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Abstract
This paper is concerned with the growth rate of SIR (Susceptible-
Infectious-Recovered) epidemics with general infectious period distri-
bution on random intersection graphs. This type of graph is charac-
terized by the presence of cliques (fully connected subgraphs). We
study epidemics on random intersection graphs with a mixed Poisson
degree distribution and show that in the limit of large population
sizes the number of infected individuals grows exponentially during
the early phase of the epidemic, as is generally the case for epidemics
on asymptotically unclustered networks. The Malthusian parameter
is shown to satisfy a variant of the classical Euler-Lotka equation.
To obtain these results we construct a coupling of the epidemic pro-
cess and a continuous-time multitype branching process, where the
type of an individual is (essentially) given by the length of its infec-
tious period. Asymptotic results are then obtained via an embedded
single-type Crump-Mode-Jagers branching process.

Keywords: Stochastic SIR epidemic; Random Intersection graph; Cliques;
Branching process approximation; Malthusian parameter; Regenera-
tive branching processes.

1 Introduction
In the earliest epidemic models, it is assumed that the disease spreads in a
population consisting of homogeneous individuals exhibiting homogeneous
mixing. Since the advent of those early models, there has been considerable
interest in incorporating realistic elements from real-world social structures
that depart from the simplistic assumption of homogeneity. Such realistic
features may take the form both of heterogeneity in social behaviour (some
individuals may have a higher proclivity to be socially active than others,
or the population may exhibit a more complex social structure than ho-
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mogeneous mixing) and of biological differences in the “susceptibility” and
“infectivity” of individuals.

To give some examples, for deterministic epidemic models this has been
manifested through models where the population is stratified into a rela-
tively small number of classes and individuals interact with each other at
a rate that is determined by their classes. Individuals may, for instance,
be spatially separated or stratified by age or sex. This typically gives rise
to a system of differential equations, which governs the dynamics of the
epidemic (Heesterbeek et al. 2013; Watson 1972).

A similar development of increasingly complex social structures has taken
place in the field of stochastic epidemic modelling on networks. In partic-
ular, a large body of epidemic models that aim to capture the tendency
of individuals who know each other to have mutual acquaintances has ap-
peared in the literature. In the context of models where the social network
of the population is fully specified by a graph, this means that the graph
is clustered (i.e. it contains a considerable amount of triangles and other
short circuits). Some examples include the great circle model (Ball et al.
1997; Ball and Neal 2003; Neal 2008) and the closely related small-world
network model (Watts and Strogatz 1998), where individuals typically have
both local contacts in a local environment, which exhibits clustering, and
global contacts.

In a similar vein, several models that include the presence of small closely
connected groups, or cliques, with intense within-clique interactions has
been introduced (Ball et al. 1997; Becker and Dietz 1995). A clique may,
for instance, represent a household, workplace or school. Models with this
feature have been investigated in various forms, see for instance Ball and
Neal (2002), Ball et al. (2016), Ball and Sirl (2012), Ball et al. (2009, 2010),
and Pellis et al. (2012), to name a few.

In the present paper, we study the real-time growth rate of an epidemic
that spreads on a random graph whose structure, like that of the above-
mentioned models, is characterised by the presence of small, (possibly over-
lapping) highly connected cliques. During the early phase of an epidemic,
the number of infectious individuals typically grows exponentially; this is
the case for many theoretical models and has also been observed in empiri-
cal data (Dye et al. 2015; Nishiura and Chowell 2014). The growth rate is
one of the most readily available attributes of an emerging epidemic and it
is arguably one of the most natural parameters by which to describe the se-
riousness of the epidemic. For many models of epidemics on random graphs
with clustering, obtaining results that concerns the real-time-growth rate is
however more challenging than analysing the final outcome of the epidemic.
The reason for this is that results on the final outcome of an epidemic may
be obtained without taking the actual chain of transmission into account.
This idea was first mentioned in a paper devoted to epidemic modelling
by Ludwig (1975) but was, however, implicitly present in earlier literature
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on percolation (Broadbent and Hammersley 1957; Frisch and Hammersley
1963). For this reason, many models lend themselves more readily to analy-
sis of the final outcome than of the real-time-growth rate. Pellis et al. (2011)
proposed approximate methods for estimating the so-called household re-
production number based on observations of the real-time growth rate in a
population structured into small (possibly overlapping) communities, both
in the Markovian case and under the arguably strong assumption that the
total “infectivity” of an infectious individual and the time points at which
the individual transmits the disease are independent. On a related note,
Ball and Shaw (2015) provided methods to estimate the within-household
infection rate for an SIR epidemic among a population of households from
the observed real-time growth rate.

As mentioned before, the real-time growth rate of an epidemic in a popu-
lation with households, schools and workplaces has previously been studied
in (Pellis et al. 2011), where (among other things) heuristic results similar
to those presented here were obtained. In this paper, we provide rigorous
proofs of these results. It is worth to point out that the methods employed
here can be applied to a more general class of random graphs with cliques
than the model considered in this paper, and also a more general class of
household-school-workplace models than that studied in (Pellis et al. 2011).
In particular, previous results concern only the case where the clique or
household sizes are bounded and do not trivially extend to the setting with
unbounded clique sizes, whereas the current paper deals with the unbounded
case.

The key tool of this paper is a single-type branching process, which we
embed in the epidemic process. Our approach is inspired by Iksanov and
Meiners (2015), where a similar embedding was used to obtain the polyno-
mial rate of convergence of multi-type branching processes. The techniques
employed here are also related to what Sagitov (2017) calls regenerative
Galton-Watson processes and to the concepts of local infectious clumps and
global contacts in Ball and Neal (2002), see also Olofsson (1996) which
treats multitype branching processes with local dependencies.

To be more specific about the graph model, here we consider the real-time
growth rate of epidemics on a random intersection graph (Karoński et al.
1999). Simply put, a random intersection graph is constructed by dividing
the nodes of the graph into groups (a node may belong to zero, one, or
several groups) and then connecting nodes that belong to the same group,
so that the groups form fully connected (possibly overlapping) subgraphs.
Thus, a random intersection graph does, in general, contain a non-negligible
amount of short circuits, which makes the widely used branching process
approximation of the early phase of the epidemic somewhat delicate. Here
we consider the real-time growth rate of epidemics on a random intersection
graph (Karoński et al. 1999) in which the degrees distributions are mixed
Poisson. Epidemics on graphs of this type have previously been studied
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in Ball et al. (2014), where expressions for the asymptotic probability of a
major outbreak, the final size of a major outbreak and a threshold parameter
were derived. Epidemics on random intersection graphs were also studied
in (Britton et al. 2008), where the clustering of the underlying network is
tunable.

This paper is structured as follows. In section 2.1 we present the notation
conventions and abbreviations. Section 2.2 contains an introduction to the
underlying graph model and in section 2.3 we define the epidemic model.
The main results are presented in section 3. Section 4.1 and 5 contains some
background theory and proofs of the main results.

2 Epidemics on random intersection graphs

2.1 Notation and abbreviations

This section contains a summary of notation conventions and abbreviations
that will be frequently used in this paper.

For any B ⊂ R and x ∈ R we use the notation B≥x = B ∩ [x,∞), and B>x,
B≤x and B<x are defined analogously. For x ∈ R, ⌊x⌋ = supZ≤x. For real
numbers x and y, x ∨ y = max(x, y) and log+(x) = log(1 ∨ x). For any
n ∈ Z≥1, [n] = {1, . . . , n}.

Let f : R → R and g : R → R>0. We write f(x) = O(g(x)) as x → ∞ to
indicate that lim supx→∞ |f(x)| /g(x) < ∞ and f(x) = o(g(x)) as x → ∞
to indicate that lim supx→∞ |f(x)| /g(x) = 0. Similarly, f(x) = Θ(g(x)) as
x → ∞ if f(x) = O(g(x)) and lim infx→∞ |f(x)| /g(x) > 0.

For a random variable X and an event A, we use the notation E(X;A) =
E(X1(A)) where 1(A) is the indicator of A. We denote the mixed Poisson
distribution with intensity X by MP (X), i.e. Y ∼ MP (X) means that
(Y |X = x) ∼ Po(x). For any non-negative integrable random variable X
with E(X) > 0, we denote the size biased version of X by X̄, i.e. for any
Borel set B ⊂ R

P (X̄ ∈ B) =
E (X;X ∈ B)

E(X)
.

