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Abstract

This paper is motivated by computational challenges arising in multi-period val-
uation in insurance. Aggregate insurance liability cashflows typically correspond to
stochastic payments several years into the future. However, insurance regulation re-
quires that capital requirements are computed for a one-year horizon, by considering
cashflows during the year and end-of-year liability values. This implies that liability
values must be computed recursively, backwards in time, starting from the year of the
most distant liability payments. Solving such backward recursions with paper and pen
is rarely possible, and numerical solutions give rise to major computational challenges.

The aim of this paper is to provide explicit and easily computable expressions for
multi-period valuations that appear as limit objects for a sequence of multi-period
models that converge in terms of conditional weak convergence. Such convergence
appears naturally if we consider large insurance portfolios such that the liability cash-
flows, appropriately centered and scaled, converge weakly as the size of the portfolio
tends to infinity.



1 Introduction and motivation

This paper is motivated by problems arising in multi-period valuation in insurance, but
the applicability of the results extends beyond the insurance setting. Aggregate insurance
liability cashflows typically correspond to payments several years into the future. How-
ever, insurance regulation requires that capital requirements are calculated for a one-year
horizon, considering cashflows during the year and end-of-year liability values. This im-
plies that liability values must be computed recursively, backwards in time, starting from
the year of the most distant liability payments. Solving such backward recursions leads to
major computational challenges. Consequently, simple and explicit (standard) formulas
with questionable conceptual soundness have become the preferred alternative. With this
paper we say that there are alternatives to commonly encountered formulas that give rise
to explicit formulas that are easy to use in practice and that retain both economic inter-
pretability and the conceptual soundness of the original principles for insurance valuation.
Mathematically, the explicit formulas follow from combining the original principles for
insurance valuation with widely applicable large portfolio asymptotics.

We begin by presenting the motivating insurance problem. Let (Cn0 ,Fn0) be a stochas-
tic processes in discrete time with (Cn0

t )Tt=1 denoting the discounted payments at times t
due to insurance claims, and Fn0 = (Fn0

t )Tt=0, with Fn0
0 = {Ω, ∅}, denoting a filtration to

which Cn0 is adapted. Cn0 describes discounted claim payments over time in a so-called
runoff situation, when no new contracts are written. The number n0 is intended as a
measure of volume or exposure, for instance the number of contracts that may generate
future claims payments. We want to assign a value to this liability cashflow. In order to
do this we consider a sequence (Cn,Fn)n≥1 of such stochastic processes, with ∥Cn∥ → ∞
almost surely as n → ∞, where ∥ · ∥ denotes the Euclidean norm on RT . An example
could be Cn given by

Cnt =
Mn∑
k=1

1{Dk=t}Zk, t = 1, . . . , T,

where Mn denotes the total number of claims payments and Mn → ∞ almost surely as
n → ∞, Dk denotes the time and Zk denotes the size of the kth claims payment. For
this example, the filtration could be the one generated by the discounted cashflow Cn or
a larger filtration also including information about the number of payments

∑Mn
k=1 1{Dk=t}

at each point in time, or more.
We assume nonrandom sequences with terms an ∈ (0,∞) and bn ∈ RT such that there

is convergence in distribution

Xn = a−1
n (Cn − bn)

d→ X as n→ ∞.

The value V n
0 (Cn) of the insurance liabilities in a multi-period model is the result of

applying a suitable functional to the pair (Cn,Fn). Natural valuation functionals satisfy

the property V n
0 (Cn) = anV

n
0 (Xn)+

∑T
s=1 bn,s. ConvergenceX

n d→ X suggests V n
0 (Xn) →

V0(X) and therefore the approximation

V n
0 (Cn) ≈ anV0(X) +

T∑
s=1

bn,s. (1)

However, the flow of information over time is an essential ingredient in valuation and it is

not true that convergence Xn d→ X implies the convergence V n
0 (Xn) → V0(X) (even if Fn

2



is taken to be the filtration generated by Cn). Consequently, one of the main objectives
of the present paper is to determine sharp sufficient conditions for the convergence of
V n
0 (Xn) to V0(X) in terms of an appropriate mode of convergence of (Xn,Fn) to (X,F),

similar to so-called extended weak convergence introduced by Aldous in [2] and conditional
weak convergence studied by Sweeting in [13]. The importance of the approximation (1) is
because V n

0 (Cn) is typically very difficult to compute numerically whereas V0(X) is easier
to compute numerically and, more importantly, in the case of a Gaussian limit model, is
given by an explicit expression in terms of conditional variances of components of X (note
that Gaussian vectors have the rare feature that conditional variances of one component
given a subset of components are nonrandom).

The paper is organized as follows. Section 2 introduces notation and basic properties
of conditional distributions and risk measures. Section 3 presents the main contents of
the paper and, following a general presentation of the mathematical setup, gives economic
motivation of key quantities in Section 3.1 and presents the main results in Section 3.2.
All proofs together with auxiliary results are found in Section 4.

2 Preliminaries

N = {1, 2, . . . }, R denotes the real numbers and R+ = [0,∞). Whenever relevant, for
T ∈ N, a vector x ∈ RT is assumed to be column vector and its transpose xT a row
vector. For x = (x1, . . . , xT )

T ∈ RT , ∥x∥2 = xTx and we let x≤t = (x1, . . . , xt)
T and

x>t = (xt+1, . . . , xT )
T. For d ∈ N and a Borel set A ∈ B(Rd), P(A) denotes the set of

probability measures on A. For µ ∈ P(A), supp(µ) denotes its support. We consider a
probability space (Ω,F ,P). For a σ-algebra Ft ⊂ F , L0(Ft,P) denotes the vector space
of all real-valued Ft-measurable random variables, and for p ∈ (0,∞), Lp(Ft,P) denotes
the subset {Y ∈ L0(Ft,P) : E[|Y |p] <∞}.

For an Rd-valued random variable Y we let L(Y ) denote its distribution, i.e. the
induced probability measure P(Y ∈ ·) on Rd. Given σ-algebras Ft ⊂ F and a random
variable Y , a regular conditional distribution QFt,Y is a version of P(Y ∈ · | Ft) which
forms a probability kernel from (Ω,Ft) to (Rd,B(Rd)). If Ft = σ(Z) for an Rd′-valued
random variable Z, then QFt,Y is an Ft-measurable random measure ω 7→ κ(Z(ω), ·) on
Rd, where κ is a probability kernel from (Rd′ ,B(Rd′)) to (Rd,B(Rd)), see Theorem 6.3 in
Kallenberg [8]. The notation L(Y | Z = z) means κ(z, ·). In particular, z 7→ L(Y | Z = z)
is well defined on supp(L(Z)).

We define the conditional p-quantile of Y ∈ L0(F ,P) given Ft as the random variable
F−1
Y |Ft

(p) given by

ω 7→ min{m ∈ R : QFt,Y (ω, (−∞,m]) ≥ p}.

