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Abstract

We consider a premium control problem in discrete time, inspired by [9]
and [10], formulated in terms of a Markov decision process. In a simplified
setting, the optimal premium rule can be derived with dynamic programming
methods. However, these classical methods are not feasible in a more realistic
setting due to the dimension of the state space. Hence, to combat the curse
of dimensionality we explore reinforcement learning techniques, using linear
function approximation. We illustrate the appropriateness of the approximate
optimal premium rule compared with the true optimal premium rule in a sim-
plified setting, and further demonstrate that the approximate optimal premium
rule outperforms benchmark rules in a more realistic setting where classical
approaches fail.



1 Introduction

An insurance company’s claim costs and investment earnings fluctuate randomly over
time. The insurance company needs to determine the premiums before the coverage
periods start, i.e. before knowing knowing what claim costs will appear and without
knowing how its invested capital will develop. Hence, the insurance company is
facing a dynamic stochastic control problem. The problem is complicated because
of delays and feedback effects: premiums are paid before claim costs materialise and
premium levels affect whether the company attracts or loses customers.

An insurance company wants a steady high surplus. The optimal dividend prob-
lem introduced by de Finetti in [4] (and solved by Gerber in [5]) has the objective
to maximise the expected present value of future dividends. Its solution takes into
account that paying dividends too generously is suboptimal since a too high proba-
bility of default affects the expected present value of future dividends negatively. A
practical problem with implementing the optimal premium rule, i.e. a rule that maps
the state of the stochastic environment to a premium level, obtained from solving the
optimal dividend problem is that the premiums would be fluctuating more than what
would be feasible for a real insurance market with competition. A good premium
rule needs to generate premiums that do not fluctuate wildly over time.

For a mutual insurance company, maximising dividends is not the main objective.
Instead the premiums should be low and suitably averaged over time but also making
sure that the surplus is sufficiently high to avoid a too high probability of default.
This is the situation we study in the present paper. Similar premium control problems
have been studied in the papers [9] and [10] by Martin-Löf and these papers have
been a source of inspiration for our work.

The paper [9] carefully sets up the balance equations for the key economic vari-
ables of relevance for the performance of the insurance company and studies the
premium control problem as a linear control problem under certain simplifying as-
sumptions enabling application of linear control theory. The paper analyses the
effects of delays in the insurance dynamical system on the linear control law with
feedback and discusses designs of the premium control that ensure that the proba-
bility of default is small.

The paper [10] considers an application of general optimal control theory in a
setting similar to, but simpler than, the setting considered in [9]. The paper derives
and discusses the optimal premium rule that achieves low and averaged premiums
and also targets sufficient solvency of the insurance company.

The literature on optimal control theory in insurance is vast, see e.g. the text book
treatment by Schmidli [15] and references therein. Our aim is to provide solutions
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to realistic premium control problems in order to allow the optimal premium rule to
be used with confidence by insurance companies. In particular, we avoid considering
convenient stochastic models that may fit well with optimal control theory but fail
to take key features of real dynamical insurance systems into account. Our aim is
in particular to present methods for solving premium control problems that work
well for a wide range of models for the stochastic environment of the insurance
company and that may also be used directly on real insurance data. We do however
acknowledge that short historical time series is a serious problem when attempting
to solve a premium control problem on only real data.

Increased computing power and methodological advances during the recent decades
make it possible to revisit the problems studied in [9] and [10] and in doing so allow
for more complex and realistic dynamics of the insurance dynamical system. Allow-
ing realistic complex dynamics means that optimal premium rules, if possible to be
obtained, will allow insurance companies to not only be given guidance on how to set
premiums but actually have premium rules that they can use with certain confidence.
The methodological advances that we use in this work is reinforcement learning and
in particular reinforcement learning combined with function approximation, see e.g.
Bertsekas and Tsitsiklis [1] and Sutton and Barto [18] and references therein. By
using reinforcement learning methods combined with function approximation we ob-
tain premium rules in terms of Markovian controls for Markov decision processes
whose state spaces are much larger/more realistic than what was considered in the
premium control problem studied in [10].

The paper is organised as follows. Section 2 describes the relevant insurance
economics by presenting the involved cash flows, key economic quantities such as
surplus, earned premium, reserves and how such quantities are connected to each
other and their dynamics or balance equations. Section 2 also introduces stochastic
models giving a complete description of the stochastic environment in which the
insurance company operates and aims to determine an optimal premium rule. The
complete stochastic model will serve us by enabling simulation of data from which
the reinforcement learning methods gradually learn the stochastic environment in
the search for optimal premium rules. The model is necessarily somewhat complex if
we require that delays between accidents and payments should be allowed as well as
random fluctuations in the number of policyholders, partly due to varying premium
levels. The model choices are intended to be realistic but other model choices can
be made without affecting the feasibility of the methods and analysis considered in
later sections.

Section 3 sets up the premium control problem we aim to solve in terms of a
Markov decision process and standard elements of stochastic control theory such as
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the Bellman equation. Finding the optimal premium rule by directly solving the
Bellman (optimality) equation numerically is not possible when considering state
spaces for the Markov decision process matching a realistic model for the insurance
dynamical system. Therefore, we introduce reinforcement learning methods in Sec-
tion 4. In particular, we present basic theory for the temporal difference learning
methods Q-learning and SARSA. We explain why these methods will not be able
to provide us with reliable estimates of optimal premium rules unless we restrict
ourselves to simplified versions of the insurance dynamical system. We argue that
SARSA combined with function approximation of the so-called action-value function
will allow us to determine optimal premium rules. We also highlight several pitfalls
that the designer of the reinforcement learning method must be aware of and make
sure to avoid.

Section 5 presents the necessary details in order to solve the premium control
problem using SARSA with function approximation. We analyse the effects of dif-
ferent model/method choices on the performance of different reinforcement learning
techniques and compare the performance of the optimal premium rule with those of
simpler benchmark rules.

Finally, Section 6 concludes the paper. We emphasise that the premium con-
trol problem studied in the present paper is easily adjusted to fit the features of
a particular insurance company and that the excellent performance of a carefully
set up reinforcement learning method with function approximation provides the in-
surance company with an optimal premium rule that can be used in practice and
communicated to stakeholders.

2 A stochastic model of the insurance company

The number of contracts written during year t+1 is denoted Nt+1, a quantity known
at the end of year t + 1. The premium per contract Pt during year t + 1 is decided
at the end of year t. Hence Pt is Ft-measurable, where Ft denotes the σ-algebra
representing the available information at the end of year t. Contracts are assumed
to be written uniformly in time over the year, and therefore the earned premium
during year t+ 1 is

EPt+1 =
1

2
(PtNt+1 + Pt−1Nt),

i.e. for contracts written during year t + 1, on average half of the premium income
PtNt+1 will be earned during year t+ 1, and half during year t+ 2. Since only half of
the premium income PtNt+1 is earned during year t+ 1, the other half, which should
cover claims during year t + 2, will be stored in the premium reserve. The balance
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equation for the premium reserve is Vt+1 = Vt +PtNt+1−EPt+1. Note that when we
add cash flows or reserves occurring at time t+ 1 to cash flows or reserves occurring
at time t, the time-t amounts should be interpreted as adjusted for the time value of
money. We choose not to write this out explicitly in order to simplify notation.

That contracts are written uniformly in time over the year means that It,k, the
incremental payment to policyholders during year t+k for accidents during year t+1,
will consist partly of payments to contracts written during year t + 1 and partly of
payments to contracts written during year t. Hence we assume that It,k depends
on both Nt+1 and Nt. Table 1 shows a claims triangle with entries Ij,k representing
incremental payments to policyholders during year j + k for accidents during year
j+1. For ease of presentation, other choices could of course be made, we will assume
that the maximum delay between an accident and a resulting payment is four years.
Entries Ij,k with j + k ≤ t are Ft-measurable and coloured blue in Table 1. Let

ICt+1 = It,1 + E[It,2 + It,3 + It,4 | Ft+1],

PCt+1 = It,1 + It−1,2 + It−2,3 + It−3,4,

RPt+1 = E[It−3,4 + It−2,3 + It−2,4 + It−1,2 + It−1,3 + It−1,4 | Ft]
− E[It−3,4 + It−2,3 + It−2,4 + It−1,2 + It−1,3 + It−1,4 | Ft+1],

where IC, PC and RP denote, respectively, incurred claims, paid claims and runoff
profit. The balance equation for the claims reserve is Et+1 = Et + ICt+1 − RPt+1 −
PCt+1, where

ICt+1 − RPt+1 − PCt+1

= E[It,2 + It,3 + It,4 | Ft+1]− E[It−1,2 + It−2,3 + It−3,4 | Ft]
+ E[It−1,3 + It−2,4 + It−1,4 | Ft+1]− E[It−1,3 + It−2,4 + It−1,4 | Ft].

