
Mathematical Statistics

Stockholm University

Claims reserving using separate exposure
for claims with and without a case

reserve

Esbjörn Ohlsson and Björn Wållberg–Beutelrock
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Abstract

In the traditional Chain Ladder for non-life claims reserving, the
exposure measure (driver) for claims development is cumulative paid
or incurred claims. Dahms (2008) suggested replacing this by the out-
standing claims amounts, i.e. the sum of the case reserves. For out-
standing claims, this is obviously a good alternative. For the unknown
claims and for future costs for reopening of closed claims, though, the
correlation to the outstanding amounts can be expected to be weak.
We suggest that the development of outstanding claims (reported and
still open with a non-zero case reserve) is separated from the devel-
opment on non-outstanding claims (unknown or having case reserve
zero). For the latter, we use some volume measure, such as the pre-
mium, as exposure. This idea is inspired by Schnieper (1991), who
treated unknown claims this way.

Dahms’ method has the further advantage of giving consistent re-
serves based on paid claims and incurred claims, respectively. This
problem was previously addressed, but not completely solved, by Quarg
& Mack (2004) in the Munich Chain Ladder method. This property
carries over to our method.

The new method has several other advantages from an applied
perspective, as discussed at end of the paper, were we present an ap-
plication to personal accident insurance, taken from our own practice.
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1 Introduction

Many methods for non-life claims reserving are based on the idea that the
expected changes in a period are (to some extent) proportional to some expo-
sure measure, or driver, and an important task should be to identify the best
available such exposure. For example, a traditional Chain Ladder (CL) on
paid amounts is proper if we believe that future payments are proportional
to the observed cumulative payments. In a CL on incurred claims, future
changes are assumed to be proportional to the present incurred claims.

Dahms (2008) suggested changing the CL exposure to outstandings, i.e.
the sum of the case reserves, for both paid and incurred. This seems to be
an obvious choice of exposure, as long as we are talking about outstanding
claims, by which we mean reported claims that are still open, with a non-
zero case reserve. Indeed, if the amount of cumulative payments is larger
than normal, but there is very little outstandings, then why should we expect
future payments to be larger than normal, as we do in the CL? In the extreme
case when the outstandings are zero, it is likely that there will be no more
payments, but this fact is not recognized by the CL.

For unknown claims, the situation is different: here the outstandings are
less relevant and we would rather use some measure of the business volume
as main driver. This calls for treating unknown claims separately. A third
category is reopened claims, or rather payments on reported claims in spite
of the case reserve being zero. Here, outstandings is obviously not the best
exposure. For the time being, we will handle these claims together with
unknown claims, and then return to the subject in Section 4.3.) So we
separate out the outstanding claims from those that are non-outstanding,
i.e. are unreported or reported with case reserve zero.

Schnieper (1991) suggested splitting the incurred claims triangle in two
parts, allowing for separate treatment of IBNYR (the reserve for unreported
claims) and IBNER (changes to the incurred claims for reported claims).
For IBNYR, Schnieper used an exposure related to volume, such as earned
premium. This can often be a more relevant exposure than the cumulative
claims used in the CL method. For IBNER, on the other hand, Schnieper
suggested sticking to the CL exposure, i.e. the latest cumulative incurred
claims.

Following discussions with René Dahms during the on-line 2021 ASTIN
Colloquium, we suggest a combination of elements from the approaches by
Dahms (2008) and Schnieper (1991), using outstandings as exposure for re-
ported claims with a non-zero case reserve, i.e. outstanding claims, and using
the premium, or some other volume measure, as exposure for the future in-
curred claims relating to the rest of the claims, including unknown claims.
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An analogue model is suggested for paid claims, where the outstandings are
then used as exposure for future payments on outstanding claims, and the
volume measure as exposure for any other claims. In this method, as in
Dahms (2008), paid and incurred claims should be analysed simultaneously.

An important property of the method of Dahms (2008) is that it closes the
gap between reserving on paid claims and incurred claims. The difference
between these approaches may often be substantial, as noted by Quarg &
Mack (2004), who suggested the Munich Chain Ladder (MCL) to resolve this
problem. The MCL reduces the gap substantially, with the aid of estimated
correlations between paid and incurred. In contrast, Dahms (2008) method
always gives exactly the same claims reserve for both paid and incurred,
see Theorem 3.2 there, simply by using a more relevant exposure. We will
show in Proposition 4.1 below that this property carries over to the method
suggested here.

Dahms (2012) introduced the term Linear Stochastic Reserving Methods
(LSRM) for procedures that assume expected changes in a period to be
proportional to some exposure measure, based on one or several observed
triangles. The method suggested here is within this class, so that the results
in Dahms (2012) are valid. In particular, these results may be used to find
the MSEP (Mean Squared Error of Predicion) of the reserve estimates.

