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Abstract

In the paper we derive new types of multivariate EWMA control charts which are
based on the Euclidean distance and on the distance defined by using the inverse of the
diagonal matrix consisting of the variances. The design of the proposed control schemes
does not involve the computation of the inverse covariance matrix and, thus, it can be
used in the high-dimensional setting. The distributional properties of the control statistics
are obtained and are used in the determination of the new control procedures. Within
an extensive simulation study, the new approaches are compared with the multivariate
EWMA control charts which are based on the Mahalanobis distance.
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1 Introduction
Multivariate statistical process control (SPC) is used to detect simultaneously changes in several model
characteristics after their occurrence which may take place at unknown time points. The methods of
multivariate SPC are widely used in many fields of science, like engineering, economics, medicine, chem-
istry, biology, and finance (see, e.g., Frisén (1992), Sonesson and Bock (2003), Lawson and Kleinman
(2005), Schipper and Schmid (2001), Andersson et al. (2004), Schmid and Tzotchev (2004), Messaoud
et al. (2008), Bodnar (2007), Golosnoy et al. (2011), Bodnar (2009), among others).

The first multivariate control chart was introduced by Hotelling (1947). It is based on the Ma-
halanobis distance between the vector of observations and the target vector of the characteristics. A
control chart based on an MEWMA (multivariate exponentially weighted moving average) recursion
was suggested by Lowry et al. (1992). Crosier (1988), Pignatiello and Runger (1990), and Ngai and
Zhang (2001) proposed several multivariate CUSUM (cumulative sum) control charts.

The mentioned above multivariate control procedures were designed for independent observations,
which appears to be a rather restrictive assumption in practice (see, Alwan and Roberts (1988)).
Theodossiou (1993) proposed an extension of the multivariate CUSUM control chart designed to detect
changes in the mean of vector autoregressive moving average (VARMA) processes. The extension of
the MEWMA control chart to dependent observations was given in Kramer and Schmid (1997), while
Bodnar and Schmid (2007, 2011) derived several CUSUM schemes for detecting changes in the mean
vector of multivariate time series.

The problem of sequential monitoring of process parameters becomes extremely challenging, when
the process dimension is very large. The classical approaches usually cannot be used in such a situation
since the control statistics depend on the inverse covariance matrix. The computation of the inverse
covariance matrix can be extremely time consuming in practice and also numerical issues can take
place. As a result, modifications of the existing approaches are necessary when the parameters of a
high-dimensional time series should be monitored.

Several statistical control procedures based on the high-dimensional data have been proposed re-
cently. Wang and Jiang (2009) considered a variable-selection-based multivariate statistical process
control procedure for monitoring the process parameters and fault diagnosis in high dimension. A
forward-selection algorithm was utilized to screen out potential out-of-control variables followed by
control charts to monitor the suspicious variables. A high-dimensional control chart approach for pro-
file monitoring was suggested by Chen and Nembhard (2011) which is based on the adaptive Neyman
test statistic for the coefficients of the discrete Fourier transform of profiles. Li et al. (2014) proposed a
chart that starts monitoring with the second observation regardless of the dimensionality and reduces
the average run length in detecting early shifts in high-dimensionality measurements. More recently,
Wang et al. (2017b) constructed a hybrid control chart in the case of independent multivariate Poisson
data which is based on a goodness-of-fit test. A number of challenges appear when these approaches
are adopted to the case of dependent data. Although several high-dimensional time series models exist
in the literature (see, e.g., Lam et al. (2012); Han and Liu (2013); Chudik and Pesaran (2013); Han
et al. (2015); Kock and Callot (2015); Gupta and Robinson (2015); Liu et al. (2015); Hall et al. (2016);
Aue et al. (2017a,b); Dias and Kapetanios (2017); Gupta and Robinson (2017); Wang et al. (2017a)),
it seems that the problem of sequential monitoring of their parameters have not been treated up to
now.

The rest of the paper is organized as follows. The change-point model is presented in Section 2,
while Section 3 provides the results for the multivariate EWMA control chart based on the Mahalanobis
distance. The new control schemes designed for high-dimensional time series are proposed in Section
4. Section 5 shows the results of the comparison study. Section 6 summarizes the obtained results,
while technical proofs are moved to the appendix (see, Section 7).
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2 Change-point model
We denote the observed process by {Xt}. It is assumed to be a p-dimensional time series. The target
process is denoted by {Yt}. The relationship between both processes is given by the change point
model

Xt =

{
Yt for t < τ

Yt + a for t ≥ τ , t ∈ Z, (1)

where a 6= 0 and τ ∈ N∪{∞}. Thus both processes may differ by a change in the mean behaviour. We
say that the observed process is in control if τ =∞, else it is said to be out of control. In the following
the symbols E∞(.), Var∞(.), and Cov∞(.) will denote the mean, the variance, and the covariance
matrix, respectively, computed under the assumption of no change, that is in the in-control state.

Throughout the paper it is supposed that {Yt} is a weakly stationary time series with E(Yt) =
µ = E∞(Xt) and Cov(Yt+h,Yt) = Γ(h) = Cov∞(Xt+h,Xt).

3 The multivariate EWMA chart for time series
We consider the multivariate EWMA control chart for time series introduced by Kramer and Schmid
(1997). It is based on the recursion

Zt = (I−R)Zt−1 + RXt, t ≥ 1 (2)

with Z0 = µ where R = diag(r1, ..., rp) with r1, ..., rp ∈ (0, 1]. The recursion can also be written as

Zt − µ = (I−R)(Zt−1 − µ) + R(Xt − µ), t ≥ 1

and thus

Zt = µ+
t−1∑
i=0

(I−R)iR(Xt−i − µ) =
t−1∑
i=0

(I−R)iRXt−i + (I−R)tµ

= µ+

t−1∑
i=0

(I−R)iR(Yt−i − µ) +
t−τ∑
i=0

(I−R)iRa (3)

for t = 1, 2, .... Then it holds for p fixed that (cf., Kramer and Schmid (1997))

E(Zt) = µ+ (I− (I−R)t−τ+1)aI{τ,τ+1,...}(t)

−−−→
t→∞

µ+ a

and

Cov(Zt) = R

t−1∑
i,j=0

(I−R)iΓ(j − i)(I−R)jR

−−−→
t→∞

R
∞∑

i,j=0

(I−R)iΓ(j − i)(I−R)jR,

provided that {Γ(v)} is absolutely convergent. Note that the mean change does not influence the
covariance matrix of Zt, i.e. Cov(Zt) = Cov∞(Zt).

