
ar
X

iv
:2

30
2.

13
91

4v
1 

 [
m

at
h.

PR
] 

 2
7 

Fe
b 

20
23

ASYMPTOTIC INDEPENDENCE OF POINT PROCESS AND FROBENIUS

NORM OF A LARGE SAMPLE COVARIANCE MATRIX

JOHANNES HEINY AND CAROLIN KLEEMANN

Abstract. A joint limit theorem for the point process of the off-diagonal entries of a sample
covariance matrix S, constructed from n observations of a p-dimensional random vector with iid
components, and the Frobenius norm of S is proved. In particular, assuming that p and n tend
to infinity we obtain a central limit theorem for the Frobenius norm in the case of finite fourth
moment of the components and an infinite variance stable law in the case of infinite fourth moment.
Extending a theorem of Kallenberg, we establish asymptotic independence of the point process and
the Frobenius norm of S. To the best of our knowledge, this is the first result about joint convergence
of a point process of dependent points and their sum in the non-Gaussian case.

1. Introduction

Over recent years the analysis of high-dimensional data has emerged as an important and active
research area driven by a wide range of applications in various fields such as genomics, medical
imaging, signal processing, financial engineering and social science. To study large data sets, for
instance, in brain connectivity analysis or in gene expression analysis (see [18, 41, 46]), knowledge
of the dependence structure plays a central role. Interpreting the data as observations of a p-
dimensional random vector, dependence between the components of the vector is often estimated
by covariance/correlation statistics and different functions are used to aggregate these estimates
of the pairwise dependencies. For example, [37, 40, 45] and [29] propose sum-type tests based on
the Frobenius norm which are usually powerful against dense alternatives. Further very popular
methods of aggregating estimates of the pairwise dependencies are maximum-type tests, which
have good power properties against sparse alternatives and have been investigated for various
covariance/correlation statistics in [6, 12, 20, 23, 27, 31, 45, 47] and [21] among others. Since in
practice it is difficult to decide whether the underlying covariance matrix is sparse or dense, it is
useful to combine these two types of test statistics to cover both cases [7, 15, 17, 21, 44]. Therefore,
an understanding of the joint asymptotic behavior of these test statistics is needed.

The objective of this paper is to contribute to this line of research by providing asymptotic theory
for the joint distribution of sum-type statistics and generalized maximum-type statistics of a large
sample covariance matrix.

For a sample x1, . . . ,xn from the p-dimensional population x with independent and identically
distributed (iid) components with mean zero and variance one, the sample covariance matrix S is
given by

S := Sn :=
1

n

n∑

t=1

xtx
⊤
t =

(
Sij)1≤i,j≤p .

Throughout this paper, we assume that the dimension p = pn is a positive integer sequence tending
to infinity together with the sample size n. Thus, the p× p-matrix S is a high-dimensional random
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2 J. HEINY AND C. KLEEMANN

matrix whose asymptotic properties are used, for example, in independence testing. Sum-type and
maximum-type statistics based on S are given by the (squared) Frobenius norm and the maximum
off-diagonal entry of S,

‖S‖2F :=

p∑

i,j=1

S2
ij = tr(S2) and max

1≤i<j≤p
Sij .

We are interested in the joint limiting distribution of tr(S2) and the sequence of point processes of
the off-diagonal entries of S

Nn :=
∑

1≤i<j≤p

εdp(
√
nSij−dp), (1.1)

where εx denotes the Dirac measure in x ∈ R and

dp :=
√

2 log p̃− log log p̃+ log 4π

2(log p̃)1/2
for p̃ := p(p− 1)/2 .

It is well-known that the point process in (1.1) contains information about all order statistics of the
Sij’s (see [14]). The distribution of the maximum can be recovered from the identity {Nn((x,∞)) =
0} = {maxi<j dp(

√
nSij − dp) ≤ x}, x ∈ R. In this sense, the point process Nn is a natural and

meaningful generalization of the maximum.
In Table 1 an overview of the available results about the convergence of maxSij, Nn and tr(S2)

and the novel contributions of this paper (marked in blue) is given. For the reader’s convenience,
the table contains the limit distributions themselves and precise references. It is worth mentioning
that the distinction between finite and infinite fourth moment of X, which is a generic random
variable with the same distribution as the components of x, results from the sum-type statistic
tr(S2).

Var(X) < ∞, E[X4] = ∞ E[X4] < ∞

maxSij Gumbel distribution, [23, Thm. 3.2] Gumbel distribution, [27, Lem. 3.2]

Nn Poisson process, [23, Thm. 3.2] Poisson process N , [23, Thm. 3.2]

tr(S2) Stable distribution, Thm. 2.4 Normal distribution Z, Thm. 2.2

(Nn, tr(S
2)) open (N,Z) independent, Thm. 2.7

Table 1. Overview of the asymptotic results about maxSij, Nn and tr(S2).

1.1. Related literature on sums, maxima and point processes. The joint behavior of the
sum and the maximum of a sequence of real-valued random variables has been studied before,
motivated for example by the evaluation of wind speed data, which is usually available in the form
of the maximum wind speed and the average wind speed during a day or an hour. For iid random
variables (Yi)i≥1 we set

Sn :=

n∑

i=1

Yi and Mn := max
1≤i≤n

Yi.

If the distribution function F of Y1 belongs to the sum domain of attraction of the normal distri-
bution and the maximum domain of attraction of an extreme value distribution, [8] showed that
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(Sn,Mn) converges in distribution to a limit (S,M), where S and M are independent and not
degenerated. They also proved that if

1− F (x) = q+ x−αL(x) and F (−x) = q− x−αL(x), x > 0 , α ∈ (0, 2) ,

where L is a slowly varying function and 0 < q+ ≤ q+ + q− = 1, then (Sn,Mn) converges to a
limit (S,M), where S and M are dependent and they provide a hybrid characteristic distribution
function of (S,M).

The papers [1, 2, 25] generalized these results to strongly mixing stationary random variables.
For stationary normal random variables [24] and [32] proved asymptotic independence under certain
correlation assumptions. Recently, asymptotic independence of a quadratic form in and the maxi-
mum of independent random variables was proved in [7] and asymptotic independence of the sum
and the maximum of dependent normal random variables that need not be stationary or strongly
mixing but fulfill conditions on the smallest and largest eigenvalue of their covariance matrix was
shown in [16].

For a triangular array of normal distributed random variables the asymptotic independence of
the point process of exceedances and the partial sum was considered in [26, 42] and extended to
the multivariate case in [35]. Moreover, [19] established asymptotic independence of the point
processes of clusters and the partial sums of bivariate stationary Gaussian triangular arrays. As-
ymptotic independence of other quantities derived from the sample covariance matrix S has also
been considered in a variety of settings. For example, the asymptotic independence of the maxi-
mum of sample correlations and the sum of the squared sample correlations between the residuals
from the ordinary least squares is proven in [17], while [30] showed asymptotic independence of the
largest sample eigenvalues and the trace of S.