Being a special case of LSRM, the method presented here is not new from
a mathematical point of view. However, from an applied perspective, it gives
a novel way to estimate the claims reserve, with advantages over standard
methods, as discussed below.

2 Splitting the incurred claims triangle

We start with an ordinary cumulative data triangle of incurred claims Cij,
with accident years i = 1, . . . , I and development years i = 0, . . . , J . We now
split this triangle into two, in a way that is close to, but not identical to the
split suggested by Schnieper (1991).

First we present the D triangle in Table 2.1 (D for development). Here
Dij is the one-year change to the reported amount of incurred for claims that
had a non-zero case reserve at the opening of the present development year.

We next compute the N triangle, where Nij is the incurred claim cost for
any claims not included in the Dij. In particular, Nij includes incurred claims
for the accident year i, that are reported in development year j, but any cost
on claims that have a non-zero case reserve at the opening of the year is
included. If there are no changes to reported claims with zero outstandings
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Accident Development year
year 0 1 2 · · · J − 1 J

1 D1,0 D1,1 D1,2 · · · D1,J−1 D1,J

2 D2,0 D2,1 D2,2 · · · D2,J−1
...

...
...

...
I − 1 DI−1,0 DI−1,1

I DI,0

Table 2.1: The D triangle.

(and in particular no reopened claims), then the definitions of D and N here
coincide with those by Schnieper (1991).

By definition, we have Di,0 ≡ 0, for all i and hence Ni0 ≡ Ci0. For the
subsequent columns of the N -triangle, we may use the obvious relation

Cij = Ci,j−1 +Dij +Nij ⇔ Nij = Cij − Ci,j−1 −Dij ;

i = 1, 2. . . . , I; j = 1, 2. . . . , J. (2.1)

The triangle is shown in Table 2.2.

Accident Development year
year 0 1 2 · · · J − 1 J

1 N1,0 N1,1 N1,2 · · · N1,J−1 N1,J

2 N2,0 N2,1 N2,2 · · · N2,J−1
...

...
...

...
I − 1 NI−1,0 NI−1,1

I NI,0

Table 2.2: The new claims triangle.

Unless otherwise stated, we will make the simplifying assumption I =
J + 1. In practice we often encounter other structures than this symmetric
triangle, but our method can, without loss of generality, be presented in
terms of triangles.

Note that the N and D triangles are incremental, rather than cumulative.
Counterparts to these triangles for paid claims are discussed in the next
section.

4



3 Schnieper’s method

Here we briefly recapitulate the method by Schnieper (1991), under the as-
sumption that we have no claims reopening, so that our D and N triangles
are the same as his. For accident year i, denote the collection of observed
variables up to and including development period j by Hij,

Hij = {Ni.0, Ni,1, . . . , Nij;Di,0, Di,1, . . . , Dij},

Note that the corresponding information on Cij is implicitly included in this
set by (2.1).

We assume that we have some exposure ei for each accident year i, which
we treat as non-stochastic. For simplicity, we can think of ei as the earned
premium, but it may be sum insured, the number of insurances or some other
measure of the business volume.

The basic assumptions in Schnieper (1991) are given here in a form that
is closer to the one in Wüthrich & Merz (2008). We use the convention that
Hi,−1 = ∅.

(A1) For some parameters λj ≥ 0,

E[Nij|Hi,j−1] = eiλj ; i = 1, 2. . . . , I; j = 0, 1, 2, . . . , J.

(A2) For some parameters δj,

E[Dij|Hi,j−1] = Ci,j−1 δj ; i = 1, 2. . . . , I; j = 1, 2, . . . , J.

(A3) The random variables (i.e. Nij and Dij) from different accident years
are independent.

Note that, by (A3), the conditioning in (A1) and (A2) could just as well be
made on on a triangle containing Hi,j−1 as is done in Schnieper (1991). The
present conditioning is more like that in Mack (1993).

It follows from (2.1) that for i = 1, 2. . . . , I and j = 1, 2, . . . , J ,

E[Cij|Hi,j−1] = E[Ci,j−1 +Dij +Nij|Hi,j−1] = Ci,j−1 (1 + δj) + eiλj. (3.1)

For j = 0 we get E[Ci0] = E[Ni0] = eiλ0. This is useful when trying
to estimate a loss ratio, but will not be discussed further in this paper on
reserving.