If QFt,Y (ω, ·) = κ(Z(ω), ·), then F−1
Y |Z=z(p) means min{m ∈ R : κ(z, (−∞,m]) ≥ p} and is

well defined on supp(L(Z)). Similar to ordinary quantiles, the conditional quantiles have
the property F−1

aY+b |Ft
(p) = aF−1

Y |Ft
(p) + b if a ∈ R+ and b ∈ L0(Ft,P) (in particular if

b ∈ R). Monetary conditional risk measures appear naturally for multi-period valuations,
see e.g. Chapter 11 in Föllmer and Schied [6]. The risk measures Value-at-Risk and
Average Value-at-Risk, conditional on Ft and for u ∈ (0, 1), are given by

V@Ru(Y | Ft) = F−1
−Y |Ft

(1− u),

AV@Ru(Y | Ft) =
1

u

∫ u

0
V@Rv(Y | Ft)dv.
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In [6], V@Ru(Y | Ft) is defined as essinf{mt ∈ L0(Ft,P) : P(Y +mt < 0 | Ft) ≤ u} but
the two definitions of V@Ru(Y | Ft) are equal almost surely. For p ≥ 1, V@Ru(Y | Ft) ∈
Lp(Ft,P) if Y ∈ Lp(F ,P), and similarly for AV@Ru(Y | Ft). Let P([0, 1])′ denote the
subset of P([0, 1]) consisting of measures µ ∈ P([0, 1]) that either have a bounded density
with respect to Lebesgue measure or satisfy supp(µ) ⊂ [a, b] for some 0 < a < b < 1. Both
V@Ru(Y | Ft) and AV@Ru(Y | Ft) can be expressed as

ρ(Y | Ft) =
∫ 1

0
F−1
−Y |Ft

(p)µ(dp), µ ∈ P([0, 1])′. (2)

V@Ru(Y | Ft) corresponds to µ(dp) = δ1−u(dp) (a unit point mass at 1 − u) and
AV@Ru(Y | Ft) corresponds to µ(dp) = u−1I{p ∈ [1 − u, 1]}(dp) (a bounded density).
Conditional risk measures of the form (2) satisfy ρ(aY + b | Ft) = aρ(Y | Ft)− b if a ∈ R+

and b is Ft-measurable, called positive homogeneity and conditional cash additivity. More-
over, they are monotone: Ỹ ≥ Y implies ρ(Ỹ | Ft) ≤ ρ(Y | Ft). Throughout the paper
(in)equalities between random variables should be interpreted in the almost sure sense.

3 Convergence of multi-period valuations

Fix T ∈ N and let X,X1, X2, . . . be random vectors in RT and let Y, Y 1, Y 2, . . . be
random vectors in (Rd)T , d ∈ N. Suppose that L(Xn, Y n)

w→ L(X,Y ) as n → ∞, where
L(X,Y ) is Gaussian. Set Ft = σ((X,Y )≤t), Fn

t = σ((Xn, Y n)≤t). (X,Y ) and (Xn, Y n)
are adapted discrete-time stochastic processes with respect to the filtrations (Ft)Tt=0 and
(Fn

t )
T
t=0, respectively, where F0 = Fn

0 = {Ω, ∅}. For each n, Xn = (Xn
t )
T
t=1 corresponds to

a discounted incremental cashflow in a multi-period model with T periods and time points
0, 1, . . . , T . For each n, Y n = (Y n

t )
T
t=1 corresponds to a stochastic process that provides

additional information, additional to the information provided by the process Xn. Taking
Y n to be nonrandom means that no such additional information is considered and that
(Fn

t )
T
t=0 is the natural filtration generated by Xn. The discounted value at time t of the

cashflow occurring after time t is denoted by V n
t (X

n). Since no cashflows occur after time
T , V n

T (X
n) = 0. The process of values of the cashflow Xn is (V n

t (X
n))Tt=0. Both Xn

t

and V n
t (X

n) are Fn
t -measurable. The processes (Vt(X))Tt=0 and (V n

t (X
n))Tt=0 are defined

backward recursively by

VT (X) = 0, Vt(X) = φt(Xt+1 + Vt+1(X)), t < T, (3)

V n
T (X

n) = 0, V n
t (X

n) = φnt (X
n
t+1 + V n

t+1(X
n)), t < T, (4)

where φt : L
1(FT ) → L1(Ft) and φnt : L1(Fn

T ) → L1(Fn
t ) are mappings that are made

precise below. In particular, the mappings φt and φ
n
t will satisfy

φt(aY + Ỹ ) = aφt(Y ) + Ỹ , φnt (aY + Ỹ ) = aφnt (Y ) + Ỹ for a ∈ R+, Ỹ ∈ L1(Ft). (5)

These properties are called positive homogeneity (the effect of multiplication by a non-
negative scalar) and conditional cash additivity. As a consequence, for a ∈ R+, b ∈ RT ,

Vt(aX + b) = aVt(X) +
T∑

s=t+1

bs, V n
t (aX

n + b) = aV n
t (X

n) +
T∑

s=t+1

bs. (6)

Theorems 1 and 2 presented below essentially say that if L(Xn, Y n)
w→ L(X,Y ) as n→ ∞

and also in terms of conditional distributions (see e.g. (15)) together with a uniform
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integrability assumption (see e.g. (16)), then limn→∞ V n
0 (Xn) = V0(X), where the values

V n
0 (Xn) and V0(X) are defined with respect to the filtrations generated by (Xn, Y n)

and (X,Y ), respectively. The essential point is that V n
0 (Xn) is typically impossible to

compute analytically and only with significant difficulties numerically, whereas V0(X) has
an explicit expression that is straightforward to compute in terms of the mean vector and
covariance matrix of the Gaussian weak limit (see e.g. (20)). Therefore, the theorems we
present enable the use of conceptually sound valuation techniques without the significant
efforts otherwise needed to obtain numerical solutions to backward recursions.

3.1 Economic motivation

Current regulatory frameworks for the insurance industry prescribe so-called cost-of-
capital valuation of liability cashflows. Such approaches to valuation consider capital
requirements and the costs stemming from the financing of buffer capital. In the multi-
period setting, with capital requirements determined one period at the time, the random-
ness of future capital requirements and associated costs drive the liability valuation.

Multiperiod cost-of-capital valuation is studied in Salzmann and Wüthrich [12], Möhr
[9], Pelsser and Salahnejhad Ghalehjooghi [10] and Engsner et al. [5]. A common theme
is that multiperiod valuations is constructed through backward induction of one-period
valuations. Pelsser and Salahnejhad Ghalehjooghi [10] study continuous-time limits of
multiperiod valuations defined in terms of one-step valuations, similar to those considered
below and including cost-of-capital valuation. In [10] the convergence takes place as the
length of the time periods tends to zero and the number of time periods tends to infinity.
Clearly, this is a different kind of convergence than that studied here. Multiperiod valua-
tions are so-called time-consistent by their construction through the backward induction
of one-period valuations. For mathematical properties of general multiperiod valuations,
we refer to Cheridito et al [4], Artzner et al. [3] and Jobert and Rogers [7].

We now explain the basic ingredients of multi-period cost-of-capital valuation. Let V0
be the value at time 0 of the liability cashflow X. This amount should be interpreted
as the capital that needs to be transferred along with the liability to another external
agent in order for the external agent (or capital provider) to accept managing the liability
runoff and the associated capital costs. Let Vt denote the value at time t of the liability
cashflows X>t. The capital Vt is reserved at time t for managing the liability. However,
regulation requires the capital Rt = ρ(−Xt+1 − Vt+1 | Ft) > Vt to be set aside at time t.
The difference Rt−Vt is made available by a capital provider requiring an excess expected
return 1+ ηt on the provided capital between time t and t+1. The acceptability criterion
under which the capital provider accepts to provide capital gives the equation

E[Rt −Xt+1 − Vt+1 | Ft] = (1 + ηt)(Rt − Vt). (7)

Solving for Vt yields Vt = φt(Xt+1 + Vt+1), where

φt(Y ) =
1

1 + ηt
E[Y | Ft] +

ηt
1 + ηt

ρ(−Y | Ft). (8)

A commonly used conditional risk measure for variables with finite variance is ρSD(Y |
Ft) = E[−Y | Ft] + cSD var(Y | Ft)1/2. Note that it can be argued that ρSD(Y | Ft) is
an inappropriate choice because it violates the monotonicity property: Ỹ ≥ Y does not
imply ρSD(Y | Ft) ≥ ρSD(Ỹ | Ft). For this choice of conditional risk measure, (8) takes
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the form

φt(Y ) = E[Y | Ft] + ct var(Y | Ft)1/2, (9)

where ct = cSDηt/(1− ηt), and φt(Y ) ∈ L2(Ft) if Y ∈ L2(FT ).
It can be argued that the capital provider, seen as the share holder of the company,

has limited liability and is not required to continue injecting capital if the the value Rt
of available asset turns out insufficient to match the value Xt+1 + Vt+1 of the liability
towards the policy holders. For discussions on limited liability in the context of cost-of-
capital valuation we refer to Albrecher et al. [1] and Möhr [9]. In the setting with limited
liability, (7) is replaced by

E[(Rt −Xt+1 − Vt+1)
+ | Ft] = (1 + ηt)(Rt − Vt) (10)

and (8) is replaced by

φt(Y ) = ρ(−Y | Ft)−
1

1 + ηt
E[(ρ(−Y | Ft)− Y )+ | Ft]. (11)

Regardless of whether we consider cost-of-capital valuation with or without limited liabil-
ity, it follows that φt(aY + Ỹ ) = aφt(Y )+ Ỹ for a ∈ R+ and Ỹ ∈ L1(Ft) if the conditional
risk measure satisfies ρ(aY + Ỹ | Ft) = aρ(Y | Ft) − Ỹ . Moreover, φt inherits mono-
tonicity from the conditional risk measure: if Ỹ ≥ Y implies ρ(Y | Ft) ≥ ρ(Ỹ | Ft), then
φt(Ỹ ) ≥ φt(Y ).

