users (square-shaped
nodes) grow and eventually die out. We set the app-user A1 to be the initial
case. While the app-using component C

(app)
1 evolves (new app-users getting

infected or existing ones recovering), the component C
(app)
1 infects two non-

app-users N1 and N2. The non-app-user N1 infects one non-app-user and
one new app-using component C

(app)
2 with root A2, whereas N2 infects two

other non-app-users. Once the app-user A2 is diagnosed, the whole app-using
component C

(app)
2 will die out.

In conclusion, we consider a two-type branching process ED(β, γ, δ, π)
with the type-1 individuals being app-using components and the type-2 be-
ing non-app-users, where a new birth corresponds to a new infection in the
epidemic. Then with the coupling argument (see Ball and Donnelly (1995);
Andersson and Britton (2000); Britton (2010)), it can be easily proved that
the epidemic process in terms of the app-using components and non-app-
users converges to this two-type branching process for large n.

3.1.1 Properties of the limiting branching process

We have seen that during the early stage of an outbreak and in the large
population, the epidemic process with digital tracing can be approximated
by the two-type branching process ED(β, γ, δ, π).

In this section, we derive the component reproduction number RD for
the model with digital tracing as the largest eigenvalue of the mean offspring
matrix M of ED(β, γ, δ, π) (see e.g., Athreya and Ney (1972); Becker and
Marschner (1990)) with

M =

(
m11 m12

m21 m22

)
, (2)

where mij is the number of secondary infections of type j produced by a
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Figure 1 Example of the dynamics of app-using components and non-app-users
for the model with digital contact tracing: the circle nodes are app-users and
the squares non-app-users. The white, black, and grey nodes are regarded as
"infectious", "diagnosed" and "naturally recovered", respectively. The rectangular
region surrounded by the dashed line symbolizes the app-using component, and
the area is filled with diagonal lines when the whole component is diagnosed and
removed.

single infected individual of type i on average, for i, j = 1, 2. And hence the
component reproduction number RD is given by

RD =
m11 +m22

2
+

√
(m11 +m22)2

4
−m11m22 +m12m21. (3)

Next, we derive the expressions for the elements mij as follows. We note
that the dynamics of app-using components (type 1) works similarly to the
"to-be-reported components" studied in Zhang and Britton (2022), except
that here an app-using component can not infect a new component, because
infected app-users will belong to the same component. Consequently, we
have that

m11 = 0. (4)

The group of non-app-users will never be reached by digital tracing and
thus spread the infection simply like in a general epidemic without any con-
tact tracing. That is, each infectious non-app-user infects non-app-users
at rate β(1 − π) and app-users at rate βπ, where the infectious periods of
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non-app-users are independent and identically exponentially distributed with
intensity (δ + γ). Hence, the number of app-using component (type 1) and
non-app-users (type 2) infected by one typical non-app-user are geometrically
distributed with mean

m21 =
βπ

δ + γ
, (5)

and
m22 =

β(1− π)

δ + γ
(6)

respectively.
Finally, it remains to compute m12. Following the idea in Zhang and

Britton (2022), let Z(a) be the total number of non-app-users born by an
app-using component, then we have

m12 = E[Z(a)] = E
[N(a)

c∑
i=1

X
(na)
i

]
,

where X(na)
i denotes the number of non-app-users infected between the i−1’th

and the i’th jump, and N (a)
c denotes the number of jumps that an app-using

component makes before dying out and hence stopping infecting.
For the distribution of X(na)

i and N (a)
c , we briefly state the idea as follows

(see Zhang and Britton (2022) for details). If currently there are k infectious
app-users in an app-using component, the size of this component increases
by 1 when the component infects an app-user, hence at rate kβπ; decreases
by 1 if there is a natural recovery (rate kγ); and drops to 0 if an app-user is
diagnosed which happens at rate kδ. Thus we consider the process of app-
using components as a simple random walk (new infection/ natural recovery)
with "killing events" (diagnosis) added. N (a)

c is the number of jumps until
the component has no infectives, something which can happen either if all
infectious app-user have recovered naturally or if an infectious app-user is
diagnosed.

