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Abstract. The numbers of inversions and descents of random permutations are known
to be asymptotically normal. On general finite Coxeter groups, the central limit theorem
(CLT) is still valid under mild conditions. The extreme values of these two statistics are
attracted by the Gumbel distribution. The joint distribution of inversions and descents is
a likewise interesting object, but only the CLT on symmetric groups has been established
thus far. In this paper, we comprehensively extend the knowledge of the joint distribution
of inversions and descents. We prove both the CLT and the extreme value attraction for
the joint distribution of inversions and descents by using Hájek projections and a suitable
Gaussian approximation. On the signed permutation groups, we additionally show that
these results are still valid when the choice of the random signs is biased. Furthermore, we
investigate the applicability of these techniques to products of classical Weyl groups.

1. Introduction

The numbers of inversions and descents are two of the most important characteristics
of permutations or, more generally, of Coxeter group elements. On the symmetric group
Sn of permutations π : {1, . . . , n} → {1, . . . , n}, an inversion is any tuple (i, j) with i < j,
but π(i) > π(j). A descent is any inversion of two adjacent numbers, that is, any i with
π(i) > π(i + 1). Symmetric groups belong to the class of finite Coxeter groups, on which the
concept of inversions and descents can be readily generalized, see [3, Section 1.4]. We can
treat the underlying Coxeter group as a probability space and draw its elements at random.
The study of stochastic properties of quantities such as the number of inversions and descents
belongs to the field of statistical algebra and is the aim of this paper. We use the notations
Xinv and Xdes to indicate the nature of these numbers as random variables. In all following
scenarios, we suppose that elements of a symmetric group or finite Coxeter group are drawn
uniformly at random, unless stated otherwise. For some basics on finite Coxeter groups, we
refer to [3].

This paper will focus on the classes Sn (symmetric groups), Bn (signed permutation groups)
and Dn (even-signed permutation groups), for which we use the umbrella term classical Weyl
groups throughout.

The asymptotic distribution of Xinv and Xdes has been investigated by several authors (see,
e.g., [2, 6, 16, 17, 18, 23]), who showed that inversions and descents each satisfy a central
limit theorem (CLT) and thus are asymptotically normal. We say that a family of real-valued
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2 P. DÖRR AND J. HEINY

random variables X1, X2, . . . (or their respective distributions) satisfies the CLT if
Xn − E(Xn)
Var(Xn)1/2

D−→ N(0, 1) , n → ∞ ,

where D−→ denotes convergence in distribution. If the Xn are sums of independent random
variables, one can verify the classical Lindeberg or Lyapunov conditions to establish a CLT.

For the number of inversions or descents on finite Coxeter groups, there are several
techniques and approaches toward the CLT. Chatterjee & Diaconis provide an overview of
proofs of the CLT for Xdes on the family of symmetric groups in [6, Section 3]. One approach
is based on a representation of Xdes via m-dependent variables, which will be essential for
our own methods in Section 2. Alternative proofs of the asymptotic normality of Xdes are
based on the zeros of its generating function [17, 23] or on certain regularity properties of
the generating function, see [2, Ex. 3.5 and 5.3]. Stein’s method of exchangeable pairs has
been applied in [10, 16], where the latter reference and [2, Ex. 5.5] also cover inversions. We
note that Stein’s method has been used in various settings, see, e.g., [11] for permutations on
multisets, [22] for generalized inversions, and [1] for non-uniformly random permutations.

Kahle & Stump [18] developed a full characterization of CLTs for inversions and descents
on sequences of finite Coxeter groups, by giving necessary and sufficient conditions on the
asymptotics of Var(Xinv) and Var(Xdes). The work of Dörr & Kahle [13] was the first to
provide extreme value theory for these classical permutation statistics. They showed that the
numbers of inversions and descents are in the maximum-domain of attraction of the standard
Gumbel distribution, assuming a triangular array where the number of samples per row obeys
an exponential upper bound.

While the asymptotic normality of inversions and descents as univariate statistics is well
studied, the knowledge of their joint distribution is comparatively sparse. Fang & Röllin [15]
gave a CLT for arbitrarily large collections of permutation statistics based on antisymmetric
matrices, including (Xinv, Xdes) as a special case. Their work can also be seen as a multivariate
extension of [16]. The aforementioned papers based on Stein’s method typically achieve an
O(n−1/2) rate of convergence. Our novel approach will not achieve this rate, but it will
generalize the multivariate CLT to other classical Weyl groups and even further, it will cover
the asymptotic extreme value behavior of (Xinv, Xdes).

This paper is structured as follows. Section 2 introduces the Hájek projection of inversions
and descents on symmetric groups and justifies its use to approximate Xinv. Section 3
introduces the Gaussian approximation result on m-dependent random vectors by Chang et
al. [5], which we use to prove the asymptotic normality of (Xinv, Xdes). Section 4 presents
the corresponding extreme value limit theorem (EVLT) as the main result of this paper. In
Section 5, these results are extended to the larger groups Bn and Dn, which are equipped
with a new family of probability measures, namely the so-called p-biased signed permutations.
Section 6 studies the CLT and EVLT for direct products of classical Weyl groups, and Section 7
concludes the paper with some open questions. The remaining technical proofs are gathered
in the appendix in Section 8.

Throughout this paper, we denote the standard uniform distribution on the interval [0, 1]
by U(0, 1), and the discrete uniform distribution on the set {0, 1, . . . , n} by U({0, 1, . . . , n}).
We sometimes also use these notations for accordingly distributed random variables when
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the meaning is clear from the context. The symbol D= means equality in distribution and∑
i<j will be used as an abbreviation of the double-indexed sum

∑
1≤i<j≤n. For any random

variable X, we denote its standard deviation by σ(X) =
√

Var(X). Moreover, we use typical
Landau notation for positive sequences an, bn as follows:

• an = O(bn) means that an grows at most as fast as bn, i.e., lim supn→∞ an/bn < ∞.
• an = o(bn) means that an grows slower than bn, i.e., limn→∞ an/bn = 0. This is also

written as an ≪ bn or bn ≫ an.
• an = Θ(bn) means that an and bn have the same order of magnitude, i.e., both

an = O(bn) and bn = O(an) hold.
• an = bn +oP(1) means that an, bn are sequences of random variables with an −bn

P−→ 0.

2. Hájek projections on symmetric groups

A permutation drawn uniformly at random from the symmetric group Sn of permutations
on n letters is induced by the ranks of independent random variables Z1, . . . , Zn ∼ U(0, 1).
Thus, the numbers of inversions and descents of this permutation can be represented by

Xinv =
∑

1≤i<j≤n

1{Zi > Zj},(1)

Xdes =
n−1∑
i=1

1{Zi > Zi+1}.(2)

The primary challenge in dealing with the joint permutation statistic (Xinv, Xdes) is the
dependence structure between Xinv and Xdes. The random variables 1{Zi > Zj}, 1 ≤ i < j ≤
n in (1) are also dependent. It is worth noting that Xinv has the following representation as a
sum of n − 1 independent terms:

(3) Xinv
D=

n−1∑
i=1

U({0, 1, . . . , i}) .

This follows, e.g., from [13, Corollary 2.5a)] within the framework of all finite Coxeter groups.
The representation of Xdes in (2) has m-dependent variables (precisely, m = 1). There is also
a decomposition of Xdes into independent summands, based on the splitting of its generating
function (known as the Eulerian polynomial) into linear factors of its real-valued roots [13,
Corollary 2.5b)].

From the representations in [13, Corollary 2.5a)] and [13, Corollary 2.5b)] it is easy to
derive the generating functions of Xinv and Xdes. That Xinv and Xdes are not independent
follows from the fact that the joint generating function of (Xdes, Xinv) does not factor into
those of Xinv and Xdes. It is an interesting question whether this polynomial factors at all.
Some tests were made on S3 or S4, but there was no regularity detected so far.

To handle the dependence between Xinv and Xdes, we approximate Xinv through its Hájek
projection X̂inv and write (X̂inv, Xdes) as a sum of m-dependent two-dimensional random
vectors. Then, we apply a Gaussian approximation theorem by Chang et al. [5] for triangular
arrays of m-dependent random vectors. This will give a new proof of the CLT, and more
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importantly, it will be essential to derive the extreme value limit theorem (EVLT) for
(Xinv, Xdes) on classical Weyl groups.

Definition 2.1. For independent random variables Z1, . . . , Zn and any random variable Xn,
the Hájek projection of Xn with respect to Z1, . . . , Zn is given by

X̂n :=
n∑

k=1
E(Xn | Zk) − (n − 1)E(Xn).

Note that E(X̂n) = E(Xn). Since each E(Xn | Zk) is a measurable function only in
Zk, the Hájek projection is a sum of independent random variables, regardless of the orig-
inal dependence structure between Xn and Zk. In Sections 2–4, we always assume that
Z1, . . . , Zn ∼ U(0, 1) for our purposes. To decide whether the Hájek projection is a sufficiently
accurate approximation, the following criterion is useful.

Theorem 2.2 (cf. [24], Theorem 11.2). Consider a sequence (Xn)n≥1 of random variables
and their associated Hájek projections (X̂n)n≥1. If Var(X̂n) ∼ Var(Xn) as n → ∞, then

Xn − E(Xn)
Var(Xn)1/2 = X̂n − E(X̂n)

Var(X̂n)1/2
+ oP(1).

In particular, if Var(X̂n) ∼ Var(Xn) and (X̂n)n≥1 satisfies a CLT, then Theorem 2.2
guarantees that (Xn)n≥1 also satisfies a CLT.

In what follows, for a random variable or vector X with finite variance, we write Y for its
standardization, that is, Y =

(
X −E(X)

)
/
√

Var(X). In particular, Yinv is the standardization
of Xinv and Ŷinv is that of X̂inv. We use the symbols Xinv, Yinv, X̂inv, Ŷinv, Xdes, Ydes with
suppression of n, the underlying symmetric group or its rank, unless needed for clarification.