We will make frequent use of the abbreviations MP (mixed Poisson) and
SIR (Susceptible → Infectious → Recovered). Throughout this paper, Gn

denotes a random graph on n vertices generated via the random intersection
graph model. We say that an event occurs with high probability (w.h.p.) if
the probability of the event tends to 1 as n → ∞, where n is the number of
vertices of the graph Gn under consideration.
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2.2 The random intersection graph with mixed Poisson
degrees

We consider a random intersection graph model where the degrees of the
nodes follow a mixed Poisson distribution. Epidemics on this particular
type of graph have previously been investigated by Ball et al. (2014), who
used a branching process coupling to derive expressions for the asymptotic
probability of a major outbreak (i.e. that a fraction Θ(1) of the population
contracts the disease in the limit as n → ∞, where n is the population size),
the final size of a major outbreak and a threshold parameter. In the present
paper, we focus on the (exponential) real-time growth rate of an epidemic
on a random intersection graph in the early phase of a major outbreak. We
will give a somewhat brief description of this graph model and refer the
reader to Ball et al. (2014) for a more detailed account.

A graph Gn on n vertices can be constructed via the mixed Poisson random
intersection graph model as follows (see Figure 1 for an illustration of this
construction). Let A and B be two random variables with expected values
E(A) = µA and E(B) = µB. We make the following assumption on A and
B.

Assumption 1.

i) P (A ≥ 0) = P (B ≥ 0) = 1

ii) P (A = 0) < 1 and P (B = 0) < 1

iii) E(A2 log+A) < ∞ and E(B2 log+ B) < ∞

We will refer to the condition of assumption 1 iii) as the x2 log x-condition.

Remark 1. This version of the random intersection graph can be con-
structed under less strict assumptions on than the x2 log x-condition (see
Ball et al. (2014)), it is however needed here for the approximating branch-
ing process to satisfy the classical x log x-condition.

Let {Ak}k and {Bk}k be two sequences of independent copies of A and B,
respectively. Let further Vn = {v1, . . . , vn} be the vertex set of Gn, and
assign the weight Ai to the vertex vi, i = 1, . . . , n. As an intermediate
step, we construct an auxiliary graph Gaux

n with vertex set Vn ∪ V ′
n, where

V ′
n = {v′1, . . . , v′m} and

m = m(n) := ⌊nµA/µB⌋ .

Assign the weight Bj to the vertex v′j, j = 1, . . . ,m. Given the weights of
the vertices of Vn and V ′

n, for each pair vi, v
′
j of vertices of Gaux

n such that
vi ∈ Vn and v′j ∈ V ′

n let the number of edges of Gaux
n shared by vi and v′j
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have distribution

Po

(
AiBj

nµA

)
,

independently for pairs vi, v
′
j. Thus in Gaux

n the degree of vi ∈ Vn has
distribution

Po

Ai
µ
(n)
B ⌊nµA/µB⌋

nµA

 (1)

where µ
(n)
B :=

∑m
j=1 Bj/m. Similarly, in Gaux

n the degree of v′j ∈ V ′
n has

distribution

Po

Bj
µ
(n)
A

µA

 (2)

where µ(n)
A :=

∑n
i=1 Ai/n. There are no edges of Gaux

n between pairs vi1 , vi2 ∈
Vn. Similarly, there are no edges of Gaux

n between pairs of vertices of
V ′
n.

We now obtain the graph Gn from Gaux
n by letting two distinct vertices

vi1 , vi2 ∈ Vn of Gn share an edge if and only if vi1 and vi2 of Gaux
n have at least

one common neighbour in V ′
n. Next, we replace each edge of the undirected

graph Gn by two directed edges pointing in the opposite direction. The
reason for this modification is that in the epidemic model considered in this
paper (see Section 2.3) infectious contacts are directed.

For later reference, we point out that each clique C = (VC, EC) of Gn may
be viewed as a (directed) subgraph of Gn. Here the vertex set VC ⊂ Vn

consists of the neighbours (in Gaux
n ) of v′ where v′ ∈ V ′

n is the vertex that
corresponds to C, and EC is the edge set of the simple directed complete
graph C (that is, for any pair u, v ∈ VC of distinct vertices there are precisely
two edges (u, v), (v, u) ∈ EC, and EC contains no self-loops).

2.3 The epidemic model

We consider a stochastic SIR epidemic on Gn. In the SIR model, individuals
are classified as susceptible (S), infectious (I) or recovered (R) depending on
their current health status. An individual who is classified as infectious can
transmit the disease to other individuals in the population; if an infectious
individual contacts a susceptible individual then transmission occurs and
the susceptible individual immediately becomes infectious. An infectious
individual will eventually recover from the disease after some period of time,
which we refer to as the infectious period of the individual in question
(in our model we allow for the infectious period of an individual to be
∞, which means that once the individual in question has contracted the
disease it will remain infectious forever). Recovered individuals are fully
immune to the disease; once recovered, an individual plays no further role
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17

v′1 v′2 v′3 v′4 v′5 v′6

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12 v13

v14
v15

v16

v17

Figure 1: Construction of Gn for n = 17 with |V ′
n| = |{v′1, . . . , v′6}| = 6

cliques. Top: the auxiliary graph Gaux
n . Bottom: the resulting directed

graph Gn.

in the spread of the disease. For simplicity, we assume that the epidemic
starts with one initial infectious case and that the rest of the population
is initially fully susceptible to the disease. We assume that the disease
spreads in a population of size n, where the underlying social network of
the population is represented by Gn. In our model, a “close contact” (a
contact that results in transmission if a susceptible individual is contacted
by an infectious individual) can only occur between individuals who are
neighbours in Gn. Throughout the paper, we will use the terms individual
and vertex interchangeably.

To be precise, the epidemic process can be defined as follows. Let I be
a random variable with support in R≥0 ∪ {∞}. Each vertex vi of Gn is
equipped with an infectious period Ii, where {Ii}i is a sequence of indepen-
dent copies of I. Let {Tij}ij be a sequence of identically distributed random
variables with support in [0,∞) such that Ti1j and Ti2j are independent if
i1 ̸= i2. Similarly, we assume that Ti1j and Ii2 are independent if i1 ̸= i2.
Here Tij represents the time elapsed from the event that vi contracts the
disease (which might or might not occur) to the event that vi contacts vj. In
many standard models, Tij are exponetially distributed. For each (directed)
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edge (vi, vj), we equip (vi, vj) with the transmission weight

T ′
ij :=

Tij if Tij ≤ Ii

∞ if Tij > Ii.

The transmission weight T ′
ij represents the time elapsed from the event that

vi contracts the disease to the event that vi makes an infectious contact with
vj, which results in the transmission of the disease to vj if vj is still suscep-
tible. We make the following assumption on the distribution of T ′

ij.

Assumption 2. P (T ′
ij = 0) < 1/(µĀµB̄) and the distribution of T ′

ij is
non-lattice (i.e. P (T ′

ij ∈ {∞, 0, s, 2s, . . .}) < 1 for any s > 0).

The first part of Assumption 2, P (T ′
ij = 0) < 1/(µĀµB̄), ensures that the

approximating branching process does not explode (i.e. that the branching
process population does not grow infinitely large in finite time).

A path ς = (vi1 , vi2 , ..., vik) is any finite sequence of vertices of Gn such that
(vir , vir+1) is an edge of Gn, r = 1, . . . k − 1. We define the length ℓ(ς) of a
path ς = (vi1 , vi2 , ..., vik) as

ℓ(ς) =
k−1∑
r=1

T ′
irir+1

.

Denote the collection of all paths from a vertex u to a vertex v by Σuv. The
distance (transmission time) from u to v is given by

d(u, v) := min
ς

ℓ(ς)

where the minimum is taken over all paths ς ∈ Σuv. We make the conven-
tions d(u, u) = 0 and d(u, v) = ∞ if Σuv is empty for two distinct vertices
u and v.

Remark 2. Strictly speaking, d is a quasi-distance rather than a distance
since it is not symmetric. We do, however, abuse terminology for conve-
nience.

The initial infected case u∗ is then selected according to some rule; a com-
mon choice which we will adhere to here is to select the initial case uniformly
at random. We assume that the initial case u∗ contracts the disease at time
0. The time evolution of an outbreak can now be fully specified as follows.
An individual vi, i = 1, . . . , n, has contracted the disease at time t ≥ 0 if
and only if d(u∗, vi) ≤ t, and vi has recovered from the disease at t if and
only if d(u∗, vi) + Ii ≤ t.