An alternative to an acceptability criterion based on expected excess return and a
cost-of-capital rate is an acceptability criterion saying that a risk averse capital provider
provides capital if the payoff resulting from providing capital is preferred, in terms of
expected utility, to simply rolling this capital forward by investing it in a riskless bond
(or more generally, investing it in the numeraire asset). In this setting, the acceptability
criterion (10) is replaced by

E[ut((Rt −Xt+1 − Vt+1)
+) | Ft] = ut(Rt − Vt), (12)

where ut is an increasing and concave (utility) function. Consequently, (11) is replaced by

φt(Y ) = ρ(−Y | Ft)− u−1
t

(
E
[
ut((ρ(−Y | Ft)− Y )+) | Ft

])
. (13)

Also in this case φt inherits monotonicity and the property φt(Y + Ỹ ) = φt(Y ) + Ỹ ,
Ỹ ∈ L1(Ft), from a monotone and conditionally cash additive conditional risk measure.
However, the property φt(aY + Ỹ ) = aφt(Y ) + Ỹ , a ∈ R+, requires that ut is chosen a
power utility function ut(x) = αtx

βt , where αt > 0 and βt ∈ (0, 1]. In this case, φt in (13)
takes the form

φt(Y ) = ρ(−Y | Ft)− E
[(
(ρ(−Y | Ft)− Y )+

)βt | Ft]1/βt . (14)

The mappings φt : L
1(FT ) → L1(Ft) given by (8), (11) or (14) all satisfy φt(Y + Ỹ ) =

φt(Y ) + Ỹ whenever Ỹ ∈ L1(Ft). Therefore, (3) can be expressed as, with ◦ denoting
composition,

VT (X) = 0, Vt(X) = φt ◦ · · · ◦ φT−1

( T∑
s=t+1

Xs

)
, t < T.

These properties also hold for the mappings φt in (9) with L1 replaced by L2.
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3.2 Main results

The main results consist of Theorems 1, 2 and 3. Theorems 1 and 2 presents conditions
under which we have convergence for multi-period values (that are typically not com-
putable) to a computable explicit limit. Theorem 3 presents a monotonicity result for the
limit expressions in terms of a partial order between filtrations.

Theorem 1. Let X,X1, X2, . . . be random vectors in RT and let Y, Y 1, Y 2, . . . be random
vectors in (Rd)T , d ∈ N. Suppose that L(Xn, Y n)

w→ L(X,Y ) as n→ ∞, where L(X,Y ) is
Gaussian, and that (L(∥Xn∥))n∈N is uniformly integrable. Suppose also that, for each t and
each convergent sequence (xn, yn)≤t → (x, y)≤t with (xn, yn)≤t ∈ supp(L((Xn, Y n)≤t)),

L
(
(Xn, Y n) | (Xn, Y n)≤t = (xn, yn)≤t

)
w→ L

(
(X,Y ) | (X,Y )≤t = (x, y)≤t

)
as n→ ∞,

(15)(
L
(
∥Xn∥ | (Xn, Y n)≤t = (xn, yn)≤t

))
n∈N

is uniformly integrable. (16)

For all t, let Vt(X) and V n
t (X

n) be given by (3) and (4) with φt and φ
n
t given by either

(8) and

φnt (Y ) =
1

1 + ηt
E[Y | Fn

t ] +
ηt

1 + ηt
ρ(−Y | Fn

t ), ηt ∈ R+, (17)

or by (11) and

φnt (Y ) = ρ(−Y | Fn
t )−

1

1 + ηt
E
[(
ρ(−Y | Fn

t )− Y
)+ | Fn

t

]
, ηt ∈ R+, (18)

or by (14) and

φnt (Y ) = ρ(−Y | Fn
t )− E

[(
(ρ(−Y | Fn

t )− Y )+
)βt | Fn

t

]1/βt
, βt ∈ (0, 1], (19)

where Ft = σ((X,Y )≤t) and Fn
t = σ((Xn, Y n)≤t), and where ρ(−Y | Ft) and ρ(−Y | Fn

t )
are of the form (2). Then limn→∞ V n

0 (Xn) = V0(X), where

V0(X) = E

[ T∑
t=1

Xt

]
+

T∑
t=1

φt−1(εt)

(
Var

( T∑
u=t

Xu | (X,Y )≤t−1

)
−Var

( T∑
u=t

Xu | (X,Y )≤t

))1/2

,

(20)

where εt is standard normally distributed and independent of Ft−1.

Remark 1. Notice that the conditional variances in (20) are nonrandom since the (joint)
distribution of (X,Y ) is Gaussian. Notice also Ft = σ((X,Y )≤t) generates the natural
filtration of X if Y is chosen as nonrandom (a degenerate Gaussian process). We empha-
size that if the ηt in (8) and (11) do not depend on t, and similarly if the βt in (19) do
not depend on t, then φt−1(εt) = φ0(ε1) in (20) does not depend on t.

Remark 2. Joint weak convergence L(Xn, Y n)
w→ L(X,Y ) as n → ∞ does not imply

conditional weak convergence such as the convergence in (15). A counterexample as well
as sufficient conditions for conditional weak convergence are presented in [13].
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Remark 3. For ε is standard normally distributed and independent of Ft−1,

V@Ru(ε | Ft−1) = Φ−1(1− u), AV@Ru(ε | Ft−1) =
1

u
φ
(
Φ−1(1− u)

)
,

where φ and Φ here denote the standard normal density and distribution function, respec-
tively. Hence, with ρ0(ε) denoting either V@Ru(ε | Ft−1) or AV@Ru(ε | Ft−1) with values
above that do not depend on t, we get

φt−1(ε) =
ηt−1

1 + ηt−1
ρ0(ε)

in the case of (8), and

φt−1(ε) = ρ0(ε)−
1

1 + ηt−1

(
ρ0(ε)Φ(ρ0(ε)) + φ(ρ0(ε))

)
≤ ηt−1

1 + ηt−1
ρ0(ε)

in the case of (11). In case of (14), the expectation E[((ρ0(ε)−ε)+)βt−1 ] has to be computed
numerically in order to compute φt−1(ε).

Remark 4. As stated in Theorem 1, the result holds when φt and φ
n
t are given by (8)

and (17). However, the theorem is actually proven for mappings of a more general kind,
namely, for λt ∈ [0, 1] and µ1t , µ

2
t ∈ P([0, 1])′, the mappings φt : L1(FT ) → L1(Ft),

φnt : L1(Fn
T ) → L1(Fn

t ) given by (21) and (22) below:

φt(Y ) = λt

∫
F−1
Y |Ft

(p)µ1t (dp) + (1− λt)

∫
F−1
−Y |Ft

(p)µ2t (dp), (21)

φnt (Y ) = λt

∫
F−1
Y |Fn

t
(p)µ1t (dp) + (1− λt)

∫
F−1
−Y |Fn

t
(p)µ2t (dp). (22)

Note that (8) and (17) correspond to µ1t (dp) = dp and λt = (1 + ηt)
−1.