The next result provides the Hájek projection of Xinv defined in (1) and verifies the variance
equivalence condition stated in Theorem 2.2 for Xinv.

Lemma 2.3. The Hájek projection X̂inv of Xinv is given by

X̂inv = n(n − 1)
4 +

n∑
k=1

(n − 2k + 1)Zk

and it holds that Var(Xinv) ∼ Var(X̂inv) as n → ∞.

Proof. We first study the conditional expectations E(Xinv | Zk) for k = 1, . . . , n and get

E(Xinv | Zk) =
∑

1≤i<j≤n

P(Zi > Zj | Zk) =
∑

1≤i<j≤n


1/2, if k /∈ {i, j},

Zk, if k = i,

1 − Zk, if k = j.

We fix k ∈ {1, . . . , n} and analyze the frequency of the three cases on the right-hand side.
As {1, . . . , n} \ {k} has cardinality n − 1, there are

(n−1
2
)

subsets {i, j} ⊆ {1, . . . , n} \ {k}.
When picking i = k, there are n − k indices j with j > k, for which we have P(Zk > Zj |
Zk) = P(Zj < Zk | Zk) = Zk since Zk ∼ U(0, 1). Likewise, when picking j = k, there are
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i = 1 i = k − 1 j = k + 1k j = n

1− Zk 1− Zk Zk Zk

aaaaaaaaaaaa︸ ︷︷ ︸
(k−1) times

aaaaaaaaaaaaa︸ ︷︷ ︸
(n−k) times

Figure 1. Display of the non-constant contributions to E(Xinv | Zk)

k − 1 indices i with i < k, which gives P(Zi > Zk | Zk) = 1 − Zk. These contributions are
illustrated in Figure 1. Therefore, we obtain

E(Xinv | Zk) = 1
2

(
n − 1

2

)
+ (n − k)Zk + (k − 1)(1 − Zk)

= 1
2

(
n − 1

2

)
+ (n − 2k + 1)Zk + (k − 1),

from which we deduce that

X̂inv =
n∑

k=1
E(Xinv | Zk) − (n − 1)E(Xinv)

= n

2

(
n − 1

2

)
+

n∑
k=1

(n − 2k + 1)Zk +
n∑

k=1
(k − 1) − n − 1

2

(
n

2

)

= n(n − 1)
4 +

n∑
k=1

(n − 2k + 1)Zk.(4)

Since the Zk’s are i.i.d. , the variance of the Hájek projection is

Var(X̂inv) =
n∑

k=1
Var((n − 2k + 1)Zk).

Due to Var(Zk) = 1/12, we get

Var(X̂inv) = 1
12

n∑
k=1

(2k − n − 1)2 = 1
12

n∑
k=1

(
4k2 + (n + 1)2 − 4k(n + 1)

)
= 1

12

(
4

n∑
k=1

k2 + n(n + 1)2 − 4(n + 1)n(n + 1)
2

)

= 1
12

(
4n(n + 1)(2n + 1)

6 − n(n + 1)2
)

= 1
36n3 − n

36 , n → ∞.

By [18, Corollary 3.2], we have Var(Xinv) = 1
36n3 + 9n2 + 7n

72 and therefore Var(Xinv) ∼

Var(X̂inv) as n → ∞. □
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A combination of Theorem 2.2 and Lemma 2.3 yields
Yinv = Ŷinv + oP(1) , n → ∞ .

Remark 2.4. Interestingly, this approach fails for Xdes, since Var(Xdes) ∼ Var(X̂des) does
not hold. Repeating the considerations in the proof of Lemma 2.3 for Xdes, we first obtain

E(Xdes | Zk) =
n−1∑
i=1

P(Zi > Zi+1 | Zk) =
n−1∑
i=1


1/2, k /∈ {i, i + 1},

Zk, k = i,

1 − Zk, k = i + 1.

Now, except for the border cases k = 1 and k = n, the summands for k = i and k = i + 1 are
each used exactly once, so the Zk in their sum Zk + (1 − Zk) cancel out. In total, we obtain

X̂des = Z1 − Zn + cn ,

where cn is some constant that depends only on n. Therefore, Var(X̂des) = 2/12 does not
have the linear order of Var(Xdes) = (n + 1)/12 (see [18, Corollary 4.2]).

For these reasons, our results will be based on the following consequence of Theorem 2.2
and Lemma 2.3.
Corollary 2.5. Let (Xinv, Xdes)⊤ be given from the symmetric group Sn. For the standardized
random vector (Yinv, Ydes)⊤ and the standardized Hájek projection Ŷinv, we have(

Yinv
Ydes

)
=
(

Ŷinv + oP(1)
Ydes

)
.

A decomposition of (X̂inv, Xdes)⊤ into 1-dependent summands is given by(
X̂inv
Xdes

)
=

n−1∑
k=1

(
(n − 2k + 1)Zk

1{Zk > Zk+1}

)
+
(

−(n − 1)Zn + n(n−1)
4

0

)
.(5)

Likewise, a 1-dependent decomposition for (Ŷinv, Ydes)⊤ can be found by standardization.
It is worth noting that the correlation Corr(Xinv, Xdes) is not zero. However, we now show

that Corr(Xinv, Xdes) → 0 as n → ∞. Moreover, by Corollary 2.5 the same holds true for
(X̂inv, Xdes)⊤ as well (in fact, Corr(X̂inv, Xdes) is even easier to compute). To proceed, we
need the covariance of X̂inv and Xdes. Our next result additionally provides Cov(Xinv, Xdes),
which – to the best of our knowledge – is not available in the literature.
Lemma 2.6 (see Subsections 8.1, 8.2 for the proof). On the symmetric group Sn, we have

a) Cov(Xinv, Xdes) = (n − 1)/4.
b) Cov(X̂inv, Xdes) = (n − 1)/6.

Corollary 2.7. Since Var(Xinv)Var(Xdes) = Θ(n4) according to [18, Corollaries 3.2 and 4.2],
and the same holds true if Var(Xinv) is replaced by Var(X̂inv), we conclude from Lemma 2.6
that

Corr(Xinv, Xdes) = Cov(Xinv, Xdes)√
Var(Xinv)Var(Xdes)

= Θ(1/n) ,

Corr(X̂inv, Xdes) = Θ(1/n) , n → ∞.
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3. The bivariate Central Limit Theorem

In this section, we establish the joint normality of (Xinv, Xdes)⊤ by using the 1-dependent de-
composition of (X̂inv, Xdes)⊤ and applying a recent (and quite optimized) CLT for m-dependent
triangular arrays from Chang et al. [5]. Their work provides Gaussian approximations for
high-dimensional data under various dependency frameworks, including m-dependence. It
gives error rates over the system of all hyperrectangles, including the Kolmogorov distance as a
special case. Moreover, the high-dimensional framework implicitly covers the finite-dimensional
one by repeating the components of a vector.

Refining the notation of [5], we consider triangular arrays (X(n)
t )t=1,...,n whose entries

X
(n)
1 , . . . , X

(n)
n are mean zero random vectors in Rp, where p = p(n) can grow with respect to

n. For the sum

(6) X(n) :=
n∑

t=1
X

(n)
t with covariance matrix Σ(n) := Var(X(n)),

the work of Chang et al. [5] gives bounds and rates of convergence for

rn(A) := sup
A∈A

|P(X(n) ∈ A) − P(Nn ∈ A)|,

where A encompasses a system of Borel sets and Nn ∼ N(0, Σ(n)) is a normal distribution with
the same covariance structure as X(n). Bounds for rn(A) in both constant and high dimensions
have been strongly investigated for independent variables. A seminal work for the system
A := {[x, ∞) | x ∈ Rp} to compare the maxima of X(n) and Nn in high dimensions is given
by Chernozhukov et al. [7]. In recent years, there have been great efforts to improve the error
bounds and the growth of dimension within the independent framework, see [8, 9, 12, 14, 19].

An interesting feature of [5] is that the X
(n)
t are allowed to be dependent which offers a

wide range of applications beyond the independent framework, including the 1-dependent
decomposition of (X̂inv, Xdes)⊤. The following two conditions need to be imposed on the
X

(n)
t = (X(n)

t,1 , . . . , X
(n)
t,p )⊤.

Condition 1: There exists a sequence of constants Bn ≥ 1 and a universal constant γ1 ≥ 1
such that

max
j=1,...,p

E
(
exp

(∣∣∣√nX
(n)
t,j

∣∣∣γ1
B−γ1

n

))
≤ 2 , t = 1, . . . , n.

Condition 2: There exists a constant K > 0 such that for all n ∈ N

min
j=1,...,p

Var
(

n∑
t=1

X
(n)
t,j

)
≥ K.

Remark 3.1. Condition 1 means sub-Gaussianity, i.e., by Markov’s inequality,

∀u > 0: P(|
√

nX
(n)
t,j | > u) ≤ 2 exp(−uγ1B−γ1

n ).

For sub-Gaussian variables, particularly for the bounded variables Xdes, Xinv and their Hájek
projection X̂inv, we can choose γ1 = 2 and Bn = O(1). Condition 2 implies non-degeneracy,
which obviously holds true in our setting.
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A very useful estimate of rn(Are) is given for the system of hyperrectangles

Are :=
{

{w ∈ Rp : a ≤ w ≤ b} | a, b ∈ [−∞, ∞]p
}

.