(1)

1 2 3 4
t− 2 It−3,1 It−3,2 It−3,3 It−3,4
t− 1 It−2,1 It−2,2 It−2,3 It−2,4

t It−1,1 It−1,2 It−1,3 It−1,4
t+ 1 It,1 It,2 It,3 It,4

Table 1: Incremental paid claim amounts from accidents during years t−2, . . . , t+1.

The dynamics of the surplus fund is

Gt+1 = Gt + EPt+1 + IEt+1 −OEt+1 − ICt+1 + RPt+1, (2)
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where IE denotes investment earnings and OE denotes operating expenses.
We choose to model the key random quantities as integer-valued random vari-

ables with conditional distributions that are either Poisson or Negative Binomial
distributions. Other choices of distributions on the integers are possible without any
major effects on the analysis that follows. Let

L(Nt+1 | Ft) = L(Nt+1 | Pt) = Pois(aP b
t ), (3)

where a > 0 is a constant, and b < 0 is the price elasticity of demand. The notation
says that the conditional distribution of the number of contracts written during year
t + 1 given the information at the end of year t depends on that information only
through the premium decided at the end of year t for those contracts.

Let Ñt+1 = (Nt+1 +Nt)/2 denote the number of contracts during year t+ 1 that
provide coverage for accidents during year t+ 1. Let

OEt+1 = β0 + β1Ñt+1, (4)

saying that the operating expenses have both a fixed part and a variable part propor-
tional to the number of active contracts. The appearance of Ñt+1 instead of Nt+1 in
the expressions above is due to the assumption that contracts are written uniformly
in time over the year, and that accidents occur uniformly in time over the year.

Let α1, . . . , α4 ∈ [0, 1] with
∑4
i=1 αi = 1. The constant αk denotes the expected

fraction of claim costs for a given accident year that generates payments during
development year k. Let

L(It,k | Ft, Ñt+1) = L(It,k | Ñt+1) = Pois(αkµÑt+1), (5)

where µ denotes the expected claim cost per contract. We assume that different
incremental claims payments Ij,k are conditionally independent given information
about the corresponding numbers of contracts written. Formally, the elements in the
set

{Ij,k : j ∈ {t− l, . . . , t}, k ∈ {1, . . . , 4}}

are conditionally independent given Nt−l, . . . , Nt+1. Therefore, using (1) and (5),

L(PCt+1 | Ft, Ñt+1) = L(PCt+1 | Ñt−2, . . . , Ñt+1) = Pois(α1µÑt+1 + · · ·+ α4µÑt−2)

and

ICt+1 − RPt+1 = PCt+1 + (α2 + α3 + α4)µÑt+1 − α2µÑt − α3µÑt−1 − α4µÑt−2.
(6)
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The model for the investment earnings IEt+1 is chosen so that Gt ≤ 0 implies
IEt+1 = 0 since Gt ≤ 0 means that nothing is invested. Moreover, we assume that

L(IEt+1 +Gt | Ft, Gt > 0) = L(IEt+1 +Gt | Gt, Gt > 0) = NegBin

(
νGt,

1 + ξ

1 + ξ + ν

)
,

(7)

where NegBin(r, p) denotes the Negative Binomial distribution with probability mass
function

k 7→
(
k + r − 1

k

)
(1− p)rpk

which corresponds to mean and variance

E[IEt+1 +Gt | Gt, Gt > 0] =
p

1− p
r = (1 + ξ)Gt

and

Var(IEt+1 +Gt | Gt, Gt > 0) =
p

(1− p)2
r =

1 + ξ + ν

ν
(1 + ξ)Gt.

Given a policy π that given the state St = (Gt, Pt−1, Nt−3, Nt−2, Nt−1, Nt) gen-
erates the premium Pt, the system (St) evolves in a Markovian manner according
to the transition probabilities that follows from (3)-(7) and (2). Notice that if we
consider a less long-tailed insurance product so that α3 = α4 = 0 (at most one year
delay from occurrence of the accident to final payment), then the dimension of the
state space reduces to four, i.e. St = (Gt, Pt−1, Nt−1, Nt).

Our objective is to determine an optimal policy optimising a function that de-
scribes well good and poor performance of an insurance company.

3 The control problem

We consider a set of states S+, a set of non-terminal states S ⊆ S+, and for each
s ∈ S a set of actions A(s) available from state s, with A = ∪s∈SA(s). We assume
that S+ and A are discrete (finite or countable). For each s ∈ S, s′ ∈ S+, a ∈ A(s)
we define the reward received after taking action a in state s and transitioning to
s′, −f(a, s, s′), and the probability of transitioning from state s to state s′ after
taking action a, p(s′|s, a). We assume that rewards and transition probabilities are
stationary (time-homogeneous). This defines a Markov decision process (MDP). A
policy π specifies how to determine what action to take in each state. A stochastic
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policy describes, for each state, a probability distribution on the set of available
actions. A deterministic policy is a special case of a stochastic policy, specifying a
degenerate probability distribution, i.e. a one-point distribution.

Our objective is to find the premium policy that minimises the expected value of
the premium payments over time, but that also results in (Pt) being more averaged
over time, and further ensures that the surplus (Gt) is large enough so that the
risk that the insurer cannot pay the claims costs and other expenses is small. We
formulate this in terms of a MDP, i.e. we want to solve the following optimisation
problem:

minimise
π

Eπ

[ T∑
t=0

γtf(Pt, St, St+1) | S0 = s
]

(8)

where π is a policy generating the premium Pt given the state St, A(s) is the set of
premium levels available from state s, γ is the discount rate, f is the cost function,
and Eπ[·] denotes the expectation given that policy π is used. Note that the discount
factor γt should not be interpreted as the price of a zero-coupon bond maturing at
time t, since the cost that is discounted does not represent an economic cost. Instead
γ reflects how much weight is put on costs that are immediate compared to costs
further in the future. The transition probabilities are

p(s′|s, a) = P(St+1 = s′ | St = s, Pt = a),

and we consider stationary policies, letting π(a|s) denote the probability of taking
action a in state s under policy π,

π(a|s) = Pπ(Pt = a | St = s).

If there are no terminal states, we have T = ∞, and S+ = S. We want to choose
A(s), s ∈ S, f , and any terminal states such that the objective discussed above is
achieved. We will do this in two ways, see Sections 3.1 and 3.2.

The value function of state s under a policy π generating the premium Pt is
defined as

vπ(s) := Eπ

[ T∑
t=0

γt(−f(Pt, St, St+1)) | S0 = s
]
.

The Bellman equation for the value function is

vπ(s) =
∑

a∈A(s)
π(a|s)

∑
s′∈S

p(s′|s, a)
(
− f(a, s, s′) + γvπ(s′)

)
.
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When the policy is deterministic, we let π be a mapping from S to A, and

vπ(s) =
∑
s′∈S

p(s′|s, π(s))
(
− f(π(s), s, s′) + γvπ(s′)

)
.

The optimal value function is v∗(s) := supπ vπ(s). When the action space is finite
the supremum is attained, which implies the existence of an optimal deterministic
stationary policy (see [13, Cor. 6.2.8], for other sufficient conditions for attainment
of the supremum, see [13, Thm. 6.2.10]). Hence, if the transition probabilities are
known, we can use the Bellman optimality equation to find v∗(s):

v∗(s) = max
a∈A(s)

∑
s′∈S

p(s′|s, a)
(
− f(a, s, s′) + γv∗(s

′)
)
.

We use policy iteration in order to find the solution numerically. Let k = 0, and
choose some initial deterministic policy πk(s) for all s ∈ S. Then

(i) Determine Vk(s) as the unique solution to the system of equations

Vk(s) =
∑
s′∈S

p(s′|s, πk(s))
(
− f(πk(s), s, s

′) + γVk(s
′)
)
.

(ii) Determine an improved policy πk+1(s) by computing

πk+1(s) = argmax
a∈A(s)

∑
s′∈S

p(s′|s, a)
(
− f(a, s, s′) + γVk(s

′)
)
.

(iii) If πk+1(s) 6= πk(s) for some s ∈ S, then increase k by 1 and return to step (i).

Note that if the state space is large enough, solving the system of equations in step
(i) directly might be too time-consuming. In that case, this step can be solved by
an additional iterative procedure, called iterative policy evaluation, see e.g. [18, Ch.
4.1].

3.1 MDP with constraint on the action space

The premiums (Pt) will be averaged if we minimise
∑
t c(Pt), where c is an increasing,

strictly convex function. Thus for the first MDP we let f(a, s, s′) = c(a). To ensure
that the surplus (Gt) does not become negative too often, we combine this with the
constraint saying that the premium needs to be chosen so that the expected value,
given the current state, of the surplus stays nonnegative, i.e.