Note that (A1) means that the expected cost for new claims is not in-
fluenced by the observed claims so far, but only by the volume measure ei.
This is in contrast to a CL on incurred claims where, in our notation,

E[Ci,j−1 +Nij +Dij|Hi,j−1] = Ci,j−1 fj
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so that the expected value of Nij +Dij is dependent on Ci,j−1.
Schnieper (1991) presents estimators of the parameters and the ultimate

claim cost. He also derives estimators of an approximation to the mean
squared error of these estimators. Exact formulas for the mean squre er-
ror of prediction are given by Wüthrich & Merz (2008), following Liu and
Verrall (2007). It may be noted that Schnieper’s ideas were adapted by
Mack (1993) to derive his famous result on the MSE of the CL.

4 The new method

We return now to Dahms (2008) and the method there called Extended Com-
plimentary Loss Ratio method (ECLR) where both “payments and adjust-
ments to the reported amount during the year are assumed to be proportional
to the opening reserves”. We will split the triangles as in Section 2) and apply
Dahms idea to the D-triangle while retaining Schnieper’s assumption (A1)
on the N -triangle.

Let the cumulative values be denoted CP
ij for paid and CI

ij for incurred
claims. Further, let Rij be the outstandings for accident year i at develop-
ment year j. Then Rij = CI

ij − CP
ij . Denote the N -triangle in Table 2.2

by N I
ij and introduce another N -triangle for paid amounts NP

ij , containing
the payments made on claims reported during the year. Similarly, let the
D-triangle in Table 2.1 be denoted by DI

ij, and introduce another D-triangle
for paid amounts DP

ij , with the payments made during the year for claims
that had a non-zero case reserve at the beginning of the year.

We have the following relations between these variables. First, the rela-
tion in (2.1) is of course still valid, now in two versions:

CP
ij = CP

i,j−1 +DP
ij +NP

ij and CI
ij = CI

i,j−1 +DI
ij +N I

ij, (4.1)

with DP
i,0 = DI

i,0 = 0, CI
i0 = N I

i0 and CP
i0 = NP

i0 .
The first column of outstandings is, of course, given by Ri0 = N I

i0 −NP
i0 .

The subsequent change in outstandings is a function of the changes in paid
and incurred:

Rij −Ri,j−1 = DI
ij −DP

ij +N I
ij −NP

ij . (4.2)

The cumulative amounts are, of course, the sum of the incremental changes;

CP
ij =

j∑
k=0

(DP
i,k +NP

i,k) CI
ij =

j∑
k=0

(DI
ij +N I

ij), (4.3)

remembering that DP
i,0 ≡ 0 and DI

i,0 ≡ 0.
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The target of claims reserving is the sum of the future cash flows. For
accident year, i by the end of calendar year I, this is:

J∑
j=I−i+1

(DP
ij +NP

ij ). (4.4)

Alternatively, we may base the reserve on incurred claims and set the
target as the (known) outstandings plus the future changes to incurred:

Ri,I−i+1 +
J∑

j=I−i+1

(DI
ij +N I

ij). (4.5)

If the run-off is completed by development year J , these two ways of express-
ing the “theoretical” reserv, i.e. the target of our estimation procedure, are
of course equivalent. This can be seen as follows: A full run-off implies that
RiJ ≡ 0, and by summing over (4.2) and rearranging the terms, we get

J∑
j=I−i+1

(DP
ij +NP

ij ) = −
J∑

j=I−i+1

(Rij −Ri,j−1) +
J∑

j=I−i+1

(DI
ij +N I

ij)

= −(RiJ −Ri,I−i+1) +
J∑

j=I−i+1

(DI
ij +N I

ij)

= Ri,I−i+1 +
J∑

j=I−i+1

(DI
ij +N I

ij) (4.6)

While this equivalence is rather obvious, a corresponding equivalence is usu-
ally not found in the case when paid and incurred amounts are estimated by
the CL. On the other hand, in Proposition 4.1 below we show that equiv-
alence does hold true when the unknown quantities are estimated by our
method, a property inherited from the ECLR of Dahms (2008).

We use the Schnieper assumption (A1), but now for both paid and in-
curred amounts. As before, ei is an exposure measure such as earned pre-
mium. For simplicity, we use the same exposure for paid and incurred. (Re-
call that Hi,−1 = ∅.)

(B1) For some parameters λPj ≥ 0,

E[NP
ij |Hi,j−1] = eiλ

P
j ; i = 1, 2. . . . , I; j = 0, 1, 2, . . . , J.

(B2) For some parameters λIj ≥ 0,

E[N I
ij|Hi,j−1] = eiλ

I
j ; i = 1, 2. . . . , I; j = 0, 1, 2, . . . , J.
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Next we turn to the assumptions for the development of earlier reported
claims, changing the exposure Cij in assumption (A2) to the outstandings as
suggested by Dahms (2008).

(B3) For some parameters δPj ,

E[DP
ij |Hi,j−1] = Ri,j−1 δ

P
j ; i = 1, 2. . . . , I; j = 1, 2, . . . , J.