Remark 5. Both (11), (18) and (14), (19) are special cases of

φt(Y ) = ρ(−Y | Ft)− γt E
[(
(ρ(−Y | Ft)− Y )+

)βt | Ft]1/βt , (23)

φnt (Y ) = ρ(−Y | Fn
t )− γt E

[(
(ρ(−Y | Fn

t )− Y )+
)βt | Fn

t

]1/βt
, (24)

as seen by choosing (γt, βt) = ((1 + ηt)
−1, 1) in case of (11), (18), and γt = 1 in case of

(14), (19).

Our next result shows convergence of multi-period values in the case of where the
one period valuation mapping is defined as a sum of a conditional expectation and a
constant times a conditional standard deviation. Let ct ∈ R+ and φt : L

2(FT ) → L2(Ft),
φnt : L2(Fn

T ) → L2(Fn
t ) be given by

φt(Y ) = E
[
Y | Ft

]
+ ct var

[
Y | Ft

]1/2
, (25)

φnt (Y ) = E
[
Y | Fn

t

]
+ ct var

[
Y | Fn

t

]1/2
. (26)

(Vt(X))Tt=0 and (V n
t (X

n))Tt=0 are defined backward recursively by (3) and (4), and (5) and
(6) hold.
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Theorem 2. Let X,X1, X2, . . . be random vectors in RT and let Y, Y 1, Y 2, . . . be ran-
dom vectors in (Rd)T , d ∈ N. Suppose that L(Xn, Y n)

w→ L(X,Y ) as n → ∞, where
L(X,Y ) is Gaussian, and such that (L(∥Xn∥2))n∈N is uniformly integrable. Suppose also
that, for each t and each convergent sequence (xn, yn)≤t → (x, y)≤t with (xn, yn)≤t ∈
supp(L((Xn, Y n)≤t)),

L
(
(Xn, Y n) | (Xn, Y n)≤t = (xn, yn)≤t

)
w→ L

(
(X,Y ) | (X,Y )≤t = (x, y)≤t

)
as n→ ∞,

(27)(
L(∥Xn∥2 | (Xn, Y n)≤t = (xn, yn)≤t)

)
n∈N

is uniformly integrable. (28)

Let Vt(X) and V n
t (X

n) be given by (3) and (4) with φt and φ
n
t given by (25) and (26)

with Ft = σ((X,Y )≤t) and Fn
t = σ((Xn, Y n)≤t). Then limn→∞ V n

0 (Xn) = V0(X), where

V0(X) = E

[ T∑
t=1

Xt

]
+

T∑
t=1

φt−1(εt)

(
Var

( T∑
u=t

Xu | (X,Y )≤t−1

)
−Var

( T∑
u=t

Xu | (X,Y )≤t

))1/2

,

where εt is standard normally distributed and independent of Ft−1.

The final theorem considers the Gaussian limit models appearing in Theorems 1 and 2
and establishes a partial ordering of values V0(X) assigned to a given cashflowX depending
on a partial order between filtrations to which X is adapted. One may guess that a larger
filtration allows for more accurate predictions over time of future cashflows and thereby
reduces the value V0(X). We show that this holds if the parameters of the one-step
valuation mappings φt do not depend on t and if the conditional variance of the aggregate
cashflow

∑T
s=1Xs decays in a convex manner over time as more information becomes

available.
We consider filtrations F = (Ft)Tt=0 with F0 = {Ω, ∅} and Ft = σ((X,Y )≤t), for t ≥ 1,

where (X,Y ) is jointly Gaussian. We assume that the one-step valuation mappings φt do
not depend on t such that φt−1(εt) = φ0(ε1) in (20). We write

V0(X,F) = E

[ T∑
t=1

Xt

]
+ φ0(ε1)

T∑
t=1

(
Var

( T∑
u=t

Xu | Ft−1

)
−Var

( T∑
u=t

Xu | Ft
))1/2

.

The following theorem says that for filtrations F and G of the above kind (generated
by a process that is jointly Gaussian together with the cashflow process X), if t 7→
Var(

∑T
s=1Xs | Ft) is convex, then V0(X,F) ≥ V0(X,G) whenever Ft ⊆ Gt for every t.

The convexity assumption is necessary.

Theorem 3. Let (X,Y )Tt=1 and (X,Z)Tt=1 be Gaussian processes. Let F = (Ft)Tt=0

and G = (Gt)Tt=0 be filtrations with F0 = G0 = {Ω, ∅} and Ft = σ((X,Y )≤t) and
Gt = σ((X,Z)≤t), for t ≥ 1. If Ft ⊆ Gt for every t and if t 7→ Var(

∑T
s=1Xs | Ft) is

convex, then V0(X,F) ≥ V0(X,G).

Remark 6. We emphasize that the Gaussian assumption in Theorem 3 means that the
terms

ct = Var

( T∑
s=1

Xs | Ft−1

)
−Var

( T∑
s=1

Xs | Ft
)

form a nonrandom sequence (ct)
T
t=1 and that the convexity property is equivalent to c1 ≥

c2 ≥ · · · ≥ cT .
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4 Proofs and auxiliary results

We use the notation Zn≤t = (Xn, Y n)≤t, Z≤t = (X,Y )≤t and zn≤t = (xn, yn)≤t, z≤t =
(x, y)≤t.

Proof of Theorem 1 assuming (21) and (22). As explained in Remark 4, (8) and (17) are
special cases of (21) and (22).

For t = 1, . . . , T , consider mappings ψnt : supp(L(Zn≤t)) → R given by ψnT (z
n
≤T ) =∑T

s=1 x
n
s and

ψnt (z
n
≤t) = λt

∫
F−1
ψn
t+1(Z

n
≤t+1

)|Zn
≤t

=zn≤t
(p)µ1t (dp) + (1− λt)

∫
F−1
−ψn

t+1(Z
n
≤t+1

)|Zn
≤t

=zn≤t
(p)µ2t (dp),

(29)

and let

ψn0 = λ0

∫
F−1
ψn
1 (Z

n
1 )
(p)µ10(dp) + (1− λ0)

∫
F−1
−ψn

1 (Z
n
1 )
(p)µ20(dp), (30)

where µ1t , µ
2
t ∈ P([0, 1])′. We define ψt : Rt → R and ψ0 analogously without the super-

script n. Note that

ψnt (Z
n
≤t) =

t∑
s=1

Xn
s + V n

t (X
n) = φnt (ψ

n
t+1(Z

n
≤t+1)), t ≥ 1, ψn0 = V n

0 (X) = φn0 (ψ
n
1 (Z

n
≤1)),

ψt(Z≤t) =
t∑

s=1

Xs + Vt(X) = φt(ψt+1(Z≤t+1)), t ≥ 1, ψ0 = V0(X) = φ0(ψ1(Z≤1)).

Therefore, the proof is complete once we show the convergence limn→∞ ψn0 = ψ0.
The argument of the proof is backwards induction. We will show that for t = T, . . . , 1,

UI(t): (L(ψnt (Zn≤t) | Zn≤s = zn≤s))n is uniformly integrable for each s = 1, . . . , t − 1 and
zn≤s → z≤s,

CC(t): (ψnt )n is continuously convergent, i.e. ψnt (z
n
≤t) → ψt(z≤t), whenever z

n
≤t → z≤t.

Induction base: UI(T ) and CC(T ) hold.
For s ∈ {1, . . . , T − 1} and zn≤s → z≤s, UI(T ) follows from (16) since norms on

Euclidean spaces are equivalent and |ψnT (zn≤T )| = |
∑T
s=1 x

n
s | ≤

∑T
s=1 |xns |. Moreover,

ψnT (z
n
≤T ) =

T∑
s=1

xns →
T∑
s=1

xs = ψT (z≤T )

whenever zn≤T → z≤T , yielding CC(T ).
Induction step: UI(t+ 1), CC(t+ 1) together imply UI(t), CC(t).