1.2. Structure of this paper. This paper is structured as follows. Section 2 contains our main
results about the point process of the off-diagonal entries of S and the Frobenius norm of S. Under
finite fourth moment of X the Frobenius norm satisfies a CLT (Theorem 2.2), while in the case of
infinite fourth moment we obtain a stable limit law (Theorem 2.4). The main result of this paper is
Theorem 2.7, which shows asymptotic independence of the point process and the Frobenius norm
of S. The challenges in the proof of this result and our novel technical contributions are outlined
in Section 2.3, while Section 2.4 presents an application to independence testing. The proofs are
deferred to Section 3 and helpful auxiliary results are given in Section 4.

1.3. Notation. Convergence in distribution (resp. probability) is denoted by
d→ (resp.

P→), equality

in distribution by
d
=, and unless explicitly stated otherwise all limits are for n → ∞. For sequences

(an)n and (bn)n we write an = O(bn) if an/bn ≤ C for some constant C > 0 and every n ∈ N, and
an = o(bn) if limn→∞ an/bn = 0. Additionally, we use the notation an ∼ bn if limn→∞ an/bn = 1.

2. Main results

Consider a sample x1, . . . ,xn from the p-dimensional population x with iid components with
generic element X satisfying E[X] = 0 and E[X2] = 1. We will work in the high-dimensional
setting, where the dimension p = pn is some positive integer sequence tending to infinity as n → ∞.
We aim to study the joint asymptotic behavior of the point processes Nn of the off-diagonal entries
(see (1.1)) and the Frobenius norm of the sample covariance matrix S = (Sij) =

1
n

∑n
t=1 xtx

⊤
t .

2.1. Asymptotic distributions of point process and Frobenius norm of the sample co-

variance matrix. First we consider the convergence in distribution of the sequence of point pro-
cesses Nn towards a Poisson random measure. For a detailed background on weak convergence of
point processes we refer to [10, 38]. The following result can be found in [23, Theorem 3.2] and [22,
Theorem 4.1].
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Theorem 2.1. [23, Theorem 3.2] Assume that there exist s > 2 and ε > 0 such that E[|X|s+ε] < ∞
and let p = pn → ∞ satisfy p = O(n(s−2)/4), as n → ∞. Then it holds that Nn

d→ N , where N is
a Poisson random measure with mean measure µ(x,∞) = e−x for x ∈ R.

The Poisson random measure N with mean measure µ(x,∞) = e−x for x ∈ R has the represen-
tation

N =
∞∑

i=1

ε− log Γi
, (2.2)

where Γi = E1+ · · ·+Ei, i ≥ 1, and (Ei) is a sequence of iid standard exponential random variables
[38].

Our second object of interest is the squared Frobenius norm of the sample covariance matrix,
that is ‖S‖2F :=

∑p
i,j=1 S

2
ij = tr(S2). In order to study its asymptotic distribution we define

Zn :=
tr(S2)− µn

σn
, (2.3)

where

σ2
n :=

( p

n
+ 2

p2

n2
+

p3

n3

)
4(E[X4]− 1) + 4

p2

n2
, (2.4)

µn := E[tr(S2)] =
p

n
(n + E[X4]− 2) +

p2

n
.

The next result provides a CLT for tr(S2) in the general case that pn → ∞ and E[X4] < ∞.

Theorem 2.2. If E[X4] < ∞ and p = pn → ∞, then as n → ∞ we have Zn
d→ Z for a standard

normal random variable Z.

Remark 2.3. Under special assumptions on X and the growth of p, the behavior of Zn can
be deduced from CLTs for so-called linear spectral statistics of sample covariance matrices: for
example, [3, Theorem 9.10] and [34, Theorem 1.4] in the case p/n → C ∈ (0,∞) and E[X4] < ∞,
or [36, Theorem 3.1] in the case n2/p = O(1) if E[|X|6+δ ] < ∞ for some δ > 0.

In contrast to the convergence of the point processes Nn in Theorem 2.1, the CLT in Theorem 2.7
requires the existence of the fourth moment of X. To characterize the asymptotic distribution of
tr(S2) in the case E[X4] = ∞ we need to assume that X is a regularly varying random variable.
We say that a random variable X (or its distribution) is regularly varying with index α > 0 if

P(|X| > x) = x−α L(x) , x > 0 ,

where L is a slowly varying function, i.e., limx→∞ L(tx)/L(x) = 1 for t > 0. Examples of regularly
varying distributions are the Pareto distribution with parameter α and the t-distribution with α
degrees of freedom.

For a regularly varying random variable X with index α it holds that E[|X|β ] < ∞ if β < α and
E[|X|β ] = ∞ if β > α. It is well–known that the sequence (ak)k defined through

ak := inf{x ∈ R : P(|X| > x) ≤ 1/k} , k ≥ 1 ,

is of the form ak = k1/αℓ(k), where ℓ is a slowly varying function. For further properties of regularly
varying functions we refer to [4, 39]. In the next theorem we consider the case that X has finite
variance but infinite fourth moment.

Theorem 2.4. Let X have a regularly varying distribution with index α ∈ (2, 4) and assume that
p = pn → ∞. Then it holds that

n2

a4np
tr(S2)− 2n(n+ p− 2)

a4np
tr(S) +

np(n+ p− 2)

a4np

d→ ζα/4, n → ∞ , (2.5)
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where ζα/4 is a non-degenerated, α/4-stable random variable with characteristic function

E[eitζα/4 ] = exp
(
itcα +

α

4

∫ ∞

0

(
eitx − 1− itx

1 + x2
)
x−(α/4+1)dx

)
,

where i is the imaginary unit and cα is a constant only depending on α.

In the proof of Theorem 2.4 we show that

n2

a4np
tr(S2)− 2n(n+ p− 2)

a4np
tr(S) +

np(n+ p− 2)

a4np
=

1

a4np

p∑

i=1

n∑

t=1

X4
it + oP(1) .

Noticing that
∑

i,tX
4
it is a sum of iid regularly varying random variables with index α/4 ∈ (1/2, 1),

we obtain an α/4-stable limit distribution after proper normalization [39].

Remark 2.5. (a) In some cases it is possible to replace tr(S) by its expectation E[tr(S)] = p in
(2.5). For example, if limn→∞ p/n ∈ (0,∞), we get for δ > 0

P

(∣∣∣2n(n+ p− 2)

a4np

(
tr(S)− E[tr(S)]

)∣∣∣ > δ
)
= P

(∣∣∣2(n+ p− 2)

a4np

p∑

i=1

n∑

t=1

(X2
it − 1)

∣∣∣ > δ
)

∼ npP
(
|X2 − 1| > δa4np

2(n+p−2)

)
→ 0 , n → ∞ ,

where Theorem A1 of [11] and the fact that X2 − 1 is regularly varying with index α/2 were used
for the asymptotic equivalence in the last line.
(b) For α = 4 the limit in (2.5) does not hold in general, which we shall illustrate in the case
E[X4] < ∞. As tr(S) is a sum of iid random variables with finite variance, it satisfies a CLT.
Furthermore, Theorem 2.2 states that tr(S2) is also asymptotically normal. Along the lines of the
proof of Theorem 2.2 one can show joint asymptotic normality of tr(S) and tr(S2). For the sake
of brevity we omit a proof, but we mention that in the special case limn→∞ p/n ∈ (0,∞) joint
asymptotic normality of tr(S) and tr(S2) was established in [43, Lemma 2.2].