A(St) = {Pt : Eπ[Gt+1 | St] ≥ 0}, (9)
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and the optimisation problem becomes

minimise
π

Eπ

[ ∞∑
t=0

γtc(Pt) | S0 = s
]

subject to Eπ[Gt+1 | St] ≥ 0 for all t. (10)

The choice of the convex function c, together with the constraint, will affect how
quickly the premium can be lowered as the surplus or previous premium increases,
and how quickly the premium must be increased as the surplus or previous premium
decreases. Different choices of c affect how well different parts of the objective are
achieved. Hence one choice of c might put a higher emphasis on the premium being
more averaged over time but slightly higher, while another choice might promote
a lower premium level that is allowed to vary a bit more from one time point to
another. Furthermore, it is not clear from the start what choice of c will lead to a
specific result, thus designing the reward signal might require searching through trial
and error for the cost function that achieves the desired result.

3.2 MDP with a terminal state

The constraint (9) requires a prediction ofNt+1 according to (3). However, estimating
the price elasticity in (3) is difficult task, hence it would be desirable to solve the
optimisation problem without having to rely on this prediction. To this end, we
remove the constraint on the action space, i.e. we let A(s) = A for all s ∈ S, and
instead introduce a terminal state which has a larger negative reward than all other
states. This terminal state is reached when the surplus Gt is below some predefined
level, and it can be interpreted as the state where the insurer defaults and has to shut
down. If we let G denote the set of non-terminal states for the first state variable
(the surplus), then

f(Pt, St, St+1) = h(Pt, St+1) :=

c(Pt), if Gt+1 ≥ minG,
c(maxA)(1 + η), if Gt+1 < minG,

where η > 0. The optimisation problem becomes

minimise
π

Eπ

[ T∑
t=0

γth(Pt, St+1) | S0 = s
]
, T := min{t : Gt < minG}. (11)

The reason for choosing η > 0 is to ensure that the reward when transitioning to
the terminal state is lower than the reward when using action maxA (the maximal
premium level), i.e. it should be more costly to terminate and restart compared with
attempting to increase the surplus when the surplus is low. The particular value of
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the parameter η > 0 together with the choice of the convex function c determine
the reward signal, i.e. the compromise between minimising the premium, averaging
the premium, and ensuring that the risk of default is low. One way of choosing η is
to set it high enough so that the reward when terminating is lower than the total
reward using any other policy. Then we require that

(1 + η)c(maxA) >
∞∑
t=0

γtc(maxA) =
1

1− γ
c(maxA),

i.e. η > γ/(1− γ). This choice of η will put a higher emphasis on ensuring that the
risk of default is low, compared with using a lower value of η.

3.3 Policy iteration for simplified model

If the state space is not too large, then we may solve both the optimisation problem
with a constraint on the action space and with a terminal state numerically using
policy iteration.

Consider the situation where the insurer has a fixed number N of policyholders,
who at some initial time point bought insurance policies with automatic contract
renewal for the price Pt year t + 1. The state at time t is St = (Gt, Pt−1). In this
simplified setting, OEt+1 = β0 + β1N , all payments It,k are independent, L(It,k) =
Pois(αkµN), ICt+1−RPt+1 = PCt+1 and L(PCt+1) = Pois(µN). With this simplified
model we have

Gt+1 = Gt +
1

2
N(Pt + Pt−1)− (β0 + β1N)− PCt+1 + IEt+1,

where IEt+1 = 0 if Gt ≤ 0 and otherwise distributed according to (7). The constraint
(9) here means that Pt must be sufficiently large to satisfy

(1 + ξ1{Gt>0})Gt +
1

2
N(Pt + Pt−1)− (β0 + β1N + µN) ≥ 0.

The transition probabilities are given by

P(St+1 = (k, p) | St = (g, q), Pt = p)

= P(IEt+1 +Gt − PCt+1 = k + (β0 + β1N)− 1

2
N(p+ q) | (Gt, Pt−1, Pt) = (g, q, p))

=

 P
(
PCt+1 = g −m

)
if g ≤ 0,∑

{l:m+l≥0} P(PCt+1 = l) P
(
IEt+1 +Gt = m+ l | Gt = g

)
if g > 0,
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where m = k + (β0 + β1N)−N(p+ q)/2.
The parameter values used in Section 5 are µ = 5, β0 = 10 and β1 = 1. With

N = 10 this means that the expected yearly total cost for the insurer is 70 and
the expected yearly cost per customer is 7. We emphasise that parameter values
are meant to be interpreted in suitable units to fit the application in mind. As
the model for the MDP is formulated, P(Gt = g) > 0 for all integers g. However,
for actions/premiums that are considered with the aim of solving the optimisation
problem, it will be sufficient to only consider a finite range of integer values for
Gt since transitions to values outside this range will have negligible probability.
Specifically, we will only consider values {−20,−19, . . . , 149, 150} as possible values
for the surplus. In order to ensure that transition probabilities sum to one, we must
adjust the probabilities of transitions to the limiting surplus values according to the
original probabilities of exiting the range of possible surplus values.

Remark 3.1 We have tested different values for the maximum value of the surplus
process, with the conclusion that truncating the surplus process at 150 does not have
a material effect on the optimal policy. However, the minimum value chosen for the
surplus process (here -20), will have a larger effect on the optimal policy for the MDP
with a terminal state, and should be seen as another parameter value that needs to
be chosen to determine the reward signal, see Section 3.2.

4 Reinforcement learning

If the model of the environment is not fully known, or if the state space or action space
are not finite, the control problem can no longer be solved by classical dynamical
programming approaches. Instead, we can utilise different reinforcement learning
algorithms. We will begin by analysing the same simple model as in Section 3.3,
but now assuming that the model of the environment is not fully known, by which
we mean that we are not able to explicitly compute the transition probabilities. We
will, however, still use the model to simulate the environment.

4.1 Temporal-difference learning

Temporal-difference (TD) methods can learn directly from real or simulated expe-
rience of the environment. Given a specific policy π which determines the action
taken in each state, and the sampled or observed state at time t, St, state at time
t + 1, St+1, and reward Rt+1, the iterative update for the value function, using the
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one-step TD method, is

V (St)← V (St) + αt
(
Rt+1 + γV (St+1)− V (St)

)
,

where αt is a step size parameter. Hence, the target for the TD update is Rt+1 +
γV (St+1). Thus, we update V (St), which is an estimate of vπ(St) = Eπ[Rt+1 +
γvπ(St+1)], based on another estimate, namely V (St+1). The intuition behind using
Rt+1 + γV (St+1) as the target in the update is that this is a slightly better estimate
of vπ(St), since it consists of an actual (observed or sampled) reward at t+ 1 and an
estimate of the value function at the next observed state.

It has been shown in e.g. [3] that the value function (for a given policy π) com-
puted using the one-step TD method converges to the true value function if the step
size parameter 0 ≤ αt ≤ 1 satisfies the following stochastic approximation conditions

∞∑
k=1

αtk(s) =∞,
∞∑
k=1

α2
tk(s) <∞, for all s ∈ S,

where tk(s) is the time step when state s is visited for the kth time.

4.1.1 Q-learning

The one-step TD method described above gives us an estimate of the value function
for a given policy π. To find the optimal policy using TD learning, a TD control
algorithm can be used. One example of such an algorithm is Q-learning, which
focuses on directly estimating the optimal action-value function:

q∗(s, a) := max
π

qπ(s, a),

where qπ is the action-value function for policy π,

qπ(s, a) := Eπ

[ ∞∑
t=0

γtRt+1 | S0 = s, A0 = a
]
.

The iterative update searching for the optimal action-value function, using Q-learning,
is

Q(St, At)← Q(St, At) + αt
(
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

)
. (12)

Given that all state-action pairs continue to be updated, it has been shown in [20]
that Q-learning converges to the true optimal action-value function if the step size
parameter 0 ≤ αt ≤ 1 satisfies the following stochastic approximation conditions

∞∑
k=1

αtk(s,a) =∞,
∞∑
k=1

α2
tk(s,a) <∞, for all s ∈ S, a ∈ A(s), (13)
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where tk(s, a) is the time step when a visit in state s is followed by taking action a
for the kth time.