Furthermore, if currently there are k infectives in the component, the time
until the next event occurs is exponentially distributed with intensity k(βπ+
γ+δ). During this time, such component infects the non-app-users at kβ(1−
π). It follows that the numbers X(na)

i of infections of non-app-users between
jumps are identically and independently distributed (geometric distributed
with mean β(1− π)/(βπ + γ + δ)) and independent of the current size of the
component.

Consequently, we derive the mean number m12 of non-app-users (type 2)
infected by an app-using component (type 1) given by

m12 = E[X(na)]E[N (a)
c ], (7)
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with
E[X(na)] =

β(1− π)

βπ + γ + δ
, (8)

and
E[N (a)

c ] = 1 +
∞∑
k=1

P(N (a)
c > k), (9)

where for k ≥ 1, the distribution of N (a)
c is given by

P(N (a)
c > k) =

(
1−

⌈k/2⌉∑
j=1

1

2j − 1

(
2j − 1

j

)(
βπ

γ + βπ

)j−1(
γ

γ + βπ

)j)
·
(

βπ + γ

βπ + γ + δ

)k

.

In conclusion, we obtain with Equation (3) that the component repro-
duction number RD for the model with digital tracing only is given by

RD =
m22

2
+

√
m22

2

4
+m12m21, (10)

with the elements mij given by Equations (5)-(7). Using the theory of
branching processes (see e.g. Ball and Clancy (1995); Andersson and Britton
(2000)), we collect our findings in the following proposition:

Proposition 1. Consider a sequence of epidemic processes with digital trac-
ing E

(n)
D (β, γ, δ, π), for population size n, and starting with one initial infec-

tive. Then on any finite time interval, E(n)
D (β, γ, δ, π) converges in distribu-

tion to the two-type branching process ED(β, γ, δ, π) as n → ∞.
Let Z∞ denote the number of individuals ever born in the branching

process ED(β, γ, δ, π), then we have P(Z∞ < ∞) = 1 if RD ≤ 1 and
P(Z∞ < ∞) < 1 if RD > 1.

Let Zn be the final number infected in the epidemic, then P(Zn >
√
n) →

0 as n → ∞ if and only if RD ≤ 1.

3.1.2 The individual reproduction number

The interpretation of RD is complicated in that the two types in the under-
lying branching process ED(β, γ, δ, π) are different types of objects: type-2
individuals are actual individuals (non-app-users), but type-1 are "macro in-
dividuals": the to-be-traced app-using components. In this section, our aim
is to convert RD to an individual reproduction number.

We first define the average number of individuals (of any type) R
(ind)
D−A

infected by a newly infected app-user and R
(ind)
D−N by an non-app-user, re-

spectively. We note that each infection, irrespective of the type of infector,
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is with an app-user with probability π and a non-app-user with probability
(1− π). This implies that the R

(ind)
D can be expressed as the sum:

R
(ind)
D = πR

(ind)
D−A + (1− π)R

(ind)
D−N . (11)

It remains to compute the R
(ind)
D−A and R

(ind)
D−N . From the previous results in

Section 3.1.1, we see that a given app-using component infects on average
m12 number of non-app-users. Let µ(A)

c be the mean number of app-users
that ever get infected in an app-using component. All but one of these µ(A)

c

are infected within the component, and there are, on average, m12 number
of "external" infections. So in total, there are on average (µ(A)

c − 1) + m12

number of infections by an app-using component. As a consequence, the
average number R

(ind)
D−A of infections per app-user equals

R
(ind)
D−A =

(µ(A)
c − 1) +m12

µ
(A)
c

, (12)

where

µ(A)
c = 1 +

βπ

βπ + γ

∞∑
k=1

P(N (a)
c > k − 1) = 1 +

βπ

βπ + γ
E[N (a)

c ]. (13)

We skip the proof for the computation of µ(A)
c ; an identical argument was

used in Zhang and Britton (2022).
For non-app-users, it is easier to analyse since a given infectious non-app-

user, on average, infects m21 + m22 number of individuals (app-users and
non-app-users). Using Equations (5) and (6) it follows that

R
(ind)
D−N = m21 +m22 =

β

δ + γ
, (14)

which is identical to R0 (see Equation (1)). This is not surprising since
non-app-users will never be contact traced.

