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Abstract

We study a system of interacting urns where balls of di�erent colour/type
compete for their survival, and annihilate upon contact. For competi-
tion between two types, the underlying graph (�nite and connected),
determining the interaction between the urns, is known to be irrele-
vant for the possibility of coexistence, whereas for K ≥ 3 types the
structure of the graph does a�ect the possibility of coexistence. We
show that when the underlying graph is a cycle, competition between
K ≥ 3 types almost surely has a single survivor, thus establishing a
conjecture of Gri�ths, Janson, Morris and the �rst author. Along
the way, we give a detailed description of an auto-annihilative process
on the cycle, which can be perceived as an expression of the geometry
of a Möbius strip in a discrete setting.

Keywords: urn model; reinforcement process; coexistence; spatial
growth.

1 Introduction

Probabilistic problems phrased in terms of balls drawn from urns date
back to Jacob Bernoulli's Ars Conjectandi in 1713. The diverse assort-
ment of disciplines, in which central phenomena can be understood through
an urn problem, have contributed to their continued importance. Pólya's
urn model [16, 24], introduced around a century ago, is an archetype of a
random process with reinforcement. Random processes with reinforcement
are examples of processes where the entire trajectory of the process con-
tributes to its eventual fate. In Pólya's model, a �nite number of red and
blue balls are initially placed in an urn. In each step of the process, a ball
is drawn uniformly at random from the urn, and returned along with an
identical copy of itself. The drawn colour is thus reinforced, in that balls
of the same colour are more likely to be drawn in future steps. The e�ect
of the reinforcement declines over time, resulting in the early steps of the
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process having a lasting e�ect over its continued evolution, and the limiting
proportion of red balls in Pólya's urn being random.

Random processes with reinforcement arise in a varied range of contexts,
including economics, statistics and evolutionary biology; see [23] for a com-
prehensive survey. The long-term coordination observed in reinforcement
processes have in di�erent disciplines been featured under di�erent names.
In economics, such behaviour has been described as a lock-in behaviour [4],
whereas in physical contexts, the process is said to exhibit self-organisation [7,
20]. Systems of interacting urns form an interesting class of reinforce-
ment processes, and have been used to model the formation of social net-
works [27], competition between business brands [8], neuronal processing in
the brain [18] and synchronisation in complex physical networks [3]. The in-
teraction between urns in the system can be determined by an underlaying
discrete structure, which is thought to describe relations between agents,
or to add a spatial dimension to the process. A compelling problem is to
understand under what circumstances the spatial component will manifest
in the lock-in or self-organisation of the process.

We shall in this paper be concerned with a model of interacting urns where
balls of di�erent type annihilate upon contact. Previous work [2] have re-
vealed that the spatial component, in this setting, has an e�ect on the
eventual fate of the process, as we describe further below. The annihila-
tive feature of the process has in the physics literature been suggested as a
model for the inert chemical reaction A + B → ∅; see [22, 28] and studied
further in [10, 11]. However, let us mention that our motivation originates
from [2], where the annihilative feature was found to capture competition
between di�erent types in a planar growth model with reinforcement.

Consider the graph CN consisting of N vertices and N edges positioned in a
cyclic fashion. Imagine an urn positioned at each vertex of the cycle. Place
balls of K ≥ 2 di�erent types into the urns so that no urn contains balls
of more than one type. The balls in the system (either initially present or
added later) are equipped with independent Poisson clocks. At the ring of a
clock, the corresponding ball sends a copy of itself to each neighbour of the
graph. Balls of di�erent type are not allowed in the same urn simultaneously,
and when a ball is added to an urn which contains balls of a di�erent type,
then the new ball annihilates with one of the already existing balls. We shall
refer to this model as the K-type competing urn scheme on the cycle.

The above competing urn scheme was introduced in [2], where the authors
showed that for K = 2, irregardless of the initial con�guration of balls, the
system of urns will eventually almost surely consist of balls of a single type.
In fact, the same conclusion was shown to holds for the corresponding urn
scheme on any �nite connected graph. The authors conjectured that also
for K ≥ 3, in the case of the cycle, coexistence of K types has probability
zero. The authors further illustrated, by means of an example, that the case
K ≥ 3 is strikingly di�erent in that there are �nite connected graphs for
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which mutual coexistence of three or more types does occur with positive
probability.

In this paper we settle the aforementioned conjecture from [2].

Theorem 1. For every N ≥ K ≥ 2, and any nonzero initial con�guration,
the K-type competing urn scheme on the cycle of length N has almost surely
a single surviving type.

Models used to describe competing technologies have in the economics liter-
ature come to incorporate reinforcement mechanisms [4]. In more physically
motivated models for competing growth, reinforcement is often absent. This
includes multi-type versions of the models of Eden [15] and Richardson [26].
These models exhibit spatial coexistence among multiple competitors of
equal strength [14, 17]. Motivation for the competing urns scheme intro-
duced in [2] came form competition in a version of the Eden model on Z2

with a bootstrapping e�ect similar to that of bootstrap percolation and
related automata [21]. The bootstrapping mechanism can be thought of
as a spatial analogue of a reinforcement e�ect. In fact, it turns out that
the question of coexistence in this competing growth model on Z2 can be
rephrased in terms of coexistence in the competing urn scheme on a cycle.
By ruling out coexistence among two types on cycles of any length, the
authors of [2] were able to rule out coexistence among two types for the
growth model on Z2. As a corollary of Theorem 1 we extend their result
for the growth model on Z2 to any number K ≥ 2 types, hence proving
another conjecture from [2]; see Section 1.3 below. These results show how
the presence of reinforcement may break the ties that arise in models for
competing growth on Z2.

The study of (generalised) Pólya urns via embedding in multi-type branch-
ing processes was pioneered in [6]. Leaning on martingale analysis and
Perron-Frobenius theory, they could determine the long-term behaviour of
certain urn processes. Also the two-type competing urn scheme in [2] was
analysed via the theory for multi-type branching processes. The methods
required for its multi-type analogue are di�erent in that the competing urn
scheme, for K ≥ 3, will reduce to a process which, in general, is neither a
branching process, nor amenable to Perron-Frobenius theory. Nevertheless,
we shall see that it is su�ciently similar to a branching process in order for
martingale methods to apply, which will reveal a more complex behaviour
of the processes. We shall next, in Section 1.1, outline the analysis of the
two-type process, before we proceed to describe a process with an auto-
adverse behaviour, resulting from the analysis of the multi-type process, in
Section 1.2.

1.1 The two-type competing urn scheme

Let G be a �nite connected graph and A its adjacency matrix. The two-
type competing urn scheme on G can be described as follows: Encode type
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1 balls as 1s and type 2 balls as −1s. Let Y (t) = (Yk(t))
N
k=1 be the vector

that encodes the con�guration of balls at time t ≥ 0. Then, if a nucleation
occurs at time t at position k, the change equals

Y (t)− Y (t−) = Ak · sign(Yk(t−)), (1)

where Ak is the kth column of the matrix A and sign( · ) the sign func-
tion.

For initial con�gurations consisting of only one type, no annihilations will
ever occur. In this case (1) describes a multi-type continuous-time Markov
branching process with mean matrix given by A, and after proper rescaling
the process converges almost surely to a random multiple of the Perron-
Frobenius vector [5]. By considering a conservative version of the two-type
competing urn scheme, in which the interaction between balls of the di�er-
ent types result in a third type instead of annihilation, it was in [2] possible
to express the evolution of the competing urn scheme as the di�erence be-
tween two (dependent) multi-type branching processes. This was a key step
in order to rule out coexistence in the case that K = 2, resulting in the
following theorem.

Theorem 2. Let G be a �nite connected graph and let λ denote the largest
positive eigenvalue of the adjacency matrix of G and v the corresponding
eigenvector. Then, for any nonzero initial con�guration, there exists an
almost surely nonzero random variable W such that almost surely

lim
t→∞

e−λtY (t) = Wv.

From Perron-Frobenius theory we know that the largest eigenvector has
multiplicity one and that the corresponding eigenvector has strictly positive
entries. In the case of the cycle CN we have λ = 2 and the corresponding
eigenvector v is the all ones vector (1, 1, . . . , 1). By Theorem 1 it follows
that all coordinates of Y (t) will be either positive or negative for large
values of t, almost surely, from which the case of K = 2 of Theorem 2
follows immediately.

The main reason that a similar approach fails for K ≥ 3 is that it is not
obvious how to encode the competition between three or more types in an
arithmetic system. Indeed, such a system would have to have a non-Abelean
feature in that the order in which balls are placed into the urns matters.
That this feature has importance was illustrated in [2] by giving examples
of graphs for which coexistence among K ≥ 3 types occurs with positive
probability.