To use Q-learning, we need to generate transitions from state-action pairs (St, At)
to state-action pairs (St+1, At+1) and observe the rewards Rt+1 obtained during each
transition. To do this, we need a behaviour policy, i.e. a policy that determines which
action is taken in the state we are currently in when the transitions are generated.
To ensure that all state-action pairs continue to be updated, this policy needs to
be exploratory. At the same time, we want to exploit what we have learned so far
by choosing actions that we believe will give us large future rewards. A common
choice of policy that compromises in this way between exploration and exploitation
is the ε-greedy policy, which with probability 1−ε chooses the action that maximises
the action-value function in the current state; and with probability ε chooses any
other action uniformly at random. Hence, the Q-learning algorithm is an off-policy
algorithm, since it uses one policy to generate the transitions, but updates a different
policy (called the target policy), namely the greedy policy that maximises the action-
value function in each state. If we let π̃ denote the behaviour policy and π the target
policy, then π(s) = argmaxaQ(s, a) and

π̃(a|s) =

1− ε, if a = argmaxaQ(s, a),
ε

|A|−1 , otherwise.

In Section 5 we use A = {0.2, 0.4, . . . , 19.8, 20.0}, hence |A| = 100.

4.1.2 SARSA

Another example of a TD control algorithm is SARSA. In contrast to Q-learning,
this is an on-policy algorithm, meaning that the same policy is used both as the
behaviour policy and the target policy. The iterative update for the action-value
function, using SARSA, is

Q(St, At)← Q(St, At) + αt
(
Rt+1 + γQ(St+1, At+1)−Q(St, At)

)
.

Thus, SARSA gives an estimate of the action-value function qπ given the behaviour
policy π. Since the same policy is used as both the behaviour policy and the target
policy, this policy needs to be exploratory, e.g. ε-greedy, to ensure that all state
action-pairs continue to be updated. At the same time, we need to ensure that the
end result is the optimal policy, hence the policy needs to be changed over time
towards the greedy policy that maximises the action-value function in each state. If
the policy is ε-greedy, this can be accomplished by letting ε slowly decay towards
zero.
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Under the condition that all state-action pairs continue to be updated, and that
the behaviour policy is greedy in the limit, it has been shown in [16] that SARSA
converges to the true optimal action-value function if the step size parameter satisfies
the stochastic approximation conditions (13).

Since Q-learning directly learns the optimal policy, one might wonder why we
have need for this second TD control algorithm that has a target policy that is not
fully optimal since it needs to be exploratory. One reason has to do with the topic of
the next section, namely function approximation. While there are some convergence
results for SARSA with function approximation, there are none for standard Q-
learning with function approximation. In fact, there are examples of divergence when
combining off-policy training (as is done in Q-learning) with function approximation.
For more on this, see e.g. [18, Ch. 11].

4.2 Function approximation

The methods discussed thus far are examples of tabular solution methods, i.e. meth-
ods where the value functions can be represented as tables. These methods are
suitable when the state and action space are not too large, e.g. for the simplified
model in Section 3.3. However, when the state space and/or action space is very
large, or even continuous, these methods are not feasible, due to not being able to
fit tables of this size in memory, and/or due to the time required to visit all state-
action pairs multiple times. This is the case for the more realistic model presented
in Section 2 where we allow the number of contracts written per year to vary. This
has two effects that both increase the size of the state space: the dimension of the
state space is larger; and the surplus process, depending on the parameter values
chosen, can take non-integer values. For the simplified model S = G × A, and with
the parameters chosen in Section 5 we have |G| = 171 and |A| = 100. In the more
realistic setting, if we let N denote the set of integer values that Nt is allowed to
take values in, then S = G × A × N l, where l denotes the maximum number of
development years. With the parameters chosen in Section 5 in the more realistic
setting the total number of states is approximately 108.

Thus, to solve the optimisation problem in the more realistic setting, we need
approximate solution methods, in order to generalise from the states that have been
experienced to other states. In approximate solution methods the value function
vπ(s) (or action-value function qπ(s, a)) is approximated by a parameterised function,
v̂(s;w) (or q̂(s, a;w)). When the state space is discrete, it is common to minimise
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the following objective function,

J(w) :=
∑
s∈S

µπ(s)
(
vπ(s)− v̂(s;w)

)2
, (14)

where µπ(s) is the fraction of time spent in state s. For the model without terminal
states, µπ is the stationary distribution under policy π. For the model with terminal
states, to determine the fraction of time spent in each transient state, we need to
compute the expected number of visits ηλ,π(s) to each transient state s ∈ S before
reaching a terminal (absorbing) state, where λ(s) = P(S0 = s) is the initial distribu-
tion. For ease of notation, we omit λ from the subscript below, and write ηπ and Pπ

instead of ηλ,π and Pλ,π. Let p(s|s′) be the probability of transitioning from state s′

to state s under policy π, i.e.

p(s|s′) = Pπ(St = s | St−1 = s′).

Then

ηπ(s) := Eπ

[ ∞∑
t=0

1{St=s}

]
= λ(s) +

∞∑
t=1

Pπ(St = s)

= λ(s) +
∞∑
t=1

∑
s′∈S

p(s|s′) Pπ(St−1 = s′) = λ(s) +
∑
s′∈S

p(s|s′)
∞∑
t=0

Pπ(St = s′)

= λ(s) +
∑
s′∈S

p(s|s′)ηπ(s′),

or, in matrix form, ηπ = λ+P>ηπ, where P is the part of the transition matrix corre-
sponding to transitions between transient states, i.e. if we label the states 0, 1, . . . , |S|
(where state 0 represents all terminal states), then P = (pij : i, j ∈ {1, 2, . . . , |S|}),
where pij = p(j | i). After solving this system of equations, the fraction of time
spent in each transient state under policy π can be computed according to

µπ(s) =
ηπ(s)∑

s′∈S ηπ(s′)
, for all s ∈ S.

This computation of µπ relies on the model of the environment being fully known
and the transition probabilities explicitly computable, as is the case for the simplified
model in Section 3.3. However, for the situation at hand, where we need to resort
to function approximation and determine v̂(s;w) (or q̂(s, a;w)) by minimising (14),
we cannot explicitly compute µπ. Instead, µπ in (14) is captured by learning incre-
mentally from real or simulated experience, as in semi-gradient TD learning. Using
semi-gradient TD learning, the iterative update for the weight vector w becomes

wt+1 = wt + αt
(
Rt+1 + γv̂(St+1;wt)− v̂(St;wt)

)
∇v̂(St;wt).
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This update can be used to estimate vπ for a given policy π, generating transitions
from state to state by taking actions according to this policy. Similarly to standard
TD learning (Section 4.1), the target Rt+1 + γv̂(St+1;wt) is an estimate of the true
(unknown) vπ(St+1). The name ’semi-gradient’ comes from the fact that the update
is not based on the true gradient of (Rt+1 + γv̂(St+1;wt) − v̂(St;wt))

2, instead the
target is seen as fixed when the gradient is computed, despite the fact that it depends
on the weight vector wt.

As in the previous section, estimating the value function given a specific policy is
not our final goal - instead we want to find the optimal policy. Hence, we need a TD
control algorithm with function approximation. One example of such an algorithm
is semi-gradient SARSA, which estimates q∗. The iterative update for the weight
vector is

wt+1 = wt + α
(
Rt+1 + γtq̂(St+1, At+1;wt)− q̂(St, At;wt)

)
∇q̂(St, At;wt). (15)

As with standard SARSA, we need a behaviour policy that generates transitions
from state-action pairs to state action-pairs, e.g. an ε-greedy policy.

4.2.1 Linear function approximation

The simplest form of function approximation is linear function approximation. Using
linear function approximation for estimating the value function means that v̂(·;w) is
a linear function of w:

v̂(s;w) := w>x(s),

where x(s) are basis functions. Using the Fourier basis as defined in [7], the ith basis
function for the Fourier basis of order n is

xi(s) = cos(πs>c(i)),

where s = (s1, s2, . . . , sk)
>, c(i) = (c

(i)
1 , . . . , c

(i)
k )>, and k is the dimension of the

state space (here π is the number π ≈ 3.14, not the policy). The c(i)’s are given
by the k-tuples over the set {0, . . . , n}, hence i = 1, . . . , (n + 1)k. This means that
x(s) ∈ R(n+1)k , i.e. the dimension of x depends both on the dimension of the state
space and the order of the Fourier basis.

One-step semi-gradient TD-learning with linear function approximation has been
shown to converge to a weight vector w∗, however, this is not necessarily the weight
vector that minimises J . [19] provide a bound on J evaluated at w∗ in terms of the
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minimum of J :

J(w∗) ≤ 1

1− γ
min
w
J(w).