Proposition 3.2 (see [5], Corollary 1). Let (X(n)
t )t=1,...,n be a triangular array of mean

zero random vectors in high dimensions, i.e., X
(n)
1 , . . . , X

(n)
n ∈ Rp with p = p(n) ≫ nκ for a

constant κ > 0. Assume that each row X
(n)
1 , . . . , X

(n)
n is m-dependent with a global constant

m ∈ N. Under Conditions 1 and 2, it holds that

rn(Are) = O

(
Bnm2/3 log(p)7/6

n1/6

)
, n → ∞.

We note that if p remains constant, we can artificially repeat the vector components (say
n times) and therefore, the requirement p ≫ nκ can be removed. We obtain the following
corollary.

Corollary 3.3. Let (X(n)
t )t=1,...,n be a triangular array of mean zero random vectors in fixed

dimension p and suppose that each row X
(n)
1 , . . . , X

(n)
n is m-dependent with a global constant

m ∈ N. Under Conditions 1 and 2, it holds that

rn(Are) = O

(
Bnm2/3 log(n)7/6

n1/6

)
, n → ∞.

Our next result establishes a CLT for the joint distribution of inversions and descents.

Theorem 3.4. The joint distribution of (Xinv, Xdes)⊤ on the family of symmetric groups
satisfies the CLT. This means

(Yinv, Ydes)⊤ =
(

Xinv − E(Xinv)√
Var(Xinv)

,
Xdes − E(Xdes)√

Var(Xdes)

)⊤
D−→ N2(0, I2) , n → ∞.

Proof. Due to Corollary 2.5 and Slutsky’s Theorem, it suffices to show that (Ŷinv, Ydes)⊤ D−→
N2(0, I2). By (5), we have that(

X̂inv − E(X̂inv)
Xdes − E(Xdes)

)
=

n−1∑
k=1

(
(n − 2k + 1)(Zk − 1/2)
1{Zk > Zk+1} − 1/2

)
+
(

−(n − 1)(Zn − 1/2)
0

)
(7)

is a sum of 1-dependent random vectors with mean zero. Setting

X
(n)
k :=

(
(n − 2k + 1)(Zk − 1/2)/

√
Var(X̂inv)

(1{Zk > Zk+1} − 1/2)/
√

Var(Xdes)

)
, k = 1, . . . , n − 1,

X(n)
n :=

(
−(n − 1)(Zn − 1/2)/

√
Var(X̂inv)

0

)
,

we obtain the representation (Ŷinv, Ydes)⊤ =
∑n

k=1 X
(n)
k =: X(n). The covariance matrix of

X(n) (see (6)) is given by Σ(n) =
(

1 ρn

ρn 1

)
, where ρn := Corr(X̂inv, Xdes). An application of
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Corollary 3.3 yields that for Nn ∼ N(0, Σ(n)),

sup
u∈R2

|P(X(n) ≤ u) − P(Nn ≤ u)| ≤ rn(Are) = O
(
n−1/6 log(n)7/6

)
.

In combination with the fact that the correlation ρn vanishes in the limit (see Corollary 2.7),
we can conclude that (Ŷinv, Ydes)⊤ D−→ N2(0, I2), completing the proof of the theorem. □

4. The Extreme Value Limit Theorem

In what follows, we use the Gaussian approximation of Proposition 3.2 to prove that
the vector of componentwise maxima of i.i.d. copies of (Xinv, Xdes)⊤ is attracted to the
bivariate Gumbel distribution with independent margins. First, we briefly recapitulate the
procedure used in [13] for the univariate case. Let (kn)n∈N be a divergent sequence of positive
integers. It is well known (see, e.g., [20, Theorem 1.5.3]) that the maximum of kn i.i.d.
standard normal variables (Ni)i=1,...,kn is attracted toward the standard Gumbel distribution
Λ(x) = exp(− exp(−x)) by virtue of

αn
(

max{N1, . . . , Nkn} − αn
) D−→ Λ, n → ∞,

where

αn :=
√

2 log kn − log log kn + log(4π)
2
√

2 log kn
.

The key step in the results of [13] was to employ large deviations theory in order to establish
the tail equivalence

P
(
X/
√

Var(X) > xn
)

∼ 1 − Φ(xn), n → ∞ ,

where X denotes the centered version of either Xinv or Xdes on Sn, and Φ is the standard
normal distribution function and xn → ∞ is a suitable sequence of real numbers. In the
multivariate case, we additionally need to control the dependence between Xinv and Xdes
which we facilitate by Proposition 3.2 after first replacing Xinv with its Hájek projection X̂inv.

Let (X(j)
inv, X

(j)
des)⊤, j = 1, . . . , kn be independent copies of (Xinv, Xdes)⊤ on Sn. We are

interested in the asymptotic joint distribution of the component-wise maxima of (Xinv, Xdes)⊤.
Equivalently, we investigate the standardized maxima

Mn,inv := maxj=1,...,kn X
(j)
inv − E(Xinv)

σ(Xinv) and Mn,des := maxj=1,...,kn X
(j)
des − E(Xdes)

σ(Xdes)
.(8)

We now postulate the main result of this paper. If the number of samples kn is not too large,
then the distribution of (Xinv, Xdes)⊤ is in the maximum domain of attraction of a bivariate
Gumbel distribution with independent margins.

Theorem 4.1. Consider the setting from above and assume (kn log kn)/n → 0 as n → ∞.
Then, it holds that

lim
n→∞

P
(
αn(Mn,inv − αn) ≤ x, αn(Mn,des − αn) ≤ y

)
= Λ(x)Λ(y) , x, y ∈ R .(9)

In particular, the maxima of inversions and descents on Sn are asymptotically independent.
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Proof. Let (Zj
i )i,j≥1 be a collection of independent U(0, 1) distributed random variables and

recall that αn ∼
√

2 log kn. Then we have the representation(
X

(j)
inv

X
(j)
des

)
j=1,...,kn

D=
(∑

1≤i<k≤n 1{Z
(j)
i > Z

(j)
k }∑n−1

i=1 1{Z
(j)
i > Z

(j)
i+1}

)
j=1,...,kn

.

Therefore, by Slutsky’s theorem, (9) is an immediate consequence of

lim
n→∞

P
(
αn(M̂n − αn) ≤ x, αn(Mn,des − αn) ≤ y

)
= Λ(x)Λ(y) , x, y ∈ R ,(10)

and
(11)

√
log kn |Mn,inv − M̂n| P−→ 0 , n → ∞ ,

where M̂n := σ(X̂inv)−1
(
maxj=1,...,kn X̂

(j)
inv − E(Xinv)

)
. It remains to show (10) and (11). We

begin with the proof of (11) and get

|Mn,inv − M̂n| ≤ max
j=1,...,kn

∣∣∣∣X(j)
inv − E(Xinv)

σ(Xinv) − X̂
(j)
inv − E(Xinv)

σ(X̂inv)

∣∣∣∣
= max

j=1,...,kn

∣∣∣∣X(j)
inv − X̂

(j)
inv

σ(Xinv) + (X̂(j)
inv − E(Xinv))σ(X̂inv) − σ(Xinv)

σ(Xinv)σ(X̂inv)

∣∣∣∣ .
Thus, for any ε > 0, we obtain

P
(√

log kn |Mn,inv − M̂n| > 2ε
)

≤ P
(√

log kn max
j=1,...,kn

∣∣∣∣X(j)
inv − X̂

(j)
inv

σ(Xinv)

∣∣∣∣ > ε
)

+ P
(√

log kn max
j=1,...,kn

∣∣∣∣(X̂(j)
inv − E(Xinv))σ(X̂inv) − σ(Xinv)

σ(Xinv)σ(X̂inv)

∣∣∣∣ > ε
)

=: P1 + P2 .

Using the union bound and Markov’s inequality, we have

P1 ≤ kn P
(
|Xinv − X̂inv| >

σ(Xinv)ε√
log kn

)
≤ kn

log kn

Var(Xinv)ε2E|Xinv − X̂inv|2

= kn log kn

Var(Xinv)ε2

(
Var(Xinv) + Var(X̂inv) − 2Cov(Xinv, X̂inv)

)
= kn log kn

ε2

(
1 − Var(X̂inv)

Var(Xinv)
)

,(12)

where the last equality follows from the fact that Cov(Xinv, X̂inv) = Var(X̂inv), see, e.g., [24,
Theorem 11.1]. Plugging in the formulas for Var(Xinv) and Var(X̂inv) from the end of the
proof of Lemma 2.3, we get Var(X̂inv)/Var(Xinv) = 1 + O(1/n) from which we conclude that

P1 = kn log kn O(1/n) , n → ∞ ,

which tends to zero by the assumption on kn. Repeating the above considerations for P2
yields

P2 ≤ kn log kn

ε2

(σ(X̂inv) − σ(Xinv)
σ(Xinv)

)2
E
(X̂

(j)
inv − E(Xinv)

σ(X̂inv)

)2
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= kn log kn O(1/n) = o(1) , n → ∞ ,(13)

which completes the proof of (11). Regarding (10), we recall that by Corollary 2.5,(
X̂

(j)
inv − E(X̂(j)

inv)
X

(j)
des − E(X(j)

des)

)
=

n−1∑
k=1

(
(n − 2k + 1)(Z(j)

k − 1/2)
1{Z

(j)
k > Z

(j)
k+1} − 1/2

)
+
(

−(n − 1)(Z(j)
n − 1/2)

0

)
.