As observed in [2], this issue can in part be circumvented for competition on
CN , due to the structure of the graph. Given a con�guration of K ≥ 2 types
on CN we shall by the word tribe refer to a maximal connected subgraph of
CN for which each vertex is either vacant or occupied by balls of the same
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Figure 1: Competition between two types on a cycle of length six. In the �g-
ure there are two tribes, consisting of the vertices {v1, v6} and {v2, v3, v4, v5}
respectively, and two fronts between vertices v1 and v2, and v5 and v6.

type.1 The separation between two tribes will be referred to as a front ; see
Figure 1. The number of fronts is then equal to the number of tribes (as long
as there are at least two tribes, and zero otherwise) and can be described as
the number of occupied vertices of the cycle such that the closest occupied
vertex in the clockwise direction is occupied by a di�erent type. Note that
balls on CN are �aware� that balls of a tribe with which they share a front
are of a di�erent type than their own, but �oblivious� to the same for balls
in tribes that are separated by at least two fronts. Consequently, in the
case that the initial con�guration consists of an even number of tribes, it
is possible to encode the competition between the K types by alternatingly
giving tribes positive or negative numbers. This encoding will no longer be
an equivalent formulation of the process, as the encoding, in general, will no
longer describe the competing urn process once a tribe is eliminated, and
the balls clockwise and counter-clockwise of the eliminated tribe become
�aware� of each other.

In the case that the number of tribes is odd, encoding the competition pro-
cess in the above manner will result in the �rst and last tribes being encoded
by positive numbers. Competition according to (1) will then not result in
annihilation between balls in the �rst and �nal tribes, as it should. This can
be adjusted for by declaring the edge (or one of the edges if several) connect-
ing the �rst and �nal tribes as a �sign-reversing� edge, with the property
that every ball that is sent along this edge has its sign reversed. This process
will be properly introduced below, and studied to certain lengths.

1.2 Auto-annihilative growth on a circular graph

Large parts of this paper will consist in analysing a growth process on the
cycle with an auto-adverse behaviour. We shall next describe this process,

1Note that when there are no vacant vertices the collection of tribes forms a partition

of the vertices of CN , but that vacant vertices may belong to more than one tribe.
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the results of our analysis thereof, as well as its connection to the K-type
competing urn scheme.

Consider the following process on the cycle of length N . At time zero,
distribute a �nite number of signed particles to the vertices of the cycle in
a way such that no particles of opposing signs are at the same position. We
may encode the initial con�guration of particles by a vector in ZN . When
time starts, all particles (initially present or born later) reproduce according
to independent Poisson clocks. At the ring of a clock, the particle associated
with the clock sends an independent copy of itself to each neighbour, except
for particles sent across the edge connecting vertices 1 and N , in which case
the sent particle has its sign changed. Particles of the same sign do not
interact, but particles of opposing signs that appear at the same vertex
annihilate immediately on a one-by-one basis; see Figure 2.

v1

v2

v3v4

v5

v6 �
++

+

+

v1

v2

v3v4

v5

v6 �
++

++

Figure 2: Illustration of the graph C6 with the sign-reversing edge marked
by a negation sign. If the clock of the particle at node v1 rings (left), then a
particle is added to each of the neighbouring urns at v2 and v6 (right). Since
the particle sent across the sign-reversing edge is negated, the nucleation
results in one annihilation.

Let Z(t) = (Zk(t))
N
k=1 be the vector that encodes the con�guration of par-

ticles at time t. We shall refer to (Z(t))t≥0 as the signed competition or
auto-annihilative growth process on the cycle of length N . Let A∗ denote
the matrix

A∗ :=



0 1 0 · · · 0 −1
1 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
−1 0 0 · · · 1 0


. (2)

That is, A∗ is obtained from the adjacency matrix A of CN by negating the
entries in the SW and NE corners. Note that if at time t a clock rings at
position k, then the change caused by the ring can be expressed as

Z(t)− Z(t−) = A∗
k · sign(Zk(t−)), (3)
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where A∗
k denotes the k-th column of the matrix A∗. We shall henceforth

refer to A∗ as the reinforcement matrix of the auto-annihilative growth
process.

The introduction of a sign-reversing edge has interesting e�ects on the geom-
etry of the process. Imagine, in the auto-annihilative process, descendants
of a particle spreading around the cycle. Once descendants of that parti-
cle has completed their �rst lap clockwise, their sign have been negated.
Hence, even when started with a single particle, both positive and negative
particles will (or at least may) eventually become present. Completing yet
another lap clockwise, the descendants of the original particle return with
their original sign, much like an ant on a Möbius strip. This suggests that
the geometry of the auto-annihilative process is encoded in the cycle of twice
the length.

We emphasise the fact that (3) does not describe a multi-type branching
process (at least not of the standard form) as the mean/reinforcement ma-
trix A∗ has negative entries. Moreover, Perron-Frobenius theory does not
apply, and the largest eigenvalue of A∗ will no longer (necessarily) be unique.
Inspired by the discussion in the previous paragraph we determine, in Sec-
tion 2, the eigensystem of the reinforcement matrix A∗, and describe its
relation to the adjacency matrix of a cycle of double the length. In particu-
lar, we show that the largest positive eigenvalue of the reinforcement matrix
equals 2 cos(π/N) and has multiplicity two. The eigenspace associated to
the largest eigenvalue is spanned by the two (orthogonal) vectors

v(1) :=
(
cos (π(j − 1)/N)

)N
j=1

and v(2) :=
(
sin (π(j − 1)/N)

)N
j=1

. (4)

These vectors are described by harmonic functions. Since a linear combi-
nation of harmonic functions (with the same period) is again an harmonic
function, one may expect that Z(t), for large t, should again be described by
an harmonic curve. This is indeed the case, and is one of the main results
of this paper.

Theorem 3. Consider the auto-annihilative growth process on CN for N ≥
4, and set λ∗ := 2 cos(π/N). Then, for any nonzero initial con�guration,
there exist continuous random variables R and S, whose joint distribution
is fully supported on R× [−π/2, π/2), such that almost surely

lim
t→∞

e−λ∗tZ(t) =
(
R cos

(
π(j − 1)/N + S

))N
j=1

.

The limiting behaviour of Theorem 3 is illustrated in Figure 3.

It is natural to talk about tribes and fronts also for the cycle with a sign-
reversing edge. In this context, we de�ne a tribe to be a maximal connected
subgraph of the cycle which either does not contain the sign-reversing edge
and for which all vertices are either vacant or occupied by particles of the
same sign, or which does contain the sign-reversing edge and where vertices
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Figure 3: An illustration of the asymptotic composition of the auto-
annihilative growth process on C6, described by the curve x 7→ r cos(x+ s).
In the limit the process consists of one tribe and one front, which here is
located between v2 and v3.

clockwise and counterclockwise of that edge (which are not vacant) are
occupied by particles of opposing sign. Again, we refer to the separation
between two tribes as a front. Note that in the auto-annihilative process
the number of fronts coincides with the number of tribes, and that as long
as the initial con�guration is nonzero, there will always be at least one front
present.

From Theorem 3 we deduce that, regardless of the number of tribes initially
present, the system will eventually consist of a single tribe and a single front,
where the process competes with itself. We note, moreover, that the location
of the front corresponds to the location where the function x 7→ R cos(x+S)
has its unique zero on the interval [0, π); the front is located between vertices
j and j + 1 (vertex N + 1 is the same as vertex 1) if the zero occurs in the
interval

(
(j − 1)π/N, jπ/N

)
; see Figure 3. We emphasise the fact that the

random variables R and S are continuous. While this will have marginal
importance for the deduction of Theorem 1, it is of interest as it shows that
there is no speci�c amplitude nor shift to which the evolution of the process
locks into.

Apart from being a key step toward a proof of Theorem 1, the auto-
annihilative process and Theorem 3 can be thought of as an attempt to
understand the behaviour of competing branching random walks on the in-
tegers, evolving in �equilibrium�, as we elaborate upon at the end of this
paper.
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1.3 Competing growth on Z2

The competing urn scheme, introduced in [2], arose from a model for com-
peting growth on the Z2 nearest neighbour lattice. Lattice models for spatial
growth were �rst studied by Eden [15]. In his model, a �nite number of sites
of Z2 are initially occupied, and all other sites are vacant. As time evolves,
vacant sites with at least one occupied neighbour become occupied at rate
1. In [2] the authors were concerned with a variant of the Eden model, in
which vacant sites with one occupied neighbour become occupied at rate
1, whereas vacant sites with at least two occupied neighbours become oc-
cupied immediately. The Eden model and the variant of the Eden model
from [2] constitute two extreme point of a larger family of nucleation and
growth processes introduced in [19], and further studied in [9, 12, 13]. The
immediate occupation of sites with at least two occupied neighbours results
in a bootstraping e�ect, similar to that of bootstrap percolation and related
automata. A multi-type version of the corresponding model is de�ned anal-
ogously: Sites are initially either vacant or occupied by one of K di�erent
types. Vacant sites with one occupied neighbour of type j become occupied
by type j at rate 1, and vacant sites with at least two neighbours occupied
by type j become occupied by type j immediately.

v1

v2

v3

v4

v5
v6

v7

v8

v9

v10

Figure 4: An instance of the competing urn scheme on C10 (left) and the
competing growth process on Z2 with a bootstrapping e�ect (right). Start-
ing at the SW corner, we may encode the perimeter of the occupied cluster
on the right by the con�guration of balls on the left. The growth of a side
of the cluster on the right corresponds to the nucleation of a ball on the left.

For the K-type competing growth model on Z2, with a �nite number of
initially occupied sites, we say that type j survives if in�nitely many sites
eventually become occupied by type j. In [2] the authors showed that for
this process consisting of two types, there is almost surely only a single
surviving type. Moreover, the authors conjectured that the same holds also
for K ≥ 3, which we here con�rm.