We will also need the within-clique distance. Let C be a clique of Gn. For
two vertices u and v let ΣC

uv be the collection of paths from u to v restricted
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to C. That is, a path ς from u to v belongs ΣC
uv whenever every edge of ς is

also an edge of EC. Note that ΣC
uv is empty if u and v are not both members

of C. The distance from u to v restricted to C is given by

dC(u, v) := min
ς

ℓ(ς)

where the minimum is taken over all paths ς ∈ ΣC
uv. As before dC(u, u) = 0

holds whenever u ∈ VC, and dC(u, v) = ∞ if ΣC
uv is empty.

For any clique C, we refer to the first individuals of C to contract the disease
as the primary cases of C. That is, given that the disease reaches C (i.e.
minw∈VC d(u∗, w) < ∞), a vertex u ∈ VC is a primary case of C if d(u∗, u) =
minw∈VC d(u∗, w). If v ∈ VC contracts the disease but is not not a primary
case of C, we say that v is a secondary case of C, regardless of whether v is
infected directly by a primary case or via some other path (which may or
may not go via u). It is worth to point out that the primary case is almost
surely unique if the transmission weight distribution has no atoms.

3 Main results
In this section we present the main results and give a rough outline of
the ideas behind the proofs. These proofs rely on asymptotic results on
finite-type branching processes (Nerman 1981) via a coupling of an epi-
demic process on Gn and a single-type branching process. We point out
that a salient feature of branching processes is that the lives of individuals
that belong to different branches of the branching process tree are indepen-
dent (conditioned on their types in the multitype case). In the epidemic
process, however, the infectious individuals in a clique “compete” in trans-
mitting the disease to the remaining susceptible individuals in the clique.
Therefore, naive attempts to couple a finite-type branching process with the
epidemic process will in general give rise to non-local dependencies between
the individuals of the branching process tree. To deal with this, we will
employ the branching process embedding presented below.

In the early phase of an outbreak, the epidemic process on Gn can be coupled
with a branching process Z with type space

Tθ := T ∪ {θ},

where T is the support of the generic infectious period I and the extra point
θ is an atom for the reproduction kernel of Z in the sense of Nummelin (2004,
Def. 4.3). The main idea of this section is to embed a single-type branching
process Y in Z by letting the type-θ individuals of Z be the individuals of Y .
This allows us to employ the almost sure asymptotic results (see Section 4.1
for an overview) that are available for single-type branching processes.

In Z, the type of an individual that was infected via a clique C of size
|VC| = 2 is taken to be θ, and the type of any other individual (except
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the individual that corresponds to the initial infectious case) is taken to be
the length of its infectious period. The individuals of Z are divided into
generations by attributing all secondary cases in a clique to the primary
case of the clique in question, even though it may well be that a secondary
case does not get infected directly by the primary case. In other words,
if we follow the epidemic trail from v back to the initial case v∗ then the
generation of v is the number of cliques that has to be traversed to reach
v∗ (including the cliques of v and v∗). If the extinction probability of the
approximating branching process Z is strictly smaller than 1 then Z is said
to be supercritical, and we say that we are in the supercritical regime.

Let S be the set of all individuals of Z. We assume that there is one indi-
vidual a0 of generation 0 from which every other individual of S stems. We
will refer to the common ancestor a0 ∈ S as the first ancestor of Z. The
law of the life of a0 is usually different from the laws of the other branching
process individuals since the initial case is assumed to be selected uniformly
at random from the population, whereas individuals of subsequent genera-
tions represent infectious cases whose degree distribution is size biased. For
this reason, the initial case is a member of MP (A) cliques while the number
of cliques that a non-initial case is a member of is distributed as D̄ cliques,
where D ∼ MP (A). The following claim is easily checked (see also Ball
et al. (2014)).

Claim 1. If D ∼ MP (A) then (D̄ − 1) ∼ MP (Ā).

Thus, a non-initial case is a member of approximately MP (Ā) cliques that
are not yet affected by the disease. By a similar reasoning the size of a
clique (excluding the primary case of the clique) reached during the early
phase of the epidemic has approximately distribution MP (B̄).

Now, let Fk, k ∈ N≥2, be the cumulative distribution function of the trans-
mission time from the primary case in a clique of size k to another (specific)
member of the clique. That is to say, for a clique C with |VC| = k and two
fixed individuals u, v ∈ VC, Fk is the cumulative distribution function of the
within-clique distance dC(u, v). Let pB̄k := P (MP (B̄) = k) and define the
vector ΓT = µĀ(1 · pB̄1 , 2 · pB̄2 , . . .) where µĀ = E(Ā) = E(A2)/µA. For a
clique C of size |VC| = k and any λ ≥ 0 let

L(λ)
k :=

∫
R≥0

e−tλFk(dt) (3)

be the Laplace transform of the transmission time within C, and define the
vector

L(λ) = (L(λ)
2 ,L(λ)

3 , . . .)T . (4)

As we will prove in Section 5, the Malthusian parameter can be found by
solving the Euler-Lotka equation:
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Definition 1. The Malthusian parameter is the unique solution α > 0 of
Γ · L(α) = 1.

We are now ready to state our main results.

Theorem 1. Under Assumptions 1 i)-iii) and 2 and if the Malthusian pa-
rameter α > 0 exists then there exists a non-negative integrable random
variable W such that

|Zt|
eαt

a.s→ W

where W satisfies P ({|Zt| ̸→ 0}∆{W > 0}) = 0.

Here ∆ denotes the symmetric difference, i.e. A∆B = (A \ B) ∪ (B \ A)
and |Zt| denotes the number of individuals of Z that are alive at time t. In
the notation {|Zt| ̸→ 0} it is implicit that the limit is taken as t tends to
∞, i.e. {|Zt| ̸→ 0} is the event that the branching process population of Z
ultimately avoids extinction.

Theorem 2. Let (Gn)n be a sequence of graphs generated via the random
intersection graph model and assume that the assumptions of Theorem 1
hold and let (εn)n≥1 be a sequence in (0,∞) that satisfies εn log(n) → ∞
as n → 0. Then for any q ≥ 2, q ̸= 3, that satisfies E(Aq) < ∞ and
E(Bq) < ∞ there exist couplings of the epidemic process on the Gn and
Z such that the two processes agree w.h.p. until at least nγ−εn individuals
have contracted the disease. Here γ = min

(
1
2
, q−3/2

q

)
.

4 Branching process theory
To present the main idea that underpins the proof of Theorem 1, we need a
slightly more formal description of Z (see e.g. Jagers (1989) for a full formal
framework). We assume that each individual of the branching process tree
Z has a countable infinite number of children, which makes S countable.
The basic probability space on which Z is defined is given by the product
probability space ∏

v∈S
(Ωv,Av).

On each (Ωv,Av) there is defined a point process ξv on [0,∞]×Tθ, which we
refer to as the reproduction point process of v; a point (t, r) of ξv corresponds
to a type-r individual produced by v at age t, and there is a one-to-one
correspondence between the children of v and the points of ξv. Note that
t = ∞ is allowed; this has the interpretation that v and its descendants are
never born. For each u ∈ S, let τu ∈ [0,∞] be the time point of u’s birth.
We say that u ∈ S is realized if τu < ∞, and write |v| = n to indicate that
an individual v ∈ S of Z belongs to generation n, n ≥ 0, and for any v ∈ S
we denote the type of v by σ(v) ∈ Tθ.
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The law of ξv can be described as follows. Given the type of an individual v,
its point process of reproduction is independent of the lives of the individuals
that do not stem from v. A point (t, r) of ξv corresponds to a secondary
type-r case v ∈ VC for which the time elapsed since the corresponding
primary case u contracted the disease is dC(u, v) = t. Each individual
v ∈ S is assigned an infectious period Iv; given the type σ(v) of v, Iv is
an independent copy of the generic infectious period if either σ(v) = θ or
v = a0 (i.e. v is the first ancestor) , and Iv = σ(v) otherwise. For a0, the
points of ξa0 corresponds to the secondary cases where the corresponding
primary case has infectious period Ia0 and is a member of MP (A) cliques of
independent sizes with distribution MP (B̄). Similarly, if v ̸= a0 the points
of ξv corresponds to the secondary cases where the corresponding primary
case has infectious period Iv and is a member of MP (Ā) cliques, each of size
MP (B̄). The number |Zt| of individuals of Z that are alive at time t ≥ 0,
correponds to the number of infectious individuals at t and is given by is
the cardinality of the set

{u ∈ S : τu ≤ t < τu + Iu}. (5)

Before proceeding, we introduce some additional notation. The individuals
of Z can be partially ordered by descent; we write x ⪯ y (or equivalently
y ⪰ x) to indicate that x is an ancestor of y (we make the convention that
an individual is an ancestor of itself) and x ≺ y (or y ≻ x) to indicate that
x ⪯ y and x ̸= y. Similarly, for J ⊂ S and x ∈ S we write J ≺ x to
indicate that y ≺ x for some y ∈ J , and J ⪯ x to indicate that y ⪯ x for
some y ∈ J .