This is a sum of 1-dependent centered random vectors. Setting

Y
(n,j)

k :=
(

(n − 2k + 1)(Z(j)
k − 1/2)/σ(X̂inv)

(1{Z
(j)
k > Z

(j)
k+1} − 1/2)/σ(Xdes)

)
, k = 1, . . . , n − 1,

Y (n,j)
n :=

(
−(n − 1)(Z(j)

n − 1/2)/σ(X̂inv)
0

)
,

we obtain the representation (Ŷ (j)
inv , Y

(j)
des )⊤ =

∑n
k=1 Y

(n,j)
k . The covariance matrix of (Ŷ (j)

inv , Y
(j)

des )⊤

is given by Σ(n) =
(

1 ρn

ρn 1

)
, where ρn := Corr(X̂inv, Xdes). For a centered normal random

vector Nn = (N1, . . . , N2kn)⊤ whose covariance matrix is block-diagonal with all kn diagonal
blocks equal to Σ(n), we write

Pn(x, y) := P
(

αn

(
max

j=1,...,kn

N2j−1 − αn

)
≤ x, αn

(
max

j=1,...,kn

N2j − αn

)
≤ y

)
, x, y ∈ R .

An application of Proposition 3.2 then yields, as n → ∞,∣∣P(αn(M̂n − αn) ≤ x, αn(Mn,des − αn) ≤ y
)

− Pn(x, y)
∣∣

= O
(
n−1/6 log(max{n, kn})7/6

)
= o(1) .

Finally, since ρn → 0 (see Corollary 2.7), it is a standard result for maxima of bivariate
Gaussian random vectors (with correlation strictly less than 1) that

Pn(x, y) n→∞−→ Λ(x)Λ(y),

completing the proof of (10). □

Remark 4.2. The upper bound for the row-wise number of samples kn is stricter than
that for the individual statistics Xinv and Xdes given in [13], due to the error that arises
from replacing Xinv with X̂inv. In particular, this excludes the choice of kn = n which
gives a uniformly stretched triangular array. On the other hand, this new EVLT can be
transferred to other individual and joint permutation statistics, since it is mainly based on a
Gaussian approximation for m-dependent random vectors (or variables). Besides descents,
some other examples of m-dependent permutation statistics on Sn are peaks (all indices i with
π(i − 1) < π(i) > π(i + 1)) and valleys (all i with π(i − 1) > π(i) < π(i + 1)). Since the proof
of Theorem 4.1 does not rely on any special property of descents other than m-dependence,
any other m-dependent permutation statistic could be combined with inversions.

Furthermore, if we consider a permutation statistic consisting of one or two m-dependent
components, then there is no need to use Hájek’s projection and the corresponding part in
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the proof of Theorem 4.1 can be removed. In this case, only (10) needs to be shown and the
upper bound of kn only comes from

n−1/6 log(kn)7/6 = o(1) ⇐⇒ kn = exp
(
o(n1/7)

)
.

Therefore, in this situation, Theorem 4.1 can be modified to give almost the same flexibility
as [13, Theorem 4.2].

5. Signed and even-signed permutation groups

The previous two sections established the CLT and the EVLT for the joint distribution
(Xinv, Xdes)⊤ on the family of symmetric groups. We now work toward these results for
(Xinv, Xdes)⊤ on the signed and even-signed permutation groups Bn and Dn that generalize
the symmetric groups Sn.

The group Bn of signed permutations on n letters arises from Sn by assigning any combina-
tion of positive or negative signs to the entries of a permutation. The even-signed permutation
group Dn is the subgroup of Bn consisting of elements with an even number of negative signs.
As in [18, Section 2.1], we use the in-line notation

Bn =
{
π = (π(1), . . . , π(n)) : π(i) ∈ {±1, . . . , ±n} ∀i,

{|π(1)|, . . . , |π(n)|} = {1, . . . , n}
}
,(14)

and we have Dn = {π ∈ Bn : π(1)π(2) · · · π(n) > 0}.
According to [18], the combinatorial representation of inversions on Bn and Dn is given by

(15) Inv(π) =
{

Inv+(π) ∪ Inv−(π) ∪ Inv◦(π), if π ∈ Bn,

Inv+(π) ∪ Inv−(π) , if π ∈ Dn ,

for the disjoint sets

Inv+(π) = {1 ≤ i < j ≤ n | π(i) > π(j)},

Inv−(π) = {1 ≤ i < j ≤ n | −π(i) > π(j)},

Inv◦ (π) = {1 ≤ i ≤ n | π(i) < 0}.

Thus, the numbers of inversions on Bn and Dn are

XB
inv(π) = |Inv+(π)| + |Inv−(π)| + |Inv◦(π)|,

XD
inv(π) = |Inv+(π)| + |Inv−(π)|.

The set Inv+ is analogous to inversions on symmetric groups. Note that on Bn and Dn, one
must pay attention to signs, that means, a pair (i, j) with π(i), π(j) < 0 and |π(i)| < |π(j)|
also adds to Inv+(π). The set Inv− is that of negative sum pairs. The set Inv◦(π) simply
collects positions with negative entries. The latter two sets need to be counted so that |Inv(π)|
equals the word length on Bn with respect to the generating system {s0, s1, . . . , sn−1}, where
s0 = (−1, 2, 3, . . . , n) negates the first entry and si = (1, . . . , i − 1, i + 1, i, i + 2, . . . , n) is
the transposition of i and i + 1. The group Dn is generated by {s̃0, s1, . . . , sn−1} with
s̃0 = (−2, −1, 3, . . . , n), thus it is sufficient to add only |Inv−(π)| to |Inv+(π)|. For more
details and formal proofs, see [3, Sections 8.1 and 8.2].
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The knowledge of generating systems also allows to derive simple representations of Xdes
on Bn and Dn. Expand the in-line notation in (14) by setting π(0) := 0. Then, according to
[3, Sections 8.1 and 8.2],

(16a) XB
des(π) =

n−1∑
i=0

1{π(i) > π(i + 1)},

and on the even-signed permutation group Dn,

(16b) XD
des(π) = 1{−π(2) > π(1)} +

n−1∑
i=1

1{π(i) > π(i + 1)}.

To draw elements uniformly from Bn, one can first draw some uniform π ∈ Sn and then
multiply each π(i) with a Rademacher variable independent of everything else. Instead of the
Rademacher variables, we propose a more general approach by drawing signs with a fixed
p-bias, i.e., each sign is −1 with probability p ∈ [0, 1] and +1 with probability q := 1 − p.
This yields a family of probability measures on Bn, where the case p = 1/2 corresponds to
the uniform distribution on Bn, while if p = 0, all mass is on the symmetric group Sn ⊂ Bn.

A corresponding probability distribution on the even-signed permutation group Dn is
obtained by first choosing the unsigned permutation |π| ∈ Sn uniformly and then assigning
n − 1 signs for the entries π(1), . . . , π(n − 1) with p-bias, and finally specifying the sign of
π(n) such that π(1) · · · π(n − 1)π(n) > 0.

Definition 5.1. Let p ∈ [0, 1] and q := 1−p. Then, the p-biased signed permutations measure
on the group Bn is the probability measure induced by the point masses

P({π}) = 1
n!p

neg(π)qn−neg(π), π ∈ Bn ,

where neg(π) denotes the number of negative signs in π and we use the convention 00 := 1.
The p-biased signed permutations measure on Dn is derived as described above.

Therefore, the entries of π, with π distributed according to the p-biased signed permutations
measure, can be represented by i.i.d. random variables Z1, . . . , Zn with ∀i = 1, . . . , n: Zi =
UiRi, where Ri is a ±1-valued random variable with

P(Ri = −1) = p and P(Ri = 1) = q,

and Ui ∼ U(0, 1) is independent of Ri. The probability distribution function of Z1 is

Fp(z) := P(Z1 ≤ z) =
{

pz + p, z ∈ [−1, 0],
qz + p, z ∈ [0, 1],

and we simply write Z1 ∼ GR(p) (generalized Rademacher with parameter p). Note the special
cases GR(0) = U(0, 1), GR(1/2) = U(−1, 1) and GR(1) = U(−1, 0). Figure 2 illustrates Fp

in the cases of p = 0, p = 1/4 and p = 3/4. Accordingly, the Lebesgue density of GR(p) is
fp(z) = p1{−1 < z < 0} + q1{0 < z < 1}.
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z

−1/4−2/4−3/4−1 10 3/42/41/4

Fp(z)

1

3/4

2/4

1/4

Figure 2. Probability distribution functions of GR(p) for p = 0 (green),
p = 1/4 (blue) and p = 3/4 (red).

Remark 5.2. Let XB
inv denote the random number of inversions on Bn and let XD

inv denote
that on Dn. According to (15), we can write

XB
inv =

∑
i<j

1{Zi > Zj} +
∑
i<j

1{−Zi > Zj} +
n∑

i=1
1{Zi < 0},(17a)

XD
inv =

∑
i<j

1{Zi > Zj} +
∑
i<j

1{−Zi > Zj}.(17b)

Furthermore, (16a) and (16b) translate to

XB
des =

n−1∑
i=1

1{Zi > Zi+1} + 1{Z1 < 0},(18a)

XD
des =

n−1∑
i=1

1{Zi > Zi+1} + 1{−Z2 > Z1}.(18b)

In what follows, we use Xinv and Xdes as an umbrella notation for the numbers of inversions and
descents on each of the groups Sn, Bn and Dn. Again, both (18a) and (18b) give a 1-dependent
representation of Xdes, which yields a 1-dependent representation of (X̂inv, Xdes)⊤.

In the uniform case (p = 1/2), the means and variances are known by [18, Corollaries 3.2
and 4.2]. We now calculate them within the general p-bias framework. To this end, we first
observe that for any i < j,

P(−Zi > Zj) = E(P(−Zi > Zj |Zi)) = E(Fp(−Zi)) = E(E(Fp(−Zi)|Ui))
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= E(pFp(Ui) + qFp(−Ui)) = E(p(qUi + p) + q(−pUi + p)) = p .

Then, it follows straightforwardly from (17a) and (17b) that

E
(
XB

inv

)
=
(

n

2

)(
p + 1

2

)
+ np, E

(
XD

inv

)
=
(

n

2

)(
p + 1

2

)
.

The formula for Var(Xinv) is given in the next lemma.