Theorem 4. For every K ≥ 2 and every �nite initial con�guration, the
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K-type competing growth model on Z2 has almost surely a single surviving
type.

We shall, in Section 6, deduce Theorem 4 from Theorem 1. In brief, the
result follows from the observation, from [2], that competition between K
types on Z2 can be encoded as a K-type competing urn scheme on a cycle
of a certain length, by following the perimeter of the occupied cluster; see
Figure 4.

1.4 Notation and outline of the paper

We shall primarily think of vectors as rows, and multiply matrices by vectors
from the left. However, for ease of notation, we shall occasionally think of
the vector Z(t) as a column vector, and write vZ(t) for the (scalar) product
of v and Z(t). For a vector v in RN , we shall use the notation |v| :=
(
∑N

j=1 v
2
j )

1/2 and ∥v∥ :=
∑N

k=1 |vk| for its ℓ2- and ℓ1-norm, respectively.

We proceed, in Section 2, to examine the eigensystem of the reinforcement
matrix associated to the auto-annihilative growth process on CN . Based on
this analysis we de�ne, in Section 3, a series of martingales that we show
are convergent almost surely and in L2. The martingale limits are analysed
further in Section 4, leading to a proof of Theorem 3. Theorem 1 is then
proved in Section 5, and Theorem 4 is derived as a corollary in Section 6.
We end the paper by mentioning a few connections to open problems in
Section 7.

2 Eigenstructure of the reinforcement matrix

We will in this section describe the eigensystem of the N×N -reinforcement
matrix A∗, which will be relevant for our later analysis. We do this by �rst
describing the adjacency matrix of C2N , the cycle of length 2N , and deduce
properties of A∗ therefrom. We denote by Ã the 2N×2N -matrix describing
the adjacency structure of C2N .

Both A∗ and Ã are real-valued and symmetric, so their eigenvalues are
real. The matrix Ã is, in addition, a circulant matrix, which is a matrix in
which each column is obtained by the shifting all elements of the previous
column one step down, in a cyclic fashion.2 Hence, the matrix is completely
determined by its �rst column. Circulant matrices have the notable property
that they all have the same set of eigenvectors.3

Clearly, the all ones vector is a (left-)eigenvector of the matrix, since the
elements of every column sum up to the same number. The remaining
eigenvectors can be expressed in terms of roots of unity. Let ω := eπi/N ,

2Equivalently, every row is obtained by shifting the previous row one step right.
3We shall here be concerned with left-eigenvectors and treat vectors as rows.

10



and for k = 0, 1, . . . , 2N − 1 set

ṽ(k) :=
(
1, ωk, ω2k, . . . , ω(2N−1)k

)
.

Indeed, note that multiplying Ã by ṽ(k) from the left results in a vector
whose jth element equals

(ṽ(k)Ã)j = ω(j−2)k + ωjk = [ω−k + ωk]ω(j−1)k = 2 cos(πk/N)(ṽ(k))j.

Hence, ṽ(k) is indeed a (left-)eigenvector of Ã with eigenvalue λ̃k := 2 cos(πk/N).

We note that the largest positive eigenvalue of Ã is λ̃0 = 2 and that it
comes with multiplicity one. Also λ̃N = −2 has multiplicity one, but all
other eigenvalues have (algebraic) multiplicity two.

The connection between the reinforcement matrix A∗ and the adjacency
matrix Ã is the following: A vector v ∈ RN is an eigenvector of A∗ if and
only if (v,−v) ∈ R2N is an eigenvector for Ã. This connection re�ects
the fact that particles completing a lap clockwise, in the auto-annihilative
process, returns with their signs negated, and can be thought of as an
expression of the geometry of a (discrete) Möbius strip. The connection is
easily veri�ed by decomposing Ã into blocks. Let B̃ be the N ×N -matrix
with entries

B̃i,j =

1 if |i− j| = 1

0 otherwise

and let C̃ be the N ×N -matrix with zero entries except at the SW and NE
corners which are 1. We then have

Ã =

(
B̃ C̃

C̃ B̃

)

and the reinforcement matrix satis�es A∗ = B̃ − C̃. From here it follows
that

(v,−v)Ã = (vB̃ − vC̃, vC̃ − vB̃) = (vA∗,−vA∗),

and hence that vA∗ = λv if and only if (v,−v)Ã = λ(v,−v).

Examining the eigenvectors of Ã we �nd that

(ṽ(k))N+j = ω(N+j)k = ωNkωjk =

−ωjk if k odd,

ωjk if k even.

That is, for k odd the vector ṽ(k) is of the form (v,−v), and thus the
vectors

u(k) :=
(
1, ω(2k−1), ω2(2k−1), . . . , ω(N−1)(2k−1)

)
for k = 1, 2, . . . , N are eigenvectors of A∗ corresponding to the eigenval-
ues

λk := 2 cos(π(2k − 1)/N).
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We observe that the largest positive eigenvalue is λ1 = λN = 2 cos(π/N)
and occurs with (algebraic) multiplicity two. If N is odd, then −2 is an
eigenvalue of multiplicity one, but otherwise all other eigenvalues have (al-
gebraic) multiplicity two.

The eigenvectors u(k) are of course complex-valued. Since A∗ is real-valued
with real eigenvalues, also the real and imaginary parts of u(k) are eigen-
vectors associated to λk.4 We note, in particular, that the vectors v(1) and
v(2), de�ned in (4), are of this form, namely that

v(1) = Reu(1) =
(
1, cos(π/N), cos(2π/N), . . . , cos((N − 1)π/N)

)
v(2) = Imu(1) =

(
0, sin(π/N), sin(2π/N), . . . , sin((N − 1)π/N)

) (5)

are eigenvectors that spann the eigenspace of the largest positive eigenvalue
of A∗.

We summarise the information required for subsequent sections.

Proposition 5. The real and imaginary parts of the vectors u(k), for k ≤
⌊(N + 1)/2⌋, form an orthogonal basis in RN consisting of vectors of equal

length
√
N/2. (If N is odd, then Imu((N+1)/2) is the zero-vector and is

excluded.) The largest (positive) eigenvalue of the reinforcement matrix A∗

is given by
λ∗ = 2 cos(π/N),

and the eigenspace of λ∗, spanned by the vectors v(1) and v(2), takes the form{(
r cos

(
(j − 1)π/N + θ

))N
j=1

: r ∈ R, θ ∈ [−π/2, π/2)
}
.

Proof. First note that the scalar product of the vectors v(1) and v(2) equals

v(1) · v(2) =
N−1∑
j=1

cos(jπ/N) sin(jπ/N) = 0,

since cos(x + π/2) sin(x + π/2) is an odd function. Hence, v(1) and v(2)

are orthogonal. An analogous argument shows that the real and imaginary
parts of any vector uk are orthogonal. Consequently, (with the exception
of the eigenvalue −2 in the case that N is odd,) the eigenspace of each
eigenvalue has dimension two, and so the (geometric) multiplicity of each
eigenvalue is two. Moreover, since A∗ is symmetric, vectors belonging to
di�erent eigenspaces are orthogonal. The real and imaginary parts of the
vectors uk thus form an orthogonal basis that span RN .

Second, note that |v(1)|2 + |v(2)|2 = N as of the Pythagorean trigonometric
identity. Moreover, using the cosine double angle formula, we further �nd

4If N is odd, then u((N+1)/2) is real, but all other vectors have nontrivial real and

imaginary parts.
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that

|v(1)|2−|v(2)|2 =
N∑
j=1

[
cos2

(
(j−1)π/N

)
−sin2

(
(j−1)π/N

)]
=

N∑
j=1

cos
(
2(j−1)π/N

)
= 0,

e.g. using Lagrange's trigonometric identities. Hence, v(1) and v(2) have both
length

√
N/2. An analogous argument shows that the real and imaginary

parts of any vector u(k) have length
√
N/2, verifying the �rst claim of the

proposition.

Since the eigenspace of λ∗ is spanned by the vectors v(1) and v(2), we will
need to verify that every linear combination of these vectors is of the form
described above. More precisely, we shall show that for every a, b ∈ R there
exist r ∈ R and θ ∈ [−π/2, π/2) such that

a cos(x) + b sin(x) = r cos(x+ θ). (6)

In case that a = 0 this is immediate since b sin(x) = b cos(x − π/2). For
a ̸= 0 the statement follows from the harmonic addition formula with

r = sign(a)
√
a2 + b2 and θ = arctan(−b/a). (7)

Indeed, the mapping (a, b) 7→ (r, θ) forms a bijection from R2 to R ×
[−π/2, π/2).

Since we shall come back to the fact that (7) solves (6) below, let us, for
the sake of completeness, verify that it indeed is true. We �rst note that
a cos(x) and b sin(x) are the real parts of the complex numbers aeix and
−bieix, respectively. We further note that for any complex number z = reiθ,
the real part of zeix is the cosine function

Re[reiθeix] = r cos(x+ θ).

Since the sum of a cos(x) and b sin(x) is the real part of some number
of the form zeix, it follows that (6) must hold for some r ∈ R and θ ∈
[−π/2, π/2).