Now let

Σt,p = Cov∞(Zt), Σl;p = lim
t→∞

Cov∞(Zt) = R

∞∑
i,j=0

(I−R)iΓ(j − i)(I−R)jR. (4)
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The MEWMA control chart is constructed by determining the control statistics at each time point
t as the Mahalanobis distance of the vector Zt given by

TMah,t = (Zt − µ)′Σ−1t,p (Zt − µ) or TMahInf,t = (Zt − µ)′Σ−1l;p (Zt − µ), (5)

depending on whether the exact or asymptotic covariance matrix of Zt is used (cf., Kramer and Schmid
(1997)). It is concluded that there is a change at time t if the control statistics are sufficiently large.

Note that contrary to independent samples the MEWMA chart for stationary processes is in general
not directionally invariant. Kramer and Schmid (1997) proved an invariance property of the MEWMA
chart for a VAR(1) process. They gave a sufficient condition such that the in-control ARL does not
depend on the covariance matrix of the white noise process. If this holds, then the analysis of the
MEWMA chart turns out to be much simpler.

Next we will analyze the distributional behavior of TMah,t and TMahInf,t, in particular in the high-
dimensional setting. The following notations will be used throughout the paper.

at−τ = (I− (I−R)t−τ+1)aI{0,1,2,...}(t− τ), ζτ,t,p = a′t−τΣ
−1
t,pat−τ , ζl;p = a′Σ−1l;p a. (6)

First, we focus on the control statistic based on the exact covariance matrix.

Lemma 3.1. Let {Yt} be a stationary Gaussian process with E(Yt) = µ and Cov(Yt+h,Yt) = Γ(h).
Let τ be fixed.

a) Then (Zt − µ)′Σ−1t,p (Zt − µ) ∼ χ2
p,ζτ,t,p

and

E((Zt − µ)′Σ−1t,p (Zt − µ)) = p+ ζτ,t,p,Var((Zt − µ)′Σ−1t,p (Zt − µ)) = 2(p+ 2ζτ,t,p).

b) Suppose that {Γ(v)} is absolutely convergent. Let p be fixed, then

(Zt − µ)′Σ−1t,p (Zt − µ)
d−−−→

t→∞
χ2
p,ζl;p

.

c) Suppose that limp→∞
ζτ,t,p
p <∞. Let t be fixed, then

(Zt − µ)′Σ−1t,p (Zt − µ)− p− ζτ,t,p√
2(p+ 2ζτ,t,p)

d−−−→
p→∞

N(0, 1).

Proof. It holds that Zt − µ ∼ Np(at−τ ,Σt,p). Thus the proofs of part a) and b) follow immediately
for (Zt − µ)′Σ−1t,p (Zt − µ). In order to prove part c) for (Zt − µ)′Σ−1t,p (Zt − µ) we apply Lemma 3 of
Bodnar and Reiß (2016).

In the next lemma the behavior of the control statistic based on the asymptotic covariance matrix
for t tending to infinity is analyzed. Since this quantity is easier to determine it is frequently used in
applications. However, in the high-dimensional situation it is questionable whether such an approach
makes sense. If t is small and p is large the approximation to the exact covariance matrix may be
weak.

Lemma 3.2. Let {Yt} be a stationary Gaussian process with E(Yt) = µ and Cov(Yt+h,Yt) = Γ(h).

a) Then
E((Zt − µ)′Σ−1l;p (Zt − µ)) = tr(Σ−1l;pΣt,p) + a′t−τΣ

−1
l;p at−τ ,

Var((Zt − µ)′Σ−1l;p (Zt − µ)) = 2tr((Σ−1l;pΣt,p)
2) + 4a′t−τΣ

−1
l;pΣt,pΣ

−1
l;p at−τ .

b) Suppose that {Γ(v)} is absolutely convergent. Let p be fixed, then

(Zt − µ)′Σ−1l;p (Zt − µ)
d−−−→

t→∞
χ2
p,ζl;p

.
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c) Suppose that limp→∞
ζτ,t,p
p <∞. Let t be fixed, then

(Zt − µ)′Σ−1l;p (Zt − µ)− tr
(
Σ−1l;pΣt,p

)
− a′t−τΣ

−1
l;p at−τ√

2tr(Σ−1l;pΣt,pΣ
−1
l;pΣt,p) + 4a′t−τΣ

−1
l;pΣt,pΣ

−1
l;p at−τ

d−−−→
p→∞

N (0, 1).

Proof. Since Zt − µ = Zt − E(Zt) + E(Zt)− µ we get that

E((Zt − µ)(Zt − µ)′) = Σt,p + (E(Zt)− µ)(E(Zt)− µ)′

and thus the first part of a) follows. Now Zt − µ ∼ Np(at−τ ,Σt,p) and the second part of a) follows
with (3.2b.10) of Mathai and Provost (1992).

Applying that

(Zt − µ)′Σ−1l;p (Zt − µ) = (Σ
−1/2
t,p (Zt − µ))′Σ1/2

t,p Σ−1l;pΣ
1/2
t,p (Σ

−1/2
t,p (Zt − µ))

part b) is obtained.
Finally, part (c) of the lemma follows from Zt − µ ∼ Np(at−τ ,Σt,p) and Lemma 7.1 given in the

appendix.

Since (Zt − µ)′Σ−1l;p (Zt − µ) is a quadratic form its exact distribution can be written as a series
expression (cf., Mathai and Provost (1992)). Furthermore, from part b) it holds that for p fixed

P

(
(Zt − µ)′Σ−1t,p (Zt − µ)− p− ζτ,t,p√

2(p+ 2ζτ,t,p)
≤ x

)
−−−→
t→∞

χ2
p,ζl;p

(
√
2(p+ 2ζl;p)x+ p+ ζl;p).

The practical calculation of Σt,p and Σl;p turns out to be difficult. Explicit formulas can only be
obtained for special cases.

Lemma 3.3. Let {Yt} be a stationary VAR(1) process given by

Yt = ΦYt−1 + εt

with Cov(Yt+h,Yt) = Γ(h), where

1) {εt} is i.i.d., E(εt) = 0 and Cov(εt, εt) = Σ;

2) Φ = ϕ I, with |ϕ| < 1.