To arrive at Theorem 1, we embed a single type branching process Y into
the above described branching process Z. To this end, we partition the
individuals of Z into blocks. Let Sθ ⊂ S be the set of the type-θ individuals
of Z. For x ∈ Sθ, define the block Bx as follows:

Bx := {y ∈ S : x ⪯ y, and whenever x ≺ z for some z ∈ Sθ then z ̸⪯ y}.
(6)

In words, for any x ∈ Sθ the block Bx is the set of descendants of x for which
the line of descent back to x does not contain an individual of type θ. The
embedded branching process Y is then obtained by letting the individuals of
Y be the individuals of Sθ and the children of x ∈ Sθ (seen as an individual
of Y ) the type-θ children of individuals of Bx (in Z). That is, if we define
Jn, n ≥ 1, recursively as follows

J0 = {a0}

and

Jn = {x ∈ Sθ : x ≻ Jn−1 and whenever Jn−1 ≺ z ≺ x it holds that z ̸∈ Sθ},

then Jn consists of the individuals of generation n of Y , n ≥ 0.
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Since we are interested in the number of infected individuals at each time
point t ∈ R≥0 we count the population of the embedded single type branch-
ing process Y with a certain random characteristic (see e.g. Nerman (1981))
which provides the link between the size |Zt| of the branching process pop-
ulation of Z at t and the embedded branching process Y . Here we consider
the special case where the random characteristic ϕ is defined as

ϕx(t) = |{y ∈ Bx : τy ≤ t < τy + Iy}| (7)

for each x ∈ J = ∪n≥0Jn and we say that

Y ϕ
t :=

∑
x∈J

ϕx(t− τx)

is the branching process population of Y counted with the characteristic ϕ.
In words, ϕx(t) can be thought of as the number of infectious individuals
which belongs to the block Bx at τx + t, where τx is the time point when
x contracts the disease. Thus, the total population size |Zt| of the approxi-
mating branching process Z at the time point t can be recovered from the
embedded single-type branching process Y via the relation

|Zt| = Y ϕ
t (8)

where Y ϕ
t =

∑
x∈J ϕx(t − τx) is the branching process population of Y

counted with the characteristic ϕ defined in (7) at t.

Remark 3. It is worth to point out that the embedding technique employed
here does not require the presence of cliques of size 2 in the underlying graph
model. Indeed, in a more general setting, an embedding of a single type
branching process may be obtained by letting the individuals of the single
type branching process be represented by the vertices that are the last to
be infected in their clique. This embedding relies on the observation that if
a clique C (of size |VC| = d ≥ 2 say) is fully infected then the dth individual
of C to be infected does not compete with the other infected cases of C
in transmitting the disease to the remaining susceptible individuals of C.
Thus, given that v is the dth infected case of C, the infectious period of v
is independent of the actual paths of transmission within C.

4.1 Branching processes counted with random charac-
teristics

This section contains a brief overview of some preliminaries from the theory
of branching processes, which we include for completeness. More detailed
accounts of the branching process theory can be found in Nerman (1981)
and also in the more recent paper by Iksanov and Meiners (2015).

We begin by stating an asymptotic result for single-type branching pro-
cesses where the type of the ancestor is the same as the type of the other

13



individuals. To this end, let Z̃ be a branching process that behaves like a
copy of Z, where Z is the branching process in Section 3, except that the
first ancestor of Z̃ is of type θ. Let further Ỹ be the corresponding em-
bedded single-type branching process. In what remains, we will recycle the
notation from section 3 for ease of notation. That is, we denote the type
space of Z̃ by Tθ, S denotes the space of individuals of Z̃, the block Bx and
the random characteristic ϕ are analogous to the definitions in (7) and (6),
respectively, and so forth.

Let the random measure ξ be the point process of reproduction on R≥0

of a generic individual of the single-type branching process Ỹ , and let
ξ(α) =

∫
R≥0

e−αtξ(dt) =
∑

x∈J e−ατx where J = ∪n≥0Jn is the space of
all individuals of Ỹ and α is the Malthusian parameter, i.e. E(ξ(α)) = 1.
We define the measure ν on R≥0 by ν(t) = ν[0, t] := E(ξ(t)). Theorem 3
stated below is a special case of Nerman (1981, Theorem 5.4) and will lead
us to the a.s. convergence of Theorem 1. In order to state Theorem 3 we
need the following conditions.

Condition 1 (Finite mean age at childbearing). The mean age at child-
bearing β defined by

β := E

(∫
R≥0

te−αtξ(dt)

)

is finite.

Condition 2 (x log x). The random variable

ξ(α) log+
(
ξ(α)

)
has finite expectation.

Condition 3. There exists some non-negative real-valued non-increasing
integrable function g such that∫

R≥0

1

g(t)
e−αtν(dt) < ∞.

Condition 4. There exists some non-negative real-valued non-increasing
integrable function g such that the expectation of

sup
t≥0

1

g(t) ∧ 1
e−αtϕ(t)

is finite.

14



Theorem 3 (Theorem 5.4, Nerman (1981)). Under conditions 1 to 4 above
it holds almost surely that ∣∣∣Ỹ ϕ

t

∣∣∣
eαt

→ Ŵm∞

as t → ∞, where the random variable Ŵ has mean E(Ŵ ) = 1 and P ({Ŵ =
0}) = P (|Zt| → 0), and m∞ ∈ (0,∞) is a constant that depends on ϕ.

Remark 4. Under the conditions of Theorem 3, applying Theorem 3 to
each of the children of the first ancestor of Z gives that

|Zt|
eαt

=

∣∣∣Y ϕ
t

∣∣∣
eαt

→ W := (Ŵ (1)e−ατ1 + . . .+ Ŵ (J)e−ατJ )m∞ (9)

almost surely as t → ∞, where J is the number of children of the first
ancestor of Z that are born in [0,∞), the time points τ1, . . . , τJ are the
birth times of those children and Ŵ (1), . . . , Ŵ (J) are J copies of Ŵ (which
are not independent in general).

5 Proofs
In Section 5.1, we prove Theorem 1 by showing that there is a coupling of the
branching process Z and a single-type branching process whose Malthusian
parameter is given in Definition 1. In Section 5.2, we prove Theorem 2. The
main step in the proof is to establish upper bounds on the total variation
distance of the degree distribution in (1) and Po(Ā) and of the distribution
in (2) and Po(B̄).

5.1 Proof of Theorem 1

Recall that the random measure ξ (defined in section 4.1) is the point process
of reproduction on R≥0 of a generic individual of Ỹ and that the measure ν
on R≥0 is defined as ν(t) = ν[0, t] := E(ξ(t)). Also recall that Γ = (γk)k is
the vector with elements of the form γk = µĀkp

B̄
k where pB̄k = P (MP (B̄) =

k) for k ∈ Z≥1 and that L(α) is the vector displayed in (4).

Lemma 1. In the supercritical regime, the Malthusian parameter α > 0
of Y exists if and only if P (T ′

ij = 0) < 1/(µĀµB̄) and is then the unique
solution of Γ · L(α) = 1.

Proof of Lemma 1. Below ∗ denotes convolution, i.e. for two cumulative
distribution functions F and G

F ∗G(t) =
∫ t

−∞
G(t− s)F (ds).

15



We have

ν(t) = γ1F2(t) +
∑
r

∑
(m1,...,mr)

γm1γm2 · · · γmrFm1+1 ∗ . . . ∗ Fmr+1 ∗ F2(t)γ1

(10)

where the sums run over Z≥1 and Zr
≥1. Taking the Laplace transform of

the right hand side in (10) and writing this in vector form gives that the
Malthusian parameter α is the solution of∫

R≥0

e−αtν(dt) = γ1L2(α)
∞∑
n=0

(
Γ≥2 · L(α)

≥3

)n
= 1 (11)

where ΓT
≥2 = (γ2, γ3, . . .) and the elements of L

(α)
≥3 = (L(α)

3 ,L(α)
4 , . . .)T are

defined in (3). Since Γ≥2 · L(α)
≥3 < 1 (shown below), (11) reduces to

γ1L2(α)

1− Γ≥2 · L(α)
≥3

= 1.

That is, Γ · L(α) = 1.