(B4) For some parameters δIj ,

E[DI
ij|Hi,j−1] = Ri,j−1 δ

I
j ; i = 1, 2. . . . , I; j = 1, 2, . . . , J.

Finally, we make the standard assumption (B5).

(B5) The random variables (i.e. NP
ij , N I

ij, D
P
ij and DI

ij) from different acci-
dent years i are independent.

It follows from (4.2) that

E[Rij|Hi,j−1] = Ri,j−1(1 + δIj − δPj ) + ei(λ
I
j − λPj ). (4.7)

4.1 Estimation

With x in turn replaced by P or I in each equation, the natural estimators
are,

λ̂xj =

∑
iwi λ̂

x
ij∑

iwi

, where λ̂xij =
Nx

ij

ei
j = 0, 1, . . . , J. (4.8)

δ̂xj =

∑
iwi δ̂

x
ij∑

iwi

, where δ̂xij =
Dx

ij

Ri,j−1

j = 1, 2, . . . , J. (4.9)

Here wi is a set of non-negative weights. The weights can either be deter-
ministic or stochastic, but should be known at the time for estimation, i.e.
Hi,j−1-measurable. The weights can be different from estimator to estima-
tor, in spite of our simplified notation here. We do not specify the index
sets of the summations – it is part of the reserving actuary’s daily work to
choose the relevant data and weights for each estimator. Examples include a
simple mean, with all wi = 1, a time-weighted mean with wi = 1, 2, 3, 4, 5 if
five years are included, and a traditionally weighted mean, with wi = ei and
wi = Ri,j−1, respectively. In the latter case, we get estimators of the same
type as in Schnieper’s method and Chain Ladder,

λ̂xj =

∑
iN

x
ij∑

i ei
; δ̂xj =

∑
iD

x
ij∑

iRi,j−1

. (4.10)
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As usual the performance of these estimators is measured conditionally
on the observations up to development year j − 1. Introduce the collection
of variables up to and including calendar year k in the observed triangle,

Bk = {N I
ij, D

P
ij , D

I
ij; i+ j ≤ I; j ≤ k}.

There is an implicit dependence of I in Bk; we follow the convention not to
write out the index I, cf. equation (2.6) in Wüthrich and Merz (2008).

It follows directly from (B1)–(B5) that the four estimators are condition-
ally unbiased, given Bj−1, with the convention that B−1 = ∅. Here we have
used the fact that by (B5) we have E[NP

ij |Bj−1] = E[NP
ij |Hi,j−1], and similar

for the other three estimators.
Next we look for estimators (predictors) of the unobserved values in the

lower triangle, which will then give the estimated reserve. For any i, we get
by the “plug-in principle”, that for j = I − i+ 1, I − i+ 2, . . . , J ,

N̂P
ij = ei λ̂

P
j ; N̂ I

ij = ei λ̂
I
j . (4.11)

The unknown D-variables, on the other hand, are dependent on future out-
standings, so we have to start by estimating these. Equation (4.7) suggests
the following recursive estimators, for j = I − i+ 1, I − i+ 2, . . . , J ,

R̂ij = R̂i,j−1(1 + δ̂Ij − δ̂Pj ) + ei(λ̂
I
j − λ̂Pj ). (4.12)

When j = I − i + 1, the estimator R̂i,j−1 in the right-hand side of (4.12)
should be read as the observation Ri,I−i.

Again, by plugging in the above estimates, we get for j = I − i + 1, I −
i+ 2, . . . , J ,

D̂P
ij = R̂i,j−1 δ̂

P
j , D̂I

ij = R̂i,j−1 δ̂
I
j . (4.13)

The total claims reserve based on paid claims, for accident year i by the
balance day, i.e. by development year j = I − i, is the sum of all expected
future payments, i.e.

J∑
j=I−i+1

(D̂P
ij + N̂P

ij ). (4.14)

The claims reserve based on incurred claims is the present outstanding claims
reserve Ri,I−i plus the expected changes to incurred claims on existing and
late reported claims, i.e.

Ri,I−i +
J∑

j=I−i+1

(D̂I
ij + N̂ I

ij) (4.15)
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Next we show that for our method, these two representations of the re-
serve are equal. First we note that for a single claim, if we to pay out a
greater amount than we have in the case reserve, the incurred claims must
be increased by the difference. This implies on a portfolio level that

Ri,j−1 +DI
ij −DP

ij ≥ 0 and N I
ij −NP

ij ≥ 0 (4.16)

The following proposition is a counterpart to Theorem 3.2 on the ECLR
method in Dahms (2008).