Moreover, let R = r I with r ∈ (0, 1]. Then, it holds that

a) if 1− r 6= ϕ, then
Σt,p = ct(r, ϕ) Γ(0) (7)

with

ct(r, ϕ) =
r

2− r
1

1− (1− r)ϕ

(
1 + ϕ(1− r)

+ ϕ
ϕt − (1− r)t

ϕ− (1− r)
(ϕt − (1− r)t + (1− r)t+2)

− ϕ2t+1 − (1− r)2t+1

ϕ− (1− r)
+ ϕ2(1− r)t+2 ϕ

t−1 − (1− r)t−1

ϕ− (1− r)

)
(8)

and
Σl;p = c(r, ϕ) Γ(0)

with
c(r, ϕ) = lim

t→∞
ct(r, ϕ) =

r

2− r
1 + ϕ(1− r)
1− (1− r)ϕ

.
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b) If 1− r = ϕ, then

Σt,p =
Γ(0)

(1 + ϕ)2
[(1 + ϕ2)(1− ϕ2t)− 2tϕ2t(1− ϕ2)] (9)

and

Σl;p =
1 + ϕ2

(1 + ϕ)2
Γ(0).

The proof of Lemma 3.3 is given in the appendix. In the case 1 − r = ϕ we interpret the value of
ct(r, ϕ) as the limit if ϕ converges to 1− r and the limit coincides with the quantity given in (9).

The MEWMA chart was mainly applied in low-dimensional spaces. However, recently we are faced
with situations where the amount of collected data is huge and thus it is of interest to monitor high-
dimensional processes. Thus the question arises how good this chart behaves in a high-dimensional
context. Following this approach, we might face a number of difficulties in a high-dimensional context.
One of them is the computation of the inverse matrix Σ−1t,p , which in general depends on t and has
to be inverted at each time point when it is checked whether the process is still in-control. Even the
application of the asymptotic covariance matrix Σ−1l;p might lead to some difficulties. For example, due
to the dimensionality issue, the resulting covariance matrix might be ill-conditioned or its computation
might be time consuming.

4 Control charts based on Euclidean type distances

4.1 Introduction of the control schemes
Recently, several authors considered 2-sample tests for high-dimensions (e.g., Bai and Saranadasa
(1996), Chen and Qin (2010)). They proposed in principle to make use of the Euclidean distance
or approximations to this distance in a high-dimensional setting. Motivated by the high-dimensional
discriminant analysis (see, e.g., Bodnar et al. (2016)), we consider three types of control statistics
which are based on (Zt−µ)′(Zt−µ), (Zt−µ)′Σ−1d;t,p(Zt−µ), and (Zt−µ)′Σ−1d;l;p(Zt−µ) where Σd;t,p

and Σd;l;p are obtained from Σt,p and Σl;p by setting all their non-diagonal elements equal to zero.
The process is concluded to be out of control if the value of a control statistic is larger than a control
limit c > 0.

The choice of the control limit c plays a central role in the analysis. If c is chosen small the chart
will trigger many signals while for a large value of c signals will rarely occur. Frequently, c is chosen
such that the in-control ARL is equal to a predetermined value. In engineering, the in-control ARL is
often taken to be 500, in finance equal to 60. Essentially, this depends on the frequency of the obtained
observations.

The calculation of the average run length turns out to be quite challenging in the present case.
Note that for univariate time series an explicit formula for the ARL is only known for special type
of processes as, e.g., exchangeable variables (cf., Schmid (1995)). Thus mostly simulations are used
to determine the control limit. This approach is of course time consuming since for each parameter
constellation and dimension the value must be calculated. Here we are confronted again with the
problem of dimensionality.

Practitioners often choose a more simpler procedure. They are working with 3σ control limits. In
order to apply such a procedure it is first necessary to determine characteristic quantities of the control
statistics.

4.2 Determination of the control design
Following the proof of Lemma 3.2 we get the following two results.

Theorem 4.1. Let {Yt} be a stationary Gaussian process with E(Yt) = µ and Cov(Yt+h,Yt) = Γ(h).
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a) Then
E((Zt − µ)′(Zt − µ)) = tr(Σt,p) + a′t−τat−τ ,

Var((Zt − µ)′(Zt − µ)) = 2tr(Σ2
t,p) + 4a′t−τΣt,pat−τ .

b) Suppose that {Γ(v)} is absolutely convergent. Let p be fixed, then

(Zt − µ)′(Zt − µ)
d−−−→

t→∞

p∑
i=1

λEu;l;iχ
2
1,ζEu;l;i

,

where λEu;l;1, ..., λEu;l;p are the eigenvalues of Σt,p and ζEu;l;1, ..., ζEu;l;p are the components of
the vector ζEu;l = U′EuΣ

−1/2
t,p at−τ with UEu the matrix of eigenvectors of Σt,p.

c) Suppose that limp→∞
ζτ,t,p
p <∞. Let t be fixed, then

(Zt − µ)′(Zt − µ)− tr (Σt,p)− a′t−τat−τ√
2tr(Σ2

t,p) + 4a′t−τΣt,pat−τ

d−−−→
p→∞

N (0, 1).

Theorem 4.2. Let {Yt} be a stationary Gaussian process with E(Yt) = µ and Cov(Yt+h,Yt) = Γ(h).

a) Then
E((Zt − µ)′Σ−1d;t,p(Zt − µ)) = tr(Σ−1d;t,pΣt,p) + a′t−τΣ

−1
d;t,pat−τ ,

Var((Zt − µ)′Σ−1d;t,p(Zt − µ)) = 2tr((Σ−1d;t,pΣt,p)
2) + 4a′t−τΣ

−1
d;t,pΣt,pΣ

−1
d;t,pat−τ .

b) Suppose that {Γ(v)} is absolutely convergent. Let p be fixed, then

(Zt − µ)′Σ−1d;t,p(Zt − µ)
d−−−→

t→∞

p∑
i=1

λdEu;l;iχ
2
1,ζdEu;l;i

,

where λdEu;l;1, ..., λdEu;l;p are the eigenvalues of Σ
1/2
t,p Σ−1d;t,pΣ

1/2
t,p and ζdEu;l;1, ..., ζdEu;l;p are the

components of the vector ζdEu;l = U′dEuΣ
−1/2
t,p at−τ with UdEu the matrix of eigenvectors of

Σ
1/2
t,p Σ−1d;t,pΣ

1/2
t,p .

c) Suppose that limp→∞
ζτ,t,p
p <∞. Let t be fixed, then

(Zt − µ)′Σ−1d;t,p(Zt − µ)− tr
(
Σ−1d;t,pΣt,p

)
− a′t−τΣ

−1
d;t,pat−τ√

2tr(Σ−1d;t,pΣt,pΣ
−1
d;t,pΣt,p) + 4a′t−τΣ

−1
d;t,pΣt,pΣ

−1
d;t,pat−τ

d−−−→
p→∞

N (0, 1).