An individual reproduction number R(ind)
D for digital tracing is thus given

by

R
(ind)
D = π

(µ(A)
c − 1) +m12

µ
(A)
c

+ (1− π)
β

δ + γ
, (15)

with m12 defined in Equation (7) and µ(A)
c in Equation (13).

Remark 2. As discussed in Zhang and Britton (2022), this individual re-
production number R

(ind)
D does not possess the traditional interpretation: the

average number of infections caused by infected people at the beginning of the
outbreak. This is due to the delicate timing of event issues closely related
to those explained in Ball et al. (2016). However, it still has the correct
threshold property as supported numerically in Section 4.
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3.2 The epidemic model with digital and manual con-
tact tracing

We now analyse the combined model with both manual and digital contact
tracing.

3.2.1 Properties of limiting branching process

Also, the combined model can be approximated by a suitable two-type branch-
ing process EDM(β, γ, δ, p, π) during the early stage of the epidemic, assuming
a large population. Clearly, for the combined model, the app-users could not
only be traced by app-users, but also by non-app-users with probability p.
On the other hand, the non-app-users could be traced by individuals (either
app-users or non-app-users) with probability p. Accordingly, to-be-traced
components now make up infections between app-users and non-app-users
who will be traced manually. Moreover, new components are created if an
app-user infects a non-app-user without manual contact tracing taking place
or if a non-app user infects either type and there is no manual contact tracing.
The new components hence differ in how they are created: with an app-user
(infected by a non-app-user without manual contact tracing) or a non-app-
user (without manual contact tracing), and the future evolvement of such
components depend on the current number of infectious app-users and non-
app-users. We hence have two types of to-be-traced components, depending
on if it was initiated by an app-user or non-app-user. A component starting
with a non-app-user increases its size at rate βp (only manual tracing works
for non-app-users), whereas a component starting with an app-user increases
its size at rate β(1− π)p+ βπ.

Next, we give an example in Figure 2 to illustrate how the two types of
components (starting with an app-user or a non-app-user) grow and repro-
duce. We start with case 1, which is the root of the component C(NA)

1 , which
generates two new components C

(NA)
2 and C

(A)
3 . The component C

(NA)
2 is

with root 2 as a non-app-user and C
(A)
3 starts with an app-user 3. Once

individual 1 is diagnosed, the whole component C
(NA)
1 is diagnosed.

Another difference from the analysis for digital tracing is that the to-be-
traced components may also contain non-app-users that are manually traced.
So it is necessary to keep track of both the number of infectious app-users
and infectious non-app-users in the component.

Let N
(i)
j (t) be the number of infectious type-j individuals in the compo-

nent starting with one type-i individual at time t, where we set type-1 to be
app-users and type-2 to be non-app-users. Suppose that at time t we have

N (i)(t) = (k, l), i.e. = (N
(i)
1 (t) = k,N

(i)
2 (t) = l),

12



Figure 2 Example of the process of to-be-traced components started by app-users
and non-app-users for the combined model: the circles are app-users and squares
non-app-users. The nodes in white, black, and grey are regarded as "infectious",
"diagnosed" and "naturally recovered", respectively. The rectangular region sur-
rounded by the dashed line is for the component, whereas the area is filled with
slashed lines when the whole component is removed. Full edges stand for contacts
that could be traced either by manual or digital contact tracing (so always full
edges between each pair of app-users), whereas dashed ones are for those non-to-
be-traced.

i.e. there are k infectious app-users and l infectious non-app-users in a com-
ponent starting with a type-i individual. We note that N (1)(0) = (1, 0),
whereas N (2)(0) = (0, 1).