Proposition 4.1 Assume that there is no tail, i.e. the claims development
is completed by development year J . This implies that RiJ ≡ 0 for all i.
Then the reserve based on paid is equal to that based on incurred claims.
That is, for an origin year i where we have observations for development
years j = 0, . . . , I − i, we have

J∑
j=I−i+1

(D̂P
ij + N̂P

ij ) = Ri,I−i +
J∑

j=I−i+1

(D̂I
ij + N̂ I

ij) (4.17)

Proof. We consider a fixed but arbitrary accident year i. By (4.2) and
the mention facts in (4.16), RiJ ≡ 0 implies that RiJ + DI

iJ − DP
iJ = 0 and

N I
iJ −NP

iJ = 0. Hence,

1 + δ̂IJ − δ̂PJ =

∑
iRi,J−1 +

∑
iD

I
i,J −

∑
iD

P
i,J∑

iRi,J−1

= 0

Similarly, λ̂IJ − λ̂PJ = 0, and we conclude from (4.12) that R̂iJ = 0 for all
relevant i.

By (4.11), (4.12) and (4.13)

R̂ij − R̂i,j−1 = D̂I
ij − D̂P

ij + N̂ I
ij − N̂P

ij (4.18)

with R̂i,j−1 interpreted as the observed Ri,j−1 when j = I−i+1. Reorganising
this and summing over all future development years we get

J∑
j=I−i+1

(D̂I
ij + N̂ I

ij)−
J∑

j=I−i+1

(D̂P
ij + N̂P

ij ) =

J∑
j=I−i+1

(R̂ij − R̂i,j−1) = R̂iJ −Ri,I−i = −Ri,I−i

which completes the proof of (4.17).

10



The importance of this proposition is that we get an estimate of future
cash flows, based on paid claims, that is consistent with the development of
incurred claims. This is typically not the case if the Chain Ladder estimates
are calculated for paid and incurred.

With our method, as with the ECLR, it is no longer a question if we
should base the reserving on paid or incurred. It is rather the case that we
do a simultaneous, and consistent, analysis of the two. In this process, the
series of D̂P

ij + N̂P
ij for all future j ≤ J gives the expected future cash flows

that are required for discounting.
Even if we should focus on paid claims, the estimation of incurred claims

is necessary to get updated outstanding amounts at all future points in time,
which are required in the estimation process for paid claims. Equivalently, we
could leave out incurred claims and instead estimate outstandings directly,
by introducing the variables DO

ij and NO
ij , with obvious meaning, and the

following parameters:

δOj = δIj − δPj ; λOj = λIj − λPj ; j = 1, 2, . . . , J. (4.19)

Then we can rewrite (4.7) as

E[Rij −Ri,j−1|Hi,j−1] = RiJ δ
O
j + eiλ

O
j . (4.20)

It is readily seen that (4.8) and (4.9) can be extended to λ̂Oj and δ̂Oj .

4.2 Tail estimates

If the claims are not fully developed by year J , there is need for a tail estimate.
Denote by M the development year by which all claims are settled, where in
this case M > J . Settlement means that for any i, we have no outstandings
left, i.e. Ri,M ≡ 0, and no new claims are reported for j > M .

Our aim is to construct a tail by defining proper λ’s and δ’s for j =
J+1, . . . ,M . These are used in (4.11), (4.12) and (4.13) to get the estimated
amounts we need. The claims reserve is then obtained from (4.14) or (4.15)
with M replacing J . In the search for tail estimates, it is natural to require
that R̂i,M = 0 for all relevant i. An implication of this is that the proof of
Proposition 4.1 can now be repeated, with M replacing J , from (4.18) and
onwards. We thus retain the property that paid and incurred give the same
claims reserve, if the mentioned requirement is met.

So the claims reserve in (4.14) based on paid is still equal to that based
on incurred claims in (4.15) under the requirement R̂i,M = 0. From (4.18)
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we find

0 = R̂iM = R̂i,M−1 + D̂I
iM − D̂P

iM + N̂ I
iM − N̂P

iM

= R̂i,M−1(1 + δ̂IM − δ̂PM) + ei(λ̂
I
M − λ̂PM),

From now on we require that 1 + δ̂IM − δ̂PM = 0 and λ̂IM − λ̂PM = 0, by which
R̂i,M = 0 is automatically fulfilled.

Tail estimation is by necessity a question of expert judgement, since no
data are available. In this, we start by inspecting the λIj ’s for j ≤ J and
then make some assumptions on the further development of these factors for
j = J + 1, . . . ,M , tantamount to what we would do in a CL. One possibility
here is to fit some kind of regression curve and extrapolate it for j > J .

As for the D triangle, having no data means that we have no reason to
adjust the case by case estimates of incurred claims, so we let δ̂Ij = 0 for j > J

from now on. With λIj and δ̂Ij set in this way, the claims reserve is given by
(4.15) with M replacing J . The rest of the tail parameters only concern the
timing of the last payments, so that they only affect the discounting of the
reserve.