It remains to show that Γ≥2 · L(α)
≥3 < 1. By the x2 log x assumption,

Γ · L(λ) ≤ Γ · (1, 1, . . . , 1)T < ∞

for all λ ≥ 0, and since the approximating branching process is supercritical
Γ · L(0) > 1. Since Γ · L(λ) is continuous and strictly decreasing in λ with

Γ · L(λ) → P (T ′
ij = 0)µĀµB̄ < 1

as λ → ∞, the Malthusian parameter exists and is unique.

To proceed we need some additional notation and terminology. For two
kernels K1 and K2 (defined on the same measurable space (E, E)), we define
the convolution kernel K1K2 as

K1K2(r, A) :=
∫
E
K1(r, ds)K2(s, A), A ∈ E , r ∈ E.

For any m ≥ 1, Km
1 := K1K

m−1
1 and K0

1 := I where I is the identity kernel
I(r, A) := 1(r ∈ A) for any A ∈ E . If f is a (E-measurable) function on E
then we define the function K1f as

K1f(·) :=
∫
E
f(s)K1(·, ds),

and similarly for a measure η on (E, E) we define ηK(·) =
∫
η(ds)K(s, ·).

For any A ∈ E , let IA be the kernel IA(r, B) = I(r, A ∩B).
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Recall that we denote (a generic copy of) the point process of reproduction
on Tθ × R≥0 of a type-r individual of Z̃ by ξr, and let µ(r, A × B) =
E(ξr(A × B)) be the expected number of offspring of a type in A ⊂ Tθ

produced by a type-r individual (born at time 0) in B ⊂ R≥0. For λ ∈ R,
define the kernel K(λ)(r, ds× dt) := e−λtµ(r, ds× dt). Let further

K̂(r, ds) :=
∫
R≥0

K(α)(r, ds× dt), (12)

and let
Gθ =

∞∑
n=0

(I{θ}cK̂)n

be the potential kernel of I{θ}cK̂. Here {θ}c = Tθ \ {θ} and

I{θ}c(r, B) = I(r, B ∩ Tθ \ {θ}). (13)

Remark 5. Note that for any A ⊂ T and s ∈ Tθ, Gθ(s, A) is the expected
number of descendants of an individual u of Z̃, σ(u) = s, that are members
of the same block as u and whose type belongs to A discounted by their time
of birth. Similarly, Gθ(s, {θ}) is the expected number of type θ-individuals
stemming from u whose mother belongs to the same block as u discounted
by their time of birth.

Define the function h by

h(x) = Gθ(x, {θ}) (14)

and the measure π by

π(A) = K̂Gθ(θ, A). (15)

Then h is harmonic for K̂ (see Nummelin (2004, Proposition 4.6)), i.e.
K̂h = h. Similarly, π is invariant for K̂, i.e. π = πK̂.

In order to use the finite-type-branching-process toolbox, we need to ver-
ify that the mean age at childbearing β of Y is finite, i.e. that β =∫
te−αtν(dt) < ∞ where ν is the measure in (10).

Lemma 2. 0 < β < ∞.

Proof of Lemma 2. Let ε > 0 be small so that Γ≥2 · L(α−ε)
≥3 < 1, and let the

constant Cε be such that Cεe
−(α−ε)t ≥ te−αt for all t ≥ 0. Then

β =
∫

te−αtν(dt) ≤ Cε

∫
e−(α−ε)tν(dt)

= Cεγ1L2(α− ε)
∞∑
n=0

(
Γ≥2 · L(α−ε)

≥3

)n
< ∞.
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5.1.1 Optimal lines and the x log x condition

In this paper, we consider two ways of dividing the individuals of the approx-
imating branching process Z̃ into generations; either generation n consists of
the individuals of Sn := {x ∈ S : |x| = n} (i.e. of the individuals separated
from the first ancestor by a line of descent of length n), or generation n
consists of the individuals of Jn which leads us to the embedded branching
process Ỹ . There is a close connection between these two ways of viewing
generations and the concept of stopping lines (see Jagers (1989) or Biggins
and Kyprianou (2004)).

Following Jagers (1989), we say that a set of individuals L ⊂ S is a stopping
line if for any pair y, x ∈ L it holds x ̸≺ y. In other words, a stopping
line L cuts across the branching process tree Z in the sense that if x ∈ L
then no descendants or ancestors of x (apart from the individual x itself)
are members of L. For any x ∈ S, let Gx be the σ-algebra generated by the
lives (infectious periods and reproduction processes) of the ancestors of x
(including x), and for any non-random stopping line ℓ, let Gℓ := σ(∪x ̸⪰ℓGx)
be the σ-algebra generated by the lives of the individuals that do not have
an ancestor in ℓ. Mirroring the concept of optimal stopping times, we say
that a line L is optimal if for any non-random stopping line ℓ the event
{L ⪯ ℓ} belongs to Gℓ. Here L ⪯ ℓ means that for any x ∈ L there is y ∈ ℓ
such that x ⪯ y.

Note that Jn is an optimal line for each n ≥ 0. Note also that Sn is an
optimal line, n ≥ 0.

For each n ∈ Z≥0 define

Ŵn :=
∑

x∈Jn

e−ατx . (16)

and
∼
W n=

1

h(θ)

∑
|u|=n

e−ατuh(σu) (17)

where the sums run over all individuals of generation n of Ỹ and Z̃, respec-
tively. It is well known (Biggins and Kyprianou 2004) that { ∼

W n}n∈Z≥0
is a

martingale with respect to F := {Fn}n, where Fn := GSn is generated by
the lives of the individuals up to generation n (of Z̃) for n ≥ 1 (we make
the convention that G∅ is the trivial σ-algebra). Similarly, {Ŵn}n∈Z≥0

is
a martingale with respect to {GJn}n. For later reference, we now state a
special case of results presented in Biggins and Kyprianou (2004).

Proposition 1 (c.f. Biggins and Kyprianou (2004), Theorem 6.1 and
Lemma 6.2). Let {Ŵn}n and { ∼

W n}n be as in (16) and (17). Then, with
probability 1, the limits limn

∼
W n and limn Ŵn exist and

lim
n

∼
W n= lim

n
Ŵn.
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Now, the x log x condition for the single-type branching process Ỹ takes the
form

E(Ŵ1 log+ Ŵ1) < ∞. (18)

The following two lemmas assert that Ỹ satisfies the x log x condition under
the x2 log x-condition.

Lemma 3. Let J ∼ MP (X), where X is a non-negative integrable random
variable with P (X = 0) < 1. Then E(X2 log+X) < ∞ is necessary and
sufficient for E(J̄ log+ J̄) < ∞ to hold.

Proof of Lemma 3. First note that

E(J̄ log+ J̄) = E(J2 log+ J)/E(J) = E(J2 log+ J)/E(X).

Since x 7→ x2 log+ x is convex, necessity now follows from Jensen’s inequality
for conditional expectations. Sufficiency follows from

E(J2 log+ J) = E

∑
k≥0

k2 log+ k
Xke−X

k!



= E

X∑
k≥0

(k + 1) log+(k + 1)
Xke−X

k!


= E

X∑
k≥0

log+(k + 1)
Xke−X

k!

+ E

X∑
k≥0

k log+(k + 1)
Xke−X

k!


= E

X∑
k≥0

log+(k + 1)
Xke−X

k!

+ E

X2
∑
k≥0

log+(k + 2)
Xke−X

k!


≤ E

(
X log+(X + 1)

)
+ E

(
X2 log+(X + 2)

)
,

where the inequality follows from Jensen’s inequality applied to the concave
(on R≥0) functions x 7→ log+(x+ 1) and x 7→ log+(x+ 2).

Lemma 4. Under assumption 1 {Ŵn}n, satisfies the x log x condition in
(18).

Proof. It is known (Iksanov and Meiners 2015, Proposition 4.1) that the
inequality in (18) holds if and only if {Ŵn}n is uniformly integrable, which
is also equivalent to E(Ŵ ) = 1, where Ŵ is the almost sure limit limn Ŵn.
By Proposition 1,

lim
n

Ŵn = lim
n

∼
W n
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almost surely. Thus, in order to verify that {Ŵn}n is uniformly integrable
it is sufficient to verify that the almost sure limit of

∼
W n has mean 1.

Now note that h is bounded; for any x ∈ Tθ we have

h(x) = Gθ(x, {θ}) ≤ 1 + E(Ā)E(B̄)π({θ}) = 1 + E(Ā)E(B̄).