Lemma 5.3 (see Subsection 8.3 for the proof). On the p-biased (even-)signed permutation
groups, we have

Var
(
XB

inv

)
=
(

−1
3p2 + 1

3p + 1
36

)
n3 −

(
3p3 − 4p2 + p − 1

24

)
n2

+
(

3p3 − 14
3 p2 + 5

3p − 5
72

)
n,

Var
(
XD

inv

)
=
(

−1
3p2 + 1

3p + 1
36

)
n3 −

(
p3 − 2p2 + p − 1

24

)
n2

+
(

p3 − 5
3p2 + 2

3p − 5
72

)
n.

In particular, if p = 0 or p = 1/2, we obtain the results in [18, Corollaries 3.2 and 4.2].

For the variance of X̂inv on Bn and Dn, we get the same leading term as in Lemma 5.3,
regardless of p. Hence, we obtain the Hájek approximation statement from Lemma 2.3 on the
groups Bn and Dn with p-bias.

Lemma 5.4 (see Subsection 8.4 for the proof). On the p-biased (even-)signed permutation
groups, we also have

Var(X̂inv) =
(

−1
3p2 + 1

3p + 1
36

)
n3 + O(n2),

so Ŷinv = Yinv + oP(1) applies according to Theorem 2.2.

The leading term, as a function of p, has no zeros in [0, 1] and assumes its global maximum
at p = 1/2, which is the unbiased case. This means that the order of Var(Xinv) and Var(X̂inv)
is guaranteed to be cubic in n.

From Lemma 5.4, we obtain an extension of Corollary 2.5, which we present as a general
statement on all three families of classical Weyl groups.

Corollary 5.5. Let W be a classical Weyl group of rank n, that is, W ∈ {Sn, Bn, Dn}. Set
Z0 := −∞ if W = Sn, Z0 := 0 if W = Bn and Z0 := −Z2 if W = Dn. Then,(

X̂inv
Xdes

)
=
(
E(Xinv | Z1)
1{Z0 > Z1}

)
+ . . . +

(
E(Xinv | Zn−1)

1{Zn−2 > Zn−1}

)
+
(
E(Xinv | Zn)−(n−1)E(Xinv)

1{Zn−1 > Zn}

)
is a 1-dependent decomposition of (X̂inv, Xdes)⊤. On Bn and Dn, this applies with any sign
bias.

Lemma 5.6 (see Subsections 8.5, 8.6 for the proof). On both of the groups Bn and Dn with
p-bias, it holds that
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a) Corr(Xinv, Xdes) −→ 0 as n → ∞, and

Cov(XB
inv, XB

des) = (n − 1)
(

p2

2 + p2q − p

2 + 1
4

)
+ (p − p2),

Cov(XD
inv, XD

des) = (n − 1)
(

p2

2 + p2q − p

2 + 1
4

)
+ p2.

b) Cov(X̂inv, Xdes) = Θ(1/n), so again, Corr(X̂inv, Xdes) −→ 0 as n → ∞.

The CLT of (Xinv, Xdes)⊤ on Bn and Dn is now derived analogously to Theorem 3.4.
Likewise, all arguments in the proof of the extreme value limit Theorem 4.1 apply on Bn and
Dn.

Theorem 5.7. For the joint statistic (Xinv, Xdes)⊤ on signed or even-signed permutation
groups with p-bias, the following hold.

a) (Xinv, Xdes)⊤
n≥1 satisfies the CLT.

b) The statement of Theorem 4.1 holds if Wn is an arbitrary sequence of classical Weyl
groups with rk(Wn) = n for all n ∈ N and with kn chosen so that kn log(kn) = o(n).

6. Products of classical Weyl groups

We now consider direct products of classical Weyl groups. Let W =
∏l

i=1 Wi be such a
product, where each Wi is one of Sn, Bn or Dn, and l is a fixed positive integer. By [18,
Lemma 2.2], we know that

XW
inv =

l∑
i=1

XWi
inv

is a sum of independent random variables, implying Var(XW
inv) =

∑l
i=1 Var(XWi

inv). Let XWi
inv

be constructed from variables Z
(i)
1 , . . . , Z

(i)
ni , where ni denotes the number of letters on which

the group Wi acts, and each Z
(i)
j is GR(pi) for some pi ∈ [0, 1], and the entire collection of all

Z
(i)
j is independent. Setting n := n1 + . . . + nl, the overall Hájek projection X̂W

inv of XW
inv is

X̂W
inv =

l∑
i=1

ni∑
j=1

E
(
XW

inv | Z
(i)
j

)
− (n − 1)E(XW

inv) ,

where E
(
XW

inv | Z
(i)
j

)
=
∑l

k=1 E
(
XWk

inv | Z
(i)
j

)
. If k ̸= i, then XWk

inv is independent of Z
(i)
j ,

which means that in this case E
(
XWk

inv | Z
(i)
j

)
= E(XWk

inv ) is constant. We therefore obtain

Var(X̂W
inv) =

l∑
i=1

ni∑
j=1

Var
(
E
(
XWi

inv | Z
(i)
j

))
=

l∑
i=1

Var(X̂Wi
inv).

For any Wi, we have Var(XWi
inv) ∼ Var(X̂Wi

inv). Furthermore, all variances are cubic as seen in
Lemmas 2.3, 5.3, 5.4 and [18, Corollary 3.2], i.e., we have

Var(XWi
inv) = cin

3
i + O(n2

i ) = Var(X̂Wi
inv), ni → ∞,
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where ci := −1
3p2

i + 1
3pi + 1

36 . It is seen from the calculations in the proofs of Lemmas 2.3
and 5.4 that Var(Xinv) − Var(X̂inv) = Θ(n2). So we can write

Var(XW
inv) =

l∑
i=1

(
cin

3
i + αin

2
i + O(ni)

)
, Var(X̂W

inv) =
l∑

i=1

(
cin

3
i + βin

2
i + O(ni)

)
,(19)

with αi ̸= βi for all i.
Consider a sequence (Wn)n∈N of products as introduced above, assuming that the number

l of components remains bounded. Then, we see that Var(XW
inv) ∼ Var(X̂W

inv) holds as n → ∞,
since the cubic terms are equal and cannot be dominated by the quadratic terms. Thus, to
obtain the CLT, the Hájek projection approximation is sufficient and the above considerations
show the following extension of Theorem 3.4.

Corollary 6.1. On bounded products of classical Weyl groups, it holds that Yinv = Ŷinv +oP(1),
and (Xinv, Xdes)⊤ satisfies the CLT.

To repeat the proof of the extreme value limit Theorem 4.1, there is another issue to
consider, namely the bounds (12) and (13), which require a suitable control of

(20) 1 − Var(X̂inv)
Var(Xinv) .

Since the number of components of Wn is bounded, we can assume w.l.o.g. that the components
are sorted decreasingly by rank, meaning n1 is the largest rank with n1 = Θ(n). We can also
assume that each group has exactly l components (as groups with fewer components can be
filled with components of S1, not giving any further inversions and descents).

Theorem 6.2. For fixed l ∈ N, let Wn =
∏l

i=1 Wn,i be products of finite Coxeter groups with
rk(Wn) = n ∀n ∈ N. Let kn log(kn) = o(n) and let (X(j)

inv, X
(j)
des)⊤, j = 1, . . . , kn be independent

copies of (Xinv, Xdes)⊤ on Wn. Let Mn,inv, Mn,des be defined as in (8). Then, the statement
of Theorem 4.1 applies for (Wn)n∈N, that is, we obtain (9) again.

Proof. The proof of Theorem 4.1 carries over almost seamlessly, we only need to check the
bound of (20). We can rephrase (19) as

Var(X̂Wn
inv ) =

l∑
i=1

cin
3
i + αn2 + O(n), Var(XWn

inv ) =
l∑

i=1
cin

3
i + βn2 + O(n).

Then,

1 − Var(X̂Wn
inv )

Var(XWn
inv )

= 1 −
∑l

i=1 cin
3
i + αn2 + O(n)∑l

i=1 cin3
i + βn2 + O(n)

.

Depending on whether the residual βn2 + O(n) is positive or negative, we can bound this in
both directions (assuming it is positive) via

(20) ≥ 1 −
∑l

i=1 cin
3
i + αn2 + O(n)∑l
i=1 cin3

i

= αn2 + O(n)∑l
i=1 cin3

i

= O

( 1
n

)
,

(20) = (β − α)n2 + O(n)∑l
i=1 cin3

i + βn2 + O(n)
≤ (β − α)n2 + O(n)∑l

i=1 cin3
i

= O

( 1
n

)
.
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Therefore, we have the same bound for (20) as in the proof of Theorem 4.1. □

7. Conclusion and Outlook

In this work, we proved both a CLT and an EVLT for the joint statistic (Xinv, Xdes) on
all classical Weyl groups, as well as their bounded products. This addresses one of the
open questions raised in [13] and gives a significant extension to [15], which only covered
the CLT on symmetric groups. We benefited from the fact that the number of inversions
Xinv can be suitably approximated by its Hájek projection, enabling us to apply Gaussian
approximation theory for m-dependent vectors. In comparison with the univariate results in
[13], the triangular array could not be stretched as generously, because the involvement of
Hájek’s projection required stronger assumptions.

On the symmetric groups Sn, both common inversions and descents are special instances
of so-called generalized inversions or d-inversions. For any choice of d ∈ {1, . . . , n − 1}, the
statistic of d-inversions counts only inversions over pairs (i, j) with 1 ≤ j − i ≤ d. It is
interesting to choose d = dn as a function of n. The asymptotic normality of d-inversions
under suitable conditions for dn has been shown in [21]. Accordingly, it is worthwhile to
investigate the constraints on dn that guarantee the EVLT in the way of Theorem 4.1.