N (i) increases or decreases by 1 in the first component if there is a newly
infected app-user or one of the k app-users recovers naturally, respectively.
The rate at which N (i) increases by (1, 0) is hence kβπ + lβπp (the rate
that app-users infect plus the rate at which non-app-users infect), and N (i)

decreases by (−1, 0) at rate kγ (recovery of an app-user). Further, N (i) in-
creases by 1 in the second component at rate (k + l)β(1− π)p, because this
newly infected non-app-user shall have a manual tracing link, irrespective of
the type of infector. Furthermore, N (i) decreases by 1 in the second compo-
nent at rate lγ (recovery of a non-app-user). Finally, N (i) drops directly to
(0, 0) at rate (k + l)δ when one of the infectious individuals (of either type)
in the component is diagnosed.

Next, we describe the birth of new components. We note that only infec-
tions with no digital or manual contact tracing links create a new component.
This can only occur to pairs of non-app-users or pairs of app-users and non-
app-users, but it never happens between two app-users. As a consequence,
given that there are N (i)(t) = (k, l) (k infectious app-users and l infectious
non-app-users), the component gives birth to new components with an app-
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using root at rate lβπ(1−p), and new components with a non-app-using root
at rate (k + l)β(1− π)(1− p).

In conclusion, at the beginning of an outbreak and for a large population,
we approximate the epidemic with both manual and digital tracing by a two-
type branching process EDM(β, γ, δ, p, π) with "individuals" of type 1 are
to-be-traced components starting with an app-user and type 2 "individuals"
are components with a non-app-using root. Again, we can apply the coupling
argument (see, e.g., Ball and Donnelly (1995); Andersson and Britton (2000);
Britton (2010)) to show that the epidemic process in terms of the two type
components converges to the two-type branching process EDM(β, γ, δ, p, π)
as n → ∞.

Now we derive the corresponding component reproduction number RDM

which is known as the dominant eigenvalue of the corresponding mean off-
spring matrix M (c) (see Athreya and Ney (1972); Becker and Marschner
(1990)) given by :

M (c) =

m
(c)
11 m

(c)
12

m
(c)
21 m

(c)
22

 , (16)

in which the element m
(c)
ij , is the mean number of new components of type

j produced by a single component of type i, for i, j = 1, 2. The component
reproduction number RDM is hence given by

RDM =
m

(c)
11 +m

(c)
22

2
+

√√√√(m
(c)
11 +m

(c)
22 )

2

4
−m

(c)
11m

(c)
22 +m

(c)
12m

(c)
21 . (17)

Based on the previous discussion, we have derived the birth rates of new
components of type i conditional on N (i)(t). The expected total numbers
m

(c)
ij of new type-j components produced by a type-i component are hence

the expected values of these expressions integrated over time:

m
(c)
11 =

∫ ∞

0
E[N (1)

2 (t)]βπ(1− p)dt, (18)

m
(c)
12 =

∫ ∞

0
(E[N (1)

1 (t)] + E[N (1)
2 (t)])β(1− π)(1− p)dt, (19)

m
(c)
21 =

∫ ∞

0
E[N (2)

2 (t)]βπ(1− p)dt, (20)

m
(c)
22 =

∫ ∞

0
(E[N (2)

1 (t)] + E[N (2)
2 (t)])β(1− π)(1− p)dt. (21)

We have not been able to simplify these expressions further analytically.
The main reason for this is that not all the rates of the four events occur-
ring in the component are linear in the number of infectious individuals. In
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particular, the rate at which N (i) = (k, l) increases in the first component
equals kβπ + lβπp (non-linear in k + l).

In Section 4, we perform simulations to derive the mij and numerically
compute the component reproduction number RDM for given parameters.
Based on the numerical results, we analyze how RDM depends on the manual
tracing probability p and the app-using fraction π.

3.2.2 The reduction effect of manual and digital contact tracing

We recall that R0 = β/(δ + γ) is the basic reproduction number (without
any type of contact tracing), RM is the effective component reproduction
number for manual tracing only (derived in Zhang and Britton (2022)), RD is
the component reproduction number for digital tracing only (Equation (3)),
and RDM is the component reproduction number for the combined model
(Equation (17)).