Fix s ∈ {1, . . . , t − 1} and sequence (zn≤s)n with zn≤s → z≤s. Let κns+1,t+1(z
n
≤s, ·) and

κs+1,t+1(z≤s, ·) be regular versions of the conditional distributions

P((Zns+1, . . . , Z
n
t+1)

T ∈ · | Zn≤s = zn≤s) and P((Zs+1, . . . , Zt+1)
T ∈ · | Z≤s = z≤s).

By assumption (15), κns+1,t+1(z
n
≤s, ·)

w→ κs+1,t+1(z≤s, ·). Since (ψnt+1(z
n
≤s, ·)) is continuously

convergent by the induction assumptionCC(t+1), by the generalized continuous mapping
theorem ([8, Theorem 4.27, Exercise 27]),

κns+1,t+1(z
n
≤s, ·) ◦ (ψnt+1(z

n
≤s, ·))−1 w→ κs+1,t+1(z≤s, ·) ◦ (ψt+1(z≤s, ·))−1,

10



i.e.

L(ψnt+1(Z
n
≤t+1) | Zn≤s = zn≤s)

w→ L(ψt+1(Z≤t+1) | Z≤s = z≤s). (31)

Lemma 3 shows that the limiting distribution in (31) is Gaussian. By Lemma 2, there
exists a constant c > 0, such that

|ψnt (z)| ≤ cE[|ψnt+1(Z
n
≤t+1)| | Zn≤t = z].

Hence, it is sufficient to show uniform integrability of(
L
(
E[|ψnt+1(Z

n
≤t+1)| | Zn≤t] | Zn≤s = zn≤s

))
n
. (32)

Setting W̃n = E[|ψnt+1(Z
n
≤t+1)| | Zn≤t] and Wn = |ψnt+1(Z

n
≤t+1)|, this follows from Lemma

4, using UI(t+ 1) and CC(t+ 1). Hence, UI(t) holds.
We proceed by showing CC(t), i.e. the convergence of

ψnt (z
n
≤t) = λt

∫
F−1
ψn
t+1(Z

n
≤t+1

)|Zn
≤t

=zn≤t
(p)µ1t (dp) (33)

+ (1− λt)

∫
F−1
−ψn

t+1(Z
n
≤t+1

)|Zn
≤t

=zn≤t
(p)µ2t (dp). (34)

We will prove the convergence assuming that µ1t has a bounded density and that supp(µ2t ) ⊂
[a, b] ⊂ (0, 1). Other possibilities for µ1t , µ

2
t ∈ P([0, 1])′ are handled by the same arguments

as those shown below.
We start by the integral in (33) and will show convergence by an application of Pratt’s

Lemma [11]. Let w : (0, 1) → R, bounded by some c′ > 0, be the density of µ1t , i.e.
µ1t (dp) = w(p)dp. Let

fn(p) = F−1
ψn
t+1(Z

n
≤t+1

)|Zn
≤t

=zn≤t
(p)w(p).

From (31) follows convergence

fn(p) → F−1
ψt+1(Z≤t+1)|Z≤t=z≤t

(p)w(p)

for almost every p ∈ (0, 1). By combining (31) and the continuous mapping theorem
applied to the absolute value function follows convergence of upper and lower bounds
ln(p) ≤ fn(p) ≤ un(p) for almost every p ∈ (0, 1):

ln(p) = c′F−1
−|ψn

t+1(Z
n
≤t+1

)||Zn
≤t

=zn≤t
(p) → c′F−1

−|ψt+1(Z≤t+1)||Z≤t=z≤t
(p) = l(p)

un(p) = c′F−1
|ψn

t+1(Z
n
≤t+1

)||Zn
≤t

=zn≤t
(p) → c′F−1

|ψt+1(Z≤t+1)||Z≤t=z≤t
(p) = u(p).

The induction assumption UI(t+ 1) together with

L(|ψnt+1(Z
n
≤t+1)| | Zn≤t = zn≤t)

w→ L(|ψt+1(Z≤t+1)| | Z≤t = z≤t),

allow us to conclude from [8, Theorem 4.11] that∫
ln(p)dp =− c′ E[|ψnt+1(Z

n
≤t+1)| | Zn≤t = zn≤t]

→− c′ E[|ψt+1(Z≤t+1)| | Z≤t = z≤t] =

∫
l(p)dp

11



and ∫
un(p)dp = c′ E[|ψnt+1(Z

n
≤t+1)| | Zn≤t = zn≤t]

→ c′ E[|ψt+1(Z≤t+1)| | Z≤t = z≤t] =

∫
u(p)dp.

Hence, by Pratt’s Lemma [11, Theorem 1] we have convergence of the integral in (33), i.e.∫
F−1
ψn
t+1(Z

n
≤t+1

)|Zn
≤t

=zn≤t
(p)µ1(dp) =

∫
fn(p)dp→

∫
f(p)dp

=

∫
F−1
ψt+1(Z≤t+1)|Z≤t=z≤t

(p)µ1(dp).

We now consider the integral in (34). By Lemma 3, the mapping p 7→ F−1
−ψt+1(Z≤t+1)|Z≤t=z≤t

(p)

is continuous for all p ∈ (0, 1). Therefore, from (31) follows pointwise convergence

F−1
−ψn

t+1(Z
n
≤t+1

)|Zn
≤t

=zn≤t
(p) → F−1

−ψt+1(Z≤t+1)|Z≤t=z≤t
(p)

for all p ∈ (0, 1). In particular, the convergence holds at the points a, b ∈ (0, 1). Therefore,
using the fact that p 7→ F−1

−ψn
t+1(Z

n
≤t+1

)|Zn
≤t

=zn≤t
(p) and p 7→ F−1

−ψt+1(Z≤t+1)|Z≤t=z≤t
(p) are

increasing, we can find d > 0, such that

c′′ = max

(∣∣∣F−1
−ψt+1(Z≤t+1)|Z≤t=z≤t

(a)
∣∣∣, ∣∣∣F−1

−ψt+1(Z≤t+1)|Z≤t=z≤t
(b)

∣∣∣)+ d

uniformly bounds the integrand, i.e.∣∣∣F−1
−ψn

t+1(Z
n
≤t+1

)|Zn
≤t

=zn≤t
(p)

∣∣∣ ≤ c′′

for all p ∈ [a, b] and for all n ∈ N. Hence, the bounded convergence theorem yields∫
F−1
−ψn

t+1(Z
n
≤t+1

)|Zn
≤t

=zn≤t
(p)µ2t (dp) →

∫
F−1
−ψt+1(Z≤t+1)|Z≤t=z≤t

(p)µ2t (dp).

Hence, we have shown CC(t) and the proof of the induction step is complete.
It remains to show convergence of ψn0 . By the continuous convergence of (ψn1 ) and the

generalized continuous mapping theorem ([8, Theorem 4.27]), it follows that L(ψn1 (Zn1 ))
w→

L(ψ1(Z1)), where the limit is Gaussian (cf. Lemma 3). Therefore the convergence of

ψn0 = λ0

∫
F−1
ψn
1 (Z

n
1 )
(p)µ10(dp) + (1− λ0)

∫
F−1
−ψn

1 (Z
n
1 )
(p)µ20(dp)

follows from arguments completely analogous to those verifying the induction step. Lemma
3 together with the variance decomposition

Var

(
E

[ T∑
v=u

Xv | Z≤u

]
| Z≤u−1

)
= Var

( T∑
v=u

Xv | Z≤u−1

)

− E

[
Var

( T∑
v=u

Xv | Z≤u

)
| Z≤u−1

]

= Var

( T∑
v=u

Xv | Z≤u−1

)
−Var

( T∑
v=u

Xv | Z≤u

)
completes the proof.

12



Proof of Theorem 1 assuming (23) and (24). The proofs is similar to the above proof of
Theorem 1 assuming (21) and (22).