Combining this with Assumption 1, Lemma 3 and Iksanov and Meiners
(2015, Corollary 2.1), the x log x condition holds for Y if we can show that
almost surely

sup
x>2

(∑
i 1(H(ςi) ≥ x−1)

log+(x)

)
< ∞ (19)

where ς = (ς0, ς1, . . .), ς0 = (θ, 0), is a markov chain on Tθ × R≥0 with
transmission measure given by

R((r, 0), A×B) :=
1

h(r)

∫
A×B

h(s)K(r, ds× dt)

R((r, t), A×B) := R((r, 0), A× (B − t)≥0)

where B − t = {b− t : b ∈ B} and H((r, t)) = e−αth(r).

Let p1 : Tθ×R≥0 → Tθ and p2 : Tθ×R≥0 → R≥0 be the projections onto the
first and second coordinate, respectively, and put ς ′j = p1(ςj) and ς ′′j = p2(ςj)
for j ≥ 0. Then {ς ′0, ς ′1, . . .} is a Markov chain on Tθ with transition measure
R1:

R1(r, B) =
1

h(r)

∫
B
h(s)K(r, ds× R≥0) =

1

h(r)

∫
B
h(s)K̂(r, ds)

for (measurable) B ⊂ Tθ.

Now, it is easily verified that θ is a (positive) recurrent state of {ς ′0, ς ′1, . . .}.
Indeed, let Mi, i ≥ 1 be the number of steps until {p1(ς0), p1(ς1), . . .} revisits
θ for the ith time, given that p1(ς0) = θ:

M0 := 1

and for i ≥ 1
Mi = inf{m > Mi−1 : p1(ςm) = θ}

Then for m ≥ 1 (recall that I{θ}c is the operator in 13)

P (M = m) = R1(I{θc}R1)
m−1(θ, {θ})

=
∫
Rm−1
≥0

K(rm−1, {θ}×R≥0)K(rm−2, drm−1×R≥0) . . . K(r1, dr2×R≥0)K(θ, dr1×R≥0)
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= γ1L2(α)
(
Γ≥2 · L(α)

≥3

)m−1
= (1− Γ≥2 · L(α)

≥3 )
(
Γ≥2 · L(α)

≥3

)m−1
.

Thus P (M = ∞) = 0 and M is geometrically distributed. Thus the in-
equality in (19) holds almost surely by the law of large numbers applied to
{ς ′′Mk

+ . . . ς ′′Mk+1−1}k.

We now turn our attention to conditions 3 and 4.

Lemma 5. Conditions 3 and 4 are satisfied under assumption 1.

Proof. If we take g to be the mapping t 7→ e−φx then conditions 3 and 4 are
satisfied if φ > 0 is small enough. Indeed, let φ ∈ (0, α) be small so that
Γ≥2 · L(α−φ)

≥3 < 1 and put g(t) = e−φt. Then

∫ ∞

0

1

g(t)
e−αtν(dt) =

∫ ∞

0
e−(α−φ)tν(dt) = γ1L(α−φ)

2

∞∑
n=0

(
Γ≥2 · L(α−φ)

≥3

)n
< ∞.

Below, x is a generic type-θ individual of Z with ϕ = ϕx, B = Bx and
τx = 0. Clearly, since e−αt/g(t) is non-increasing in t we have

e−αtϕ(t)

g(t)
≤
∑
y∈B

e−ατy

g(τy)

for any t ≥ 0. Thus

E

(
sup
t≥0

e−αtϕ(t)

g(t)

)
≤ E

∑
y∈B

e−(α−φ)τy

 =
∞∑
n=1

(
Γ≥2 · L(α−φ)

≥3

)n
< ∞.

If the random characteristic ϕ is as in (7) then condition 4 is satisfied for
the same choice of g.

Proof of Theorem 1. Assume that Assumption 1 i) - iii) hold. By Lemma
1, the Malthusian parameter for the single type branching process Ỹ is the
unique solution α > 0 of Γ · L(α) = 1. By Lemma 2 Condition 1 holds,
by Lemma 4 Condition 2 holds and by Lemma 5 Conditions 3 and 4 hold.
Hence the conditions of Theorem 3 are satisfied, and by Remark 4 the
convergence in (9) holds.
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5.2 Proof of Theorem 2

Below we describe a probabilistically equivalent construction of Gaux
n . This

alternative way of constructing Gaux
n is useful in the branching process ap-

proximation of the epidemic process since it allows us to run the epidemic
process and construct Gn in unison.

Throughout this section we denote the probability measure of A by p, that
is p([0, x]) = P (A ≤ x) for x ∈ [0,∞). Similarly, we denote the probability
measure of the size biased version Ā of A by p̄. Given the weights A1, . . . , An,
let A(n) be a random variable which follows the empirical distribution of
A1, . . . , An and let pn be the corresponding probability measure, i.e.

pn([0, x]) = P (A(n) ≤ x|A1, . . . , An) =
1

n

n∑
i=1

1(Ai ≤ x) (20)

for x ∈ [0,∞).Let further Ā(n) denote the size biased version of A(n) and let
p̄n be the corresponding probability measure, i.e.

p̄n([0, x]) =
1

nµ
(n)
A

n∑
i=1

Ai1(Ai ≤ x).

Similarly, conditioned on the weights B1, . . . , Bm, let B(n) be a random
variable which follows the empirical distribution of B1, . . . , Bm and let B̄(n)

be the size-biased version of B(n).

To construct Gaux
n , start by picking some vertex u of Vn according to some

rule (e.g. uniformly at random). Typically, u represents the initial case of
the epidemic. Put E0 = E ′

0 = N0 = ∅. The component of Gaux
n that contains

u is now constructed by iterating the following steps for t = 1, 2, . . ..

1. If t = 1 let v = u be the vertex that is currently being explored.
Generate the downshifted group degree D of v from the distribution
given in (1). Here D represents the (additional) number of cliques
that v is a member of.

2. Draw D elements B(1), . . . , B(D) from the multiset {B1, . . . , Bm} inde-
pendently with replacement. The probability to select Bk ∈ {B1, . . . , Bm}
in a specific draw is given by Bk/mµ

(n)
B , where µ

(n)
B =

∑m
k=1 Bk/m. In

other words, we generate D independent copies of B̄(n).

3. Let v′(j) ∈ V ′
n be the vertex that corresponds to B(j), j = 1, . . . , D. For

each v′(j) ∈ {v(1), . . . , v(D)}, if v′(j) is not a member of the set E ′
t−1 ⊂ V ′

n

of hitherto explored vertices carry out step 3 (a) to 3 (d) below. If
v′(j) ∈ E ′

t−1 then the clique that corresponds to v′(j) is already explored,
so v′(j) is excluded from the steps below.

(a) Generate the downshifted clique size D′
j of v′(j) from the distri-

bution given in (2) with B(j) in place of Bj.
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(b) Select D′
j elements Aj

(1), . . . , A
j
(D′

j)
from the multiset {A1, . . . , An}

independently with replacement. The probability to select Ak in
a specific draw is given by Ak/nµ

(n)
A , where µ

(n)
A =

∑n
k=1Ak/n.

In other words, we generate D′
j independent copies of Ā(n).

(c) Let vjk ∈ Vn be the vertex that corresponds to Aj
(k), k = 1, . . . , D′

j.

(d) Add an edge between each pair of distinct vertices in {v} ∪
{vjk}

D′
j

k=1 \ Et−1 to Gn.

4. Update the set E ′
t of explored cliques by putting E ′

t = E ′
t−1∪{v′(1), . . . , v′(Di)

}.

5. Update the set Nt of neighbours of explored vertices by putting Nt =
Nt−1 ∪ {vjk : j = 1, . . . , Di and k = 1 . . . , D′

j}.

6. Update the set Et of explored vertices by putting Et = Et−1 ∪ {v}.

7. If Nt = Et then the construction of the component is complete and we
exit the algorithm. Otherwise, update v by picking some new vertex
in Nt \ Et. If Gaux

n is constructed as the epidemic progresses, then the
new vertex v is the tth non-initial case).

If the nodes v′(1), . . . , v
′
(D) are not distinct or {v′(1), . . . , v′(D)} ∩ Et−1 ̸= ∅ in

step 3 for some iteration t ∈ {0, 1, . . .} then the coupling of the approxi-
mating branching process and the epidemic process breaks down. Similarly,
if in some iteration t the vjk are not all distinct or vjk ∈ Et−1 for some
j ∈ {1, . . . , D} and k ∈ {1, . . . , D′

j} then the coupling breaks down.

The following claim, which is a variant of the birthday problem, ensures
that with high probability the coupling of the approximating branching
process and the epidemic process holds during the first o(

√
n) steps of the

construction algorithm. The proof is included here for completeness.