We move on to express r and θ in terms of a and b. We thus seek to �nd
the modulus and argument of a− bi. Its modulus is

√
a2 + b2. For a > 0 its

argument φ satis�es tan(φ) = −b/a, so that φ = arctan(−b/a). For a < 0
we instead get φ = arctan(−b/a)+π. That is, the argument of a−bi equals
arctan(−b/a) + π1{a<0}, so that

a−bi =
√
a2 + b2 exp

(
i
(
arctan(−b/a)+π1{a<0}

))
= sign(a)

√
a2 + b2ei arctan(−b/a),

and (7) follows. (An alternative derivation uses the cosine angle addition
formula.)
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3 Martingale analysis

Having examined the eigenstructure of the reinforcement matrix in the pre-
ceding section, we proceed with an analysis of the martingales that arise
therefrom. Given an eigenvalue λ of the reinforcement matrix A∗ and any
vector v in the eigenspace of λ, let

Mv(t) := e−λtvZ(t) for t ≥ 0.

Here and below, we think of Z(t) as a column vector, so that vZ(t) is equal
to the scalar product v ·Z(t). In the case that λ = λ∗, the largest (positive)
eigenvalue of A∗, and we want to emphasise this fact, we shall then use the
notation

M∗
v (t) := e−λ∗tvZ(t) for t ≥ 0.

Throughout we denote by (Ft)t≥0 the natural �ltration where Ft = {Z(s) :
s ≤ t}.

Below we shall be interested to study the process (M∗
v (t))t≥0 for arbitrary

vectors v ∈ RN , which is de�ned analogously. However, at the moment
we shall focus on eigenvectors, in which case the associated process is a
martingale.

Lemma 6. For every eigenvalue λ of the reinforcement matrix, and any
vector v in the eigenspace of λ, the stochastic process (Mv(t))t≥0 is a mar-
tingale with respect to (Ft)t≥0.

Proof. We will show that E[vZ(t)] = eλtvZ(0). Due to time homogeneity
and the Markov character of the process it will readily follow that

e−λ(t+s)E[vZ(t+ s)|Fs] = e−λ(t+s)E[vZ(t+ s)|Z(s)] = e−λsvZ(s),

so the martingale property holds.

Almost surely, no two clocks ring at the same time. If at time t a clock
rings at node k, then vZ(t) jumps by ±vA∗

k, where A∗
k is the kth column

of the matrix A∗ and the sign depends on the colour of the ball. Since v is
an eigenvector of A∗, we have vA∗ = λvk, where vk is the kth element of v.
The number of balls (signs included) at node k is Zk(t), and each ball rings
with intensity 1, so the expected rate of change equals

d

dt
E[vZ(t)] =

N∑
k=1

E[vA∗
kZk(t)] =

N∑
k=1

E[λvkZk(t)] = λE[vZ(t)].

This di�erential equation has the general solution E[vZ(t)] = Ceλt, and the
initial condition E[vZ(0)] = vZ(0) gives E[vZ(t)] = eλtvZ(0), as required.

We next derive a bound on the quadratic variation of the above martin-
gales.
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Lemma 7. For every eigenvalue λ of the reinforcement matrix, every vector
v in the eigenspace of λ and initial con�guration x ∈ ZN , we have for all
t ≥ s ≥ 0 that

E[Mv(t)
2]− E[Mv(s)

2] ≤ 4|v|2∥x∥
∫ t

s
e−2(λ−1)u du.

Proof. Since each branching event results in at most two new balls, the pro-
cess (Z(t))t≥0 is dominated by a Galton-Watson (or Bienaymé) process, and
therefore clearly square integrable. By Lemma 6, the sequence (Mv(t))t≥0

is a martingale. Its quadratic variation [Mv](t) is de�ned as the limit, in
probability,

[Mv](t) := Mv(0)
2 + lim

|Pn|→0

n∑
k=1

(
Mv(tk)−Mv(tk−1)

)2
,

where Pn is some sequence of partitions of [0, t] with mesh tending to zero.
It is well-known that this limit is well-de�ned and that (Mv(t)

2− [Mv](t))t≥0

is again a martingale which vanishes at t = 0; see e.g. [25, Corollary 2 to
Theorem II.27]. In particular, it follows that

E[Mv(t)
2] = E

[
[Mv](t)

]
. (8)

Since almost every realization of Mv(t) has piecewise smooth trajectories,
it follows by [25, Theorems II.26 and II.28] that [Mv](t) is a pure jump
process, and that

[Mv](t) =
∑

0≤u≤t

(
∆Mv(u)

)2
=

∑
0≤u≤t

(
Mv(u)−Mv(u−)

)2
.

That is, if at time t a clock at position k rings, then [Mv](t) jumps by (this
time the sign of the ball is irrelevant)

∆[Mv](t) = (∆Mv(t))
2 = e−2λt(vA∗

k)
2 = e−2λtλ2v2k, (9)

where again A∗
k denotes the kth column of A∗ and vk the kth element of

v. Consequently, since clocks ring at intensity 1 and at k there are |Zk(t)|
balls,

d

dt
E
[
[Mv](t)

]
=

N∑
k=1

e−2λtλ2v2kE|Zk(t)| ≤ 4|v|2e−2λtE

[
N∑
k=1

|Zk(t)|
]
. (10)

Since the total number of balls in Z(t) is dominated by a Bienaymé-Galton-
Watson process with a deterministic o�spring distribution resulting in two
children, we have

E

[
N∑
k=1

|Zk(t)|
]
≤ e2t

N∑
k=1

|Zk(0)| = e2t∥x∥.
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Integrating (10) over the interval [s, t] leads to the bound

E
[
[Mv](t)

]
− E

[
[Mv](s)

]
≤ 4|v|2∥x∥

∫ t

s
e−2(λ−1)u du.

The lemma now follows from (8).

From the bound on the quadratic variation we may conclude boundedness,
and thus almost sure and L2 convergence, of the martingales associated to
the largest eigenvalue.

Lemma 8. Suppose that N ≥ 4. Then, for every nonzero vector v in the
eigenspace of λ∗ and every nonzero initial con�guration x ∈ ZN \ {0}, the
process (M∗

v (t))t≥0 converges almost surely and in L2 to a limiting ran-
dom variable W = W (v, x) with �nite mean and variance. Moreover,

P
(
W (v, x) ̸= 0

)
> 0.

Proof. By Lemma 6, the process (M∗
v (t))t≥0 is a martingale. For N ≥ 4 we

have that λ∗ = 2 cos(π/N) > 1. Consequently, by Lemma 7,

E[M∗
v (t)

2] ≤ E[M∗
v (0)

2] + 4|v|2∥x∥
∫ t

0
e−2(λ∗−1)u du (11)

is bounded, and (M∗
v (t))t≥0 thus convergent almost surely and in L2.

We show next that W ̸= 0 with positive probability. Note �rst that the
quadratic variation of M∗

v (t), by de�nition, is non-decreasing as a function
of t. Consequently, by (8), E[M∗

v (t)
2] is non-decreasing and approaches

E[W 2] as t → ∞. Hence, it will su�ce to show that E[M∗
v (1)

2] > 0.

Either M∗
v (0)

2 > 0, in which case E[M∗
v (1)

2] > 0 holds trivially. Or, as
long as there is at least one particle present at time zero, there is positive
probability of a (series of nucleations leading to a) nucleation at some node
k at which v is nonzero, before t = 1. By (9), this has a positive contribution
to the quadratic variation, which by (8) gives E[M∗

v (1)] > 0. Consequently,
P (W ̸= 0) > 0.

We remark that, for any x ∈ ZN , a, b ∈ R and vectors u, v in the eigenspace
of λ∗, the following linearity property of the limiting variable is immediate
from de�nition:

W (au+ bv, x) = aW (u, x) + bW (v, x). (12)

As a consequence, since the eigenspace of λ∗ is spanned by the vectors
v(1) and v(2), the limiting function W ( · , x) is determined by the values
W (v(1), x) and W (v(2), x).

Above we have supposed that v is in the eigenspace of λ∗ when consid-
ering the process (M∗

v (t))t≥0. We shall henceforth relax that assumption.
Of course, the process remains well-de�ned for arbitrary vectors v ∈ RN ,
although it is no longer a martingale.
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Lemma 9. Suppose that N ≥ 4. For every eigenvalue λ ̸= λ∗ of the
reinforcement matrix, any vector v in the eigenspace of λ, and any initial
con�guration x ∈ ZN , the process (M∗

v (t))t≥0 vanishes almost surely as t →
∞.

Proof. We shall �rst prove that for every δ > 0 we have, almost surely,

M∗
v (δn) → 0 as n → ∞. (13)

Indeed, since M∗
v (t) = e−(λ∗−λ)Mv(t), and v is a vector in the eigenspace of

λ, an application of Lemma 7 gives that

E[M∗
v (t)

2] ≤ e−2(λ∗−λ)tE[Mv(0)
2] +


4|v|2∥x∥te−2(λ∗−λ)t if λ ≥ 1,

4|v|2∥x∥ 1

1− λ
e−2(λ∗−1)t if λ < 1.

(14)

Hence, for λ < λ∗, E[M∗
v (t)

2] decays exponentially fast in t. It follows
from (14) that

E

[∑
n≥1

M∗
v (δn)

2

]
=
∑
n≥1

E[M∗
v (δn)

2] < ∞,

so, almost surely, the series
∑

n≥1M
∗
v (δn)

2 converges, and (13) follows.