Further, let rM , rD and rDM denote the three relative reductions (of R0)
by manual, digital contact tracing only and both type of contact tracing,
respectively:

RM = (1− rM)R0, RD = (1− rD)R0, RDM = (1− rDM)R0.

If the two effects from manual and digital contact tracing acted independently
when combined, we would have

1− rDM = (1− rM)(1− rD),

which implies that the reproduction number for the combined model would
be given by

(1− rM)(1− rD)R0. (22)

Remark 3. It is worth highlighting that the reproduction numbers R0, RD,
RM and RDM are not in the same scale, however all of them are epidemic
thresholds meaning that the models are super-critical if and only if the corre-
sponding reproduction number exceeds 1. For this reason, we mainly focus on
the cases when the quantity in Equation (22) equals one: if we have RDM < 1
and R0(1− rM)(1− rD) > 1, then the combined effect (of reducing R0) would
be bigger than the product of each of the preventive effects.

Later in Section 4, we will plot the critical combinations of (p, π) for which
RDM equals 1 and the corresponding values for which (1 − rM)(1 − rD)R0

equals 1. And it will show that the reduction rDM is in fact bigger than
1− (1− rM)(1− rD).
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4 Numerical Illustration
In this section, we numerically compare the effects of digital and manual
tracing and the combined model. We also investigate the effect of the testing
rate δ, where we vary the fraction getting tested: δ/(δ+γ) rather than varying
δ. For all the numerical results below (except Table 2), we set the epidemic
parameters to be fixed: β = 6/7, γ = 1/7 so that the reproduction number
without any testing or contact tracing is β/γ = 6. When also considering
diagnosis (δ > 0) , we would have the basic reproduction number R0 =
β/(γ + δ) smaller than 6.

4.1 Comparison of digital and manual tracing only

In Figure 3a, we plot the necessary testing rate (measured by testing level
(δ/(δ+γ)) for which the manual RM equals 1 (see Zhang and Britton (2022))
and digital component reproduction number RD equals 1 (see Equation (10)),
for a given value of p and π respectively. It shows that for a given testing
level δ/(δ + γ), a larger app-using fraction π is required compared to p,
the fraction of contacts that are successfully manually traced, for which the
corresponding reproduction number equals 1. The explanation is that the
effectiveness of digital contact tracing is more connected to the square of the
fraction of app-users (π2): the digital tracing is carried out only if both the
confirmed case and the contact are app-users.

In Figure 3b, we hence plot the critical combination of δ/(δ + γ) against
π2 instead. It can be seen that the curve for π2 is closer to the one for p,
but still not identical: we still need a larger value on π2 for the reproduction
number to equal unity.

4.2 The individual and component reproduction num-
bers for digital tracing only

In Figure 4, we plot how the digital reproduction number RD and individual
reproduction number R(ind)

D vary with the testing fraction δ/(δ+γ) in [0, 5/6]
and the fraction of app-users π in [0, 1]. By looking at the colors at the bottom
in Figure 4a, we observe that the component reproduction number RD is not
monotonically decreasing in π, the fraction of app-users. This is a highly
surprising result since we expect a smaller reproduction number for a bigger
fraction π that use the app and hence perform digital contact tracing.

This non-monotonicity of RD is explained as follows. First of all, it can
be easily seen from Equations (5) and (6) that the element m21 is increasing
and m22 is decreasing with π. Then, at a very low level of testing fraction,

16



0.0

0.2

0.4

0.6

0.8

0.00 0.25 0.50 0.75 1.00

pi or p

d
e

lt
a

/(
d

e
lt
a

+
g

a
m

m
a

)

digital tracing
manual tracing

(a)

0.0

0.2

0.4

0.6

0.8

0.00 0.25 0.50 0.75 1.00

pi^2 or p

d
e

lt
a

/(
d

e
lt
a

+
g

a
m

m
a

)

digital tracing
manual tracing

(b)