2.2. Joint limiting distribution of point process and Frobenius norm of the sample

covariance matrix. In this subsection we are interested in the joint limiting distribution of Zn

in (2.3) and the point process Nn in (1.1). For this purpose we start by giving a definition of
asymptotic independence; c.f. [26, p. 284]. For the Poisson random measure N defined in (2.2) we
will need the collection of sets

BN := {B bounded Borel set : N(∂B) = 0},
where ∂B is the boundary of B.

Definition 2.6. Let (Yn)n be a sequence of real-valued random variables, which converges to the
random variable Y in distribution. Additionally, let (Nn)n be a sequence of point processes on R,
which converges to the point process N in distribution. We call (Yn)n and (Nn)n asymptotically
independent, if and only if for every y ∈ R, B1, . . . , Bk ∈ BN and l1, . . . , lk ∈ N0 := N ∪ {0}

lim
n→∞

P(Yn ≤ y, Nn(B1) ≤ l1, . . . , Nn(Bk) ≤ lk) = P(Y ≤ y)P(N(B1) ≤ l1, . . . , N(Bk) ≤ lk).

Now we state our main result about the joint convergence of (Zn, Nn).

Theorem 2.7. Assume that there exist s ≥ 4 and ε > 0 such that E[|X|s+ε] < ∞ and let p = pn →
∞ satisfy p = O(n(s−2)/4), as n → ∞. Then it holds for the standardized traces (Zn)n defined in
(2.3) and the point processes (Nn)n in (1.1) that

(Zn, Nn)
d→ (Z,N) , n → ∞ ,

where Z ∼ N (0, 1), N is a Poisson random measure with mean measure µ(x,∞) = e−x, x ∈ R,
and Z and N are independent.
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Theorem 2.7 only requires the conditions of Theorems 2.1 and 2.2 which are both formulated
under minimal assumptions, c.f. [22]. Note that if E[X4] = ∞ and consequently tr(S2) does not
converge to the normal distribution (see Theorem 2.4), our methods in the proof of Theorem 2.7
cease to work. Thus the joint limit behavior of Nn and tr(S2) is still an open problem in the
case of regularly varying X with index α ∈ (2, 4). In this case the dominating part of n2 tr(S2) is∑p

i=1

∑n
t=1 X

4
it and hence the sum of iid random variables which are regularly varying with index

α/4. In [8] it is shown that this sum is not asymptotically independent of the maximum of the X4
it.

Therefore, we conjecture that Zn and Nn will not be asymptotically independent anymore.
As a consequence of Theorem 2.7 we obtain the asymptotic independence of Zn and a fixed

number of upper order statistics of the random variables (dp(
√
nSij−dp))1≤i<j≤p, which we denote

by

Gn,(1) ≥ Gn,(2) ≥ · · · ≥ Gn,(p(p−1)/2) . (2.6)

Corollary 2.8. Let Z ∼ N (0, 1) be independent of an iid sequence (Ei)i≥1 of standard exponentially
distributed random variables and set Γi := E1 + . . .+Ei. Under the conditions of Theorem 2.7 and
for fixed k ≥ 1 it holds

lim
n→∞

P(Zn ≤ y,Gn,(1) ≤ x1, . . . , Gn,(k) ≤ xk) = P(Z ≤ y)P(− log Γ1 ≤ x1, . . . ,− log Γk ≤ xk),

where y, x1, . . . , xk ∈ R.

Proof. Since Nn(x,∞) is the number of pairs (i, j) with 1 ≤ i < j ≤ p, for which (dp(
√
nSij−dp)) ∈

(x,∞), we get by Theorem 2.7

P(Zn ≤ y,Gn,(1) ≤ x1, . . . , Gn,(k) ≤ xk)

= P

(
Zn ≤ y,Nn(x1,∞) = 0, Nn(x2,∞) ≤ 1, . . . , Nn(xk,∞) ≤ k − 1

)

→ P(Z ≤ y)P
(
N(x1,∞) = 0, N(x2,∞) ≤ 1, . . . , N(xk,∞) ≤ k − 1

)
, n → ∞ .

In view of the representation N
d
=

∑∞
i=1 ε− log Γi

we obtain

P

(
N(x1,∞) = 0, . . . , N(xk,∞)) ≤ k − 1

)
= P(− log Γ1 ≤ x1, . . . ,− log Γk ≤ xk),

which proves the corollary. �

2.3. Main challenges in the proof of Theorem 2.7. In this subsection we describe the key
challenges in the proof of Theorem 2.7 and our novel technical contributions.

The distribution of a point process Nn is determined by the family of the distributions of
the finite-dimensional random vectors (Nn(B1), . . . , Nn(Bk)) for any choice of suitable Borel sets
B1, . . . , Bk; see [10, Proposition 6.2.III]. The collection of these distributions is called the finite-
dimensional distributions of Nn. Due to the dependence of the (Sij) a direct analysis of the
finite-dimensional distributions of Nn is intractable. The same applies to the Laplace functional
of Nn which determines the distribution of Nn completely and can be seen as a similar tool for a
point process as the characteristic function for a real-valued random variable.

Fortunately, Kallenberg proved a sufficient condition for the weak convergence of a sequence of
point processes Nn towards N , which is often much easier to verify than the convergence of the
finite-dimensional distributions or the Laplace functionals. More precisely, he showed that if N is a
simple point process (such as (2.2)), then it is enough to ensure that E[Nn(I)] converges to E[N(I)]
for any I ∈ J and that the probability of the event {Nn(U) = 0} converges to the probability of
the event {N(U) = 0} for any U ∈ U ; see, for instance, [28, p. 35, Theorem 4.7] or [14, p. 233,
Theorem 5.2.2]. We define U as the set of finite unions of intervals and J as the set of intervals
in R.
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Therefore, instead of showing the convergence of the random vector (Nn(B1), . . . , Nn(Bk)) for
any k ≥ 1 and B1, . . . , Bk ∈ BN , it is enough to prove the convergence of the probability of the
occurrence of points in finite unions of intervals, which often greatly simplifies the proof. Our
Theorem 2.9 below contains a similarly helpful tool, which will be essential for studying the joint
asymptotic distribution of Zn and the point process Nn.

Theorem 2.9 (Extension of Kallenberg’s Theorem). Let (Yn)n be a sequence of real-valued random
variables converging in distribution to a random variable Y . In addition, let N be a simple point
process on R independent of Y and let (Nn)n be a sequence of point processes. If the following two
conditions

(K1) lim sup
n→∞

E[Nn(I)] ≤ E[N(I)], I ∈ J ,

(K2) lim
n→∞

P(Yn ≤ y, Nn(U) = 0) = P(Y ≤ y)P(N(U) = 0), y ∈ R, U ∈ U

hold, then Nn
d→ N and (Nn)n and (Yn)n are asymptotically independent.