Some further open questions remain as well, especially about the two-sided Eulerian statistic
XT (π) := Xdes(π) + Xdes(π−1). This statistic is known to satisfy a CLT according to [4] by
the method of dependency graphs, but its extreme value behavior still remains unknown.
Likewise, the extreme asymptotics of the joint distribution

(
Xdes(π), Xdes(π−1)

)
give another

open question.
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8. Appendix: remaining proofs

8.1. Proof of Lemma 2.6a). We compute Cov(Xinv, Xdes) from (1) and (2), obtaining that
it has lower order than

√
Var(Xinv)Var(Xdes). According to (1) and (2), we have

Cov(Xinv, Xdes) =
∑

1≤i<j≤n

n−1∑
k=1

Cov(1{Zi > Zj}, 1{Zk > Zk+1})

=
∑

1≤i<j≤n

∑
k∈{i−1,i,j−1,j}

1≤k≤n−1

Cov(1{Zi > Zj}, 1{Zk > Zk+1}) ,

where we used that if k /∈ {i − 1, i, j − 1, j}, then the events {Zi > Zj} and {Zk > Zk+1} are
independent and therefore Cov(1{Zi > Zj}, 1{Zk > Zk+1}) = 0. In what follows, we analyze
the case k ∈ {i − 1, i, j − 1, j}, first assuming that all these numbers are distinct. Additionally,
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i1 i− 1 j − 1 j n

k k

−1/12 1/12 1/12 −1/12

Figure 3. Canceling pairs of positive and negative covariances as k passes
through 1, . . . , n − 1 in non-exceptional situations. The covariance is zero for
all other values of k.

we temporarily ignore the border cases i = 1 (where k = i − 1 is outside the range) or j = n
(where k = n is outside the range). This gives four possible constellations:

• type A: k + 1 = i and j > k,
• type B: k = i and j > k + 1,
• type C: k + 1 = j and i < k,
• type D: k = j and i < k.

For type A, we have
Cov(1{Zi > Zj}, 1{Zi−1 > Zi}) = P(Zi > Zj , Zi−1 > Zi) − P(Zi > Zj)P(Zi−1 > Zi)

= P(Zi−1 > Zi > Zj) − 1
4

= 1
6 − 1

4 = − 1
12 ,

since each of the six possible orderings of Zi−1, Zi, Zj is equally likely as they are independent
U(0, 1) variables. For type B, we get

Cov(1{Zi > Zj}, 1{Zi > Zi+1}) = P(Zi = max{Zi, Zi+1, Zj}) − 1
4

= 1
3 − 1

4 = 1
12

since each of Zi, Zi+1, Zj are equally likely to be the maximum. Types C and D are handled
the same way. For type C, we have Cov(1{Zi > Zj}, 1{Zj−1 > Zj}) = 1

12 , and for type D,
Cov(1{Zi > Zj}, 1{Zj > Zj+1}) = − 1

12 . So if 1 < i < i + 1 < j < n, the inner sum∑
k∈{i−1,i,j−1,j}

Cov(1{Zi > Zj}, 1{Zk > Zk+1})

consists of two canceling pairs of 1/12 and −1/12, and vanishes altogether. Figure 3 displays
the passage of k and the positions of the positive and negative covariances, in which we see
that the positive signs are located inside, while the negative ones are located outside. We
also use this figure to explain what happens if 1 < i < i + 1 < j < n does not hold. We call
such cases exceptional.

• If i and j are subsequent, i.e., j = i + 1, then the two locations in Figure 3 with
positive contribution collide. If additionally k = i, we obtain Cov(1{Zi > Zj}, 1{Zk >
Zk+1}) = Cov(1{Zi > Zi+1}, 1{Zi > Zi+1}) = Var(1{Zi > Zi+1}) = 1/4.
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• If i = 1, then the leftmost negative term in Figure 3 disappears.
• If j = n, then the rightmost negative term in Figure 3 disappears.

As these situations are not mutually disjoint, we categorize the exceptional cases as follows:
• (E1): j = i + 1, but neither i = 1 nor j = n.
• (E2): i = 1 and j = 3, . . . , n − 1.
• (E3): j = n and i = 2, . . . , n − 2.
• (E4): i = 1, j = 2.
• (E5): i = n − 1, j = n.
• (E6): i = 1, j = n.

As an example, we display situation (E1) in Figure 4.

i1 i− 1 j n

k

−1/12 1/4 −1/12

Figure 4. Display of covariances for the exceptional case (E1) when i and
j = i + 1 are subsequent.

Looking at the contributions and frequencies of (E1), . . . , (E6), we obtain the exact result

Cov(Xinv, Xdes) = (n − 3)
(1

4 − 1
6

)
︸ ︷︷ ︸

(E1)

+ 2(n − 3) 1
12︸ ︷︷ ︸

(E2, E3)

+ 2
(1

4 − 1
12

)
︸ ︷︷ ︸

(E4, E5)

+ 1
6︸︷︷︸

(E6)

= n − 1
4 .

The claim follows. □

8.2. Proof of Lemma 2.6b). Recall that Z1, . . . , Zn are i.i.d. U(0, 1). By Lemma 2.3, we
have

X̂inv =
n∑

j=1
(n − 2j + 1)Zj + 1

2

(
n

2

)
,

which, together with the definition of Xdes, yields

Cov(X̂inv, Xdes) = Cov

 n∑
j=1

(n − 2j + 1)Zj ,
n−1∑
k=1

1{Zk > Zk+1}


=
( n−1∑

j=2
+

∑
j∈{1,n}

) n−1∑
k=1

(n − 2j + 1)Cov(Zj , 1{Zk > Zk+1})

=: T1 + T2 .
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In view of the independence of Z1, . . . , Zn, we get

T1 =
n−1∑
j=2

(n − 2j + 1)
(
Cov(Zj , 1{Zj < Zj−1}) + Cov(Zj , 1{Zj > Zj+1})

)
= 0 ,

where for the last equality, we used

Cov(Zj , 1{Zj < Zj−1}) + Cov(Zj , 1{Zj > Zj+1})

= E(Zj1{Zj < Zj−1}) + E(Zj1{Zj > Zj+1}) − 1
2

= E(Zj1{Zj < Zj−1}) + E(Zj1{Zj > Zj−1}) − 1
2

= E(Zj) − 1
2 = 0 .

As Z11{Z1 < Z2} is a function in two uniform variables with joint density f : R2 → R, (x, y) 7→
1{(x, y) ∈ [0, 1]2}, we can apply Fubini’s Theorem to obtain

E(Z11{Z1 < Z2}) =
∫

[0,1]2
x1{x < y} d(x, y)

=
∫ 1

0
x

(∫ 1

0
1{x < y}dy

)
dx

=
∫ 1

0
x(1 − x) dx = 1

6 .

Therefore, we get for T2:

T2 = (n − 1)Cov(Z1, 1{Z1 > Z2}) − (n − 1)Cov(Zn, 1{Zn−1 > Zn})
= (n − 1)

(
E(Z11{Z1 > Z2}) − E(Z11{Z1 < Z2})

)
= (n − 1)

(
1/2 − 2E(Z11{Z1 < Z2})

)
= n − 1

6 ,

which shows that Cov(X̂inv, Xdes) = n − 1
6 . □

8.3. Proof of Lemma 5.3. We follow the instructive calculation of Var(Xinv) in the uniform
case provided in [18, Section 3]. So, the main task is to calculate E(X2

inv). For XB
inv, we recall

(17a) and use the abbreviations

XB
inv =

∑
i<j

1{Zi > Zj}

︸ ︷︷ ︸
=: X+

+
∑
i<j

1{−Zi > Zj}

︸ ︷︷ ︸
=: X−

+
n∑

i=1
1{Zi < 0}︸ ︷︷ ︸
=: X◦

= X+ + X− + X◦.

This means we need to compute the terms

E
(
(XB

inv)2) = E((X+)2) + E((X−)2) + 2E(X+X−)
+ E((X◦)2) + 2E(X+X◦) + 2E(X−X◦).
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The first term E((X+)2) is invariant under p, since it only involves events {Zi > Zj} for which
P(Zi > Zj) = 1/2, even if the involved Zi, Zj are not uniformly distributed. Therefore, we
can obtain E((X+)2) from [18, Section 3]:

E((X+)2) = 1
2

(
n

2

)
+ 1

4

(
n

2

)(
n − 2

2

)
+ 5

3

(
n

3

)
.

Next, we turn to
E((X−)2) =

∑
i<j

∑
k<l

P(−Zi > Zj , −Zk > Zl).

For the
(n

2
)(n−2

2
)

choices of pairwise distinct i, j, k, l, we have that P(−Zi > Zj , −Zk > Zl) = p2

by independence, and for the
(n

2
)

cases where (i, j) = (k, l), we simply get P(−Zi > Zj) = p.
The set of triples with two of the indices colliding need to be analyzed similarly as in the
proof of Lemma 2.6a). Note that the cases i = k and j = l each contain two contributions.
E.g., in the case of i = l, we calculate by case distinction according to the signs:

P(−Zi > Zj , −Zk > Zi) = P(−Zi > Zj , −Zk > Zi, Zi > 0)
+ P(−Zi > Zj , −Zk > Zi, Zi < 0)

= P(−Zi > Zj , −Zk > Zi, Zi > 0, Zj < 0, Zk < 0)
+ P(Zi < 0, Zj < 0, Zk < 0)
+ P(Zi < 0, Zj > 0, Zk < 0, −Zi > Zj)
+ P(Zi < 0, Zj < 0, Zk > 0, −Zk > Zi)
+ P(Zi < 0, Zj > 0, Zk > 0, −Zi > Zj , −Zk > Zi)

= 1
3p2q + p3 + 1

2p2q + 1
2p2q + 1

3pq2

= 1
3p(2p + 1).