The results of Theorems 4.1 and 4.2 are used to determined the designs of several control charts,
that are based on the multivariate EWMA recursion of Section 3 with the control statistics computed
by using the Euclidean norm and the norm employing the diagonal matrix. Depending on the usage of
the exact mean and variance of the control statistics or their asymptotic couinterparts, several control
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schemes are obtained which are the following

T1,t =
(Zt − µ)′(Zt − µ)− E∞((Zt − µ)′(Zt − µ))√

Var∞((Zt − µ)′(Zt − µ))
,

T2,t =
(Zt − µ)′(Zt − µ)− limt→∞ E∞((Zt − µ)′(Zt − µ))√

Var∞((Zt − µ)′(Zt − µ))
,

T3,t =
(Zt − µ)′(Zt − µ)− E∞((Zt − µ)′(Zt − µ))√

limt→∞Var∞((Zt − µ)′(Zt − µ))
,

T4,t =
(Zt − µ)′(Zt − µ)− limt→∞ E∞((Zt − µ)′(Zt − µ))√

limt→∞Var∞((Zt − µ)′(Zt − µ))
,

T5,t =
(Zt − µ)′(Zt − µ)− limp→∞ E∞((Zt − µ)′(Zt − µ))√

limp→∞Var∞((Zt − µ)′(Zt − µ))
,

T6,t =
(Zt − µ)′Σ−1d;t,p(Zt − µ)− E∞((Zt − µ)′Σ−1d;t,p(Zt − µ))√

Var∞((Zt − µ)′Σ−1d;t,p(Zt − µ))
,

T7,t =
(Zt − µ)′Σ−1d;t,p(Zt − µ)− limt→∞ E∞((Zt − µ)′Σ−1d;t,p(Zt − µ))√

Var∞((Zt − µ)′Σ−1d;t,p(Zt − µ))
,

T8,t =
(Zt − µ)′Σ−1d;t,p(Zt − µ)− E∞((Zt − µ)′Σ−1d;t,p(Zt − µ))√

limt→∞Var∞((Zt − µ)′Σ−1d;t,p(Zt − µ))
,

T9,t =
(Zt − µ)′Σ−1d;t,p(Zt − µ)− limt→∞ E∞((Zt − µ)′Σ−1d;t,p(Zt − µ))√

limt→∞Var∞((Zt − µ)′Σ−1d;t,p(Zt − µ))
,

T10,t =
(Zt − µ)′Σ−1d;t,p(Zt − µ)− limp→∞ E∞((Zt − µ)′Σ−1d;t,p(Zt − µ))√

limp→∞Var∞((Zt − µ)′Σ−1d;t,p(Zt − µ))
.

The control statistics T1,t, T2,t, T3,t, T4,t, and T5,t are more computationally efficient, since no
inversion is used in their computations. On the other side, the control statistics T6,t, T7,t, T8,t, T9,t, and
T10,t might be more sensitive to detect changes, when the components of Xt have different variability.
To this end, we note that the control statistics T5,t and T10,t are applicable in special situations
when the limits limp→∞ E∞((Zt − µ)′(Zt − µ)), limp→∞Var∞((Zt − µ)′(Zt − µ)), limp→∞ E∞((Zt −
µ)′Σ−1d;t,p(Zt − µ)), and limp→∞Var∞((Zt − µ)′Σ−1d;t,p(Zt − µ)) can analytically be presented in terms
of a finite number of model parameters. This is possible, for example, in the case of VARMA models
where all parameter matrices are proportional to the identity matrix. In the simulation study of Section
5 we will consider a more general model for the target process {Yt}, and for this reason these two
statistics will not be included.

The limiting values if the expression of the control statistics can be computed analytically and they
are given by

lim
p→∞

E∞((Zt − µ)′(Zt − µ)) = tr(Σl,p),

lim
p→∞

Var∞((Zt − µ)′(Zt − µ)) = 2tr(Σ2
l,p),

lim
p→∞

E∞((Zt − µ)′Σ−1d;t,p(Zt − µ)) = tr(Σ−1d;l,pΣl,p),

lim
p→∞

Var∞((Zt − µ)′Σ−1d;t,p(Zt − µ)) = 2tr((Σ−1d;l,pΣl,p)
2),

where Σd;l,p is obtained from Σl,p by setting all nondiagonal elements of Σl,p to zero.
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5 Simulation study
The aim of this section is to investigate the performance of the control charts proposed in Section 4
and to compare them with the approaches based on the Mahalanobis distance as described in Section
3.

5.1 Results in the in-control state
To investigate the properties of the considered control schemes via simulations, one has to define both
the target and the observed process. In this section, we use a VAR(1) process as a target process
{Yt}, whose coefficient matrix is assumed to be proportional to the identity matrix, that is Φ = ϕ I
with ϕ = 0.5. For this type of time series model, one can use the results of Lemma 3.3 to obtain the
analytical expressions of Σt,p and Σl;p. The covariance matrix Σ of the error process {εt} is set by

Σ = DAD,

where D = diag(d1, . . . , dp) is a diagonal matrix consisting of the standard deviations d1, . . . , dp and

A =


1 α α2 . . . αp−1

α 1 α . . . αp−2

α2 α 1 . . . αp−3

...
...

. . .
...

αp−1 αp−2 αp−3 . . . 1


is a correlation matrix with α = 0.5. To make the results of the simulation study more flexible, the
values of standard deviations d1, . . . , dp are drawn randomly from the uniform distribution on the
interval [0.5, 2]. Furthermore, it is remarkable that if the matrix D is proportional to the identity
matrix, then the control chart T1,t coincides with T6,t, T2,t with T7,t, T3,t with T8,t, T4,t with T9,t, and
T5,t with T10,t. The mean of the VAR(1) process {Yt} is set to be zero vector, i.e., µ = 0. To this end,
we put R = r I with r ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and set the dimension of the observed
process and the target process p to be equal to 50.

In the definition of several control statistics in Section 4, the asymptotic mean and the asymptotic
variance was used. For the target process as defined in the beginning of the section, we get that
the matrices Σt,p and Σl;p are proportional following the results derived in Lemma 3.3. As such, the
control charts T6,t and T7,t have the same behaviour as T8,t and T9,t, respectively. Thus, we will omit
presenting the results for T8,t and T9,t in this simulation study.