Note that δ̂PM = 1, by the requirement 1 + δ̂IM − δ̂PM = 0. As for the other
payments of reported claims, the most conservative discounting is found be
letting δ̂Pj = 1 for J < j ≤ M . The term “conservative” is used here in
the meaning that it minimizes the effect of discounting, by assuming that all
outstandings are paid out during the year.

Turning to the payments on new reported claims, we have assumed that
λ̂PM = λ̂IM , by which λ̂Pj is set for j = M . For J < j < M , the most

conservative choice is to let λ̂Pj = λ̂Ij for all j.
There are of course other possibilities when constructing the tail values of

these parameters. Since by definition we have no data, the choice of method
must be based on knowledge of the line of business in question.

4.3 Reopened claims

In practice, it may happen that a claim that is closed, and thus supposedly
settled, is reopened to generate new payments. In our context, it is not
important whether the claims handlers have recorded a claim as closed or
not; what matters is if we get future payments in spite of the claim having
case reserve zero. So our definition of a reopening here is that we get a change
to paid claims or outstandings, in spite of the claim having case reserve zero
at the beginning of the year.

Obviously, the assumption of the changes in paid and incurred being
proportional to last years outstandings is not realistic for such claims. In
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some cases, reopenings can in fact be expected to behave more like unreported
claims. An example from childrens personal accident insurance is when you
have to wait until the child is grown up to determine a disability. If we have
already refunded some initial medical expenses and do not expect any more
payments, this is a reopening, but if not, it may be a late reported claim.
Often the initial payments for expenses give little information on the risk for
disability later in life.

In other cases, adjustments to paid amounts for closed claims should
rather be expected to be proportional to the cumulative amounts paid on
closed claims. However, introducing yet another dynamic (stochastic) expo-
sure for this relatively limited phenomenon seems unnecessarily complicated.
A good proxy could be the cumulative amounts paid.

So, if the cost for reopened claims is not negligible, we have two main
alternatives.

1. Set up a third type of triangle, besides N and D, for this years re-
opened claims, for both paid and incurred. Here the cumulative paid
or incurred amounts could be a good enough exposure.

2. Add this years reopened claims to the two N triangles, modelled as
proportional to the exposure ei.

Note that premium, or whatever non-stochastic exposure we use as ei,
should be a reasonable exposure also for reopened claim amounts, even in
the case where the cumulative amounts paid on closed claims is optimal.
The choice between the alternatives above must be based on properties of
the particular line of business, but we tend to prefer alternative 2 and use
this is the case treated in this paper.

4.4 Further properties of the estimators

The method described above is a Linear Stochastic Reserving Method (LSRM),
as defined in Dahms (2012). This fact may be used to derive some math-
ematical properties of the estimators. For simplicity, we consider the case
without reopenings and where there is no need for a tail estimate.

For our method to be an LSRM, Assumption 2.1 in Dahms (2012) must
be fulfilled. By our assumption of independent rows in (B5), we can use
Dahms’ Remark 2.2 and condition only on the observations in row i only, i.e.
on Hi,j−1 and not on the entire observed triangle. The LSRM assumptions
on expected values are now given by (B1)–(B4) above. For the second order
moments, we make the follow assumptions.
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(B6) For any combination of P and I replacing x and y, Nx
ij and Dy

ij are
independent, given Hi,j−1.

(B7) For any combination of P and I replacing x and y, there exists param-
eters σx,y

j > 0 such that

Cov[Nx
ij, N

y
ij|Hi,j−1] = ei σ

x,y
j ; i = 1, 2. . . . , I; j = 1, 2, . . . , J.

(B8) For any combination of P and I replacing x and y, there exists param-
eters τx,yj > 0 such that

Cov[Dx
ij, D

y
ij|Hi,j−1] = Ri,j−1 τ

x,y
j ; i = 1, 2. . . . , I; j = 1, 2, . . . , J.

The assumption that new reported claims are independent of the develop-
ment of existing claims in (B6) is a natural generalization of the first of the
Model Assumptions 10.7 in Wüthrich and Merz (2008). For x = y, (B7) and
(B8) are the variance assumptions of Schnieper (1991) as well as Wüthrich
and Merz (2008), with the alteration that we have the outstandings as expo-
sure in (B8).

For x 6= y, however, (B7) introduces covariances between the N -variables
for paid and incurred and (B8) does the same for the D-variables. It is not
likely that these variables are uncorrelated when belonging to the same row
and column.

By Remark 3.2 in Dahms (2012), when the parameter estimators in (4.8)-
(4.9) have minimum variance in the class of unbiased estimators that are
linear combinations of the λ̂xj ’s and δ̂xj ’s, respectively. Note that Remark 3.2
only considers the case when the estimators use all data in the triangles.