Figure 3 Plot of the effective combination of testing fraction δ/(δ + γ) and
tracing probability (manual tracing probability p or 3a: fraction π of app-users;
3b: squared fraction π2 of app-users) such that the reproduction number (RM or
RD) equals one: the curve (in red) is for model only with digital tracing, whereas
the curve (in blue) is for model only with manual tracing.

increasing π leads to more app-users, and thus the size of the app-using
component will grow even if fewer non-app-users will be infected per app-user.
The average number of non-app-users infected by one app-using component
m12 may hence increase with π. Then according to the expression of RD

(see Equation (10)), RD could increase with π when the testing fraction
δ/(δ+γ) is low. On the other hand, we see from Figure 4b that the individual
reproduction number R

(ind)
D is monotonically decreasing in π as expected.

Further, we check if the individual reproduction number R
(ind)
D has the

correct threshold property, i.e. see if it equals 1 exactly when RD does.
We first fix the testing rate δ = 1/7, so that there are 50% of the infected
individuals are tested and isolated, and 50% recover naturally while still
infectious, implying that R0 = β/(γ + δ) = 3. Then we compare the app-
using fractions π such that R

(ind)
D or RD equals 1. In Figure 5, we plot the

curves of reproduction numbers R
(ind)
D (in red) and RD (in blue) against the

fraction of app-users π, where it seems to confirm that both reproduction
numbers equal 1 at the same π, thus supporting our conjecture in Remark
(2).

4.3 Effect of combination of digital and manual tracing

Finally, we perform simulations to derive the reproduction number RDM for
the combined model shown in Figure 6. In Figure 6a, we show the heatmap
of RDM as a function of p and π (for δ = 1/7) and add two curves: one curve
is the true reproduction number RDM = 1 in Equation (17) and the second
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Figure 4 Heatmap of the effective reproduction number, 4a for component repro-
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D (in red) and RD (in blue) against π with

β = 6/7, γ = 1/7 and δ = 1/7 fixed. The horizontal dashed line stands for when
the reproduction number equals 1.

curve is the naïve guess one R0(1− rD)(1− rM) = 1 in Equation (22).
We see from Figure 6a that the reproduction number RDM appears to be

monotonically decreasing both with fraction p of being successfully manually
contact traced and the fraction π of app-users. Moreover, we observe from
the two critical curves that for any combination of (p, π) such that the naïve
guess R0(1−rD)(1−rM) = 1, we have the true reproduction number RDM <
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1. It implies that the combined effect of having both manual and digital
tracing is bigger than the product of the preventive effect when having each
one of them. An explanation to this is that a contact tracing event from
digital contact tracing also shortens the infectious periods for some possible
infections where manual tracing would take place, and vice versa.

Nevertheless, we note that for small values of δ/(δ + γ), the component
reproduction number RD can be increasing in π. Similarly for the combined
model, if we choose δ = 1/28 (not realistic but as an illustration), we see in
Figure 6b that the component reproduction number RDM is not monotoni-
cally decreasing with either probability p or π. And the curve of RDM = 1
seems to be monotonically decreasing.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

p

p
i

1

2

3

R_DM

(a) with testing fraction δ
δ+γ = 0.5

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

p

p
i

2.5

5.0

7.5

R_DM

(b) with testing fraction δ
δ+γ = 0.2

Figure 6 Plot of reproduction number RDM for the combined model varying with
manual tracing probability p and fraction of app-users π; with β = 6/7, γ = 1/7
fixed, 6a for δ = 1/7 and 6b for smaller δ = 1/28: the curve in purple stands
for the case when RDM = 1 and the curve in white for the case when R0(1 −
rD)(1− rM ) = 1. Moreover, the dashed lines in black in 6a are for the cases when
RDM = 2.5, 2, 1.5, respectively from left to right.