Fix µ0, . . . , µT−1 ∈ P([0, 1])′. Let νnT (z
n
≤T ) =

∑T
s=1 x

n
s and ψnT (z

n
≤T ) =

∑T
s=1 x

n
s . For

t = 1, . . . , T − 1, define mappings νnt , ψ
n
t : supp(L(Zn≤t)) → R by

νnt (z
n
≤t) =

∫
F−1
−ψn

t+1(Z
n
≤t+1

)|Zn
≤t

=zn≤t
(p)µt(dp), (35)

ψnt (z
n
≤t) = νnt (z

n
≤t)− γt E

[((
νnt (z

n
≤t)− ψnt+1(Z

n
≤t+1)

)+)βt | Zn≤t = zn≤t

]1/βt
. (36)

Let

νn0 =

∫
F−1
−ψn

1 (Z
n
1 )
(p)µ0(dp), ψn0 = νn0 − γ0 E

[((
νn0 − ψn1 (Z

n
1 )

)+)β0]1/β0
. (37)

Define νt, ψt : Rt → R and ν0, ψ0 analogously without the superscript n. The proof is
complete once we show the convergence limn→∞ ψn0 = ψ0.

The argument of the proof is backwards induction. We will show that for t = T, . . . , 1,

UI(t): (L(ψnt (Zn≤t) | Zn≤s = xn≤s))n is uniformly integrable for each s = 1, . . . , t − 1 and
zn≤s → z≤s,

CC(t): (ψnt )n is continuously convergent, i.e. ψnt (z
n
≤t) → ψt(z≤t), whenever z

n
≤t → z≤t.

Induction base: UI(T ) and CC(T ) hold. The argument verifying the induction base is
identical to that in the proofs of Theorem 1 assuming (21) and (22).
Induction step: UI(t + 1), CC(t + 1) together imply UI(t), CC(t). The argument
verifying that

L(ψnt+1(Z
n
≤t+1) | Zn≤s = zn≤s)

w→ L(ψt+1(Z≤t+1) | Z≤s = z≤s). (38)

holds is identical to that in the proofs of Theorem 1 assuming (21) and (22). By Lemma
5, there exists a constant c > 0, such that

|ψnt (z)| ≤ cE[|ψnt+1(Z
n
≤t+1)| | Zn≤t = z].

Hence, to verify UI(t) it is sufficient to show uniform integrability of(
L
(
E[|ψnt+1(Z

n
≤t+1)| | Zn≤t] | Zn≤s = zn≤s

))
n∈N

and after setting Wn = |ψnt+1(Z
n
≤t+1)|, W̃n = E[|ψnt+1(Z

n
≤t+1)| | Zn≤t], UI(t) follows from

UI(t+ 1) and (38) by applying Lemma 4.
We proceed by showing CC(t), i.e. the convergence of (36). We first consider (35).

If µt admits a bounded density, convergence ρnt (z
n
≤t) → ρt(z≤t) can be shown by Pratt’s

Lemma, together with (38) and UI(t + 1) (cf. Proof of Theorem 1 assuming (21) and
(22)). If µt satisfies supp(µt) ⊂ [a, b] with 0 < a < b < 1, we first note that we have
pointwise convergence F−1

−ψn
t+1(Z

n
≤t

)|Zn
≤t

=zn≤t
(p) → F−1

−ψt+1(Z≤t)|Z≤t=z≤t
(p) for all p ∈ (0, 1)

since the limiting distribution in (38) is Gaussian (cf. Lemma 3). There exists c > 0 such
that

sup
n

sup
p∈[a,b]

|F−1
−ψn

t+1(Z
n
≤t+1

)|Zn
≤t

=zn≤t
(p)| ≤ sup

n
cE[|ψnt+1(Z

n
≤t+1)| | Zn≤t = zn≤t]
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and the right-hand side is finite. The inequality is due to properties of quantile functions
(cf. Proof of Lemma 2). The finiteness is because of the convergence of the conditional
expectation which is due to (38) and UI(t + 1). Hence, dominated convergence yields
νnt (z

n
≤t) → νt(z≤t).
We now show convergence of the conditional expectation in (36) which can be written

in terms of

E
[
hn

(
ψnt+1(Z

n
≤t+1)

)
| Zn≤t = zn≤t

]
,

where hn(w) =
((
νnt (z

n
≤t) − w

)+)βt converges continuously towards h(w) =
((
νt(z≤t) −

w
)+)βt . Moreover, since

|hn(w)| ≤
(
sup
n
(νnt (z

n
≤t)) + |w|

)βt
, sup

n
(νnt (z

n
≤t)) <∞,

and βt ∈ (0, 1], uniform integrability of L
(
hn

(
ψnt+1(Z

n
≤t+1)

)
| Zn≤t = zn≤t

)
follows from

UI(t+ 1). This means convergence

E
[
hn

(
ψnt+1(Z

n
≤t+1)

)
| Zn≤t = zn≤t

]
→ E

[
h
(
ψt+1(Z≤t+1)

)
| Z≤t = z≤t

]
which implies CC(t) and the proof of the induction step is complete.

Finally, the proof of the convergence limn→∞ ψn0 = ψ0 follows by arguments analogous
to those in the proof of Theorem 1 assuming (21) and (22).

Lemma 1. Let W be a random variable with quantile function F−1(p) = min{x ∈ R :
FW (x) ≥ p}. If µ ∈ P([0, 1])′, then there exists c ∈ (0,∞) such that∣∣∣ ∫ F−1

W (p)µ(dp)
∣∣∣ ≤ cE[|W |].

Proof. We have the general bounds l, u given by

l =

∫
F−1
−|W |(p)µ(dp) ≤

∫
F−1
W (p)µ(dp) ≤

∫
F−1
|W |(p)µ(dp) = u.

Moreover,

F−1
−|W |(p) = −F−1

|W |((1− p)+) = − lim
v↓1−p

F−1
|W |(v).

For any p ∈ (0, 1),

pF−1
|W |(1− p) ≤

∫ 1

1−p
F−1
|W |(v)dv ≤ E[|W |],

pF−1
−|W |(p) ≥

∫ p

0
F−1
−|W |(v)dv ≥ −E[|W |].

Consequently, if supp(µ) ⊂ [a, b] ⊂ (0, 1), then

l ≥ −1

a
E[|W |], u ≤ 1

1− b
E[|W |],

∣∣∣ ∫ F−1
W (p)µ(dp)

∣∣∣ ≤ max
(1
a
,

1

1− b

)
E[|W |].

If µ has a density bounded by c′ ∈ (0,∞), then

l ≥ −c′ E[|W |], u ≤ c′ E[|W |],
∣∣∣ ∫ F−1

W (p)µ(dp)
∣∣∣ ≤ c′ E[|W |].
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Lemma 2. If ψnt is given by (29) and (30), then exists c ∈ (0,∞) such that

|ψn0 | ≤ cE[|ψn1 (Zn1 )|] and |ψnt (z)| ≤ cE[|ψnt+1(Z
n
≤t+1)| | Zn≤t = z]

for any z ∈ supp(L(Zn≤t)).

Proof. We proof the inequality for t ≥ 1. The argument for t = 0 is identical. Since

|ψnt (z)| ≤
∣∣∣ ∫ F−1

ψn
t+1(Z

n
≤t+1

)|Zn
≤t

=z(p)µ
1
t (dp)

∣∣∣+ ∣∣∣ ∫ F−1
−ψn

t+1(Z
n
≤t+1

)|Zn
≤t

=z(p)µ
2
t (dp)

∣∣∣,
we can apply Lemma 1, bounding the right-hand side by cE[|ψnt+1(Z

n
≤t)| | Zn≤t = z] for

some c.

The following result is similar to Proposition 6 in [5].

Lemma 3. Let (Zt)
T
t=1 = (Xt, Yt)

T
t=1 be a Gaussian process, let F0 = {Ω, ∅}, and let

Ft = σ(Z≤t) for t ≥ 1. Let VT = 0 and, for t ∈ {0, 1, . . . , T −1}, let Vt = φt(Xt+1+Vt+1),
where φt is positive homogeneous and conditionally cash additive. Suppose that for each t,

if P(W ∈ · | Ft) = P(W̃ ∈ · | Ft), then φt(W ) = φt(W̃ ),

and if W is independent of Ft, then φt(W ) is nonrandom. Then

Vt = E

[ T∑
u=t+1

Xu | Ft
]
+

T∑
u=t+1

φu−1(εu)Var

(
E

[ T∑
v=u

Xv | Fu
]
| Fu−1

)1/2

,

where εu is standard normal and independent of Fu−1.