Under assumptions (B1)-(B8), estimates of the mean squared error of
prediction (MSEP) could in principle be derived using the results in Section 4
of Dahms (2012). This extensive derivation is left to future work.

5 Numerical example

Here we present an application to personal accident insurance at Länsförsäk-
ringar Alliance, Sweden. The cover includes income protection for disability,
in the form of a lump sum, which gives the portfolio a very long tail (a
large number of development years). For confidentiality reasons we do not
reveal which of the 23 local mutuals in the alliance the data is taken from;
neither do we disclose which particular segment of the portfolio that is used
for this illustration. The data, and hence the results, are converted to an
unknown currency, i.e. they are all multiplied by a fix constant, which is not
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disclosed. The data is restricted to the origin years 1991-2015. The largest
claims are treated separately and are not included here. After the 25 years of
development, there is still some small activity in the portfolio, but we assume
in this example that all claims are closed in the year after that, so that the
comparisons made here are not disturbed by tail estimation.

As is often the case in practice, there is some trend in the individual
development factors λ̂xij and δ̂xij. Therefore our estimators, on the from (4.8)-
(4.9), will use only the latest six of these factors, with time-weights wi =
1, 2, 3, 4, 5, 6 in the average. The exposure ei is based on the sum insured for
disability.

As mentioned above, there is a choice of using paid claims in combination
with incurred claims or outstandings. The choice here is outstandings, which
we have found easier to handle in practice. Figure 5.1 shows the estimates
of the λ-parameters for paid claims and outstandings. In practice, we would
consider using smoothed values, but here we use the original time-weighted
estimates, to keep the illustration simple and clear.

Figure 5.1: The estimated λ-parameters for paid (orange) and outstandings
(grey), for development years 0–24. Note that λ0 is not used in the reserving.

Note that the curve for incurred claims would be the sum of these two
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curves. The late reported claim cost is substantial rather far out in the tail:
after j = 12, still some 10 % of the sum of the incurred λ’s remains to be
reported. During years 0–19, the amount paid is less than half of the incurred
amount, as seen by noting that the Paid curve lies below the Outstandings.

Figure 5.2 shows the corresponding estimates of the δ-parameters for paid
claims and outstandings.

Figure 5.2: The estimated δ-parameters for paid (blue) and oustandings
(orange), for development years 1–24.

After a few initial years of somewhat larger payments, for costs like im-
mediate health care, the paid curve stabilizes at or below 10 % for several
years. Then the convergence towards 100 % starts – eventually all outstand-
ings must be paid out, but we have not reached that point here. (In practice,
we would set a tail here, but for the example, we ad just one development
year in which everything is paid out, not shown in the figure.) As we come
further to the right, the outstanding amounts are quite small, which increases
the random fluctuation in these parameter estimates, but on the other hand
the impact on this on the total reserve is, of course, also small. Again, we
would use smoothed estimates in practice.

The outstandings curve is much like a mirror of paid, on the negative side.
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If we would make no changes to the incurred values, the mirroring would be
perfect. However, here the outstandings δ-values are larger in absolute value
than the paid amounts, so the incurred claims curve, being the sum of the
two, would be negative. This means that the initial incurred claims are over-
estimated by the claims handlers. This is valuable information that we would
not as easily obtain by using a standard Chain Ladder.

For completeness, Table 5.1 gives the resulting claims reserve, in terms
of outstandings plus IBNR. As a benchmark, we also include the IBNR of a
Chain Ladder on paid and incurred, respectively. For comparability, the same
choice that we made in our method, time-weighted averages of six individual
developments, is made for the Chain ladder estimates here.

The differences between CL paid and CL incurred are very large, as is not
unusual for long-tailed business. Note that the fact that our method gives
consistent estimation for paid and incurred does not mean that the resulting
reserve necessarily lies between the ones for the CL on paid and incurred,
since this is a completely different method with other exposure than the CL.
However, for a majority of the years, including the most important last six
years, our method gives a reserve between CL paid and CL incurred.

It should be noted that in practice one would make adjustments to the
Chain Ladder estimates, such as using a Bornhuetter-Ferguson method for
the first year(s). Indeed, there are many possible adjustments that can be
made to any of the three methods, which should presumably make the dif-
ferences smaller. This example is just an illustration, with Chain ladder as a
benchmark. Nevertheless, it indicates that the choice of method can be very
important.

Our choice of method is mainly a result of judgement of what the main
drivers for the claim cost is, based on knowledge of the particular type of
insurance. But our preference for the mentioned method is also a result of
its practical advantages. Some of these have been mentioned above, and in
the next section we discuss a few more.