Theorem 2.9 essentially shows that the sequence of random variables Yn and a sequence of
point processes Nn are asymptotically independent if the events {Yn ≤ y} and {Nn(U) = 0} are
asymptotically independent for any y ∈ R and U ∈ U . Since Theorem 2.9 requires mild assumptions
on the real-valued random variables Yn and the point processes Nn, it is applicable to a wide variety
of other settings. Moreover, as seen in Corollary 2.8, it also yields asymptotic independence of the
points of Nn and Yn.

In Theorem 2.7 the joint convergence of the point process Nn of the entries of the sample
covariance matrix S and the standardized Frobenius norm Zn of S is considered, which to the best
of our knowledge has not previously been studied. We would like to mention that results about the
joint convergence of a point process of dependent points and their sum are only available in the
Gaussian case [26, 35, 42], whose techniques are not applicable to non-Gaussian sequences.

In view of Definition 2.6, the main challenge in our case is to show the convergence in distribution
of the random vectors (Zn, Nn(B1), . . . , Nn(Bk)) for any k ≥ 1 and B1, . . . , Bk ∈ BN . Note that
every summand of Zn is dependent on a lot of points ofNn. To overcome this challenge we developed
a novel technical tool Theorem 2.9, which allows us to reduce the convergence in distribution of
the random vector above to the following two conditions:

(K1’) lim sup
n→∞

E[Nn(I)] = E[N(I)] for any interval I,

(K2’) lim
n→∞

P(Zn ≤ y,Nn(U) = 0) = Φ(y)P(N(U) = 0) for any finite union of intervals U .

Condition (K1’) can be shown through normal approximation to large deviation probabilities. The
challenging part is condition (K2’), which controls the dependence between Zn and Nn. The
advantage of considering P(Zn ≤ y,Nn(U) = 0), respectively P(Zn ≤ y,Nn(U) 6= 0), instead of
probabilities for the vector (Zn, Nn(B1), . . . , Nn(Bk)) is that we can write

P(Zn ≤ y,Nn(U) 6= 0) = P

(
Zn ≤ y,

⋃

I∈Λn

BI

)
,

where BI = {dp(
√
nSij − dp) ∈ U} for I = (i, j) ∈ Λn = {(i, j) : 1 ≤ i < j ≤ p}. Then the

Bonferroni bounds yield for k ≥ 1

2k∑

d=1

(−1)d−1Wn,d ≤ P

(
Zn ≤ y,

⋃

I∈Λn

BI

)
≤

2k−1∑

d=1

(−1)d−1Wn,d ,

where Wn,d :=
∑

I1<...<Id
P
(
Zn ≤ y,

⋂d
ℓ=1BIℓ

)
is a sum of probabilities of the intersections of

finitely many BI ’s. The number of summands of Zn, which are dependent on BI1 , . . . , BId , is of
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order p. We identify these dependent summands Zn,d and show that they are negligible, i.e.,
∑

I1<...<Id

P(|Zn,d| > δ) → 0, n → ∞.

The remaining summands Zn − Zn,d are independent from BI1 , . . . , BId and therefore

P

(
Zn − Zn,d ≤ y,

d⋂

ℓ=1

BIℓ

)
= P

(
Zn − Zn,d ≤ y)P

( d⋂

ℓ=1

BIℓ

)
.

By first letting n → ∞ and then k → ∞, we can show that

P(Zn ≤ y,Nn(U) 6= 0)− P(Zn ≤ y)P(Nn(U) 6= 0) → 0 , n → ∞ ,

from which we deduce (K2’). The detailed proof of Theorem 2.7 will be presented in Section 3.4.

2.4. An application to independence testing. Consider a sample y1, . . . ,yn from the p-dimensional
population Σ1/2x, where Σ is an (unknown) non-random positive definite p× p matrix and x has
iid components with mean zero and variance one. The largest off-diagonal entry of the sample co-
variance matrix S = (Sij) =

1
n

∑n
t=1 yty

⊤
t is a popular statistic for structural tests about properties

of Σ; we refer to the review paper [5] for an extensive summary and detailed references. We are
interested in the null hypothesis of independence H0:Σ = Ip. In what follows we will present a
rather simplistic extension of the classical maximum-type tests as an application of Theorem 2.7.
This application is by no means perfect, it rather serves as an illustration of the potential of the
asymptotic independence derived in Theorem 2.7 regarding statistical tests1.

Under the null hypothesis Theorem 2.7 studies the joint limiting distribution of (Zn, Nn), where
Zn is given in (2.3) and

Nn =
∑

1≤i<j≤p

εdp(
√
nSij−dp) .

From (2.6) recall the definition of Gn,(1) ≥ · · · ≥ Gn,(p(p−1)/2). Assuming the conditions of The-
orem 2.7, the asymptotic independence of Zn and Nn implies for fixed k ≥ 1 (c.f. Corollary 2.8)
that (

Zn, Gn,(1), . . . , Gn,(k)

) d→
(
Z,− log Γ1, . . . ,− log Γk

)
, n → ∞ , (2.7)

where Z ∼ N (0, 1) is independent of the iid sequence (Ei)i≥1 of standard exponentially distributed
random variables and Γi := E1 + . . . + Ei. Next we introduce a variety of different statistics:

T1 := Gn,(1), (rescaled) largest off-diagonal entry of S,

T2,k := Gn,(1) −Gn,(k), gap of largest and k-th largest entry,

T3,k := max
1≤i≤k−1

(
Gn,(i) −Gn,(i+1)

)
, maximum spacing between consecutive order statistics,

T4,k :=
k−1∑

i=1

(Gn,(i) −Gn,(i+1))
2, sum of squared spacings between consec. order statistics.

For the first statistic it holds that T1
d→ − log Γ1, which is standard Gumbel distributed with

distribution function Λ(x) = exp(− e−x). Recall the well–known fact that
( Γ1

Γk+1
, . . . ,

Γk

Γk+1

)
d
= (U(k), . . . , U(1)),

where the right-hand vector consists of the order statistics of k iid uniform random variables on
[0, 1]. In combination with (2.7) we get for the other statistics, as n → ∞,

T2,k
d→ log(Γk/Γ1)

d
= log(U(1)/U(k)) ,

1A thorough analysis will be topic of future research by the authors.
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T3,k
d→ max

1≤i≤k−1
log(Γi+1/Γi)

d
= max

1≤i≤k−1
log(U(k−i)/U(k−i+1)) ,

T4,k
d→

k−1∑

i=1

(log(Γi+1/Γi))
2 d
=

k−1∑

i=1

(log(U(k−i)/U(k−i+1)))
2 .

Next we construct the random variables

PT1
:= 1− Λ(T1,k) ,

PTi,k
:= 1− Fi,k(Ti,k) , i = 2, 3, 4,

PZn := 1− Φ(Zn) ,

where F2,k, F3,k, F4,k are the distribution functions of log(U(1)/U(k)), max1≤i≤k−1 log(U(k−i)/U(k−i+1))

and
∑k−1

i=1 (log(U(k−i)/U(k−i+1)))
2, respectively, and Φ denotes the standard normal distribution

function. By (2.7), PZn is asymptotically independent of PT1
, PT2,k

, PT3,k
, PT4,k

. Additionally, each
of these random variables converges to the uniform distribution on [0, 1].