We next show that for only �nitely many n the sequence (M∗
v (t))t≥0 may

deviate far during the interval [δn, δ(n+ 1)]. Let

An :=
{
M∗

v (δn) ∈ (−δ, δ)
}
,

Bn :=
{
|Mv(t)−Mv(δn)| < δe(λ

∗−λ)δn for all t ∈ [δn, δ(n+ 1)]
}
.

By (13) the events An occur for all but �nitely many n almost surely. Using
the Doob-Kolmogorov maximal inequality and Lemma 7 we obtain

P (Bc
n) ≤

1

δ2
e−2(λ∗−λ)δnE

[
(Mv(δ(n+ 1))−Mv(δn))

2
]

≤ 1

δ2
4|v|2∥x∥e−2(λ∗−λ)δn

∫ δ(n+1)

δn
e−2(λ−1)u du

≤ 1

δ2
4|v|2∥x∥e−2(λ∗−1)δn+2δ.

For N ≥ 4 we have λ∗ > 1, so the probabilities P (Bc
n) are summable. Borel-

Cantelli gives that Bn will occur for all but �nitely many n. Finally, on the
event An ∩Bn we have for t ∈ [δn, δ(n+ 1)] that∣∣∣M∗

v (t)−M∗
v (δn)

∣∣∣ ≤ e−(λ∗−λ)t
∣∣∣Mv(t)−Mv(δn)

∣∣∣+ (
e−(λ∗−λ)δn − e−(λ∗−λ)t

)
|Mv(δn)|

≤ δe−(λ∗−λ)(t−δn) + δ
(
1− e−(λ∗−λ)(t−δn)

)
= δ,

and so that M∗
v (t) ≤ 2δ for t ∈ [δn, δ(n+1)]. Since δ > 0 was arbitrary, we

conclude that M∗
v (t) → 0 almost surely as n → ∞.
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As a consequence of the above analysis, we may conclude that (Z(t))t≥0,
once properly rescaled, converges to a nontrivial limit as a vector in RN .
Moreover, the limit is a linear combination of the vectors v(1) and v(2)

from (4) and (5), and is thus an element of the eigenspace of the largest
eigenvector λ∗.

Proposition 10. For any initial con�guration x ∈ ZN we have, almost
surely, that

lim
t→∞

e−λ∗tZ(t) =
W (v(1), x)

|v(1)|2
v(1) +

W (v(2), x)

|v(2)|2
v(2).

Proof. Recall, from Proposition 5, that the real and imaginary parts of the
complex-valued eigenvectors u(k) form an orthogonal basis in RN . We shall
below denote these base vectors by v(1), v(2), . . . , v(N), where v(1) and v(2)

are the real and imaginary parts of u(1), and the remaining vectors are
ordered arbitrarily. Every vector v ∈ RN can thus be uniquely expressed as
v = a1v

(1) + . . .+ aNv
(N) for some a1, . . . , aN in R. By Lemmas 8 and 9 we

have, almost surely, that

lim
t→∞

M∗
v (t) = lim

t→∞

[
a1M

∗
v(1)(t)+. . .+aNM

∗
v(N)(t)

]
= a1W (v(1), x)+a2W (v(2), x).

(15)

In particular, this holds for the coordinate vectors e1, e2, . . . , eN of RN . Since
(v(k))Nk=1 forms an orthogonal basis, we have for j = 1, 2, . . . , N that

ej =
(v(1))j
|v(1)|2

v(1) + . . .+
(v(N))j
|v(N)|2

v(N),

where (v(k))j is the jth coordinate of v(k). By (15), we obtain, almost surely,
that

lim
t→∞

M∗
ej
(t) =

(v(1))j
|v(1)|2

W (v(1), x) +
(v(2))j
|v(2)|2

W (v(2), x),

as required.

4 The martingale limit

As a consequence of the martingale analysis of the previous section, (e−λ∗tZ(t))t≥0

converges almost surely to an element in the eigenspace of λ∗. The goal of
this section is to describe the limiting element more closely, in order to
complete the proof of Theorem 3. A key step will be a coupling construc-
tion, that will allow us to compare the evolution of the signed competition
process with the evolution of the same in the case that the �rst nucleation
had never taken place. Examining the di�erence between the two will allow
us to draw conclusions regarding the limiting variables W = W (v, x). A
similar coupling construction was previously introduced in [2], and put to
use for a similar purpose.
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4.1 Coupling construction

Our �rst goal will be to construct a larger system of particles, from which
we can read out the evolution of di�erent versions of the auto-annihilative
process. The larger system will consist of red, blue and purple particles, each
of which can be either positive or negative. Each colour, when considered
on its own, will evolve according to the dynamics of the signed competition
process (Z(t))t≥0. In particular, balls of the same colour and opposing signs
(when present at the same site) annihilate on a one-for-one basis. Balls of
di�erent colour (when present at the same site) interact according to the
following rules.

� Red and blue of the same sign do not interact; red and blue of opposing
signs result in a purple particle with the same sign as the red particle.

� Red and purple of the same sign do not interact; red and purple of
opposing signs result in a blue particle with the same sign as the red
particle.

� Blue and purple of opposing signs do not interact; blue and purple of
the same sign result in a red particle of the same sign.

The rationale behind the rules of interaction between particles of di�erent
colour is that a purple ball should be thought of as temporary bond between
a red and a blue particle of opposing signs. The bond is broken when the
pair interacts with another red or blue particle whose sign opposes the sign
of the particle of the same colour present in the bond. When the bond
is broken the same colour particles (of opposing sign) annihilate, and the
particle remaining is set free.

Every particle in the system is given a Poisson clock when born. For de�-
niteness we may assume that the purple particle that arises from the merger
of a red and a blue particle adopts the clock of its red constituent, and when
the bond is eventually broken, the particle set free returns to follow its orig-
inal clock. It is straightforward to verify that the above larger system of
particles is again dominated by a Bienaymé-Galton-Watson process, and is
thus a pure-jump Markov process without explosions.

We next describe the initial con�guration of our larger system of coloured
particles. Let x ∈ ZN \ {0} be any nonzero con�guration, and let X and
T be auxiliary random variables, independent of each other and everything
else, such that X takes values in {1, 2, . . . , N} with

P (X = k) :=
|xk|
∥x∥

for k = 1, 2, . . . , N,

and T is exponentially distributed with intensity ∥x∥. Add signed red balls
to the nodes of CN according to x, and sample X. On the event that
{X = k}, send one blue ball along each edge adjacent to node k with sign
corresponding to the sign of xk. (If one of the blue balls traverses the signed
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edge, then its sign is changed as usual.) The initial con�guration of blue
balls, on the event {X = k} thus equals A∗

k · sign(xk), where A∗
k is the k-

th column of the reinforcement matrix A∗. The blue balls instantaneously
interact with any red balls of opposing sign, if any. The resulting con�g-
uration will be taken as the initial con�guration of the larger system of
particles.

Our aim is to compare the evolution of the auto-annihilative process (Z(t))t≥0,
started from some con�guration x ∈ ZN \{0}, with the evolution of itself in
the case that the �rst nucleation had never taken place. The former corre-
sponds to the evolution of the red particles initially placed on the vertices
of CN . Note that the random con�guration of blue particles initially added
to the con�guration of red particles is equivalent to the result of the �rst
nucleation of the auto-annihilative process started from x. Since we want to
track the evolution of the process both in the case that this nucleation does
and does not take place, we want to be able to distinguish between these
particles being present and not. This is the purpose of the purple particles,
which should thus be thought of as present (red) particles in absence of the
�rst nucleation, and as absent (annihilated) particles in the presence of the
�rst nucleation.

To make the comparison between the two versions of the signed competition
process precise, let R(t), B(t) and P (t) be vectors encoding the number of
red, blue and purple particles present at the nodes of CN in the system at
time t ≥ 0. For t ≥ 0, let

Z ′(t) := R(t) + P (t),

and

Z ′′(t) :=

{
x if t < T,

R(t− T ) +B(t− T ) if t ≥ T.

Note that T is equal in distribution to the time of the �rst nucleation in
the signed competition process with initial con�guration x, and the random
con�guration of blue particles initially generated is equal in distribution to
the particles generated in the �rst nucleation. Consequently, the vector Z ′(t)
can be interpreted as the con�guration at time t in case the �rst nucleation
is ignored and time reset at this point; delaying the start of (Z ′(t))t≥0 for
T units of time results in a process where the �rst nucleation is suppressed.
The vector Z ′′(t) can similarly be interpreted as the con�guration at time t
if the �rst nucleation is allowed to take place (at time T ).

In addition, for t ≥ 0, we set

D(t) := B(t)− P (t).

Note that D(t) denotes the di�erence between the two processes Z ′ and Z ′′

in the sense that

Z ′′(t) = x1{t<T} +
[
Z ′(t− T ) +D(t− T )

]
1{t≥T}. (16)
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Our next lemma relates the larger system of particles to the original pro-
cess.

Lemma 11. Let x ∈ ZN \ {0} be any nonzero con�guration, and consider
the above system of coloured competition. Then, the processes (Z ′(t))t≥0

and (Z ′′(t))t≥0 are equal in distribution to the signed competition process
(Z(t))t≥0 with initial con�guration x. Conditional on the event {X = k},
the process (D(t))t≥0 is equal in distribution to the signed competition pro-
cess with initial con�guration A∗

k · sign(xk).