To study the impact of the asymptotic approximation on the performance of the control charts
T1,t, T2,t, T3,t, and T4,t, we compare the exact mean and the exact variance of Z′tZt, t = 1, . . . , 30,
as derived in Theorem 4.1 with the corresponding asymptotic values. The results are obtained for
r ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and are depicted in Table 1. Large differences between the
exact and the asymptotic quantities occur for r ≤ 0.7, especially when t = 1. For small values of r
considerable differences are also present for larger values of t, up to t = 10. Such a poor performance of
the asymptotic mean and variance to provide an accurate approximation of the exact ones might have
a strong impact on the control schemes whose definitions involve the asymptotic mean and variance of
Z′tZt. This is especially the case with the T2,t chart where the exact mean and the asymptotic variance
is used. This control scheme performs very poorly both in the in-control and out-of-control state and,
for that reason it is excluded from the comparison study.

The in-control average run length (ARL) is used to calibrate the control charts T1,t, T3,t, T4,t, T6,t,
T7,t, TMah,t, and TMahInf,t, which are used in the comparison study in Section 5.2. The control limits
computed for these control schemes in the case of the considered VAR(1) process are given in Table 2
for r ∈ {0.1, 0.2, . . . , 1.0}. The in-control ARL is taken equal to 200. The computation of the control
limits is performed by numerical computation where the ARL is found in each iteration based on Monte
Carlo simulations with 104 independent repetitions.
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r T1,t T3,t T4,t T6,t T7,t TMah,t TMahInf,t

0.1 2.576 2.511 3.231 2.550 2.545 73.965 73.169
0.2 2.858 2.805 3.029 2.792 2.801 76.147 75.725
0.3 2.999 2.949 2.969 2.929 2.932 77.247 76.906
0.4 3.097 3.058 3.050 3.024 3.023 77.989 77.696
0.5 3.164 3.133 3.115 3.079 3.086 78.477 78.204
0.6 3.203 3.174 3.169 3.125 3.132 78.838 78.569
0.7 3.247 3.218 3.217 3.165 3.162 79.084 78.840
0.8 3.275 3.259 3.255 3.190 3.189 79.252 79.057
0.9 3.304 3.288 3.279 3.205 3.209 79.406 79.266

1 3.313 3.316 3.319 3.220 3.226 79.501 79.494

Table 2: Control limits computed for T1,t, T3,t, T4,t, T6,t, T7,t, TMah,t, and TMahInf,t control charts
in the case of VAR(1) process, r ∈ {0.1, 0.2, . . . , 1.0}. The diagonal elements di, i = 1, ..., p, of
Σ are drawn randomly from the uniform distribution on the interval [0.5, 2].

In case r = 1 the MEWMA control schemes become Shewhart control charts. In this case, only
the observations at a given time point are used to make a decision about the existence of a change
in the model structure, previous observations are not taken into account. The control limits are the
largest for r = 1, while they drop monotonically as r decreases. Moreover, we observe that the control
limits of T1,t, T3,t, T4,t, T6,t, and T7,t charts are considerably smaller than the ones computed for the
control schemes based on the Mahalanobis distance. This result follows directly from the observations,
that TMah,t and TMahInf,t are not normalized, while the other five control schemes are centered and
normalized by the exact (asymptotic) standard deviations.

5.2 Results in the out-of-control state
In this section we study the ability of the new MEWMA control charts to detect changes in the location
behaviour of high-dimensional VAR(1) processes as defined in the previous section and compare it
with the two benchmark approaches that are based on the Mahalanobis distance. The changes in
the mean vector are generated according to the change point model (1). Namely, the vector a =
(a, . . . , a, 0, . . . , 0)′ with a ∈ {−4,−3,−2,−1, 1, 2, 3, 4} is added to the target process {Yt} in the
out-of-control state where the number of nonzero elements of a is l ∈ {12, 25, 50}.

The maximum expected delay (MED) is used as a performance measure in the out-of-control state.
The expected delay is defined as the average delay between the time of a change and the time when
the control chart detects a change under the condition that there is no false alarm before the change
takes place. The MED takes the maximum value of the expected delays with respect to the possible
location of the change time. In practice, for the determination of the MED only a finite number of
possible time changes can be taken into account. Here, it is bounded by 20, that is τ ∈ {1, 2, . . . , 20}.
To this end we note that the results obtained for negative values of a are similar to the ones obtained
for the corresponding positive values of a. Therefore, only the results for a ∈ {1, 2, 3, 4} are shown in
Tables 3 to 6.

For each control chart and out-of-control situation the minimum value of the MED with respect to
r is highlighted bold, while the smallest value across all the control schemes and the values of r are
presented bold cursive. As expected, changes of small magnitude are detected faster when the small
values of r are employed, for changes of moderate size one should prefer to set r ∈ {0.2, 0.3}, while
large deviations in the mean behaviour of a VAR(1) process are best monitored when r = 1 or when
r is close to one. These findings are in agreement with the previous results of Kramer and Schmid
(1997) obtained for the multivariate EWMA control charts based on the Mahalanobis distance.

The control charts based on the distance computed with respect to the inverse of the diagonal matrix
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r T1,t T3,t T4,t T6,t T7,t TMah,t TMahInf,t

l = 12
0.1 21.68 21.52 31.27 15.88 15.87 23.27 25.66
0.2 27.57 26.45 32.07 17.86 17.94 30.92 31.32
0.3 34.71 33.29 33.77 21.24 20.99 39.16 39.24
0.4 41.34 39.57 39.25 24.32 24.32 48.12 46.50
0.5 47.37 46.36 45.13 27.59 27.86 54.60 52.70
0.6 52.49 50.58 50.91 31.26 31.23 61.65 59.19
0.7 57.75 55.80 55.88 34.36 34.44 67.81 64.48
0.8 63.28 61.58 61.29 37.25 37.30 73.46 70.57
0.9 68.16 67.24 65.72 40.82 41.00 79.05 77.94