We propose the following four test statistics

T1,n := min{PZn , PT1
} and Ti,n := T (k)

i,n := min{PZn , PTi,k
} for i ∈ {2, 3, 4} .

The null hypothesis H0 is rejected by test i ∈ {1, . . . , 4}, whenever
Ti,n < 1−

√
1− β . (2.8)

The next result establishes the asymptotic distribution of Ti,n from which we deduce that the tests
in (2.8) have asymptotic level β ∈ (0, 1).

Corollary 2.10. Under the conditions of Theorem 2.7, it holds that

Ti,n d→ min(U, V ) , n → ∞ , i = 1, . . . , 4 ,

where U and V are independent random variables uniformly distributed on [0, 1].

Since P(min{U, V } ≤ x) = 2x− x2, x ∈ [0, 1], it follows for β ∈ (0, 1)

lim
n→∞

P(Ti,n < 1−
√

1− β) = P(min{U, V } < 1−
√

1− β)

= 2(1 −
√
1− β)− (1−

√
1− β)2 = β .

3. Proofs

To simplify the notation in the proofs we will write an ∼ bn for real-valued sequences an and bn
if limn→∞ an/bn = 1, an ≫ bn if limn→∞ bn/an = 0, an . bn if lim supn→∞ an/bn = C ′ for some
constant C ′ ∈ [0,∞) and an ≍ bn if an . bn and bn . an. Additionally, throughout the proofs C
denotes a positive constant which may vary from line to line. Unless explicitly stated otherwise, all
limits are for n → ∞.

3.1. Proof of Theorem 2.2. First, notice that the magnitude of σn, defined in (2.4), might be
different in the cases E[X4] 6= 1 and E[X4] = 1. If E[X4] = 1, Markov’s inequality yields for ε > 0
that

P(|X2 − 1| > ε) ≤ ε−2
E[(X2 − 1)2] = 0,

such that X2 = 1 almost surely, which due to E[X] = 0 is only possible if X follows a symmetric
Bernoulli distribution, i.e., P(X = −1) = P(X = 1) = 1/2. We will often consider the case
E[X4] = 1 separately in the course of this proof.

To prove the statement of Theorem 2.2, we use a central limit theorem for martingale differences.
As we need the existence of higher moments, we truncate the random variables Xit for i = 1, . . . , p
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and t = 1, . . . , n in an appropriate way. Let (βn)n be a positive sequence, which tends to zero and

suffices βn ≫ (E[|X|41{|X|>βn(np)1/4}])
1/4. Notice, that such a sequence exists since we can choose

a sequence β′
n, which tends zero sufficiently slowly such that β′

n(np)
1/4 → ∞. Now we set β′′

n :=

(E[|X|41{|X|>β′

n(np)
1/4}])

1/4, which also tends to zero as n → ∞, and choose βn ≫ max{β′
n, β

′′
n}.

For this sequence (βn)n, we set

Xit := Xit1{|Xit|≤βn(np)1/4}, 1 ≤ i ≤ p, 1 ≤ t ≤ n,

Tij :=

n∑

t=1

XitXjt and T ij :=

n∑

t=1

X itXjt, 1 ≤ i, j ≤ p. (3.9)

Since E[X4] < ∞ an application of Lemma 4.1 with s = 4 yields that it suffices to verify (2.3) with
Zn replaced by

Zn =
1

n2σn

∑

1≤i, j≤p

(
T 2
ij − E[T 2

ij]
)
.

It will be convenient to write Zn as a sum of martingale differences. In what follows, the notation

x̃i = (Xi1, . . . ,Xin) , i = 1, . . . , p

will be helpful. Noting that T ij = T ji, we start by writing Zn as

Zn =
2

n2σn

p∑

j=1

j−1∑

i=1

(T 2
ij − E[T 2

ij|x̃i]) +
2

n2σn

p∑

j=1

j−1∑

i=1

(E[T 2
ij |x̃i]− E[T 2

ij ])

+
1

n2σn

p∑

j=1

(T 2
jj − E[T 2

jj]).

Using E[T 2
ij |x̃i] =

∑n
t=1

∑n
u=1XitX iuE[XjtXju] = E[T 2

i,i+1|x̃i] for j = i+ 1, . . . , p we have

p∑

j=1

j−1∑

i=1

(E[T 2
ij |x̃i]− E[T 2

ij ]) =

p−1∑

i=1

(p− i)(E[T 2
i,i+1|x̃i]− E[T 2

12]).

Setting

Mj := 2(p− j)(E[T 2
j,j+1|x̃j ]− E[T 2

12]) + 2

j−1∑

i=1

(T 2
ij − E[T 2

ij|x̃i]) + (T 2
jj − E[T 2

jj])

we get

Zn =
1

n2σn

p∑

j=1

Mj,

where (Mj)j≥1 is a martingale difference sequence with respect to the filtration (Fj)j≥0, where Fj

is the sigma algebra generated by {x̃1, . . . , x̃j}. Indeed, we have E[Mj |Fj−1] = 0.
By the Lindeberg-Feller theorem for martingales (see, for example, [13, Theorem 8.2.4, p. 344]),

the convergence Zn
d→ N (0, 1) is implied by the following two assertions:

(1) An := 1
n4σ2

n

∑p
j=1E[M

2
j |Fj−1]

P→ 1 , n → ∞ ,

(2) 1
n8σ4

n

∑p
j=1 E[M

4
j |Fj−1]

P→ 0 , n → ∞ .
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Proof of (1). To prove (1) we will show E[An] → 1 and Var(An) → 0 as n → ∞. Since (Mj) is a

martingale difference sequence, we have E[An] = Var(Zn) and thus we get

E[An] = Var
( 1

n2σn

p∑

i,j=1

T 2
ij

)

=
1

n4σ2
n

(
Var

( p∑

i=1

T 2
ii

)
+ 4Var

( ∑

1≤i<j≤p

T 2
ij

)
+ 4

p−1∑

k=1

p∑

j=k+1

p∑

i=1

Cov(T 2
ii, T

2
kj)

)

=
p

n4σ2
n

Var(T 2
11) +

2p(p− 1)

n4σ2
n

Var(T 2
12) +

4p(p− 1)2

n4σ2
n

Cov(T 2
12, T

2
13) +

4p(p− 1)

n4σ2
n

Cov(T 2
11, T

2
12),

where we used

Var
( ∑

1≤i<j≤p

T 2
ij

)
=

∑

1≤i<j≤p

Var(T 2
ij) +

∑

1≤i<j≤p

∑

1≤k<l≤p
(k,l)6=(i,j)

Cov(T 2
ij, T

2
kl)

and that Cov(T 2
ij , T

2
kl) = 0 if {i, j} ∩ {k, l} = ∅. In the case E[X4] 6= 1 we then obtain by Lemma

4.2 that

E[An] =
1

σ2
n

(
4
p2

n2
+ 4(E[X4]− 1)

( p3

n3
+ 2

p2

n2
+

p

n

)
+ o

( p3

n3
+

p

n

))
= 1 +

o
( p3

n3 + p
n

)

σ2
n

→ 1,

since σ2
n ≍ p/n+ (p/n)3. If E[X4] = 1 one can similarly check that E[An] → 1.