Proof. Note that Z ′(0) = Z ′′(0) = x by de�nition. Since purple particles
follow the clocks of their red components, (Z ′(t))t≥0 is readily seen to be
equal to a version of the signed competition process with initial con�guration
x.

Let (Z(t))t≥0 be a version of the signed competition process with initial
con�guration x. The time of the �rst nucleation is then distributed as T ,
the position where the �rst nucleation takes place is distributed as X, and
on the event that the �rst nucleation takes place at position k the result
of the nucleation is addition by the vector A∗

k · sign(xk). This shows that
(Z(t))t≥0 and (Z ′′(t))t≥0 are equal in distribution up to and including the
time of the �rst nucleation. Since (Z ′′(t))t≥0 does not di�erentiate between
red and blue particles, but ignore those that are purple, it follows from
the strong Markov property that (Z(t))t≥0 and (Z ′′(t))t≥0 remain equal in
distribution also after the time of the �rst nucleation. (One may imagine
that all clocks of the system are reset at the time of every nucleation, as
this does not a�ect the distribution of the system.)

Finally, since purple particles adopt the sign of their red constituent, we
have on the event {X = k} that D(0) = A∗

k · sign(xk). Moreover, thinking
of each purple particle as a blue particle temporarily paired with a red
particle of opposing sign, the number of particles that are either blue or
(negative) purple correspond to the number of blue particles that would
be present in absence of red particles. In addition, however, a paired blue
particle temporarily follows the clock of its red partner. That this (possibly
temporary) change of clocks does not a�ect the law of the process follows
from elementary properties of the Poisson process, together with the strong
Markov property.

4.2 Limiting behaviour

Let v be any nonzero vector in the eigenspace of the largest eigenvalue
λ∗. The distribution of the limiting variable W (v, x) = limt→∞M∗

v (t) will
depend both on v and the initial con�guration x. Next we make use of the
above coupling construction to show that W = W (v, x) is almost surely
nonzero.

Lemma 12. Suppose that N ≥ 4 and let v be any nonzero vector in the
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eigenspace of λ∗. There exists c > 0 such that for every x ∈ ZN \ {0} we
have

P
(
W (v, x) = 0

)
< 1− c.

Proof. Consider the coupling construction from Section 4.1. By Lemma 11,
the sequences (Z ′(t))t≥0, (Z ′′(t))t≥0 and (D(t))t≥0 are all versions of the
auto-annihilative growth process. Let

M ′
v(t) := e−λ∗tvZ ′(t), M ′′

v (t) := e−λ∗tvZ ′′(t) and MD
v (t) := e−λ∗tvD(t).

By Lemma 8, the sequences (M ′
v(t))t≥0, (M ′′

v (t))t≥0 and (MD
v (t))t≥0 converge

almost surely and in L2 to random variablesW ′ = W ′(v, x), W ′′ = W ′′(v, x)
and WD = WD(v, x), respectively. From equation (16) we deduce that the
limiting variables satisfy the almost sure relation

W ′′ = e−λ∗T
(
W ′ +WD

)
. (17)

Both of the limiting variables W ′ and W ′′ are, again by Lemma 11, equal in
distribution toW (v, x), and, conditioned on the event {X = k}, the variable
WD is equal in distribution to W (v, yk) with yk = A∗

k · sign(xk). For each
nonzero initial con�guration x, it follows from Lemma 8 that W (v, x) has
positive probability of being nonzero. Since X takes on a �nite number of
values, it follows that there exists a constant c > 0, not depending on x,
such that for each k = 1, 2, . . . , N we have

P
(
WD ̸= 0

∣∣∣X = k
)
≥ 2c.

Via the law of total probability we obtain, uniformly over x ∈ ZN \ {0},
that

P
(
WD ̸= 0

)
≥ 2c. (18)

Note that on the event that WD ̸= 0, by (17), we cannot (with positive
probability) have both W ′ = 0 and W ′′ = 0. Hence, by (18), we have for
all x ∈ ZN \ {0} that

P
(
W ′ = 0,W ′′ = 0

)
≤ P

(
WD = 0

)
≤ 1− 2c.

Consequently,

P (W ′ = 0) = P
(
W ′ = 0,W ′′ ̸= 0

)
+P

(
W ′ = 0,W ′′ = 0

)
≤ P (W ′′ ̸= 0)+1−2c,

which yields
P (W ′ = 0) + P (W ′′ = 0) ≤ 2− 2c.

Since both the limiting variables W ′ and W ′′ are equal in distribution to
W (v, x), we conclude that P (W (v, x) = 0) ≤ 1 − c uniformly in x, as
required.

22



Using the Markov character of the process, we deduce next that W (v, x) is
almost surely nonzero.

Lemma 13. Suppose that N ≥ 4 and let v be any nonzero vector in the
eigenspace of λ∗. Then, for every x ∈ ZN \ {0}, we have

P
(
W (v, x) = 0

)
= 0.

Proof. Recall that (Ft)t≥0 denotes the natural �ltration where Ft is the
sigma algebra generated by {Z(s) : s ≤ t}. By the Lévy 0-1-law we have
almost surely that

lim
t→∞

P
(
W (v, x) = 0

∣∣∣Ft

)
= 1{W (v,x)=0}.

Moreover, due to the Markov character of the process, Lemma 12 gives that
with probability one

P
(
W (v, x) = 0

∣∣∣Ft

)
= P

(
W (v, Z(t))

∣∣∣Z(t)) ≤ 1− c.

It follows that 1{W (v,x)=0} = 0, and thus thatW (v, x) ̸= 0, almost surely.

In addition, we complement the preceding lemma with the following con-
centration bound.

Lemma 14. Suppose that N ≥ 4. For every initial con�guration x ∈ ZN

and nonzero vector v in the eigenspace of λ∗, we have

P
(∣∣∣W (v, x)− v · x

∣∣∣ ≥ α
)
≤ 5|v|2∥x∥

α2
.

Proof. By Lemma 8 the process (M∗
v (t))t≥0 converges almost surely and in

L2. Consequently, the limit W = W (v, x) has �nite mean and variance, and
satis�es

E[W ] = lim
t→∞

E[M∗
v (t)] = E[M∗

v (0)] = v · x

and, together with Lemma 7,

E[W 2] = lim
t→∞

E[M∗
v (t)

2] ≤ E[M∗
v (0)

2] + 4|v|2∥x∥
∫ ∞

0
e−2(λ∗−1)u du

Since E[M∗
v (0)

2] = (v · x)2 = E[W ]2, computing the integral and using
Chebyshev's inequality gives that

P
(
|W − v · x| ≥ α

)
≤ V ar(W )

α2
≤ 5|v|2∥x∥

α2
,

as required.
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4.3 Proof of Theorem 3

Suppose that N ≥ 4 and that x ∈ ZN \ {0}. By Proposition 10 we have,
almost surely,

lim
t→∞

e−λ∗tZ(t) =
W (v(1), x)

|v(1)|2
v(1) +

W (v(2), x)

|v(2)|2
v(2). (19)

By Lemma 13 we have W (v(1), x) ̸= 0 and W (v(2), x) ̸= 0 with probability
one. Consequently, by the harmonic addition formula, the limit in (19) can
be written on the form (R cos((j−1)π/N +S))j=1,...,N for random variables
R = R(x) and S = S(x) satisfying

R = sign
(
W (v(1), x)

)√W (v(1), x)2 +W (v(2), x)2

|v(1)|2
and S = arctan

(
−W (v(2), x)

W (v(1), x)

)
.

(Recall that |v(1)| = |v(2)| =
√
N/2; see Proposition 5.)

Claim 1. For every x ∈ ZN \{0} (the distribution functions of) the random
variables R(x) and S(x) are continuous.

Proof of claim. By (12), for every θ ∈ (−π/1, π/2) the event {S(x) = θ} is
equivalent to

tan(θ)W (v(1), x) +W (v(2), x) = W
(
tan(θ)v(1) + v(2), x

)
being zero, which by Lemma 13 occurs with probability zero. Hence, S is
continuous.

Next, consider the coupling construction from Section 4.1. Using (17) we
obtain that R(x) is equal in distribution to

e−λ∗T

√(
W ′(v(1), x) +WD(v(1), x)

)2
+
(
W ′(v(2), x) +WD(v(2), x)

)2
.

Since T is continuous, and independent from W ′ and WD, which in turn
are almost surely non-zero, also R is continuous.

To complete the proof of the theorem it remains to prove that the random
vector (R, S) is fully supported on R× [−π/2, π/2).

Claim 2. For every x ∈ ZN \ {0}, (r, θ) ∈ R × (−π/2, π/2) and ε > 0 we
have

P
(
R(x) ∈ (r − ε, r + ε), S(x) ∈ (θ − ε, θ + ε)

)
> 0.

Proof of claim. Let (r, θ) ∈ R × (−π/2, π/2) and ε > 0 be arbitrary. By
symmetry, we may assume that r > 0. Let c = − tan(θ) and set y =
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v(1)/|v(1)|2 + cv(2)/|v(2)|2. Then v(1) · y = 1 and v(2) · y = c, since v(1) and
v(2) are orthogonal. For M > 0 de�ne

BM(y) :=

z ∈ ZN : ∥z −My∥ <

√
2M

N

 .