1 72.34 72.80 73.06 44.05 44.50 84.31 84.53
l = 25

0.1 11.80 11.63 15.44 7.91 7.90 9.79 11.85
0.2 12.48 12.14 13.74 7.19 7.21 9.52 10.48
0.3 13.99 13.62 13.85 7.30 7.34 10.41 11.07
0.4 16.03 15.63 15.54 7.70 7.69 12.01 11.98
0.5 18.34 17.73 17.61 8.23 8.29 13.53 13.25
0.6 20.08 19.75 19.54 8.98 8.99 15.45 15.25
0.7 22.53 22.15 21.86 9.65 9.66 17.46 17.16
0.8 24.64 24.33 24.22 10.47 10.49 19.39 19.16
0.9 27.61 26.83 27.00 11.41 11.41 22.03 21.40

1 29.64 29.83 29.77 12.36 12.43 24.44 24.45
l = 50

0.1 7.12 7.02 9.29 4.70 4.71 5.76 7.59
0.2 6.38 6.32 7.05 3.81 3.83 4.81 5.74
0.3 6.40 6.21 6.38 3.42 3.42 4.44 5.04
0.4 6.60 6.47 6.46 3.19 3.20 4.35 4.70
0.5 7.04 6.94 6.95 3.06 3.08 4.40 4.50
0.6 7.49 7.45 7.41 3.01 3.01 4.52 4.46
0.7 8.22 8.02 8.07 2.98 2.97 4.79 4.69
0.8 8.84 8.81 8.78 3.00 2.98 5.03 4.96
0.9 9.76 9.60 9.53 2.97 3.00 5.39 5.39

1 10.60 10.62 10.68 3.03 3.04 5.86 5.84

Table 3: Maximum expected delays for T1,t, T3,t, T4,t, T6,t, T7,t, TMah,t, and TMahInf,t control
charts in the case of VAR(1) process, r ∈ {0.1, 0.2, . . . , 1.0} and a = 1

of variances show the best performance for all considered values of a and the number of elements l whose
mean values are shifted. The control schemes T6,t and T7,t are followed by the control procedures where
the Mahalanobis distance is used in the construction of the control statistics. The worst performance is
documented for the control charts based on the Euclidean distance, which are better than the control
schemes based on the Mahalanobis distance only when a = 1 and l = 12.

6 Conclusion
Monitoring changes in the parameters of a multivariate time series is a complicated task due to large
number of parameters that need to be controlled simultaneously. Although several control schemes
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T1,t T3,t T4,t T6,t T7,t TMah,t TMahInf,t

r l = 12
0.1 7.29 7.19 9.37 5.80 5.82 7.62 9.68
0.2 6.54 6.45 7.23 4.89 4.91 6.90 7.89
0.3 6.55 6.45 6.63 4.62 4.58 6.94 7.44
0.4 6.89 6.78 6.75 4.50 4.49 7.39 7.65
0.5 7.43 7.24 7.17 4.52 4.52 8.10 8.02
0.6 8.08 7.87 7.87 4.65 4.68 8.90 8.68
0.7 8.72 8.56 8.57 4.80 4.81 9.84 9.64
0.8 9.60 9.43 9.39 5.05 5.01 10.83 10.68
0.9 10.58 10.49 10.38 5.29 5.30 12.29 11.99

1 11.53 11.69 11.48 5.62 5.61 13.65 13.56
l = 25

0.1 4.63 4.63 6.15 3.47 3.46 4.05 5.72
0.2 3.78 3.73 4.51 2.72 2.72 3.21 4.21
0.3 3.38 3.33 3.73 2.32 2.32 2.78 3.48
0.4 3.15 3.11 3.33 2.08 2.08 2.51 3.03
0.5 3.03 3.01 3.05 1.88 1.88 2.32 2.65
0.6 2.97 2.94 2.94 1.72 1.73 2.19 2.45
0.7 2.95 2.92 2.91 1.59 1.58 2.07 2.28
0.8 2.96 2.94 2.93 1.46 1.46 1.97 2.03
0.9 3.01 2.96 2.97 1.37 1.38 1.88 1.88

1 3.05 3.02 3.01 1.31 1.31 1.83 1.82
l = 50

0.1 3.22 3.18 4.46 2.33 2.35 2.74 4.05
0.2 2.50 2.48 3.17 1.83 1.83 2.12 3.00
0.3 2.15 2.13 2.52 1.55 1.55 1.80 2.31
0.4 1.90 1.88 2.18 1.32 1.32 1.58 2.03
0.5 1.71 1.70 2.02 1.16 1.16 1.37 1.98
0.6 1.54 1.53 1.77 1.06 1.06 1.20 1.69
0.7 1.40 1.39 1.44 1.02 1.02 1.09 1.25
0.8 1.27 1.27 1.28 1.01 1.01 1.04 1.05
0.9 1.20 1.19 1.19 1.00 1.00 1.01 1.01

1 1.13 1.14 1.14 1.00 1.00 1.00 1.01

Table 4: Maximum expected delays for T1,t, T3,t, T4,t, T6,t, T7,t, TMah,t, and TMahInf,t control
charts in the case of VAR(1) process, r ∈ {0.1, 0.2, . . . , 1.0} and a = 2

exist in statistical literature and are successfully implemented in real-life applications (cf., Kramer
and Schmid (1997), Bodnar and Schmid (2005), Bodnar and Schmid (2007), Bodnar and Schmid
(2011)), the problem has not been investigated in detail in the high-dimensional setting, i.e., when the
dimension of the target process can be very large. In a such situation, sequential surveillance of the
model parameter becomes extremely challenging, especially in the case when data consist of dependent
observations.

We contribute to the literature by deriving new types of control procedures based on the MEWMA
recursion where in the definition of the control statistics other types of norms are used. In particular,
instead of using the Mahalanobis distance, control charts based on the Euclidean distance are suggested
as well as control schemes where the norm is computed by employing the inverse of the diagonal matrix
consisting of the variances. The two latter approaches possess several advantages with respect to the
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T1,t T3,t T4,t T6,t T7,t TMah,t TMahInf,t

r l = 12
0.1 4.42 4.38 5.98 3.66 3.66 4.61 6.39
0.2 3.57 3.54 4.32 2.88 2.88 3.70 4.72
0.3 3.16 3.13 3.57 2.49 2.48 3.27 3.94
0.4 2.92 2.88 3.18 2.23 2.24 3.04 3.54
0.5 2.78 2.74 2.88 2.03 2.03 2.88 3.20
0.6 2.66 2.64 2.69 1.88 1.87 2.79 2.99
0.7 2.63 2.60 2.61 1.75 1.75 2.75 2.88
0.8 2.60 2.59 2.58 1.64 1.65 2.73 2.73
0.9 2.58 2.58 2.55 1.55 1.54 2.73 2.71