We have also made an empirical comparison of how well the method
applied to 1991-2014 predicts the next paid diagonal, i.e calendar year 2015,
as compared to a CL on paid. Our method had 53 % of the root mean
square error of prediction (Root MSEP) as compared to the CL. A similar
comparison for the change in incurred claims as compared to a CL on incurred
gave a reduction to 69 % in Root MSEP. This is of course a very limited study,
but the substantial reduction in Root MSEP indicates that our method is
more efficient for this particular portfolio.
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6 Discussion

The method suggested here enables us to make proper choices of the drivers
(exposures) for future development of claims paid and incurred, separately
for outstandings and new claims (including reopenings). For the first of
these two classes, we use the outstanding amounts as exposure, with the
side-effect that the reserve derived from paid claims is equal to that derived
from incurred claims. We shall now describe three further advantages of the
method.

1. The Bornhuetter-Ferguson (BF) method is sometimes used as a robust
alternative to the Chain Ladder, in the first year(s) of the claims devel-
opment, If there is a large amount of unknown claims, using a Chain
Ladder would mean that we apply a very large factor f1 on a small
amount Ci0, which results in a very volatile estimator. BF is instead
based on multiplying an exposure (typically the premium) by a ratio
(typically a loss ratio). Schnieper’s method is similar as comes to new
reported claims, multiplying an exposure ei by λj, which is a sort of a
“one year loss ratio”. Here Schnieper’s method offers a smooth transi-
tion from something that is not too far from a BF, in the early years,
to a CL on incurred claims later on. Indeed, when all claims are re-
ported, it is equivalent to a CL on incurred claims. This means that
we can use one unified method for all years, instead of jumping from a
BF for the first development years(s) to a CL later on. This advantage
carries over to our method, but the smooth transition is, of course, to
the ECLR of Dahms (2008).

2. For well developed, older accident years, it is in practice often neces-
sary to adjust the CL estimate for its discrepancy to the remaining
outstandings. For example, it might be the case that all claims are
closed, but the CL still gives a substantial reserve, or the other way
around: CL gives a reserve estimate that is much lower than the out-
standings, to an extent that is not realistic. An ad hoc solution is
to make some kind of “transition to incurred claims” for old accident
years, i.e. manually forcing the IBNR to decrease to zero. With the
ECLR of Dahms (2008), such a transition is no longer necessary, since
the IBNER reserve is driven by the outstandings. This property is
inherited by our method.

3. Sometimes we need to allocate the claims reserve to a number of small
segments, in which data is scarce. This may be achieved by using es-
timated parameters from the entire portfolio, applied to the observed
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exposure in each segment. With a traditional Chain Ladder, this may
again lead to unrealistic reserves when compared to the outstandings
in the segments. Our method eliminates this problem, since the out-
standings in the small segments is used as exposure for reported claims.
Furthermore, a small segment in a long-tailed business sometimes has
disproportionate reported claim amounts in the first years. By using
this amount as exposure, CL gives a volatile estimate, while in our
method we get a stable estimate of unknown claims based on the the
segment’s part of ei.

The reduced need for adjustments is, in our opinion, an indication of
the soundness of the method. The mentioned properties are inherited from
Schnieper (1998) or Dahms (2008), but our combination of their ideas is
necessary to get a method with all the mentioned properties.
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Our method CL on Paid CL on Incurred
Acc. yr Outstandings IBNR IBNR IBNR

1991 252 0 -252 0
1992 1 183 310 -602 223
1993 1 314 163 -592 19
1994 1 479 292 -392 94
1995 2 894 264 -1 006 32
1996 2 487 789 459 203
1997 3 810 1 000 -74 222
1998 4 265 1 210 1 146 -384
1999 7 069 677 -147 -1 290
2000 6 924 1 750 1 918 -1 716
2001 9 471 711 902 -3 238
2002 12 236 59 511 -4 164
2003 18 044 -2 090 -3 510 -5 558
2004 16 189 -255 3 022 -7 711
2005 20 658 -1 164 429 -7 765
2006 19 036 1 023 5 259 -8 573
2007 26 290 -1 967 4 342 -11 923
2008 25 374 407 7 282 -12 534
2009 33 332 -54 8 345 -13 343
2010 35 618 2 932 14 909 -12 474
2011 38 037 7 575 18 458 -9 746
2012 46 445 11 163 26 306 -6 836
2013 46 487 23 863 49 208 3 085
2014 44 105 41 895 66 709 17 719
2015 29 979 76 668 129 531 46 501
Sum 452 978 167 223 332 162 -39 157

Table 5.1: IBNR, i.e. the claims reserves on top of the outstandings, with
our method, a Chain Ladder on paid, and dito on incurred claims.
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