Now we turn to Var(An). To this end, we need the moments of the truncated random variable
X and note that

|E[X]| ≤ E[|X|1{|X|>(np)1/4βn}] ≤
1

(np)3/4β3
n

E[X4
1{|X|>(np)1/4βn}] = o((np)−3/4) . (3.10)

Similarly we obtain

E[X
2
] = 1 + o((np)−1/2) and E[X

4
] = E[X4] + o(1) , (3.11)

and for higher moments we get

E[|X |4+k] ≤ E[X
4
](np)k/4βk

n = o((np)k/4) , k ≥ 1 . (3.12)

From the definitions ofMj and the sigma algebra Fj−1, we deduce that there exists some constant
C ′
n only depending on n such that

E[M2
j |Fj−1] = C ′

n + 8(p− j)E
[ j−1∑

i=1

(T 2
ij − E[T 2

ij|x̃i])(E[T
2
j,j+1|x̃j ]− E[T 2

12])
∣∣∣Fj−1

]

+ 4E
[ j−1∑

i=1

(T 2
ij − E[T 2

ij |x̃i])(T
2
jj − E[T 2

11])
∣∣∣Fj−1

]

+ 4E
[( j−1∑

i=1

(T 2
ij − E[T 2

ij|Fj−1])
)2∣∣∣Fj−1

]
. (3.13)

The second term can be written as

8(p− j)

j−1∑

i=1

n∑

t1,t2=1

E
[
(Xjt1Xjt2 − E[Xjt1Xjt2 ])(E[T

2
j,j+1|x̃j ]− E[T 2

12])
]

︸ ︷︷ ︸
=:Kt1,t2,1

Xit1X it2 ,
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where Kt1,t2,1 can be expressed as

Kt1,t2,1 =
n∑

t3,t4=1

E[(Xjt1Xjt2 − E[X1t1X1t2 ])(Xjt3Xjt4 − E[X1t3X1t4 ])]E[X2t3X2t4 ].

Notice that Kt1,t2,1 = O(1) as n → ∞ since the summands are 0 if {t1, t2}∩{t3, t4} = ∅. Otherwise

if t3 6= t4 we have E[X2t3X2t4 ] = E[X]2 = o((np)−3/2). The means are bounded in every case. With
the third term of (3.13) we proceed similarly

4E
[ j−1∑

i=1

(T 2
ij − E[T 2

ij|x̃i])(T
2
jj − E[T 2

11])
∣∣∣Fj−1

]

= 4

j−1∑

i=1

n∑

t1,t2=1

E[(Xjt1Xjt2 − E[X1t1X1t2 ])(T
2
jj − E[T 2

11])]︸ ︷︷ ︸
Kt1,t2,2

X it1X it2 ,

where Kt1,t2,2 can be written as

Kt1,t2,2 =

n∑

t3,t4=1

E[(Xjt1Xjt2 − E[X1t1X1t2 ])(X
2
jt3X

2
jt4 − E[X

2
1t3X

2
1t4 ])].

As n → ∞ it holds thatKt1,t2,2 = O(n+(np)1/2) because the expectation is zero if {t1, t2}∩{t3, t4} =

∅, bounded if t3 6= t4 and C E[X
6
] = o((np))1/2 if t1 = t2 = t3 = t4. Hence, we are able to write An

as

An =
1

n4σ2
n

p∑

j=1

E[M2
j |Fj−1] = Cn +

1

n4σ2
n

p∑

j=1

j−1∑

i=1

n∑

t1,t2=1

Kt1,t2X it1X it2

+
4

n4σ2
n

p∑

j=1

E

[( j−1∑

i=1

(T 2
ij − E[T 2

ij|Fj−1])
)2∣∣∣Fj−1

]
,

where Cn is a constant only depending on n and on the distribution of X and Kt1,t2 = 8(p −
j)Kt1,t2,1 + 4Kt1,t2,2 = O(n+ p). The expectation of the last term can be written as

E

[( j−1∑

i=1

(
T 2
ij − E[T 2

ij |Fj−1]
))2∣∣∣Fj−1

]
= E

[( j−1∑

i=1

T 2
ij

)2∣∣Fj−1

]
− E

[ j−1∑

i=1

T 2
ij

∣∣Fj−1

]2

=

j−1∑

i1,i2=1

(E[T 2
i1jT

2
i2j|Fj−1]− E[T 2

i1j |Fj−1]E[T
2
i2j |Fj−1]).

Using Lemma 4.3 we see that, for sequences Cn,1, Cn,2 and Cn,3 tending to constants,

An − Cn =
1

n4σ2
n

p∑

j=1

j−1∑

i=1

n∑

t1,t2=1

Kt1,t2Xit1X it2

+ (E[X
4
]− (E[X

2
])2)

4

n4σ2
n

p∑

j=1

j−1∑

i1,i2=1

n∑

t=1

X2
i1tX

2
i2t

+
1

n4σ2
n

p∑

j=1

j−1∑

i1,i2=1

n∑

t1,t2=1
t1 6=t2

(
E[X ]Cn,1X

2
i1t1Xi2t1X i2t2 + Cn,2X i1t1Xi1t2X i2t1X i2t2

)
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+ E[X ]2
Cn,3

n4σ2
n

p∑

j=1

j−1∑

i1,i2=1

n∑

t1,t2,t3=1
|{t1,t2,t3}|=3

X i1t1Xi1t2Xi2t1X i2t3

=: ξn,1 + ξn,2 + ξn,3 + ξn,4 + ξn,5.

In view of

Var(An) = Var(ξn,1 + ξn,2 + ξn,3 + ξn,4 + ξn,5)

. Var(ξn,1) + Var(ξn,2) + Var(ξn,3) + Var(ξn,4) + Var(ξn,5),

it suffices to show that the variances of ξn,1, ξn,2, ξn,3, ξn,4 and ξn,5 tend to zero as n → ∞.
We start by bounding the variance of ξn,1:

Var(ξn,1) .
p3

n8σ4
n

n∑

t1,t2,t3,t4=1

∣∣Kt1,t2Kt3,t4(E[X1t1X1t2X1t3X1t4 ]− E[X1t1X1t2 ]E[X1t3X1t4 ])
∣∣ .

Since the summands are zero if |{t1, t2, t3, t4}| = 4, bounded by E[X], which tends to zero as n → ∞
if |{t1, t2, t3, t4}| = 3 and bounded above by a constant else, we get

Var(ξn,1) = o
(p3(n+ p)2

n5σ4
n

)
.

For the variance of ξn,2 it holds that

Var(ξn,2) .
p

n7σ4
n

p∑

j=1

Var

( j−1∑

i1,i2=1

X2
i11X

2
i21

)

.
p

n7σ4
n

p∑

j=1

j−1∑

i1,i2,i3=1

Cov(X2
i11X

2
i21,X

2
i11X

2
i31) .

As the covariance above is equal to E[X
8
] − (E[X4])2 = o(np) if i1 = i2 = i3, E[X

6
]E[X

2
] −

E[X
4
](E[X

2
])2 = o((np)1/2) if |{i1, i2, i3}| = 2 and bounded above by a constant if |{i1, i2, i3}| = 3,

we find

Var(ξn,2) = o
( p4

n6σ4
n

+
p5

n7σ4
n

)
.