Again, by Proposition 5, |v(1)| = |v(2)| =
√
N/2. It follows that, for z ∈

BM(y), we have v(1)·z ∈ (M−
√
M,M+

√
M) and v(2)·z ∈ (Mc−

√
M,Mc+√

M). In addition, by Lemma 14, there exists α = α(c) such that for all
M ≥ 1, z ∈ BM(y) and i = 1, 2 we have

P
(∣∣∣W (v(i), z)− v(i) · z

∣∣∣ ≥ α
√
M
)
≤ 5|v(i)|2∥z∥

α2M
≤ 1/4.

Consequently, for every M ≥ 1 and z ∈ BM(y), we have with probability
at least 1/2 that∣∣∣W (v(1), z)−M

∣∣∣ < (1+α)
√
M and

∣∣∣W (v(2), z)−Mc
∣∣∣ < (1+α)

√
M. (20)

Note that (20) implies that W (v(1), z) > 0 and, for some constant C, that∣∣∣∣∣W (v(2), z)

W (v(1), z)
−c

∣∣∣∣∣ < C√
M

and
∣∣∣∣√W (v(1), z)2 +W (v(2), z)2−

√
1 + |c|2M

∣∣∣∣ < CM3/4.

(21)

Due to the Markov character of (Z(t))t≥0, conditional on the event {Z(t) =
z}, the limiting variable W (v, x) is equal in distribution to the limiting
variable of a signed competition process with initial condition z and delayed
for time t, i.e.

W (v, x)
d
= e−λ∗tW (v, z). (22)

Next, let B := (r − ε, r + ε)× (θ − ε, θ + ε). Suppose that M > r and pick

t > 0 so that r = e−λ∗t
√
1 + |c|2M/|v(1)|2. Combining (21) and (22), and

using the fact that arctan is a continuous and strictly increasing function,
we obtain that for any nonzero initial con�guration x and ε > 0 that

P
(
(R(x), S(x)) ∈ B

∣∣∣Z(t) = z
)
= P

(
(R(z), S(z)) ∈ B

)
≥ 1/2,

which gives

P
(
(R(x), S(x)) ∈ B

)
≥ 1

2
P
(
Z(t) ∈ BM(y)

)
.

It remains to show that for any nonzero initial con�guration x, t > 0 and
all large values of M we have

P
(
Z(t) ∈ BM(y)

)
> 0.
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Note that it will su�ce to show that there exists a �nite number of nu-
cleations that result in a con�guration in BM(y) for large M . Since y is a
linear combination of v(1) and v(2) we have that y = ρ cos((j−1)π/N+θ) for
some ρ ∈ R \ {0} and θ ∈ (−π/2, π/2). By symmetry we may assume that
ρ > 0. We may further assume that x1 ≥ 1, since from any con�guration x
we may reach a con�guration which has positive particles at node 1.

We obtain a con�guration z from x by, for j = 1, 2, . . . , N , in that order,
letting one of the particles at j nucleate ⌊Mρ cos((j − 1)π/N + θ)⌋ times.
This will result in

⌊Mρ cos((j−2)π/N+θ)⌋+⌊Mρ cos(jπ/N+θ)⌋ = 2Mρ cos((j−1)π/N+θ) cos(π/N)±2

particles added at position j. For large M this vastly exceeds the number
of particles initially present at position j, resulting in the con�guration z

obtained from x satisfying the equation ∥z −My∥ <
√
2M/N , as required.

Claims 1 and 2 together complete the proof of Theorem 3.

5 Non-coexistence for the competing urn pro-

cess

We are now in position to prove Theorem 1, which we shall deduce from
Theorems 2 and 3. With this, we rule out coexistence between any number
of competing types in the competing urn scheme on a cycle.

Fix N ≥ K ≥ 2, and consider the competing urn scheme with K types
on a cycle of length N . Consider an arbitrary (nonzero) con�guration of
balls of K types positioned into the N urns so that no urn contains balls of
more than one type. We may represent such a con�guration by an element
y ∈ {0, 1, . . .}{1,2,...,N}×{1,2,...,K}, where yi,j denotes the number of balls at
vertex i of type j.

Recall, from Section 1.1, the de�nition of tribes and fronts of a con�guration
of balls on CN of K di�erent types. Let τ(y) denote the number of tribes
in the con�guration y. If τ(y) ≥ 2, then the number of fronts in y is also
equal to τ(y). (If there is only one tribe, then there are no fronts.) To
prove Theorem 1 we will need to show that the competing urn process,
almost surely, eventually consists of a single remaining tribe. Since, as the
competing urn process evolves, the number of tribes can only go down, it
will su�ce to show that, almost surely, the number of tribes eventually goes
down. We shall do this in two steps, depending on whether the number of
tribes is even or odd.

Suppose �rst that the competing urn process is run from an initial con-
�guration y consisting of an even number of tribes. We associate to the
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con�guration y a con�guration x ∈ ZN by encoding the balls in each tribe
by +1s and −1s in an alternating fashion. More precisely, we �rst label the
tribes from 1 to τ(y) in a cyclic clockwise manner, starting with the tribe to
which the vertex labeled 1 belongs. (If this vertex is vacant and belongs to
two tribes, start with the clockwise-most one.) Second, for i = 1, 2, . . . , N ,
if ℓi denotes the label of the tribe to which node i belongs, we then set

xi := (−1)ℓi−1
K∑
j=1

yi,j. (23)

Notice that |xi| denotes the number of balls at position i in the con�gu-
ration y. The de�nitions of tribes and fronts extend straightforwardly to
con�gurations x ∈ ZN , by regarding them as two-type con�gurations on
CN . Moreover, since τ(y) is even, then particles in the �rst tribe are la-
beled positively and particles of the last tribe negatively, which implies that
the number of tribes in x equals the number of tribes in y.

Claim 3. Suppose that τ(y) is even. Then there exists a coupling between
two competing urn process started in y and in x, respectively, such that,
with probability one, at each time t ≥ 0 either both processes have τ(y)
tribes remaining or neither does.

Proof of claim. Couple the two processes so that they evolve according to
the same clocks. Then, as long as no tribe becomes extinct, each nucleation
has the same e�ect in both processes.

By Theorem 2 it follows that, with probability one, for the process starting
in x all vertices will eventually be occupied by either positive or negative
particles. That is, the process will eventually consist of a single remaining
tribe. In particular, if the number of tribes started out even, then it will
eventually go down by one. Together with Claim 3 we conclude that, with
probability one, the K-type competing urn process starting from a con�g-
uration y with an even number of tribes will eventually consist of at most
τ(y)− 1 tribes.

Once the number of tribes decreases, the coupling in Claim 3 may cease to
hold. This is due to the fact that the encoding from y to x treats two tribes
at an even distance (in terms of labels) as being of equal type, whereas in
the original con�guration y may consist of di�erent types. Indeed, in the
process started from x the number of fronts will decrease by 2 each time
a tribe is eliminated, whereas in the process started from y the number
of fronts will decrease by either 1 or 2, depending on whether the tribes
clockwise and counterclockwise of the eliminated tribe are of di�erent types
or not. Hence, the above argument only shows that in the competing urn
process starting from a con�guration with an even number of tribes, at least
one tribe will be eliminated, almost surely.
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We shall need a separate argument when the number of tribes is odd. So,
suppose next that the number of tribes τ(y) is odd and greater than or
equal to 3. (When there is only one tribe there is nothing to prove.) We
again label the tribes of y from 1 to τ(y) in a cyclic clockwise fashion. By
rotating the labelling of the vertices (if necessary) we may assume that the
tribe labeled 1 has its counterclockwise-most endpoint at the vertex labeled
1. Again we obtain from y a con�guration x ∈ ZN as in (23). Since the
number of tribes is odd, the �rst and �nal tribes both receive positive values
by the encoding in (23). Considering x as a con�guration on the cycle with
a sign-reversing edge, and using the notion of tribes from Section 1.2, the
number of tribes in x again coincides with the number of tribes in y.

Claim 4. Suppose that τ(y) ≥ 3 is odd. Then there exists a coupling between
the competing urn process started in y and the auto-annihilative process
started in x such that, with probability one, at each time t ≥ 0 either both
processes have τ(y) tribes remaining or neither does.

Proof of claim. Couple the two processes so that they evolve according to
the same clocks. Then, as long as no tribe becomes extinct, each nucleation
has the same e�ect in both processes.

From Theorem 3 it follows that, with probability one, the auto-annihilative
process (Z(t))t≥0 started in x satis�es

lim
t→∞

e−λ∗tZ(t) =
(
R cos

(
π(j − 1)/N + S

))N
j=1

,

for some continuous random variables R and S.

Since the cosine function has precisely one root on any interval of the form
[θ, θ + π), it follows that, for large t, the auto-annihilative process consists
of a single tribe. Together with Claim 4 we conclude that, with probability
one, the competing urn scheme starting in y will eventually consist of at
most τ(y)− 1 tribes.