However, since γ is often close to one, this bound can be quite large.
When using linear function approximation for estimating the action-value func-

tion, we have

q̂(s, a;w) := w>x(s, a),

and the ith basis function for the Fourier basis of order n is

xi(s, a) = cos(π(s>c
(i)
1:k + ac

(i)
k+1)),

where s = (s1, . . . , sk)
>, c

(i)
1:k = (c

(i)
1 , . . . , c

(i)
k )>, c

(i)
j ∈ {0, . . . , n}, j = 1, . . . , k + 1, and

i = 1, . . . , (n+ 1)k+1.
The convergence results for semi-gradient SARSA with linear function approx-

imation depend on what type of policy is used in the algorithm. When using an
ε-greedy policy, the weights have been shown to converge to a bounded region, and
might oscillate within that region [6]. Furthermore, [12] has shown that there exists
L < 0 such that if the policy improvement operator Γ is Lipschitz continuous with
constant L and ε-soft, then SARSA will converge to a unique policy. The policy
improvement operator maps every q ∈ R|S||A| to a stochastic policy, and gives the
updated policy after iteration t as πt+1 = Γ(q(t)), where q(t) corresponds to a vec-
torised version of the state-action-values after iteration t, i.e. q(t) = xwt for the case
where we use linear function approximation, where x ∈ R|S||A|×d is a matrix with
x(s, a)> for each s ∈ S, a ∈ A as rows, and d is the number of basis functions. That
Γ is Lipschitz continuous with constant L means that

‖Γ(q)− Γ(q′)‖2 ≤ L‖q − q′‖2, for all q, q′ ∈ R|S||A|.

That Γ is ε-soft means that it produces a policy π = Γ(q) that is ε-soft, i.e. π(a|s) ≥
ε/|A| for all s ∈ S and a ∈ A. In both [6, 12] the policy improvement operator was
not applied at every time step, hence it is not the online SARSA-algorithm considered
in the present paper that was investigated. The convergence of online SARSA under
the assumption that the policy improvement operator is Lipschitz continuous with a
small enough constant L was later shown in [11].

Let qs,a ∈ R denote the element of q that correspond to state s ∈ S, a ∈ A, i.e. for
the case where we use linear function approximation, qs,a = w>x(s, a). Furthermore,
let qs := (qs,a)a∈A ∈ R|A|. An example of a Lipschitz continuous policy is the softmax
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policy. In this case, the policy improvement operator is given by Γ(q) = (σ(qs))s∈S ,
where σ is the softmax function,

σ(qs) :=
exp

{
1
τ
qs
}

∑
a∈A exp

{
1
τ
qs,a

} .
To see that this policy improvement operator is Lipschitz continuous, first note that
the softmax function σ is 1/τ -Lipschitz. The softmax function σ is differentiable,
hence (see e.g. [14, Thm 9.19])

‖σ(qs)− σ(q′s)‖2 ≤ sup
qs
‖Dσ(qs)‖2‖qs − q′s‖2,

where Dσ(qs) denotes the Jacobian matrix of σ with respect to qs, and ‖Dσ(qs)‖2 is
the spectral norm of Dσ(qs). Let σa denote the component of σ(qs) that corresponds
to action a ∈ A. Then

∂σa
∂qs,a

=
1

τ
σa(1− σa),

∂σa
∂qs,a′

= −1

τ
σaσa′ , for a 6= a′.

It is easy to verify that Dσ(qs) is positive semi-definite [2, p. 74]. Hence all
eigenvaues of Dσ(qs) are non-negative, and

‖Dσ(qs)‖2 = λmax(Dσ(qs)) ≤
∑
i

λi(Dσ(qs)) = tr(Dσ(qs)) =
1

τ

∑
i

σi(1− σi)

≤ 1

τ

∑
i

σi =
1

τ
,

where λmax(Dσ(qs)), λi(Dσ(qs)), and tr(Dσ(qs)) denote respectively the largest
eigenvalue, the ith eigenvalue, and the trace of Dσ(qs). Now,

‖Γ(q)− Γ(q′)‖22 =
∑
s∈S
‖σ(qs)− σ(q′s)‖22 ≤

∑
s∈|S|

1

τ 2
‖qs − q′s‖22 =

1

τ 2
‖q − q′‖22,

i.e. Γ is Lipschitz continuous with constant L = 1/τ .
However, the value of the Lipschitz constant L that ensures convergence depends

on the problem at hand, and there is no guarantee that the policy the algorithm
converges to is optimal. Furthermore, for SARSA to approximate the optimal action-
value function, we need the policy to get closer to the greedy policy over time, e.g.
by decreasing the temperature parameter when using a softmax policy. Thus, the
Lipschitz constant L, which is inversely proportional to the temperature parameter,
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will increase as the algorithm progresses, making the convergence results in [12, 11]
less likely to hold. As discussed in [11] this is not an issue specific to the softmax
policy. Any Lipschitz continuous policy that over time gets closer to the greedy
policy will in fact approach a discontinuous policy, and hence the Lipschitz constant
of the policy might eventually become too large for the convergence result to hold.
Furthermore, the results in [12, 11] are not derived for a Markov decision process with
an absorbing state. Despite this, it is clear from the numerical results in Section 5
that a softmax policy performs substantially better compared to an ε-greedy policy,
and for the simplified model approximates the true optimal policy well.

The convergence results in [6, 12, 11] are based on the stochastic approximation
conditions

∞∑
t=1

αt =∞,
∞∑
t=1

α2
t <∞, (16)

where αt is the step size parameter used at time step t. Note that here we do not
have a separate vector of step sizes for each state-action pair. This is since function
approximation in general is used when the state space and/or action space is very
large, hence it might not be possible to fit one step size parameter per state-action
pair in memory (if this is possible then tabular methods are more suitable, see Section
4.1). Furthermore, the idea behind function approximation is to generalise from the
state-action pairs visited to other state-action pairs, since some state-action pairs
might never be visited, or visited very rarely, but can be more or less similar to other
state-action pairs. Hence to count the number of times action a has been taken after
a visit to state s is not as relevant as in the tabular case, even if memory usage was
not an issue.

5 Numerical illustrations

5.1 Simplified model

We use the following parameter values: γ = 0.9, N = 10, µ = 5, β0 = 10, β1 = 1,
ξ = 0.05, ν = 1, and cost function

c(p) = p+ c1(c
p
2 − 1), (17)

with c1 = 1 and c2 = 1.2. For the model with a terminal state, we use η =
10 > γ/(1 − γ), as suggested in Section 3.2. The surplus process and premium
level are truncated and discretised according to G = {−20,−19, . . . , 150} and A =
{0.2, 0.4, . . . , 19.8, 20.0}.

20



Remark 5.1 (Cost function) The cost function (17) was suggested in [10] since
it is an increasing, convex function, and thus will lead to the premium being more
averaged over time. However, in [10] c2 = 1.5 was used in the calculations. We
have chosen a slightly lower value of c2 due to that too extreme rewards can lead
to numerical problems when using SARSA with linear function approximation. It is
possible that non-linear function approximation might alleviate this problem, but this
was not investigated in the present paper.

5.1.1 Policy iteration

The top row in Figure 1 shows the optimal policy and the stationary distribution
under the optimal policy, for the simplified model with a constraint on the action
space (Section 3.1) using policy iteration. The bottom row in Figure 1 shows the
optimal policy and the fraction of time spent in each state under the optimal policy,
for the simplified model with terminal state (Section 3.2) using policy iteration. In
both cases, the premium charged increases as the surplus or the previously charged
premium decreases. Based on the fraction of time spent in each state under each
of these two policies, we note that in both cases the average premium level is close
to the expected cost per contract (7), but the average surplus level is slightly lower
when using the policy for the model with a constraint on the action space compared
to when using the policy for the model with the terminal state. However, the policies
obtained for these two models are quite similar, and since (as discussed in Section
3.2) the model with the terminal state is more appropriate in the more realistic
setting, we focus the remainder of the analysis only on the model with the terminal
state.

5.1.2 Q-learning

We use the following step size parameter after the kth time a visit in state s is
followed by taking action a,

αtk(s,a) =
1

k0.5+θ
, θ = 0.001.

This ensures that the stochastic approximation conditions (13) are satisfied, while
still allowing for larger step sizes compared to the more standard choice αt(s, a) = 1/t.
For the behaviour policy, we set ε = 0.2. The starting state is chosen uniformly at
random from the state space. Q(s, a) is initialised to zero for all s ∈ S and a ∈ A(s)
to encourage initial exploration. Since all rewards are negative the true action-value
function must be negative for all state-action pairs, hence setting the initial value
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Figure 1: Simplified model using policy iteration. Top: with constraint. Bottom:
with terminal state. First and second column: optimal policy. Third column: frac-
tion of time spent in each state under the optimal policy.

to zero will encourage that all actions are tried early on. This technique for setting
the initial values is called ”optimistic initial values” in [18, Ch. 2.6]. To further
encourage exploration of the state space, since discounting will lead to rewards after
a large number of steps having a very limited effect on the total reward, we run each
episode for at most 100 steps, before resetting to a starting state, again selected
uniformly at random from S.