Claim 2. Let jn = o(
√
n) and let A have finite second moment. Suppose

that we draw elements from the multiset {A1, . . . , An} independently with
replacement, and that the probability that Ai ∈ {A1, . . . , An} is selected in
a specific draw is proportional to Ai. It then holds that the first jn drawn
elements are distinct with P -probability tending to 1 as n → ∞.

Proof of Claim 2. For k = 1, 2, . . ., let A(k) be the kth element that is drawn
from {A1, . . . , An} and let En(·) be the conditional expectation operator
given A1, . . . , An. Conditioned on A1, . . . , An, for k ≥ 2 the probability
that A(k) is not distinct from A(j) for some j ∈ {1, . . . , k − 1} is smaller
than or equal to

En

(
A(1) + . . .+ A(k−1)

A1 + . . .+ An

)
= (k − 1)

A2
1 + . . .+ A2

n

(A1 + . . .+ An)
2 .
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Thus, by the union bound, conditioned on {A1, . . . , An} the probability that
the first jn drawn elements are not distinct is smaller than or equal to

jn∑
k=1

(k − 1)
A2

1 + . . .+ A2
n

(A1 + . . .+ An)
2

=
(jn − 1)jn (A

2
1 + . . .+ A2

n)

2 (A1 + . . .+ An)
2

=

(
(jn − 1)jn

n

)(
(A2

1 + . . .+ A2
n) /n

2(µ
(n)
A )2

)

Since A has finite second moments

(A2
1 + . . .+ A2

n) /n

2(µ
(n)
A )2

converges to E(A2)/2µ2
A in P -probability as n → ∞. Hence

P (A(1), . . . , A(jn) are distinct)

≥ 1− E

(
1 ∧

(
(jn − 1)jn

n

)
(A2

1 + . . .+ A2
n) /n

2(µ
(n)
A )2

)

where the right side tends to 1 as n → ∞.

In the construction algorithm described above, the weights of explored ver-
tices in Vn and V ′

n are generated from the distributions of Ā(n) and B̄(n),
whereas the weights in the approximating branching are generated from the
distributions of Ā and B̄. Therefore, in order to prove Theorem 2 we find
upper bounds on the coupling error between MP (Ā(n)) and MP (Ā) and be-
tween MP (B̄(n)) and MP (B̄) which we state in Proposition 2 and Lemma
6.

Given the weights A1, . . . , An, for a coupling C of A and A(n) we denote the
corresponding probability measure and expectation by PC and EC , respec-
tively. A coupling of two random variables with distributions MP (Ā) and
MP (Ā(n)) can be constructed by first constructing a coupling C of their re-
spective intensities Ā and A(n), then generating a joint realization (Ā′, Ā′

(n))
of these intensities according to C and in the next step using these inten-
sities to generate two random variables from the Poisson distribution. If in
the last step a maximal coupling is used then the (conditional) probability
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of a miscoupling is given by 1
2
dTV (Po(Ā′), Po(Ā′

(n))). Here dTV denotes the
total variation distance, i.e. for a, b ∈ R≥0

dTV (Po(a), Po(b)) =
∑
k≥0

∣∣∣∣∣ake−a

k!
− bke−b

k!

∣∣∣∣∣ .
Thus, given the distribution of A(n) the probability of a miscoupling is given
by
EC (dTV (Po(Ā), Po(Ā(n))))/2.

Let the coupling Cn of Ā′ and Ā′
(n) be given by

Cn := argmin
C

EC

∣∣∣∣√Ā−
√
Ā(n)

∣∣∣∣ (21)

for each n ≥ 1, where the minimum extends over all couplings C of A and
A(n).

In the following proposition, A1, . . . , An are random with respect to P .
Thus, under P , Cn is a coupling of p̄ and the random probability measure
p̄n.

Proposition 2. Assume that E(Aq) < ∞ for q > 3
2
. Let (εn)n≥1 be a

sequence in (0,∞) such that if q ̸= 3 then εn log(n) → ∞ as n → 0 and if
q = 3 then εn log(n)− log(log(n)) → ∞ as n → 0. Then

P
(
ECn(dTV (Po(Ā), Po(Ā(n)))) ≥ n−γ+εn

)
→ 0 as n → ∞

where γ = 1
2
∧ q−3/2

q
.

Remark 6. Proposition 2 holds also if A, Ā and Ā(n) are replaced by B,
B̄ and B̄(n).

Proof of Proposition 2. We have that (the first inequality follows from Bar-
bour et al. (1992, Theorem 1.C))

ECn

(
dTV (Po(Ā), Po(Ā(n)))

)

≤ ECn

 1√
Ā(n) ∨ Ā

∣∣∣Ā− Ā(n)

∣∣∣


≤ ECn

 1
1
2

(√
Ā+

√
Ā(n)

) ∣∣∣∣√Ā+
√
Ā(n)

∣∣∣∣ ∣∣∣∣√Ā−
√
Ā(n)

∣∣∣∣

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= 2ECn

(∣∣∣∣√Ā−
√
Ā(n)

∣∣∣∣) .
Hence, by Proposition 3 below,

E
(
ECn

(
dTV (Po(Ā), Po(Ā(n))

)
;Dn

)
=


O(n− q−3/2

q ) if 3/2 < q < 3

O(n− 1
2 log(n)) if q = 3

O(n− 1
2 ) if q > 3

,

where Dn is the event maxi∈[n](Ai) > 0. The assertion of the Proposition
now follows from Markov’s inequality and P (Dc

n) = p(0)n, p(0) < 1.

By the degree distributions of Gaux
n given in (1) and (2), in order to ar-

rive at Theorem 2 we will also need a bound on the coupling error of
MP

(
B̄(n)µ

(n)
A /µA

)
and MP

(
B̄(n)

)
and of MP

(
Ā(n)µ

(n)
B ⌊nµA/µB⌋/nµA

)
and

MP
(
Ā(n)

)
.

Proposition 3 (c.f. Fournier and Guillin (2015), Theorem 1). If E(Aq) <
∞ for q > 3/2 then

E
(
ECn

(∣∣∣∣√Ā−
√
Ā(n)

∣∣∣∣) ;Dn

)
=


O(n− q−3/2

q ) if 3/2 < q < 3

O(n− 1
2 log(n)) if q = 3

O(n− 1
2 ) if q > 3

where Cn is the coupling in (21) and Dn is the event that maxi∈[n](Ai) > 0.

Proof of Proposition 3. This proof is, in part, analogous to the proof of
Theorem 1 in Fournier and Guillin (2015) and is presented here in full for
completeness. The differences between the present proof and the proof of
Theorem 1 in Fournier and Guillin (2015) arise mainly due to the size-
biasing of the weights.

Throughout, C1, C2, . . . are positive constants that depend only on q and
the distribution of A, and U ⊂ [0,∞) is a generic Borel set.

Note that
ECn

∣∣∣∣√Ā−
√
Ā(n)

∣∣∣∣
is the 1-Wasserstein distance between the distributions of

√
Ā and

√
Ā(n).

Hence, with the notation 2mF = {2mu : u ∈ F} for any event F , we have
by Lemma 5 and 6 in Fournier and Guillin (2015)
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ECn

∣∣∣∣√Ā−
√
Ā(n)

∣∣∣∣
≤ C1

∑
m≥0

2m
∑
ℓ≥0

2−ℓ
∑
F∈Pℓ

|νn(2mF ∩ Um)− ν(2mF ∩ Um)|
(22)

where Pℓ is the partition of [0,1] that consists of {0} and 2−ℓ+1k+(0, 2−ℓ+1]
for k ∈ {0, 1, . . . , 2ℓ−1 − 1}, U0 = [0, 1] and Um = [0, 2m] \ [0, 2m−1] for
m ≥ 1, and ν and νn are the probability distributions of

√
Ā and

√
Ā(n),

respectively. Now, with the notation U2 = {u2 : u ∈ U}, by the triangle
inequality

|νn(U)− ν(U)|

=
∣∣∣p̄n(U2)− p̄(U2)

∣∣∣
=

∣∣∣∣∣
∑n

i=1Ai1(Ai ∈ U2)

nµ
(n)
A

− E(A1(A ∈ U2))

µA

∣∣∣∣∣

≤ 1

nµ
(n)
A

n∑
i=1

Ai1(Ai ∈ U2)

∣∣∣∣∣∣1− µ
(n)
A

µA

∣∣∣∣∣∣+ 1

µA

∣∣∣∣∣ 1n
n∑

i=1

Ai1(Ai ∈ U2)− E(A1(A ∈ U2))

∣∣∣∣∣ .
(23)

The second term in the right hand side in (23) satisfies (with the first
inequality following from Jensen’s inequality)

E

(∣∣∣∣∣ 1n
n∑

i=1

Ai1(Ai ∈ U2)− E(A1(A ∈ U2))

∣∣∣∣∣
)

≤

√√√√V ar

(
1

n

n∑
i=1

Ai1(Ai ∈ U2)

)

≤ (supU)2
√
1

n
p(U2)

(24)

and, again by the triangle inequality,

E

(∣∣∣∣∣ 1n
n∑

i=1

Ai1(Ai ∈ U2)− E(A1(A ∈ U2))

∣∣∣∣∣
)
≤ 2(supU)2p(U2). (25)
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Combining (24) and (25) gives that the second term in the right hand side
in (23) satisfies

1

µA

∣∣∣∣∣ 1n
n∑

i=1

Ai1(Ai ∈ U2)− E(A1(A ∈ U2))

∣∣∣∣∣

≤ C2(supU)2

√ 1

n
p(U2) ∧ p(U2)

 .