Proof. The lemma is proved by backward induction. We prove the induction step. Suppose
that Xt+1 + Vt+1 and Z≤t are jointly Gaussian. Then there exists a standard normal εt+1

independent of Ft such that

P(Xt+1 + Vt+1 ∈ · | Ft) = P
(
E[Xt+1 + Vt+1 | Ft] + εt+1Var(Xt+1 + Vt+1 | Ft)1/2 ∈ · | Ft

)
and it follows from properties of the multivariate normal distribution that the conditional
variance Var(Xt+1 + Vt+1 | Ft) is nonrandom. Hence, by positive homogeneity and condi-
tional cash additivity,

φt(Xt+1 + Vt+1) = E[Xt+1 + Vt+1 | Ft] + φt(εt+1)Var(Xt+1 + Vt+1 | Ft)1/2.

By the induction assumption (in the nontrivial case t+ 1 < T ),

Vt+1 = E

[ T∑
u=t+2

Xu | Ft+1

]
+

T∑
u=t+2

φu−1(εu)Var

(
E

[ T∑
v=u

Xv | Fu
]
| Fu−1

)1/2

.

Summing up the terms and using the tower property of conditional expectations complete
the proof.

Lemma 4. Let s ∈ {1, . . . , t− 1} and let (Wn)n∈N be a sequence of non-negative random
variables such that

L(Wn | Zn≤s = zn≤s)
w→ L(W | Z≤s = z≤s) as n→ ∞ (39)

and (
L(Wn | Zn≤s = zn≤s)

)
n∈N

is uniformly integrable. (40)

If W̃n = E[Wn | Zn≤t], then
(
L(W̃n | Zn≤s = zn≤s)

)
n∈N is uniformly integrable.
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Proof. First note that

E
[
W̃nI{W̃n ≥ r} | Zn≤s

]
= E

[
E[Wn | Zn≤t]I{W̃n ≥ r} | Zn≤s

]
= E

[
E[WnI{W̃n ≥ r} | Zn≤t] | Zn≤s

]
= E

[
WnI{W̃n ≥ r} | Zn≤s

]
,

i.e. E[W̃nI{W̃n ≥ r} | Zn≤s = zn≤s] = E[WnI{W̃n ≥ r} | Zn≤s = zn≤s]. For each γr > 0,

E[WnI{W̃n ≥ r} | Zn≤s = zn≤s]

= E[WnI{W̃n ≥ r}I{Wn ≤ γr} | Zn≤s = zn≤s]

+ E[WnI{W̃n ≥ r}I{Wn > γr} | Zn≤s = zn≤s]

≤ γr P(W̃
n ≥ r | Zn≤s = zn≤s) + E[WnI{Wn > γr} | Zn≤s = zn≤s]. (41)

By (39) and (40),

E[W̃nI{W̃n ≥ r} | Zn≤s = zn≤s] <∞ for all n ∈ N,

and similarly with Wn instead of W̃n. Therefore, uniform integrability of
(
L(W̃n | Zn≤s =

zn≤s)
)
n∈N is equivalent to (cf. [8] p. 67)

lim
r→∞

lim sup
n→∞

E[W̃nI{W̃n ≥ r} | Zn≤s = zn≤s] = 0

which follows if we show that there exists γr such that limr→∞ lim supn→∞[(41)] = 0. By
the uniform integrability assumption (40) and the finiteness of all the terms,

lim
r→∞

lim sup
n→∞

E[WnI{Wn > γr} | Zn≤s = zn≤s] = 0.

Therefore, it only remains to show that

lim
r→∞

lim sup
n→∞

γr P(W̃
n ≥ r | Zn≤s = zn≤s) = 0

for some sequence γr → ∞. By Markov’s inequality,

P(W̃n ≥ r | Zn≤s = zn≤s) ≤
E[W̃n | Zn≤s = zn≤s]

r

=
E[Wn | Zn≤s = zn≤s]

r

→ E[W | Z≤s = z≤s]

r
,

where the convergence in the last step follows from Lemma 4.11 in [8], using (39) and
(40). Letting e.g. γr =

√
r, the first term in (41) can therefore be made arbitrarily small

by choosing r sufficiently large.

Lemma 5. If νnt , ψ
n
t are given by (35), (36) and (37), then exists c ∈ (0,∞) such that

|ψn0 | ≤ cE[|ψn1 (Zn1 )|] and |ψnt (z)| ≤ cE[|ψnt+1(Z
n
≤t+1)| | Zn≤t = z]

for any z ∈ supp(L(Zn≤t)).

16



Proof of Lemma 5. Consider t ≥ 1. Note that, by Lemma 1, there exists c′ > 0, such that

|νnt (z)| ≤ c′ E[|ψnt+1(Z
n
≤t+1)| | Zn≤t = z].

Hence,

|ψnt (z)| ≤ c′ E[|ψnt+1(Z
n
≤t+1)| | Zn≤t = z]

+ γt E
[((

c′ E[|ψnt+1(Z
n
≤t+1)| | Zn≤t = z]− ψnt+1(Z

n
≤t+1)

)+)βt | Zn≤t = z
]1/βt

.

By Jensen’s inequality, the second summand above is bounded by

γt E
[(
c′ E[|ψnt+1(Z

n
≤t+1)| | Zn≤t = z]− ψnt+1(Z

n
≤t+1)

)+ | Zn≤t = z
]

≤ γt E
[
c′ E[|ψnt+1(Z

n
≤t+1)| | Zn≤t = z] + |ψnt+1(Z

n
≤t+1)| | Zn≤t = z

]
= (c′ + 1)γt E[|ψnt+1(Z

n
≤t+1)| | Zn≤t = z].

Hence, the statement holds with c = c′ + γt(c
′ +1). The inequality |ψn0 | ≤ cE[|ψn1 (Zn1 )|] is

shown by the same arguments.

Proof of Theorem 2. The proof proceeds in a similar manner as the proof of Theorem 1.
For t = 1, . . . , T , consider mappings ψnt : supp(L(Zn≤t)) → R given by

ψnt (z
n
≤t) =

{ ∑T
s=1 x

n
s , t = T,

E
[
ψnt+1(Z

n
≤t+1) | Zn≤t = zn≤t

]
+ ctVar

(
ψnt+1(Z

n
≤t+1) | Zn≤t = zn≤t

)1/2
, t < T,

and

ψn0 = E
[
ψn1 (Z

n
1 )

]
+ c0Var

(
ψn1 (Z

n
1 )

)1/2
.

We define ψt : Rt → R and ψ0 analogously without the superscript n. The proof is
complete once we show the convergence limn→∞ ψn0 = ψ0.

The argument of the proof is backwards induction. We will show that for t = T, . . . , 1,

UI(t): (L(ψnt (Zn≤t)2 | Zn≤s = zn≤s))n is uniformly integrable for each s = 1, . . . , t − 1 and
zn≤s → z≤s,

CC(t): (ψnt )n is continuously convergent, i.e. ψnt (z
n
≤t) → ψt(z≤t), whenever z

n
≤t → z≤t.