It turns out that all six constellations of triplets give this contribution. So, overall,

E
(
(X−)2) =

(
n

2

)
p +

(
n

2

)(
n − 2

2

)
p2 +

(
n

3

)
2p(2p + 1).

For E(X+X−), the disjoint quadruplets give a contribution of p/2 each. For the colliding
pairs, we need to compute

P(Zi > Zj , −Zi > Zj)
= P(Zi > Zj , −Zi > Zj , Zi > 0, Zj > 0)︸ ︷︷ ︸

= 0

+P(Zi > Zj , −Zi > Zj , Zi < 0, Zj > 0)︸ ︷︷ ︸
= 0

+ P(Zi > Zj , −Zi > Zj , Zi < 0, Zj < 0) + P(Zi > Zj , −Zi > Zj , Zi > 0, Zj < 0)

= P(Zi < 0, Zj < 0, Zi > Zj) + P(Zi > 0, Zj < 0, −Zi > Zj) = p2

2 + p2q.

For the triplets, we repeat the procedure above. For the cases j = k and j = l, we get

P(Zi > Zj , −Zj > Zk) = −1
6p(2p − 5).
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For the cases i = l and i = k, we derive

P(Zi > Zj , −Zi > Zl) = P(Zi > Zj , −Zi > Zl, Zi > 0, Zl < 0)
+ P(Zi > Zj , −Zi > Zl, Zi < 0, Zj < 0)

= P(Zi > 0, Zj < 0, Zl < 0, −Zi > Zl)
+ P(Zi > 0, Zj > 0, Zl < 0, Zj < Zi < −Zl)
+ P(Zi < 0, Zj < 0, Zl < 0, Zi > Zj)
+ P(Zi < 0, Zj < 0, Zl > 0, Zj < Zi < −Zl)

= 1
2p2q + 1

6pq2 + 1
2p3 + 1

6p2q

= 1
6p(2p + 1),

and overall we obtain

E(X+X−) =
(

n

2

)(
p2

2 + p2q

)
+
(

n

2

)(
n − 2

2

)
p

2 + 3
(

n

3

)(1
6p(2p + 1) − 1

6p(2p − 5)
)

︸ ︷︷ ︸
= p

=
(

n

2

)(
p2

2 + p2q

)
+
(

n

2

)(
n − 2

2

)
p

2 + 3
(

n

3

)
p.

The remaining three terms are easily calculated as

E(X+X◦) =
∑
i<j

n∑
k=1

P(Zi > Zj , Zk < 0)

= 3
(

n

3

)
p

2 +
∑
i<j

P(Zi > Zj , Zi < 0) +
∑
i<j

P(Zi > Zj , Zj < 0)

= 3
(

n

3

)
p

2 +
(

n

2

)
(p2 + pq) = 3

(
n

3

)
p

2 +
(

n

2

)
p,

E(X−X◦) =
∑
i<j

n∑
k=1

P(−Zi > Zj , Zk < 0)

= 3
(

n

3

)
p2 + 2

(
n

2

)
(p2 + p2q) = 3

(
n

3

)
p2 + 2

(
n

2

)
(2p2 − p3),

E((X◦)2) =
n∑

i,j=1
P(Zi < 0, Zj < 0) = 2

(
n

2

)
p2 + np.

Summing all of these terms and subtracting the square of the mean gives the claim for Bn.
On Dn, we ignore the parts involving X◦ and get the desired result. □
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8.4. Proof of Lemma 5.4. We first prove the claim on the even-signed permutation groups
Dn, since the calculation will be the same for Bn. We proceed as in Lemma 2.3, starting from

X̂inv =
n∑

k=1
E(Xinv | Zk) − (n − 1)E(Xinv),

except here, Xinv is defined by (17b), and we have Zk ∼ GR(p). According to (17b), we have

E(Xinv | Zk) =
∑
i<j

E
(
1{Zi > Zj} + 1{−Zi > Zj} | Zk

)
=
∑
i<j

(
P(Zi > Zj | Zk) + P(−Zi > Zj | Zk)

)
.(21)

Write f(Zi, Zj) := 1{Zi > Zj} + 1{−Zi > Zj} for i < j and set Uk = |Zk|. A straightforward
case distinction gives

• Zi, Zj > 0: f(Zi, Zj) = 1{Ui > Uj},
• Zi > 0, Zj < 0: f(Zi, Zj) = 1{Ui > Uj},
• Zi < 0, Zj > 0: f(Zi, Zj) = 1{Ui < Uj} + 1,
• Zi, Zj < 0: f(Zi, Zj) = 1{Ui < Uj} + 1.

For symmetry reasons, f(Zi, Zj) depends only on the sign of Zi but not on the sign of Zj . To
compute (21), we only need to consider the n − k tuples (k, j) and the k − 1 tuples (i, k), as
the other tuples are independent of Zk and produce constants which do not contribute to the
variance.

Recall that for k < j, we have P(Uk > Uj | Uk) = Uk and P(Uk < Uj | Uk) = 1 − Uk.
Therefore, we can write

E(Xinv | Zk) =
k−1∑
i=1

E
(
f(Zi, Zk) | Zk

)
+

n∑
j=k+1

E
(
f(Zk, Zj) | Zk

)
,

where
E
(
f(Zi, Zk) | Zk

)
= P(Zi > 0)(1 − Uk) + P(Zi < 0)(1 + Uk)
= q(1 − Uk) + p(1 + Uk) = 2pUk − Uk + 1

and
E
(
f(Zk, Zj) | Zk

)
= 1{Zk > 0}Uk + 1{Zk < 0}(1 + 1 − Uk)
= 1{Zk > 0}Uk + 1{Zk < 0}(2 − Uk).

Overall, we obtain
E(Xinv | Zk) = (k − 1)(2pUk − Uk + 1)

+ (n − k)
(
1{Zk > 0}Uk + 1{Zk < 0}(2 − Uk)

)
+ const.

To use the standard formula Var(X) = E(X2) − E(X)2, where X is not affected by constant
summands, we now compute

E(E(Xinv | Zk)2)

= (k − 1)2E
(
(2pUk − Uk + 1)2

)
(22a)
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+ (n − k)2E
((

1{Zk > 0}Uk + 1{Zk < 0}(2 − Uk)
)2)(22b)

+ 2(k − 1)(n − k)E
(
(2pUk − Uk + 1)

(
1{Zk > 0}Uk(22c)
+ 1{Zk < 0}(2 − Uk)

))
.

The random variables 1{Zk > 0} and Uk are independent by construction and therefore,

(22a) = (k − 1)2E
(
4p2U2

k − 4pU2
k + 4pUk + U2

k − 2Uk + 1
)

= (k − 1)2
(4

3p2 − 4
3p + 2p + 1

3

)
= (k − 1)2

(4
3p2 + 2

3p + 1
3

)
,

(22b) = (n − k)2
(
qE(Uk)2 + pE

(
(2 − Uk)2))

= (n − k)2
(

q

3 + 7
3p

)
= (n − k)2

(
2p + 1

3

)
,

(22c) = 2(k − 1)(n − k)
(
(1 − p)E(2pU2

k − U2
k + Uk)

+ pE
(
(2pUk − Uk + 1)(2 − Uk)

))
= 2(k − 1)(n − k)

(
(1 − p)

(2
3p + 1

6

)
+ p

(4
3p + 5

6

))
= 2(k − 1)(n − k)

(2
3p2 + 4p

3 + 1
6

)
.

In total, we have

E(E(Xinv | Zk)2) = (k − 1)2
(4

3p2 + 2
3p + 1

3

)
+ (n − k)2

(
2p + 1

3

)
+ 2(k − 1)(n − k)

(2
3p2 + 4

3p + 1
6

)
.

We subtract the square of

E(E(Xinv | Zk)) = (k − 1)
(

p + 1
2

)
+ (n − k)

(1
2 − p

2 + 3
2p

)
=
(

p + 1
2

)
(n − 1).

The variance of X̂inv on Dn is

Var(X̂inv) =
n∑

k=1

(
E(E(Xinv | Zk)2) − E(E(Xinv | Zk))2

)
=

n∑
k=1

E(E(Xinv | Zk)2) − n(n − 1)2
(

p + 1
2

)2
,

so, to conclude the proof, we compute
n∑

k=1
E(E(Xinv | Zk)2) =

(4
3p2 + 2

3p + 1
3

) n∑
k=1

(k − 1)2 +
(

2p + 1
3

) n∑
k=1

(n − k)2
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+
(4

3p2 + 8p

3 + 1
3

) n∑
k=1

(k − 1)(n − k)

=
(4

3p2 + 2
3p + 1

3

)
· 1

6n(n − 1)(2n − 1)

+
(

2p + 1
3

)
· 1

6n(n − 1)(2n − 1)

+
(4

3p2 + 8p

3 + 1
3

)
· 1

6n(n − 1)(n − 2)

= n3
(2

3p2 + 4
3p + 5

18

)
− n2

(4
3p2 − 8

3p − 1
2

)
+ n

(2
3p2 + 4

3p + 2
9

)
.

Subtracting n(n−1)2
(
p + 1

2

)2
gives exactly the desired leading term computed in Lemma 5.3.

On the groups Bn, we achieve the same result since the extra parts in Var(X̂inv) yielded by∑n
i=1 1{Zi < 0} are not significant. Recall that

XB
inv = XD

inv +
n∑

i=1
1{Zi < 0},

and therefore,

Var
(
E(XB

inv | Zk)
)

= Var

E(XD
inv | Zk) +

n∑
j=1

E(1{Zj < 0} | Zk)


= Var

(
E(XD

inv | Zk) + E(1{Zk < 0} | Zk) + const
)

= Var
(
E(XD

inv | Zk) + 1{Zk < 0} + const
)

= Var
(
(n − k)1{Zk > 0}Uk + (n − k)1{Zk < 0}(2 − Uk)

+ (k − 1)(2pUk − Uk + 1) + 1{Zk < 0} + const
)
.