By similar arguments, we obtain

Var(ξn,3) .
E[X ]2p

n8σ4
n

p∑

j=1

j−1∑

i1,i2,i3,i4=1

n∑

t1,t2,t3,t4=1
t1 6=t2, t3 6=t4

Cov(X2
i1t1X i2t1X i2t2 ,X

2
i3t3X i4t3Xi4t4) ,

where the covariance above is E[X
6
]E[X

2
] − E[X

3
]2E[X ]2 = o((np)1/2) if i1 = i2 = i3 = i4 and

t1 = t3 and t2 = t4, zero if |{i1, . . . , i4}| = 4 or |{t1, . . . , t4}| = 4 and bounded by a constant in the

remaining cases. Therefore, we get using E[X]2 = o((np)−3/2) that

Var(ξn,3) = o

(
p7/2

n13/2σ4
n

)
.

For the variance of ξn,4 we have

Var(ξn,4) .
p

n8σ4
n

p∑

j=1

j−1∑

i1,i2,i3,i4=1

n∑

t1,t2,t3,t4=1
t1 6=t2, t3 6=t4

Cov(X i1t1Xi1t2X i2t1Xi2t2 ,X i3t3Xi3t4Xi4t3X i4t4) .
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Again the covariance above is zero, if |{i1, . . . , i4}| = 4 or |{t1, . . . , t4}| = 4. If |{i1, . . . , i4}| = 3

it is bounded by E[X
2
]2E[X]4 − E[X]8 = o((np)−3) and by a constant in the remaining cases. It

follows Var(ξn,4) = O
( p4

n5σ4
n

)
.

Next, since Var(X i1t1X i1t2Xi2t1Xi2t3) . 1 for |{t1, . . . , t4}| = 3 and E[X]4 = o((np)−3) we obtain
Var(ξn,5) = o(p3n−5σ−4

n ).
Finally, we combine our variance estimates. In the case E[X4] 6= 1, it holds σ4

n ≍ (p/n)2+(p/n)6

which implies

lim
n→∞

max
i=1,...,5

Var(ξn,i) = 0 . (3.14)

In the Bernoulli case E[X4] = 1, we have σ4
n ≍ (p/n)4. As Kt1,t2,1 and Kt1,t2,2 are zero in this case,

ξn,1 = 0. Since E[X] = E[X] = 0 and E[X
2
]2 = E[X

4
] = 1 one has ξn,2 = ξn,3 = ξn,5 = 0. Repeating

the above considerations for ξn,4, one can show that Var(ξn,4) → 0 as n → ∞, establishing (3.14)
in the Bernoulli case as well.

Equation (3.14) concludes the proof of Var(An) → 0, as n → ∞. In combination with E[An] → 1,

this proves the desired An
P→ 1.

Proof of (2). We write

Mj = 2(p − j)(E[T 2
j,j+1|x̃j ]− E[T 2

12]) + 2

j−1∑

i=1

(T 2
ij − E[T 2

ij |x̃j ])

− 2

j−1∑

i=1

(E[T 2
ij |x̃i]− E[T 2

12]) + 2

j−1∑

i=1

(E[T 2
ij|x̃j ]− E[T 2

12]) + (T 2
jj − E[T 2

11])

=: Mj1 +Mj2 +Mj3 +Mj4 +Mj5

and bound the fourth moment of Mj in the following way

E[M4
j ] . E[(Mj1 +Mj4)

4] + E[M4
j2] + E[M4

j3] + E[M4
j5].

First we take a look at

E[(E[T 2
j,j+1|x̃j ]− E[T 2

12])
4]

= E

[(
(1 + o((np)−1/2)(T jj − E[T 11]) + o((np)−3/2)

n∑

t,u=1

(XjtXju − E[X1tX1u])
)4]

. E[(T jj − E[T 11])
4] + o(1) .

For the last mean we have

E[(T jj − E[T 11])
4] = E

[( n∑

t=1

(X2
jt − E[X

2
])
)4]

. nE[X
8
] + n2

E[X
4
]2 = o(n2p),

where we used (3.11) and (3.12) in the last line. Hence, we get after simplifying Mj4

E[(Mj1 +Mj4)
4] = 16(p − 1)4E[(E[T 2

j,j+1|x̃j ]− E[T 2
12])

4] = o(p5n2)

and by the Marcinkiewicz-Zygmund inequality, see for example [9, Theorem 2, p.386] in combination
with Hölder inequality (see also [17, Lemma 2, p.24]), it follows

E[M4
j3] . (j − 1)

j−1∑

i=1

E[(E[T 2
ij|x̃i]− E[T 2

12])
4] = (j − 1)2o(n2p).
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To bound the fourth moment of Mj2 we consider the eighth moment of T 12

E[T 8
12] = E

[( n∑

t=1

X1tX2t

)8]

. n(E[X
8
])2 + n2(E[X

6
]2E[X

2
]2 + E[X

7
]2E[X]2 + E[X

5
]2E[X

3
]2 + E[X

4
]4)

+ n3 + n4 + n5
E[X ]4 + n6

E[X]8 + n7
E[X]12 + n8

E[X]16 = O(n4) + o(n3p2),

where we used (3.10), (3.11) and (3.12) in the last step. By the Marcinkiewicz-Zygmund inequality
(see for instance [9, Theorem 2, p.386]) and Lemma 1 of [17] we conclude that

E[M4
j2] = 24E

[
E

[( j−1∑

i=1

(T 2
ij − E[T 2

ij|x̃j ])
)4∣∣∣x̃j

]]

. (j − 1)

j−1∑

i=1

E[E[(T 2
ij − E[T 2

ij |x̃j ])
4|x̃j ]]

≤ (j − 1)2E[T 8
12] = (j − 1)2(O(n4) + o(n3p2)).

Finally, it holds for the fourth moment of Mj5 that

E[M4
j5] =

n∑

t1,...,t8=1

E[(X2
jt1X

2
jt2 − E[X2

jt1X
2
jt2 ]) · · · (X2

jt7X
2
jt8 − E[X2

jt7X
2
jt8 ])]

Observe that if there are more than five different indices t1, . . . , t8 then one factor in the mean
above is independent from the rest and the mean is zero, thus by (3.10), (3.11) and (3.12)

E[M4
j5]

. nE[X
16
] + n2(E[X

14
]E[X

2
] + E[X

12
]E[X

4
] + E[X

10
]E[X

6
] + E[X

8
]2)

+ n3(E[X
12
]E[X

2
]2 + E[X

10
]E[X

4
]E[X

2
] + E[X

8
]E[X

4
]2 + E[X

8
]E[X

6
]E[X

2
] + E[X

6
]2E[X

4
])

+ n4(E[X
10
]E[X

2
]3 + E[X

8
]E[X

4
]E[X

2
]2 + E[X

6
]2E[X

2
]2 + E[X

6
]E[X

4
]2E[X

2
] + E[X

4
]4)

+ n5(E[X
8
]E[X

2
]4 + E[X

6
]E[X

4
]E[X

2
]3 + E[X

4
]3E[X

2
]2) = o(n4p3) + o(n6p) .