Figure 2 shows the optimal policy for the simplified model using Q-learning. As
can be seen in the figures, the Q-learning algorithm has not fully converged to the
true optimal policy, despite having been run for a very large number of iterations.
This is not too surprising when one considers the fraction of time spent in each
state under the optimal policy, see Figure 1. The ε-greedy policy and restarting
each episode after at most 100 steps ensures that exploration continues when using
Q-learning, hence the fraction of time spent in each state during the Q-learning
algorithm will not be quite as extreme as in Figure 1, but there are still many states
that will be visited very rarely. Consider e.g. the probability of getting a negative
surplus after charging a very high premium (i.e. ending up in the upper right corner
of Figure 2); the claims payment in the period needs to be quite extreme for this
state to be visited, unless the process starts in this state. We have used a step size
that guarantees convergence of the algorithm, however, it is possible that a suitably
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chosen constant step size might lead to the algorithm converging faster.

Figure 2: Optimal policy for simplified model with terminal state using Q-learning.

5.1.3 Linear function approximation

We have a 2-dimensional state space, hence k+ 1 = 3. When using the Fourier basis
we should have s ∈ [0, 1]k, a ∈ [0, 1], hence we rescale the inputs according to

s̃1 =
s1 −minG

maxG −minG
, s̃2 =

s2 −minA
maxA−minA

, ã =
a−minA

maxA−minA
,

and use (s̃1, s̃2, ã)> as input. We use a softmax policy, i.e.

π(a|s) :=
eq̂(s,a;w)/τ∑

a∈A(s) eq̂(s,a;w)/τ
,

where τ is slowly decreased according to

τt = max{τmin, τ0d
t−1}, τ0 = 2, τmin = 0.02, d = 0.99999,

where τt is the parameter used during episode t. This schedule for decreasing the
temperature parameter is somewhat arbitrary and the parameters have not been
tuned. It is hence possible that other ways of decaying τ and/or different values
of τ0 and τmin might lead to improved results. The choice of a softmax policy is
based on the results in [12, 11], discussed in Section 4.2.1. Since a softmax policy is
Lipschitz continuous, convergence of SARSA to a unique policy is guaranteed, under
the condition that the policy is also ε-soft and that the Lipschitz constant L is small
enough. However, since the temperature parameter τ is slowly decreased, the policy
chosen is not necessarily ε-soft for all states and time steps, and the Lipschitz constant
increases as τ decreases. Despite this, our results show that the algorithm converges
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to a policy that approximates the optimal policy derived with policy iteration well
when using a 3rd order Fourier baisis, see the top row in Figure 3. The same cannot
be said for an ε-greedy policy. In this case the algorithm converges to a policy that
in general charges a higher premium than the optimal policy derived with policy
iteration, see the bottom row in Figure 3. For the ε-greedy policy we decrease the
parameter according to

εt = max{εmin, ε0d
t−1}, ε0 = 0.2, εmin = 0.01,

where εt is the parameter used during episode t.
The starting state is selected uniformly at random from S. Furthermore, since

discounting will lead to rewards after a large number of steps having a very limited
effect on the total reward, we run each episode for at most 100 steps, before resetting
to a starting state, again selected uniformly at random from S. This has the benefit
of diversifying the states experienced, enabling us to achieve an approximate policy
that is closer to the policy derived with dynamic programming as seen over the whole
state space. The step size parameter used is

αt = min
{
α0,

1

t0.5+θ

}
, (18)

where αt is the step size parameter used during episode t, and 0 < θ ≤ 0.5. An
appropriate value of α0 can be find via trial end error, searching for the largest α0

that ensures that the weights do not explode. However, the value of α0 obtained in
this way coincides with the the ”rule of thumb” for setting the step-size parameter
suggested in [18, Ch. 9.6], namely

α0 =
1

Eπ[x>x]
, Eπ[x>x] =

∑
s,a

µπ(s)π(a|s)x(s, a)>x(s, a).

If x(St, At)
>x(St, At) ≈ Eπ[x>x], then this step size ensures that the error (i.e.

the difference between the updated estimate w>t+1x(St, At) and the target Rt+1 +
γw>t x(St+1, At+1)) is reduced to zero after one update. Hence, using a step size
larger than α0 = (Eπ[x>x])−1 risks overshooting the optimum, or even divergence of
the algorithm. When using the Fourier basis of order n, this becomes

Eπ[x>x] =
∑
s,a

µπ(s)π(a|s)
(n+1)k+1∑

i=1

cos2
(
π(sc

(i)
1:k + ac

(i)
k+1)

)

=
(n+ 1)k+1

2
+

1

2

∑
s,a

µπ(s)π(a|s)
(n+1)k+1∑

i=1

cos
(

2π(sc
(i)
1:k + ac

(i)
k+1)

)
,
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where the last term is approximately zero for the examples we have studied. For the
simplified model we have used α0 = 0.2 for n = 1, α0 = 0.07 for n = 2, and α0 = 0.03
for n = 3. For the more realistic model we used α0 = 0.06 for n = 1, α0 = 0.008 for
n = 2, and α0 = 0.002 for n = 3. In all cases this means that α0 ≈ (Eπ[x>x])−1. For
θ we tried values in the set {0.001, 0.1, 0.2, 0.3, 0.4, 0.5}. For the simplified model,
the best results were obtained with θ = 0.001 irrespective of n. For the more realistic
model we used θ = 0.5 for n = 1, θ = 0.2 for n = 2, and θ = 0.3 for n = 3.

Remark 5.2 (Step size) To decrease the amount of tuning required there are au-
tomatic methods for adapting the step size. One such method is the Autostep method
from [8], which is a tuning-free version of the Incremental Delta-Bar-Delta (IDBD)
algorithm from [17]. When using this method for setting the step size, the algorithm
performs marginally worse compared to the results below, when the parameters of the
method are simply set as suggested in [8], without any tuning.

Figure 3 shows the optimal policy for the simplified model with terminal state
using linear function approximation with 3rd, 2nd, and 1st order Fourier basis using a
softmax policy, and with 3rd order Fourier basis using an ε-greedy policy. Comparing
the 3rd order Fourier basis with Figure 1 the approximate optimal policy is close to
the optimal policy derived wih policy iteration. The 2nd order Fourier basis also gives
a reasonable approximation of the optimal policy, but performs a bit worse than the
3rd order Fourier basis. The 1st order Fourier basis performs slightly worse, but
does not look unreasonable, while the 3rd order Fourier basis using an ε-greedy
policy performs considerably worse.

The same conclusions can be drawn from Table 2, where we see the expected
total discounted reward per episode for these policies, together with the results for
the optimal policy derived with policy iteration, the policy derived with Q-learning,
and several benchmark policies (see Section 5.1.4). Clearly the performance of 3rd
order Fourier basis is very close to the performance of the optimal policy derived with
policy iteration, hence we conclude that the linear function approximation with 3rd
order Fourier basis using a softmax policy appears to converge to approximately the
optimal policy. The policy derived with Q-learning shows worse performance than
both the 3rd and 2nd order Fourier basis, while the number of episodes run for the
Q-learning algorithm is approximately a factor 30 bigger than the number of episodes
run before convergence of SARSA with linear function approximation. Hence, even
for this simplified model, the number of states is too large for the Q-learning algo-
rithm to converge within a reasonable amount of time, and linear function approx-
imation is thus preferred. Furthermore, we see that all policies derived with linear
function approximation using a softmax policy outperform the benchmark policies.
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Note that the optimal policy derived with policy iteration, the best constant pol-
icy, and the myopic policy with the terminal state requires full knowledge of the
underlying model and the transition probabilities, and the myopic policy with the
constraint requires an estimate of the expected surplus one time-step ahead, while
the policies derived with function approximation or Q-learning only require real or
simulated experience of the environment.

To analyse the difference between some of the policies, we simulate 300 episodes
for the policy with the 3rd order Fourier basis, the best constant policy, and the
two myopic policies with the terminal state, for a few different starting states, two
of which can be seen in Figure 4. Note that each star in figures correspond to one
or more terminations at that time point. The total number of terminations (of 300
episodes) are: S0 = (−10, 2): Fourier 3: 1, best constant: 291, myopic pmin = 5.8:
20, myopic pmin = 0.2: 30. S0 = (50, 7): Fourier 3: 1, best constant: 0, myopic
pmin = 5.8: 20, myopic pmin = 0.2: 29. For other starting states, the comparison
is similar to that in Figure 4. We see that the policy with the 3rd order Fourier
basis appears to outperform the myopic policies in all respects, i.e. on average the
premium is lower, the premium is more stable over time, and we have very few
defaults. The best constant policy naturally is the most stable, but leads to in
general a higher premium compared to the other policies, and will for more strained
starting states quickly lead to a large number of terminations. The myopic policy
with pmin = 0.2 leads to a premium that varies wildly, often jumping from charging
the lowest premium of 0.2 to a very high premium in the next time step. The
myopic policy with pmin = 5.8 is more stable. It does, however, lead to a much larger
number of terminations compared to the policy with the 3rd order Fourier basis, as
it in general tends to charge a slightly too low premium over time.