Induction base: UI(T ) and CC(T ) hold.
For s ∈ {1, . . . , T − 1} and zn≤s → z≤s, UI(T ) follows immediately from (28) since

ψnT (z
n
≤T ) =

∑T
s=1 x

n
s . Moreover,

ψnT (z
n
≤T ) =

T∑
s=1

xns →
T∑
s=1

xs = ψT (z≤T )

whenever zn≤T → z≤T , yielding CC(T ).
Induction step:UI(t+1), CC(t+1) together imply UI(t), CC(t). Fix s ∈ {1, . . . , t−1}
and a sequence (zn≤s)n with zn≤s → z≤s. By the same argument as in the proof of Theorem
1,

L(ψnt+1(Z
n
≤t+1) | Zn≤s = zn≤s)

w→ L(ψt+1(Z≤t+1) | Z≤s = z≤s) (42)
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which implies

L((ψnt+1(Z
n
≤t+1))

2 | Zn≤s = zn≤s)
w→ L((ψt+1(Z≤t+1))

2 | Z≤s = z≤s). (43)

Lemma 3 shows that the limiting distribution in (42) is Gaussian. We can bound

ψnt (z)
2 ≤ 2E[|ψnt+1(Z

n
≤t+1)| | Zn≤t = z]2 + 2c2t E[|ψnt+1(Z

n
≤t+1)|2 | Zn≤t = z]

≤ (2 + 2c2t ) E[|ψnt+1(Z
n
≤t+1)|2 | Zn≤t = z].

Therefore,

E[|ψnt (Zn≤t)|2 | Zn≤s = zn≤s] ≤ (2 + 2c2t ) E[E[|ψnt+1(Z
n
≤t+1)|2 | Zn≤t] | Zn≤s = zn≤s]

= (2 + 2c2t ) E[|ψnt+1(Z
n
≤t+1)|2 | Zn≤s = zn≤s].

Hence, it is sufficient to show uniform integrability of(
L
(
E[|ψnt+1(Z

n
≤t+1)|2 | Zn≤t] | Zn≤s = zn≤s

))
n
. (44)

Setting W̃n = E[|ψnt+1(Z
n
≤t+1)|2 | Zn≤t] andWn = |ψnt+1(Z

n
≤t+1)|2, this follows from Lemma

4 together with (43) and UI(t+ 1). Hence, UI(t) holds.
We proceed by showing CC(t). Let zn≤t → z≤t. We need to show convergence of

ψnt (z
n
≤t) = E[ψnt+1(Z

n
≤t+1) | Zn≤t = zn≤t]

+ ct
(
E[(ψnt+1(Z

n
≤t+1))

2 | Zn≤t = zn≤t]− E[ψnt+1(Z
n
≤t+1) | Zn≤t = zn≤t]

2
)1/2

.

Indeed, by (42) and (43),

L(ψnt+1(Z
n
≤t+1) | Zn≤t = zn≤t)

w→ L(ψt+1(Z≤t+1) | Z≤t = z≤t),

L((ψnt+1(Z
n
≤t+1))

2 | Zn≤t = zn≤t)
w→ L((ψt+1(Z≤t+1))

2 | Z≤t = z≤t),

and by [8, Lemma 4.11] applied to UI(t+ 1), it follows that

E[ψnt+1(Z
n
≤t+1) | Zn≤t = zn≤t] → E[ψt+1(Z≤t+1) | Z≤t = z≤t]

and
E[(ψnt+1(Z

n
≤t+1))

2 | Zn≤t = zn≤t] → E[(ψt+1(Z≤t+1))
2 | Z≤t = z≤t],

yielding CC(t) which completes the proof of the induction step.
As a result of the induction,

L(ψn1 (Zn1 ))
w→ L(ψ1(Z1))

and (ψn1 (Z
n
1 ))n, ((ψ

n
1 (Z

n
1 ))

2)n are uniformly integrable. Therefore,

ψn0 = E[ψn1 (Z
n
1 )] + c0

(
E[(ψn1 (Z

n
1 ))

2]− E[ψn1 (Z
n
1 )]

2
)1/2

→ E[ψ1(Z1)] + c0
(
E[(ψ1(Z1))

2]− E[ψ1(Z1)]
2
)1/2

= ψ0.
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Lemma 6. Let c ∈ RT+ satisfy
∑T
t=1 ct = 1 and ct+1 ≤ ct for every t. Then c solves

max
d∈Dc,T

T∑
t=1

d
1/2
t , Dc,T =

{
d ∈ RT+ :

T∑
t=1

dt = 1,
t∑

s=1

ds ≥
t∑

s=1

cs for t = 1, . . . , T

}
. (45)

Proof. Since Dc,T is a convex set and the objective function is concave, we have a convex
optimization problem. Consequently, it is sufficient to verify that c ∈ Dc,T is a local
optimum. By assumption either c1 = 1 and ct = 0 for t ≥ 2 or there exists t0 ∈ {2, . . . , T}
such that c1 ≥ · · · ≥ ct0 > 0 and ct0+1 = · · · = cT = 0. The first case has the trivial
maximizer d1 = 1 and dt = 0 for t ≥ 2. Hence, it is sufficient to consider only the
second case for a fixed c and t0 ∈ {2, . . . , T}. In this case, (45) is equivalent to, with
c = (c1, . . . , ct0),

max
d∈Dc

t0∑
t=1

d
1/2
t , Dc =

{
d ∈ Rt0+ :

t0∑
t=1

dt = 1,
t∑

s=1

ds ≥
t∑

s=1

cs for t = 1, . . . , t0

}
. (46)

Since Dc is a convex set and the objective function is concave, we have a convex opti-
mization problem. Consequently, it is sufficient to verify that c ∈ Dc is a local optimum.
Let

X =

{
x ∈ Rt0 :

t0∑
t=1

xt = 0,
t∑

s=1

xs ≥ 0 for t = 1, . . . , t0

}
and note that Dc ⊂ c+ X . Consider the set of vectors {b1, . . . , bt0−1} ⊂ Rt0 given by

bi,i = 1, bi,i+1 = −1, bi,j = 0 for j /∈ {i, i+ 1}.

We claim that X = span+{b1, . . . , bt0−1}, where

span+{b1, . . . , bt0−1} =

{ t0−1∑
k=1

λkbk : λ1, . . . , λt0−1 ≥ 0

}
.

To show that span+{b1, . . . , bt0−1} ⊆ X it is sufficient to note that

t0∑
s=1

t0−1∑
k=1

λkbk,s =
t0−1∑
k=1

λk

t0∑
s=1

bk,s = 0,

t∑
s=1

t0−1∑
k=1

λkbk,s =
t0−1∑
k=1

λk

t∑
s=1

bk,s = λt ≥ 0.

We now show that X ⊆ span+{b1, . . . , bt0−1}. Take x ∈ X and set λ1 = x1 (noting that
x1 ≥ 0) and λk = λk−1 + xk for k ≥ 2. Hence, λk ≥ 0 for every k and

∑t0−1
k=1 λkbk = x.

Let g(d) =
∑t0
t=1 d

1/2
t and note that g is well defined and concave on Dc, and has a well

defined gradient at c:

∇g(c)T =
1

2
(c

−1/2
1 , . . . , c

−1/2
t0 ).

Take d ∈ Dc and notice that d = c+ x for x ∈ X . Since g is concave,

g(d)− g(c) ≤ ∇g(c)Tx =
t0−1∑
k=1

λk∇g(c)Tbk =
1

2

t0−1∑
k=1

λk(c
−1/2
k − c

−1/2
k+1 ) ≤ 0,

where the last inequality holds since, for every k, λk ≥ 0 and c
−1/2
k − c

−1/2
k+1 ≤ 0. Hence,

we have shown that g(d) ≤ g(c) and the proof is complete.
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Proof of Theorem 3. For t = 1, . . . , T , set

ct = Var

( T∑
s=1

Xs

)−1(
Var

( T∑
s=1

Xs | Ft−1

)
−Var

( T∑
s=1

Xs | Ft
))

,

dt = Var

( T∑
s=1

Xs

)−1(
Var

( T∑
s=1

Xs | Gt−1

)
−Var

( T∑
s=1

Xs | Gt
))

.

By construction,
∑T
t=1 ct =

∑T
t=1 dt = 1. Since Ft ⊆ Gt for every t,

∑T
s=t+1 cs ≥

∑T
s=t+1 ds

which is equivalent to
∑t
s=1 ds ≥

∑t
s=1 cs for every t since

∑T
t=1 ct =

∑T
t=1 dt. Applying

Lemma 6 completes the proof.
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