Using the standard formula again, we have

E
(
E(XB

inv | Zk)2
)

= E
(
E(XD

inv | Zk)2
)

+ E (1{Zk < 0})
+ 2E ((n − k)(2 − Uk)1{Zk < 0})
+ 2E

(
(k − 1)(2pUk − Uk + 1)1{Zk < 0}

)
= E

(
E(XD

inv | Zk)2
)

+ p + 3p(n − k) + (k − 1)(2p + 1)p,

E
(
E(XB

inv | Zk)
)2

= E
(
E(XD

inv | Zk)
)2

+ p2 + 2E(1{Zk < 0})E
(
E(XD

inv | Zk)
)

=
(

p + 1
2

)2
(n − 1)2 + p2 + 2p(n − 1)

(
p + 1

2

)
.
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We conclude that

Var(X̂B
inv) = Var(X̂D

inv) + n(p − p2) − p(2p + 1)n(n − 1)
2

= Var(X̂D
inv) + O(n2).

The desired claim follows from Theorem 2.2. □

8.5. Proof of Lemma 5.6a). For the groups Bn and Dn, the calculation follows the same
approach as on Sn. Recall that now, Z1, . . . , Zn ∼ GR(p). On Dn, we have by (16b), (17b)
that

Cov(XD
inv, XD

des) =
∑
i<j

n−1∑
k=1

Cov (1{Zi > Zj}, 1{Zk > Zk+1})(23a)

+
∑
i<j

n−1∑
k=1

Cov (1{−Zi > Zj}, 1{Zk > Zk+1})(23b)

+
∑
i<j

Cov(1{Zi > Zj} + 1{−Zi > Zj}, 1{−Z2 > Z1}).(23c)

The contribution of (23a) is (n − 1)/4, in analogy with Lemma 2.6a). In (23b), we first
demonstrate the cancellation in the non-exceptional case when {i − 1, i, j − 1, j} form a set of
distinct numbers. In that case, we have

Cov(1{−Zi > Zj}, 1{Zi > Zi+1}) + Cov(1{−Zi > Zj}, 1{Zi−1 > Zi})
= E(1{−Zi > Zj}1{Zi > Zi+1}) + E(1{−Zi > Zj}1{Zi−1 > Zi}) − 2(p/2)
= E(1{−Zi > Zj}1{Zi > Zi+1}) + E(1{−Zi > Zj}1{Zi+1 > Zi}) − p

= E(1{−Zi > Zj}) − p = 0,

and likewise,

Cov(1{−Zi > Zj}, 1{Zj > Zj+1}) + Cov(1{−Zi > Zj}, 1{Zj−1 > Zj}) = 0.

However, this cancellation occurs not only in the non-exceptional cases, but also in the
aggregation of the exceptional cases (E1) – (E6) from the proof of Lemma 2.6a), except for
the covariances resulting from the clash of j = i + 1 and k = i. To be precise, (E2) and (E3)
cancel mutually. (E4) and (E5) give two clashes and a canceling pair. (E6) consists of another
canceling pair. All of this can be checked from the computation of E(X+X−) in the proof of
Lemma 5.3. From there, we also obtain ∀i = 1, . . . , n − 1:

Cov(1{−Zi > Zi+1}, 1{Zi > Zi+1}) = p2

2 + p2q − p

2 ,

which interestingly vanishes in the unbiased case. Overall,

(23b) = (n − 1)
(

p2

2 + p2q − p

2

)
.
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Finally, consider (23c). Obviously, this double-indexed sum involves exactly the pairs (i, j)
with i = 1 or i = 2. We get

(23c) =
n∑

j=3
Cov(1{Z1 > Zj} + 1{−Z1 > Zj}, 1{−Z2 > Z1})

+
n∑

j=3

[
Cov(1{Z2 > Zj} + 1{−Z2 > Zj}, 1{−Z2 > Z1})

+ Cov(1{−Z1 > Z2}, 1{−Z2 > Z1})︸ ︷︷ ︸
= p2

+ Cov(1{Z1 > Z2}, 1{−Z2 > Z1})︸ ︷︷ ︸
= 0

]

=
n∑

j=3

[
Cov(1{Z1 > Zj}, 1{−Z2 > Z1}) + Cov(1{−Z1 > Zj}, 1{−Z2 > Z1})

]
︸ ︷︷ ︸

= 0

+
n∑

j=3

[
Cov(1{Z2 > Zj}, 1{−Z2 > Z1}) + Cov(1{−Z2 > Zj}, 1{−Z2 > Z1})

]
︸ ︷︷ ︸

= 0

+ p2.

Therefore, we obtain the overall result on Dn, which is

Cov(XD
inv, XD

des) = (n − 1)
(

p2

2 + p2q − p

2 + 1
4

)
+ p2.

Next, we show that this result is obtained on Bn as well. By (17a) and (16a), we have

Cov(XB
inv, XB

des) = (23a) + (23b)

+
n∑

i=1

n−1∑
k=1

Cov(1{Zi < 0}, 1{Zk > Zk+1})(24a)

+
∑
i<j

Cov(1{Zi > Zj} + 1{−Zi > Zj}, 1{Z1 < 0})(24b)

+
n∑

i=1
Cov(1{Zi < 0}, 1{Z1 < 0}) .(24c)

We now see that (24a) and (24b) vanish. In (24a), the inner sum only involves k = i − 1 and
k = i, therefore,

(24a) =
n∑

i=1

[
Cov(1{Zi < 0}, 1{Zi−1 > Zi}) + Cov(1{Zi < 0}, 1{Zi > Zi+1})

]
=

n∑
i=1

[
Cov(1{Zi < 0}, 1{Zi−1 > Zi}) + Cov(1{Zi < 0}, 1{Zi > Zi−1})

]
= E(1{Z1 < 0}) − 2p/2 = 0.
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This cancellation even applies to the border terms i = 1 and i = n. We also get

(24b) =
n∑

j=2

[
Cov(1{Z1 > Zj}, 1{Z1 < 0}) + Cov(1{−Z1 > Zj}, 1{Z1 < 0})

]

=
n∑

j=2

[
P(Z1 < 0, Z1 > Zj) − p/2

]
︸ ︷︷ ︸

= −pq/2

+
n∑

j=2

[
P(Z1 < 0, −Z1 > Zj) − p2

]
︸ ︷︷ ︸

= pq/2

= 0.

Finally,

(24c) =
n∑

i=1
Cov(1{Zi < 0}, 1{Z1 < 0}) = Var(1{Z1 < 0}) = p − p2,

giving the overall result

Cov(XB
inv, XB

des) = (n − 1)
(

p2

2 + p2q − p

2 + 1
4

)
+ (p − p2),

so again, Corr(XB
inv, XB

des) vanishes in the limit. □

8.6. Proof of Lemma 5.6b). For the groups Bn and Dn, with Zk ∼ GR(p) and the
modifications (16a), (16b), the calculation is more extensive but its procedure is the same as
in the proof of Lemma 2.6b). On Dn, we first have

Cov(X̂D
inv, XD

des) =
n∑

j=1

n−1∑
k=1

(n − j)Cov(Uj1{Zj > 0}, 1{Zk > Zk+1})(25a)

+ (n − j)Cov((2 − Uj)1{Zj < 0}, 1{Zk > Zk+1})(25b)
+ (j − 1)Cov(2pUj − Uj + 1, 1{Zk > Zk+1}).(25c)

+
n∑

j=1
(n − j)Cov(Uj1{Zj > 0}, 1{−Z2 > Z1})(25d)

+ (n − j)Cov((2 − Uj)1{Zj < 0}, 1{−Z2 > Z1})(25e)
+ (j − 1)Cov(2pUj − Uj + 1, 1{−Z2 > Z1}).(25f)

In the first three rows (25a) – (25c), there is cancellation if j /∈ {1, n} due to previously used
arguments. Only j = 1 is relevant in (25a), (25b) and only j = n is relevant in (25c). We
have E(Uj1{Zj > 0})E(1{Zj > Zj+1}) = q/4, and the joint density of Zj and Zj+1 is

fp(x, y) := fp(x)fp(y) =


p2, x, y < 0
pq, x > 0, y < 0
pq, x < 0, y > 0
q2, x, y > 0

.

By Fubini’s Theorem, we obtain

E(U11{Z1 > 0}1{Z1 > Z2}) =
∫

[−1,1]2
|x|1{x > 0}1{x > y}fp(x, y)d(x, y)
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=
∫

[0,1]2
q2x1{x > y}d(x, y) +

∫
[0,1]×[−1,0]

pqx1{x > y}d(x, y)

= q2
∫ 1

0
x2dx + pq

∫ 1

0
xdx = q2

3 + pq

2 ,

and likewise,

E
(
(2 − U1)1{Z1 < 0}1{Z1 > Z2}

)
=
∫ 0

−1

∫ 1

−1
(2 − |x|)1{x > y}fp(x, y)d(x, y)

= p2
∫ 0

−1
(2 + x)(1 + x)dx = 5

6p2,

E
(
(2p − 1)Un1{Zn−1 > Zn}

)
= (2p − 1)

∫
[−1,1]2

|x|1{x < y}fp(x, y)d(x, y)

= (2p − 1)
(

p2

3 + q2

6 + pq

2

)
= (2p − 1)p + 1

6 .

Therefore,

(25a) + (25b) + (25c) = (n − 1)
(

−p3

3 + 5p2

3 − 4p

3 + 1
6

)
has linear order. The remaining three rows (25d) – (25f) also have no more than linear order,
since the summands are nonzero only for j = 1 or j = 2. □
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