5.1.4 Benchmark policies

Best constant policy. The best constant policy is the solution to the optimisation
problem

minimise
p

E
[ T∑
t=0

γth(p, St+1)
]
.

For both the simplified model and in the more realistic setting, p = 7.4 solves this
optimisation problem. For details on solving this problem, see Appendix A.1.
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Figure 3: Optimal policy for simplified model with terminal state using linear func-
tion approximation. First row: 3rd order Fourier basis. Second row: 2nd order
Fourier basis. Third row: 1st order Fourier basis. Fourth row: 3rd order Fourier
basis with ε-greedy policy.
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Expected reward Terminations
Policy iteration −85.91 0.006
Q-learning −86.50 0.002
Fourier 3 with softmax policy −86.11 0.006
Fourier 2 with softmax policy −86.30 0.007
Fourier 1 with softmax policy −86.59 0.011
Fourier 3 with ε-greedy policy −92.74 0.000
Best constant policy −122.70 0.040
Myopic policy with terminal state, pmin = 0.2 −97.06 0.133
Myopic policy with terminal state, pmin = 5.8 −90.40 0.096
Myopic policy with constraint, pmin = 0.2 −121.52 0.337
Myopic policy with constraint, pmin = 6.4 −93.58 0.132

Table 2: Expected discounted total reward, terminations, and average premium
(uniformly distributed starting states) for simplified model with terminal state. The
column terminations shows the fraction of the simulated episodes that end in the
terminal state, within 100 time steps.

Myopic policy for MDP with constraint. The myopic policy is the policy that
maximises immediate (next-step) rewards. For the model with a constraint on the
action space, the myopic policy is the solution to the following optimisation problem

minimise
p

E[c(p) | S0 = s, P0 = p] subject to E[G1 | S0 = s, P0 = p] ≥ 0. (19)

Since c is an increasing function, it is easy to compute the myopic policy; it is given
by the lowest premium level that satisfies the constraint. The myopic policy for the
MDP with a constraint on the action space can be seen in Figure 5 for the simplified
model. For more details on how (19) is solved, see Appendix A.2.

For both the simplified model and in the more realistic setting, the myopic policy
charges the minimum premium level of 0.2 for a large number of states. Since this
policy so quickly reduces the premium to 0.2 as the surplus or previously charged
premium increases, it is not likely to work that well. Hence, we suggest an addi-
tional benchmark policy where we set the minimum premium level to a higher value,
pmin. Thus this adjusted myopic policy is given by π̃(s) = max{π(s), pmin}, where π
denotes the policy that solves (19). Based on simulations of the total expected dis-
counted reward per episode for different values of pmin, we conclude that pmin = 6.4
achieves the best results in both the simplified and the more realistic setting.

Myopic policy for MDP with terminal state. For the model with a terminal
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Figure 4: Simplified model. First row: policy with 3rd Fourier basis. Second row:
myopic policy with terminal state, pmin = 5.8. Third row: myopic policy with
terminal state, pmin = 0.2. Left: starting state S0 = (−10, 2). Right: starting state
S0 = (50, 7). The red line shows the best constant policy. Each star indicates at
least one termination at that time step.

state, the myopic policy is the solution to the optimisation problem

minimise
p

E[h(p, S1) | S0 = s, P0 = p]. (20)

The myopic policy for the MDP with a terminal state can be seen in Figure 5 for
the simplified model. For more details on how (20) is solved, see Appendix A.3. As
in the previous section, we also suggest an additional benchmark policy where the
minimum premium level has been set to pmin = 5.8, which is the minimum premium
level that achieves the best results based on simulations of the total expected dis-
counted reward per episode. For the more realistic model this myopic policy is too
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complex and is therefore not a good benchmark.

Figure 5: Left: myopic policy for simplified model with constraint. Right: myopic
policy for simplified model with terminal state.

5.2 More realistic model

We use the following parameter values: γ = 0.9, µ = 5, β0 = 10, β1 = 1, ξ = 0.05,
ν = 1, α1 = 0.7, α2 = 0.3, η = 10, a = 18, b = −0.3, and cost function (17) with c1 =
1 and c2 = 1.2. The premium level and number of contracts written are truncated
and discretised according to A = {0.2, 0.4, . . . , 19.8, 20.0} and N = {0, 1, . . . , 30}.
The surplus process no longer only takes integer values (as in the simplified model),
instead the values that the surplus process can take are determined by the parameter
values chosen. However, it is still truncated to lie between -20 and 150. For the
parameter values above, we have G = {−20.00,−19.95, . . . , 149.95, 150.00}.

Figure 6 shows the optimal policy in the more realistic setting using linear func-
tion approximation, with 3rd, 2nd, and 1st order Fourier basis, for Nt = Nt−1 = 10.
Comparing the policy with the 3rd order Fourier basis with the policy with the
2nd order Fourier basis, the former appears to require a slightly lower premium
when the surplus or previously charged premium is very low. The policy with the
1st order Fourier basis appears quite extreme compared to the other two policies.
Comparing the policy with the 3rd order Fourier basis for Nt = Nt−1 = 10 with
the optimal policy for the simplified model (bottom row in Figure 1), we note that
πr(g, p, 10, 10) 6= πs(g, p), where πs and πr denotes respectively the policy in the
simplified setting and the policy in the more realistic setting. There is a qualita-
tive difference between these policies, since even given that we are in a state where
Nt = Nt−1 = 10 in the more realistic setting, the policy from the simplified model
does not take into account the affect that the premium charged will have on the
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number of contracts issued at time t+ 1, hence it e.g. charges too low of a premium
when the surplus or previously charged premium are high, compared with the ap-
proximate optimal policy in the more realistic setting. The policy with 3rd order
Fourier basis for Nt, Nt−1 ∈ {5, 10, 15} can be seen in Figure 7.

To determine the performance of the policies in the more realistic setting, we
simulate the expected total discounted reward per episode for these policies. The
results can be seen in Table 3, together with the results for some benchmark policies.
Here we clearly see that the policy with 3rd order Fourier basis outperforms the
other policies, and that the policy with 1st order Fourier basis performs quite badly,
indicating that the 1st order Fourier basis is not flexible enough to be used in this
more realistic setting. We also compare the policies with the benchmark policy of
using the optimal policy derived with policy iteration from the simplified model
in this more realistic setting, i.e. this policy is used without taking the number of
contracts into account. Though this policy performs worse compared to the policy
with 3rd and 2nd order Fourier basis, it does in fact clearly outperform the policy with
1st order Fourier basis. Note that the policies derived with function approximation
only require real or simulated experience of the environment. The results for the
myopic policy in Table 3 are based on using the true parameters when computing the
expected value of the surplus. For a more fair comparison, these parameters should
instead be estimated based on real or simulated experience of the environment, which
would likely degrade the performance of the myopic policy somewhat. Despite this,
the policy derived with the 3rd order Fourier basis clearly outperforms the myopic
policy with the terminal state.

Figure 6: Optimal policy in more realistic setting with terminal state using linear
function approximation, for Nt = Nt−1 = 10. Left: 3rd order Fourier basis. Middle:
2nd order Fourier basis. Right: 1st order Fourier basis.

To analyse the difference between some of the policies, we simulate 300 episodes
for the policy with the 3rd order Fourier basis, the best constant policy, the policy
from the simplified model, and the myopic policy with pmin = 6.4, for a few different
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Figure 7: Optimal policy in more realistic setting with terminal state using linear
function approximation with 3rd order Fourier basis, for Nt, Nt−1 ∈ {5, 10, 15}.