To complete the proof of Theorem 1 we now notice that, regardless of the
number of tribes present in the initial con�guration y, one of the tribes
will eventually become extinct. Let T1 denote the time at which the �rst
tribe goes extinct. Restarting the argument with the con�guration at time
T1 as the initial con�guration, and appealing to the Markov character of
the process, we conclude that at some future time T2 another tribe will
eventually have to become extinct, almost surely. Since the number of tribes
can only decrease, and since there are no more than N tribes to start with,
we conclude that almost surely there will eventually be a single surviving
tribe, and Theorem 1 follows.
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6 Non-coexistence for a spatial model of com-

petition

Finally, we explain the connection between the K-type competing growth
model on Z2 and the K-type competing urn scheme on a cycle, and deduce
Theorem 4 from Theorem 1. In particular, we show that the competition
process on Z2, for any number of types, will almost surely have a single
surviving type. The deduction is similar to that forK = 2 types in [2].

Consider any con�guration z ∈ {0, 1, 2, . . . , K}Z2
of K types assigned to the

vertices of Z2 consisting of a �nite number of occupied sites (i.e. sites with
values 1, 2, . . . , K) and such that every vacant site (i.e. site with value 0) has
at most one neighbour of each di�erent type. The set of occupied sites in z
(i.e. its nonzero elements) can be identi�ed with the bounded region A(z)
of R2 obtained by centring a unit square at each occupied vertex. We shall
write (X(t))t≥0 for the K-type competing growth process on Z2 evolving
from the initial con�guration z, and let At := A(X(t)).

Let Tc denote the �rst time at whichX(t) is connected as a subset of Z2, and
hence that At is a connected region in R2, which is almost surely �nite. For
t ≥ Tc the outer boundary of At consists of piecewise linear segments. We
shall refer to any maximal piecewise linear segment in the outer boundary
of At corresponding to a single type in X(t) as a tribe. For t ≥ Tc, unless
one of the K types encoded in X(t) already surrounds the others (in which
case there is nothing to prove), the perimeter of At will consist of some
number k ≥ 2 tribes. Due to the Markov character of the process, and as
time evolves the number of tribes can only decrease, it will su�ce to prove
that the number of tribes will decrease in �nite time, almost surely.

We may encode the outer boundary of At as follows: Pick a point on the
perimeter that marks a break between two tribes. Follow the perimeter
counterclockwise from the selected point until reaching a corner or another
break between two tribes, whichever comes �rst. If this part of the perimeter
corresponds to type j and has length ℓ, then set U1(t) = ℓej, where ej is
the jth coordinate vector in RK . If the stop did not occur at a corner, then
also set U2(t) to be the K-dimensional zero-vector. Suppose next that Ui(t)
has been de�ned. Repeat the procedure to de�ne Ui+1(t), or both Ui+1(t)
and Ui+2(t), depending on whether the stop occurs at a corner or not. Stop
this process once one full lap around the perimeter is completed.

Claim 5. Suppose that t ≥ Tc and that the perimeter of At consists of k ≥ 2
tribes. Then the encoding of the perimeter results in precisely 2k+4 vectors
Ui(t) being de�ned.

Proof of claim. For t ≥ Tc the perimeter of At consists of m inside corners
and m + 4 outside corners, for some m ≥ 0. Note that an inside corner
must correspond to a break between tribes, but that an outside corner
cannot. Hence, m breaks occur at inside corners and the remaining k −m
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breaks occur outside of the corners (i.e. on line segments). Since each corner
(either inside or outside) results in one Ui-vector being de�ned, and each
break on a line segment results in two Ui-vectors being de�ned, this means
that (2m+ 4) + 2(k −m) = 2k + 4 vectors are de�ned in total.

The key step of the proof is the next, which uses the Ui-encoding to construct
a coupling the growth process on Z2 and that on a cycle. Suppose that z is
connected as a subset of Z2 and let y = (y1, y2, . . . , yN) be the element of
{0, 1, . . .}{1,2,...,N}×{1,2,...,K} obtained from the Ui-encoding of z.

Claim 6. Suppose that z is connected and consists of k ≥ 2 tribes. Then
there exists a coupling between the K-type competing growth process on Z2

started in z and the K-type competing urn scheme on a cycle of length 2k+4
started in y such that, with probability one, at each time t ≥ 0 either both
processes have k tribes remaining or neither does.

Proof of claim. Let U(t) = (U1(t), U2(t), . . . , UN(t)) be obtained from the
encoding of the perimeter of At. Let T0 denote the �rst time that a tribe
goes extinct. Consider a process that evolves according to U(t) for t < T0

and independently from U(t), following the the dynamics of the competing
urn scheme, for t ≥ T0. By Claim 5, this de�nes 2k + 4 vectors Ui(t) for
each t < T0. It is straightforward to verify that this process is equal in
distribution to the competing urn scheme on a cycle of length 2k + 4, for
all t ≥ 0.

To complete the proof of Theorem 4, let the initial con�guration z ∈
{0, 1, . . . , K}Z2

be arbitrary among all con�gurations with a �nite num-
ber of nonzero coordinates. By Theorem 1 we know that the competing
urn scheme on any cycle will eventually consist of a single survivor, al-
most surely. In particular, the number of tribes will decrease in �nite time
with probability one. Due to the Markov character of the processes, and
Claim 6, also in the competing growth process on Z2 the number of tribes
will decrease in �nite time, as required.

7 Open problems

We end this text with a few open problems that we hope will inspire future
work.

For any �nite connected graph G, in [2] the authors proved that the two-
type competing urn scheme has a single surviving colour, almost surely.
Moreover, the authors gave examples of �nite connected graphs for which
coexistence of K ≥ 3 types is possible (with positive probability). The path
and the cycle are the only known examples of �nite connected graphs for
which theK-type competing urn scheme almost surely has a single surviving
type also for K ≥ 3. In [2] the authors posed the problem of characterising,
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for each K ≥ 3, the family of graphs for which the competing urn scheme
has a single survivor.

The examples in [2] where coexistence occurs have the property that there
exists a vertex which, if removed, disconnects the graph intoK ≥ 3 identical
subgraphs. It is possible to imagine generalisations of the same idea, where
the removal of a small number of vertices disconnects the graph into identical
pieces, and where coexistence occurs with positive probability. However, for
graphs with a more regular structure, e.g. vertex-transitive graphs, it seems
reasonable to expect that coexistence cannot happen. In particular, we
conjecture this to be the case for the hypercube and the two- or higher-
dimensional discrete torus.

Conjecture 1. For every K ≥ 3, and any nonzero initial con�guration,
the K-type competing urn scheme on the hypercube and the discrete torus
has almost surely a single surviving type.

We have in this paper considered a setting where balls of di�erent types nu-
cleate according to Poisson clocks that tic at the same rate. More generally,
one could allow clocks of balls of di�erent type to tic at di�erent rate. Our
methods to not seem to extend easily to cover this more general setting. In
particular, it seems challenging to encode the competition between di�erent
types in a system consisting of positive and negative particles in a setting
with more than two rate parameters. We believe that coexistence cannot
happen also in this setting, but we expect that new ideas will be required
to verify this belief.

Conjecture 2. For every K ≥ 3, and any nonzero initial con�guration,
the K-type competing urn scheme on the cycle, where balls of type j have
clocks that tic at rate λj, has almost surely a single surviving type.

In [1], the competing urn scheme was studied on the Zd nearest-neighbour
lattice, for d ≥ 1. The authors considered the in�nite initial con�guration
consisting of one ball at each position, whose colour (either red or blue)
was determined by i.i.d. coin �ips. The con�guration of balls induces a
colouring of Zd, where the colour of each site is given by the colour of the
balls currently present at the site (and white, say, if no ball is currently
present). The authors studied the question of �xation, and showed that
when the coin is fair, every site changes colour in�nitely often almost surely,
whereas for a biased coin, the colouring �xates locally (to the dominating
colour) in the sense that for each site there exists an almost surely �nite time
after which the colour no longer changes. For K ≥ 3 the initial colouring
could be determined by the roll of a (possibly biased) K-sided die. The
analogous problem in this setting remains open.

Problem 3. For K ≥ 3 and d ≥ 1, determine under what conditions the
K-type competing urn scheme on Zd �xates and not.

The two-type competing urn scheme on Z, evolving from a uniform ran-
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dom initial colouring, can be described as the evolution of monochromatic
intervals competing for space. In [1], the authors found that the height
(i.e. number of balls) of a typical interval is Θ(t−1/4e2t) at arbitrarily large
times t, and posed the problem of determining the width of a typical in-
terval. It is tempting to look towards the auto-annihilative growth pro-
cess on a cycle when trying to understand the evolution of the monochro-
matic intervals. Indeed, the auto-annihilative process is indicative of the
anatomy of an isolated interval, when evolving in equilibrium. Equating
the typical height of an interval with the growth rate eλ

∗t of the auto-
annihilative process suggests that the width of a typical interval ought to
grow as Θ(

√
t/ log(t)).

Problem 4. For the two-type competing urn scheme on Z, determine the
typical width of a monochromatic interval. Is it true that the width is

Θ(
√
t/ log(t)) with high probability?

As an alternative to the random initial con�guration considered in [1], one
could consider the setting with K ≥ 3 types initially present, or where
all particles initially present (one for each site) are of distinct types. For
d = 1, the above question regarding the length of a typical interval remains
relevant.
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