1 2.62 2.60 2.59 1.47 1.46 2.78 2.79
l = 25

0.1 3.04 3.01 4.23 2.35 2.36 2.71 4.02
0.2 2.37 2.35 3.03 1.84 1.85 2.10 2.99
0.3 2.01 2.01 2.38 1.55 1.56 1.79 2.28
0.4 1.78 1.77 2.11 1.33 1.33 1.56 2.03
0.5 1.59 1.58 1.96 1.16 1.16 1.34 1.98
0.6 1.43 1.42 1.67 1.07 1.06 1.18 1.67
0.7 1.28 1.28 1.34 1.02 1.02 1.08 1.23
0.8 1.18 1.18 1.18 1.01 1.01 1.03 1.04
0.9 1.12 1.11 1.11 1.00 1.00 1.01 1.01

1 1.07 1.07 1.07 1.00 1.00 1.00 1.00
l = 50

0.1 2.21 2.20 3.06 1.70 1.70 1.93 3.00
0.2 1.74 1.86 2.08 1.27 1.27 1.51 2.00
0.3 1.45 1.44 1.99 1.05 1.05 1.18 2.00
0.4 1.22 1.21 1.64 1.01 1.01 1.03 1.51
0.5 1.08 1.08 1.16 1.00 1.00 1.00 1.02
0.6 1.02 1.02 1.02 1.00 1.00 1.00 1.00
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5: Maximum expected delays for T1,t, T3,t, T4,t, T6,t, T7,t, TMah,t, and TMahInf,t control
charts in the case of a VAR(1) process, r ∈ {0.1, 0.2, . . . , 1.0} and a = 3

procedures that are based on the Mahalanobis distance. First, since no inverse of the covariance matrix
must be computed, the new approaches can be easily implemented also in the high-dimensional setting.
Second, avoiding the computation of the inverse covariance matrix speeds up the computation time
considerably. Moreover, the new approaches, especially the ones that uses the inverse of the diagonal
matrix in the computation of the control statistics, possess the best performance in the conducted
simulation study independently of the model used to generate changes in the mean behaviour of a
multivariate autoregressive process. When the magnitude of the change is small, we also obtain that
the control schemes based on the Euclidean norm outperforms the ones based on the Mahalanobis
distance.

14



T1,t T3,t T4,t T6,t T7,t TMah,t TMahInf,t

r l = 12
0.1 3.26 3.25 4.56 2.75 2.75 3.38 4.90
0.2 2.55 2.52 3.23 2.13 2.14 2.63 3.57
0.3 2.18 2.16 2.60 1.81 1.82 2.25 2.99
0.4 1.93 1.93 2.23 1.59 1.59 1.99 2.49
0.5 1.75 1.74 2.07 1.40 1.40 1.79 2.20
0.6 1.58 1.57 1.86 1.24 1.25 1.62 2.07
0.7 1.43 1.43 1.56 1.14 1.14 1.46 1.85
0.8 1.31 1.31 1.31 1.07 1.07 1.33 1.48
0.9 1.23 1.22 1.22 1.04 1.04 1.23 1.23

1 1.16 1.17 1.16 1.02 1.02 1.16 1.16
l = 25

0.1 2.32 2.31 3.19 1.86 1.86 2.09 3.03
0.2 1.82 1.93 2.20 1.44 1.45 1.66 2.08
0.3 1.54 1.53 2.00 1.15 1.16 1.34 2.00
0.4 1.31 1.30 1.80 1.03 1.03 1.11 1.89
0.5 1.14 1.14 1.31 1.00 1.01 1.02 1.22
0.6 1.05 1.05 1.07 1.00 1.00 1.00 1.01
0.7 1.02 1.02 1.02 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00
l = 50

0.1 1.76 1.97 2.30 1.33 1.33 1.58 2.01
0.2 1.33 1.33 2.00 1.02 1.02 1.09 2.00
0.3 1.08 1.07 1.29 1.00 1.00 1.00 1.08
0.4 1.01 1.01 1.01 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6: Maximum expected delays for T1,t, T3,t, T4,t, T6,t, T7,t, TMah,t, and TMahInf,t control
charts in the case of a VAR(1) process, r ∈ {0.1, 0.2, . . . , 1.0} and a = 4

7 Appendix
In this section the proofs of the theoretical results are provided.

Lemma 7.1. Let z ∼ Np(ν,Ω). Let Ω and B be positive definite matrices, b ∈ IRp, and let
U′Ω1/2BΩ1/2U = Λ = diag(λ1, ..., λp). Further let δ = (δ1, ..., δp)

′ = U′Ω−1/2(ν − b). Suppose
that

max1≤i≤p λ
2
i (1 + 2δ2i )∑p

v=1 λ
2
v(1 + 2δ2v)

−−−→
p→∞

0 (10)

then
(z− b)′B(z− b)− tr (BΩ)− (b− ν)′B(b− ν)√

2tr(BΩBΩ) + 4(ν − b)′BΩB(ν − b)

d−−−→
p→∞

N (0, 1).
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Proof. From z ∼ Np(ν,Ω), we get that

u = (u1, ..., up)
′ = U′Ω−1/2(z− b) ∼ Np(δ, I)

and, hence,

(z− b)′B(z− b) = u′Λu =

p∑
i=1

λiu
2
i , (11)

where u2i ∼ χ2
1,δ2i

. Consequently,

E(u2i − 1− δ2i ) = 0,Var(u2i ) = 2(1 + 2δ2i ),

E((u2i − 1− δ2i )4) = 12(1 + 2δ2i )
2 + 48(1 + 4δ2i ).

Now we can apply Theorem 5 in Dette and Dörnemann (2020) because

i) u2i , i = 1, ..., p are independent random variables for all p ∈ IN ,

ii) E(u2i − 1− δ2i ) = 0 for all i ∈ {1, ..., p}, p ∈ N,

iii) E((u2i − 1− δ2i )4) ≤ C(2(1 + 2δ2i ))
2 with C = 15.

Moreover, we get with

gp(i) =
λi√

2
∑p

v=1 λ
2
v(1 + 2δ2v)

that

iv) max1≤i≤p gp(i)
2 Var(u2i ) −−−→p→∞

0 by assumption (10).