Expected reward Terminations
Fourier 3 −97.17 0.015
Fourier 2 −104.41 0.025
Fourier 1 −128.83 0.036
Policy from simplified model −116.70 0.075
Myopic policy with constraint, pmin = 0.2 −360.69 0.988
Myopic policy with constraint, pmin = 6.4 −100.92 0.169
Best constant policy −131.85 0.060

Table 3: Expected discounted total reward based on simulation, (uniformly dis-
tributed starting states). The column terminations shows the fraction of the simu-
lated episodes that end in the terminal state, within 100 time steps.

starting states, two of which can be seen in Figure 8. Note that each star in figures
correspond to one or more terminations at that time point. The total number of
terminations (of 300 episodes) are: S0 = (0, 7, 10, 10): Fourier 3: 1, best constant:
13, simplified: 5, myopic pmin = 6.4: 66. S0 = (100, 15, 5, 5): Fourier 3: 0, best
constant: 0, simplified: 10, myopic pmin = 6.4: 35. Comparing the policy with the
3rd order Fourier basis with the policy from the simplified model, we see that it tends
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to on average give a lower premium and leads to very few defaults, but is slightly
more variable compared to the premium charged by the simplified policy. This is
not surprising, since the simplified policy does not take the variation in the number
of contracts issued into account, and hence does not need to adjust the premium
level for these changes. At the same time, this is to the detriment of the simplified
policy, since it cannot correctly take the risk of the varying number of contracts
into account, hence leading to more defaults. For example, for the more strained
starting state S0 = (−10, 2, 20, 20) (not shown in figure), the number of defaults for
the policy with the 3rd order Fourier basis is 91 of 300, and for the simplified policy
it is 213 of 300. Similarly, for starting state S0 = (100, 15, 5, 5) (second column in
Figure 8), the simplified policy will tend set the premium much too low during the
first time step, not taking into account the effect this will have on the number of
contracts, hence leading to more defaults very early on compared to e.g. starting
state S0 = (0, 7, 20, 20) (first column in Figure 8), despite the fact that this starting
state has a much lower starting surplus. This also explains why the simplified policy
performs worse compared to the myopic policy with pmin = 6.4 in Table 3: the early
terminations for the simplified policy in e.g. state S0 = (100, 15, 5, 5) have a larger
effect on the total expected reward than the large number of terminations at later
time steps for the myopic policy.

6 Conclusion

Classical methods for solving premium control problems are suitable for dynamical
insurance systems that are not too complex, and the model choice must to a large
extent be based on how to make the problem solvable, rather than reflecting the real
dynamics of the stochastic environment. For this reason, the practical use of the
optimal premium rules derived with classical methods is often limited.

Reinforcement learning methods enable us to solve premium control problems in
more realistic settings that adequately capture the complex dynamics of the system.
Since these techniques can learn directly from real or simulated experience of the
stochastic environment, they do not require explicit expressions for transition prob-
abilities. Further, these methods can be combined with function approximation in
order to overcome the curse of dimensionality as the state space tends to increase in
more realistic settings. This makes it possible to take key features of real dynamical
insurance systems into account, e.g. how the number of contracts issued in the future
will vary depending on the premium rule. Hence, the optimal policies derived with
these techniques can be used as a basis for decisions on how to set the premium for
insurance companies, since it is not based on an overly simplistic model of reality.
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Figure 8: More realistic setting. First row: policy with 3rd Fourier basis. Second
row: policy from the simplified model. Third row: myopic policy with constraint,
pmin = 6.4. Left: starting state S0 = (0, 7, 20, 20). Right: starting state S0 =
(100, 15, 5, 5). The red line shows the best constant policy. Each star indicates at
least one termination at that time step.

We have illustrated strengths and weaknesses of different methods for solving
the premium control problem for a mutual insurer, and demonstrated that given
a more complex dynamical system, the approximate policy derived with SARSA
using function approximation outperforms several benchmark policies. In particular,
it clearly outperforms the policy derived with classical methods based on a more
simplistic model of the stochastic environment, which fails to take important aspects
of a real dynamical insurance system into account. Furthermore, the use of these
methods is not specific to the model choices made in Section 2. The present paper
provides guidance on how to carefully design a reinforcement learning method with
function approximation for the purpose of obtaining an optimal premium rule, which
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together with models that fit the experience of the specific insurance company allows
for optimal premium rules that can be used in practice.
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A Benchmark policies

A.1 Best constant policy

When using a constant policy p irrespective of state, St = (Gt, p) for all t > 0, for
the simplified model. We want to find p that minimises

E
[ T∑
t=0

γth(p, St+1)
]

= E
[ T−1∑
t=0

γtc(p) + γT (1 + η)c(maxA)
]

(21)

= E
[
c(p)

1− γT

1− γ
+ γT (1 + η)c(maxA)

]
=

c(p)

1− γ
+
(

(1− η)c(maxA)− c(p)

1− γ

)
E[γT ],

where E[γT ] =
∑∞
t=1 P(T = t)γt and

P(T ≤ t) =
∑

s′∈S+\S
P(St = s′) = P(Gt < minG).

Since the state space is finite, we can label the states 0, 1, . . . , |G||A| (where state 0
represents all terminal (absorbing) states. Let P = (pij : i, j ∈ {0, 1, . . . , |G||A|}),
where pij = P(St = j | St−1 = i), and λ = (λ0, λ1, . . . , λ|G||A|)

>, where λj = P(S0 = j)
and λ0 = 0. Then

P(Gt = k) =
∑
j

(λ>P t){j:Gt=k}.

Based on this we can compute (21) for each p (computing E[γT ] by truncating the
sum at some large value) from which we determine that p = 7.4 minimises (21), for
the simplified model.

In the more realistic setting, we are not able to compute the best constant policy
as above due to the dimension of the state space. Instead we can simulate the total
expected discounted reward per episode for different values of the constant policy p.
Based on these simulations we can again conclude that p = 7.4 minimises (21) also
in the more realistic setting.

A.2 Myopic policy for MDP with constraint

The myopic policy is the policy that maximises immediate (next-step) rewards. For
the model with a constraint on the action space, the myopic policy is the solution to
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the following optimisation problem

minimise
p

E[c(p) | S0 = s, P0 = p] subject to E[G1 | S0 = s, P0 = p] ≥ 0.

Since c is an increasing function, it is easy to compute the myopic policy; it is given
by the lowest premium level that satisfies the constraint. For the simplified model
we have

Gn+1 = Gn +
1

2
N(Pn + Pn−1)− β1N − β0 − PCn+1 + IEn+1.

Hence, for each s = (g, q), we need to find the lowest premium level p = π(g, q) that
satisfies

(1 + ξ1{g>0})g +
1

2
N(p+ q)− (β0 + (β1 + µ)N) ≥ 0,

hence

π(g, q) = min
{
p ∈ A : p ≥ 2

(
β1 + µ+

β0 − (1 + ξ1{g>0})g

N
− q

)}
.

For the more realistic model we have

Gn+1 = Gn +
1

2
(Nn+1Pn +NnPn−1)− (α2µ+ β1)

1

2
(Nn+1 +Nn) + α2µ

1

2
(Nn +Nn−1)− β0

− PCn+1 + IEn+1.

Hence, for each s = (g, q, n0, n−1), we want to find the lowest premium level p =
π(g, q, n0, n−1) that satisfies

(1 + ξ1{g>0})g +
1

2
apb(p− β1 − µ) +

1

2
n0(q − β1 − µ)− β0 ≥ 0. (22)

Note that π(g, q, n0, n−1) does not depend on n−1. Let P(g, q, n0) be the set of
premium levels such that (22) is satisfied. Note that for our choice of A and S, there
exist (g, q, n0, n−1) ∈ S such that P(g, q, n0)∩A = ∅. Hence we let the myopic policy
for the more realistic model with a constraint on the action space be given by

π(g, q, n0, n−1) =

min{p ∈ A : p ∈ P(g, q, n0)}, if P(g, q, n0) ∩ A 6= ∅,
maxA, if P(g, q, n0) ∩ A = ∅,

i.e. if the constraint are not satisfied for any p ∈ A, then the maximum premium
level is chosen.
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A.3 Myopic policy for MDP with terminal state

For the model with a terminal state, for each state s ∈ S we want to find p ∈ A that
minimises

E[h(p, S1) | S0 = s, P0 = p] = c(p) P(G1 ≥ minG | S0 = s, P0 = p)

+ c(maxA)(1 + η) Pπ(G1 < minG | S0 = s, P0 = p),
(23)

hence for this model the myopic policy is not quite as easy to compute as for the
case when we have a constraint on the action space, since we now need to determine

P(G1 ≥ minG | S0 = s, P0 = p) =
∞∑

k=minG
P(G1 = k | S0 = s, P0 = p)

instead of the expectation in (19). From Section 3.3 we see that for the simplified
model

P(G1 = k | S0 = (g, q), P0 = p)

=

 P
(
PC1 = g −m

)
if g ≤ 0,∑

{l:m+l≥0} P(PC1 = l) P
(
IE1 +G0 = m+ l | G0 = g

)
if g > 0,

where m = k+(β0+β1N)−N(p+q)/2. Based on this we can compute the expectation
in (23) for each premium level.
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