Finally in Table 2, we compute the reproduction number RDM and its
naïve guess R0(1− rD)(1− rM) in four different cases: without any contact
tracing (p = π = 0); with digital tracing only (p = 0, π = 2/3); with manual
tracing only: (p = 2/3, π = 0) and with both manual and digital tracing
(p = π = 2/3), keeping all other parameters fixed: β = 0.8, γ = 1/7, δ = 1/7.
For each case, we perform 10 000 simulations of the epidemic with the chosen
parameters and population size n = 5000, starting with one initial infective.
It can be seen from Table 2 that the fraction of major outbreaks (considered
as more than 10% have been infected) and the mean fraction of infected
among the major outbreaks both decrease with the reproduction number, as
expected (see Proposition 1).
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In particular, from the last line of Table 2 we note that RDM is below 1
even if the naïve guess R0(1 − rD)(1 − rM) is above 1, which confirms that
the combined effect of both manual and digital tracing is bigger than two
separate effects multiplied by each other, i.e. rDM > 1− (1− rD)(1− rM).

Table 2 Simulation results in four different cases of p and π

p π the reproduction fraction of mean fraction of infected
number major outbreaks among major outbreaks

0 0 R0 = 2.80 0.64 0.93
0 2/3 RD = 2.20 0.49 0.81
2/3 0 RM = 1.49 0.46 0.75
2/3 2/3 RDM = 0.92 0.01 0.14

R0(1− rD)(1− rM) = 1.17

5 Discussion
In this paper, we analyzed a Markovian epidemic model with digital as well
as manual contact tracing. For the epidemic model with digital tracing only,
the early stage of the epidemic was approximated by a two-type branching
process with one type being to-be-traced app-using components and the other
being non-app-users, and RD being the largest eigenvalue of the matrix of
mean offspring. The individual reproduction number R(ind)

D was also derived.
The dependency of reproduction numbers on the effectiveness of testing and
contact tracing was assessed analytically and numerically. Surprisingly, the
reproduction number RD for digital tracing was not monotonically decreasing
in π, the fraction of app-users, whereas the individual reproduction number
R

(ind)
D seems to be. When comparing digital tracing with manual tracing,

a smaller tracing probability p is needed than the corresponding app-using
fraction π to reach the same effectiveness. This result is not very surprising
because both sides of the infection need to be app-users for digital contact
tracing to take place.

We then analyzed the combined model and approximated the beginning
of the epidemic by a different two-type branching process, with both types
being to-be-traced components and only differing on the type of the root
(app-user or not). The corresponding reproduction number was derived nu-
merically. Importantly, the preventive effect of combining the two contact
tracing methods was shown to be bigger than the product of two separate
effects.
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There are several extensions of the present model that would make it
more realistic. On the one hand, we assume that there is no delay in both
manual and digital contact tracing, i.e., any traced contact (either by man-
ual or digital tracing) is assumed to be immediately diagnosed. This neglects
one crucial difference between manual and digital tracing: manual tracing is
time- and labor-intensive, so there is often a delay between the case confir-
mation and notification of contacts, whereas digital tracing is designed to
avoid (or shorten) the delay. Additionally, one limitation of a contact trac-
ing app is that there could be close contacts that can lead to transmission
but occur too quickly to be recorded by the app. In this sense, our model
could be extended by considering the fact that not all the contacts between
pairs of app-users could be reached by digital tracing. Further, we make the
simplifying assumption that traced individuals who have by then recovered
are also identified and contact traced (see Müller et al. (2000) which do not
make this assumption). In reality, this may happen for individuals who have
recently recovered, but perhaps not for those who have recovered several
weeks earlier. Therefore, our results in this paper give an upper bound on
how effective the real contact tracing would be.

A different extension would be to consider a structured community (e.g.,
a social network) combined with homogeneous random contacts. Then, dig-
ital contact tracing would work in the same way for random contacts and
contacts in the social network (as long as both are app-users), whereas man-
ual contact tracing would most likely only happen on the social network (very
rarely could you name whom you sat next to in the bus).

On the mathematical side, we only focus on the early stage of the epidemic
in this paper. Analysing later parts of the epidemic remains open. Moreover,
there are problems with obtaining an analytic expression for the reproduction
number for the combined model.

Despite these model limitations, we consider our contribution an impor-
tant step in increasing understanding of the effect of different contact tracing
forms on spreading disease.
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