Furthermore, it holds that

p∑
v=1

λ2v(1 + 2δ2v) = tr(BΩBΩ) + 2(ν − b)′Ω−1/2UΛ2U′Ω−1/2(ν − b)

= tr(BΩBΩ) + 2(ν − b)′BΩB(ν − b),

which completes the proof of the lemma

Next, we prove Lemma 3.3:

Proof of Lemma 3.3. It follows from Reinsel (1993) that

Γ(h) = ΦhΓ(0) = ϕhΓ(0)

for h ≥ 0 and since Γ(0) = 1
1−ϕ2 Σ and Σ is a symmetrical matrix, we obtain

Γ(−h) = Γ(h)′ = ϕhΓ(0)′ = ϕhΓ(0) = Γ(h).

Thus

Σt,p = R

t−1∑
i,j=0

(I−R)iΓ(j − i)(I−R)jR

= rI ·
t−1∑
i,j=0

(1− r)iIϕ|j−i|IΓ(0)(1− r)jI · rI

= r2Γ(0)

t−1∑
i,j=0

(1− r)i+jϕ|j−i|.
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Assume now that 1− r 6= ϕ and ϕ 6= 0. Then

Σt,p = r2Γ(0)
t−1∑
i=0

 i−1∑
j=0

(1− r)i+jϕi−j +
t−1∑
j=i

(1− r)i+jϕj−i


= r2Γ(0)
t−1∑
i=0

(1− r)i
ϕi i−1∑

j=0

(
1− r
ϕ

)j
+ ϕ−i

t−1∑
j=i

((1− r)ϕ)j


= r2Γ(0)

t−1∑
i=0

(1− r)iϕi
1−

(
1−r
ϕ

)i
1− 1−r

ϕ

+ (1− r)2i 1− ((1− r)ϕ)t−i

1− (1− r)ϕ


= r2Γ(0)

[
1

1− 1−r
ϕ

(
1− (1− r)tϕt

1− (1− r)ϕ
− 1− (1− r)2t

1− (1− r)2

)

+
1

1− (1− r)ϕ

(
1− (1− r)2t

1− (1− r)2
−

t−1∑
i=0

(1− r)2i(1− r)t−iϕt−i
)]

= r2Γ(0)

[
ϕ

ϕ− (1− r)

(
1− (1− r)tϕt

1− (1− r)ϕ
− 1− (1− r)2t

1− (1− r)2

)
+

1

1− (1− r)ϕ

(
1− (1− r)2t

1− (1− r)2
− (1− r)tϕϕ

t − (1− r)t

ϕ− (1− r)

)]
.

Consequently,

Σt,p =
r2Γ(0)

(ϕ− (1− r))(1− (1− r)ϕ)(1− (1− r)2)
[
ϕ
(
1− (1− r)tϕt

) (
1− (1− r)2

)
− ϕ

(
1− (1− r)2t

)
(1− (1− r)ϕ) +

(
1− (1− r)2t

)
(ϕ− (1− r))

− (1− r)tϕ
(
ϕt − (1− r)t

) (
1− (1− r)2

)]
=

r2Γ(0)

(ϕ− (1− r))(1− (1− r)ϕ)(1− (1− r)2)
[(
(1− r)tϕ

(
ϕt − (1− r)t

)
− ϕ

(
1− (1− r)tϕt

))
(1− r)2 +

(
ϕ2
(
1− (1− r)2t

)
−

(
1− (1− r)2t

))
(1− r) + ϕ

(
1− (1− r)tϕt

)
+ ϕ

(
1− (1− r)2t

)
− (1− r)tϕ

(
ϕt − (1− r)t

)
− ϕ

(
1− (1− r)2t

)]
=

r2Γ(0)

(ϕ− (1− r))(1− (1− r)ϕ)(1− (1− r)2)
[
ϕ
(
(1− r)t

(
2ϕt − (1− r)t

)
−

− 1) (1− r)2 +
(
ϕ2 − 1

) (
1− (1− r)2t

)
(1− r) + ϕ

(
1− 2(1− r)tϕt + (1− r)2t

)]
and thus

Σt,p = Γ(0)
r

2− r
1

1− (1− r)ϕ

(
1 + ϕ(1− r) + ϕ

ϕt − (1− r)t

ϕ− (1− r)
(ϕt − (1− r)t + (1− r)t+2)

− ϕ2t+1 − (1− r)2t+1

ϕ− (1− r)
+ ϕ2(1− r)t+2 ϕ

t−1 − (1− r)t−1

ϕ− (1− r)

)
.

If ϕ = 0 then 1− r 6= 0 = ϕ and we get

Σt,p = r2
1− (1− r)2t

1− (1− r)2
Γ(0) = (1− (1− r)2t) r

2− r
Γ(0)

which is also obtained by setting ϕ = 0 in (7).
Results for Σl;p follow from the respective formulas for Σt,p by letting t tends to ∞.
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Now let 1− r = ϕ. Then

Σt,p = (1− ϕ)2Γ(0)
t−1∑
i,j=0

ϕi+jϕ|j−i|

= (1− ϕ)2Γ(0)
t−1∑
i=0

 i−1∑
j=0

ϕ2i +

t−1∑
j=i

ϕ2j


= (1− ϕ)2Γ(0)

t−1∑
i=0

(
iϕ2i + ϕ2i 1− ϕ2(t−i)

1− ϕ2

)

= (1− ϕ)2Γ(0)

ϕ
2

(
t−1∑
i=0

ϕ2i

)′
+

t−1∑
i=0

ϕ2i − ϕ2t

1− ϕ2


= (1− ϕ)2Γ(0)

[
ϕ

2

(
1− ϕ2t

1− ϕ2

)′
+

1− ϕ2t

(1− ϕ2)2
− t ϕ2t

1− ϕ2

]

= (1− ϕ)2Γ(0)
[
−2tϕ2t−1(1− ϕ2)− (1− ϕ2t)(−2ϕ)

(1− ϕ2)2
· ϕ
2
+

1− ϕ2t

(1− ϕ2)2

− t
ϕ2t

1− ϕ2

]
=

(1− ϕ)2Γ(0)
2 (1− ϕ2)2

[
−2tϕ2t(1− ϕ2)

+ 2ϕ2
(
1− ϕ2t

)
+ 2

(
1− ϕ2t

)
− 2t

(
1− ϕ2

)
ϕ2t
]

=
Γ(0)

(1 + ϕ)2
[(
1 + ϕ2

) (
1− ϕ2t

)
− 2tϕ2t(1− ϕ2)

]
.

Note that this result is also obtained from (7) by letting ϕ converge to 1− r.
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