(26)

In order to find a similar upper bound on the first term in the right hand
side in (23) we define the event Sn as

Sn := {µ(n)
A ≤ µA − κ} (27)

where κ ∈ (0, µA) is a fixed constant such that e(µA−κ)E(e−A) < 1. Then,
with the second inequality following from Hölder’s inequality and the the
last inequality from

∑n
i=1 1(Ai ∈ U2) ∼ Bin(n, p(U2)),

E

 1

nµ
(n)
A

n∑
i=1

Ai1(Ai ∈ U2)

∣∣∣∣∣∣1− µ
(n)
A

µA

∣∣∣∣∣∣ ;Sc
n ∩Dn



≤ (supU)2

(µA − κ)

 1

n
E

 n∑
i=1

1(Ai ∈ U2)

∣∣∣∣∣∣1− µ
(n)
A

µA

∣∣∣∣∣∣
 ∧ (2p(U2))



≤ (supU)2

(µA − κ)


√√√√√ 1

n3
E

( n∑
i=1

1(Ai ∈ U2)

)2
V ar

(
A

µA

)
∧ (2p(U2))



≤ (supU)2

(µA − κ)


√√√√ 1

n3
np(U2)(np(U2) + 1)V ar

(
A

µA

)
∧ (2p(U2))



≤ C3(supU)2

√ 1

n
p(U2) ∧ p(U2))

 .

(28)

By the inequalities in (26) and (28) together with the fact that for any
G ⊂ [0,∞) it holds that sup(G ∩ U2

m) ≤ sup(U2
m) = 22m, we have
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∑
F∈Pℓ

E (|νn(2mF ∩ Um)− ν(2mF ∩ Um)| ;Dn ∩ Sc
n)

≤ C4

22m ∑
F∈Pℓ

√ 1

n
p(22mF 2 ∩ U2

m) ∧ p(22mF 2 ∩ U2
m)


(29)

and (with the second inequality following from the Cauchy–Schwarz inequal-
ity and the fact that, since E(Aq) is finite, P (U2

m) ≤ E(Aq)2−2qm)

∑
F∈Pℓ

√ 1

n
p(22mF 2 ∩ U2

m) ∧ p(22mF 2 ∩ U2
m)



≤

 1√
n

∑
F∈Pℓ

√
p(22mF 2 ∩ U2

m)

 ∧ p(U2
m)

≤ C5

((
1√
n

√
|Pℓ| p(U2

m)

)
∧ 2−2qm

)

≤ C5

((
1√
n

√
2ℓE(Aq)2−2qm

)
∧ 2−2qm

)

≤ C6

(
1√
n
2ℓ/2−qm ∧ 2−2qm

)
.

(30)

Hence, by (22), (29) and (30),

E
(
ECn

(∣∣∣∣√Ā−
√
Ā(n)

∣∣∣∣) ;Sc
n ∩Dn

)

≤ C7

∑
m≥0

2m
∑
ℓ≥0

2−ℓ+2m

(
1√
n
2ℓ/2−qm ∧ 2−2qm

)

≤ C7

∑
m≥0

23m
∑
ℓ≥0

2−ℓ/2

(
1√
n
2−qm ∧ 2−2qm

)

≤ C8

∑
m≥0

(
1√
n
2m(3−q) ∧ 2−m(2q−3)

)
.

If q > 3 then
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C8

∑
m≥0

(
1√
n
2m(3−q) ∧ 2−m(2q−3)

)
≤ C9

1√
n
.

If q ∈ (3/2, 3) then with mn = ⌊log(n)/(2q log(2))⌋

C8

∑
m≥0

(
1√
n
2m(3−q) ∧ 2−m(2q−3)

)

≤ C8

mn∑
m=0

1√
n
2−m(q−3) + C8

∞∑
m>mn

2−m(2q−3)

= O
(
n−(1− 3

2q )
)
.

If q = 3 then with an = ⌊log(n)/log(2)⌋

C8

∑
m≥0

(
1√
n
2m(3−q) ∧ 2−m(2q−3)

)

≤ C8
an√
n
+ C8

∞∑
m≥an

2−m(2q−3)

= O
(
n−1/2 log(n)

)
.

Thus it only remains to bound the expectation of ECn

(∣∣∣√Ā−
√
Ā(n)

∣∣∣) on
Sn ∩ Dn, where Sn is the event in (27). Now, with the third inequality
following from the fact that on Sn we have

√
Ai ≤

√
n(µA − κ) for i =

1, . . . , n,

E
(
ECn

(∣∣∣∣√Ā−
√
Ā(n)

∣∣∣∣) ;Sn ∩Dn

)

≤ P (Sn ∩Dn)E(
√
Ā) + E

(√
Ā(n);Sn ∩Dn

)

= P (Sn ∩Dn)E(
√
Ā) + E

∑n
i=1 A

3
2
i∑n

i=1Ai

;Sn ∩Dn



≤ P (Sn ∩Dn)E(
√
Ā) + E

(
n∑

i=1

√
Ai;Sn ∩Dn

)

≤ P (Sn ∩Dn)E(
√
Ā) + E

(
n3/2√µA − κ;Sn ∩Dn

)
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= O(n3/2P (Sn))

= O(n3/2en(µa−κ)E(e−A)n)

where the last step follows from the Chernoff bound P (Sn) ≤ en(µa−κ)E(e−A)n.
The assertion now follows by recalling that e(µa−κ)E(e−A) < 1.

Lemma 6. Let εn be as in Proposition 2 and E(A2), E(B2) < ∞. Then,
w.h.p.,

dTV

(
Po

(
B̄(n)µ

(n)
A /µA

)
, Po

(
B̄(n)

))
≤ n− 1

2
+εn (31)

and

dTV

(
Po

(
Āµ

(n)
B ⌊nµA/µB⌋/nµA

)
, Po

(
Ā(n)

))
≤ n− 1

2
+εn . (32)

Proof of Lemma 6. Define

Hn :=
{∣∣∣1− µ

(n)
A /µA

∣∣∣ ≤ n− 1
2
+ 1

2
εn
}
.

By Chebyshev’s inequality P (Hc
n) = O (n−εn) . Now (again by Barbour et

al. (1992, Theorem 1.C))

E
(
dTV

(
Po

(
B̄(n)µ

(n)
A /µA

)
, Po

(
B̄(n)

))
;Hn

)

≤ E
(∣∣∣B̄(n)µ

(n)
A /µA − B̄(n)

∣∣∣ ;Hn

)

≤ E
(
B̄(n)n

− 1
2
+ 1

2
εn
)
= O(n− 1

2
+ 1

2
εn).

This implies, using the union bound and Markov’s inequality,

P
(
dTV

(
Po

(
B̄(n)µ

(n)
A /µA

)
, Po

(
B̄(n)

))
≥ n− 1

2
+εn

)

≤ P (Hc
n) +O(n− 1

2
εn).

This proves the inequality in (31), and the proof of the inequality in (32) is
completely analogous.
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Proof of Theorem 2. Let εn, q and γ be as in Theorem 2, and let T ∈ N0

be the number of iterations in the construction algorithm on page 22 (i.e.
NT = ET ). By Claim 2, w.h.p. the vertices of Vn and V ′

n that are explored
in the first ⌊nγ−εn⌋ ∧ T steps of the construction algorithm are distinct.
Combining Claim 2 with Proposition 2 gives the assertion of Theorem 2 by
the union bound.
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