Consequently, we obtain

1

n8σ4
n

p∑

j=1

E[M4
j ] = o

( p6

n6σ4
n

)
+ o

( p2

n2σ4
n

)
= o(1),

since σ4
n ≍ (p/n)6 + (p/n)2 if E[X4] 6= 1. In the Bernoulli case it holds that Mj1 = Mj3 = Mj4 =

Mj5 = 0 and E[M4
j2] = (j − 1)2O(n4). Therefore, 1

n8σ4
n

∑p
j=1 E[M

4
j ] = O(p3/(n4σ4

n)) = o(1) as

σ4
n ≍ (p/n)4, which finishes the proof.

3.2. Proof of Theorem 2.4. We split the modified trace of S2 into four terms

n2

a4np
tr(S2)− 2n(n+ p− 2)

a4np
tr(S) +

np(n+ p− 2)

a4np

=
1

a4np

p∑

i=1

n∑

t=1

X4
it +

2

a4np

∑

1≤i<j≤p

n∑

t=1

(X2
it − 1)(X2

jt − 1)
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+
2

a4np

p∑

i=1

∑

1≤t<u≤n

(X2
it − 1)(X2

iu − 1) +
2

a4np

∑

1≤i<j≤p

n∑

t,u=1
u 6=t

XitXjtXiuXju

=:
1

a4np

p∑

i=1

n∑

t=1

X4
it + Vn,1 + Vn,2 + Vn,3.

As X4 is regularly varying with index α/4 and

np

a4np
E[X4

1{X4≤a4np}] ∼
α

4− α
npP(X4 > a4np) ∼

α

4− α
, n → ∞ ,

the first term converges to an α/4-stable distribution by [13, Theorem 3.8.2] (see also [39]). By [13,
p. 164] this α-stable distribution has the characteristic function

E[eitζα/4 ] = exp
(
itcα +

α

4

∫ ∞

0

(
eitx − 1− itx

1 + x2
)
x−(α/4+1)dx

)
,

where cα is a constant only depending on α.
Therefore, it suffices to show that Vn,1, Vn,2 and Vn,3 tend to zero in probability. We will start

by showing Vn,3
P→ 0. As X is regularly varying with index α > 2, the second moment of X exists

by Proposition 1.3.2 of [33]. An application of Markov’s inequality yields for δ > 0

P
(
|Vn,3| > δ

)
≤ 4

δ2a8np
E

[( ∑

1≤i<j≤p

n∑

t,u=1
u 6=t

XitXjtXiuXju

)2]

.
1

a8np

∑

1≤i<j≤p

n∑

t,u=1
u 6=t

E[X2]4 .
p2n2

a8np
= o(1) ,

where we used that anp = (np)1/αℓ1(np) for α ∈ (2, 4) (see [4]) and a slowly varying function ℓ1.
The last step is a consequence of the following property of slowly varying functions ℓ. By the Potter
Bounds, which can be found in Theorem 1.5.6 of [4], it holds that for x sufficiently large and any
ǫ > 0 and K > 1

Kx−ǫ ≤ ℓ(x) ≤ Kxǫ. (3.15)

To show that Vn,1
P→ 0 we will truncate the random variables X2

it at sn := p2/αn2(1+ǫ)/α for a

positive ǫ sufficiently small. Then we have for the event Q :=
p⋃

i=1

n⋃
t=1

{X2
it > sn} that

P
(
Q
)
≤ pnP(|X| > s1/2n ) → 0 , n → ∞ ,

where we used that |X| is regularly varying with index α ∈ (2, 4). Letting X
2
it := X2

it1{X2
it≤sn} and

ηit := X2
it − E[X2

it], we get for any δ > 0

P

(
|Vn,1| > δ

)
≤ P

(
|Vn,1| > δ, QC

)
+ P(Q)

≤ P

(∣∣∣ 2

a4np

∑

1≤i<j≤p

n∑

t=1

(X2
it − 1)(X2

jt − 1)
∣∣∣ > δ

)
+ o(1)

≤ P

(∣∣∣ 2

a4np

∑

1≤i<j≤p

n∑

t=1

ηitηjt

∣∣∣ > δ

2

)
+ P

(∣∣∣2(p − 1)(E[X
2
]− 1)

a4np

p∑

i=1

n∑

t=1

ηit + qn

∣∣∣ > δ

2

)
+ o(1)
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.
n

a8np
Var

( ∑

1≤i<j≤p

ηi1ηj1

)
+

p3n(E[X
2
]− 1)2

a8np
Var(η11) + o(1) , (3.16)

where for the last line we used Markov’s inequality and the fact that

qn :=
p(p− 1)n

a4np
(1− E[X

2
])2 ≤ p2n

a4np
E[X2

1{X2>sn}]
2 → 0 , n → ∞ ,

since E[X2
1{X2>sn}] ≍ snP(X

2 > sn) by Karamata’s Theorem (see [4]) and due to the Potter
bounds (3.15).

Regarding the first term in (3.16), we obtain that

n

a8np
Var

( ∑

1≤i<j≤p

ηi1ηj1

)
.

np2

a8np
E[η211]

2 ∼ np2

a8np
E[X

4
]2 → 0 , n → ∞ ,

since E[X4
1{X2≤sn}] ≍ s2nP(X

2 > sn) by Karamata’s theorem. Using Karamata’s theorem again
and similiar arguments as above, also the second term of (3.16) tends to zero as n → ∞. Therefore,

Vn,1
P→ 0 as n → ∞.

Notice that Vn,2 is equal to Vn,1 if we exchange the roles of n and p, which does not matter for

the proof given above. Hence, it also holds that Vn,2
P→ 0 as n → ∞.

3.3. Proof of Theorem 2.9. Let now y ∈ R and l1, . . . , lk ∈ N0. Let (Qn)n be a sequence of
probability measures defined by the distribution functions

P(Yn ≤ y, Nn(B1) ≤ l1, . . . , Nn(Bk) ≤ lk),

whereB1, . . . , Bk ∈ BN . We recall that for a point process ξ, Bξ := {B bounded Borel set : ξ(∂B) =

0}. As R
k+1 is a Polish space (Qn)n is tight. Then, by Prokhorov’s Theorem, (Qn)n is relatively

compact with respect to convergence in distribution and hence, for every sequence (nm)m∈N in N

there exists a subsequence (nmj )j∈N with

lim
j→∞

P(Ynmj
≤ y,Nnmj

(B1) ≤ l1, . . . , Nnmj
(Bk) ≤ lk) (3.17)

= P(Ỹ ≤ y, Ñ(B1) ≤ l1, . . . , Ñ(Bk) ≤ lk),

where Ỹ , Ñ(B1), . . . , Ñ(Bk) are real valued random variables. Since the sets B1, . . . , Bk are arbi-
trary, we can also find a subsequence (nmj )j∈N such that (3.17) holds for any choice of B1, . . . , Bk ∈
BN . Let Ñ be the point process defined by the random vectors (Ñ (B1), . . . , Ñ (Bk)) for B1, . . . , Bk ∈
BN .

Assumption (K2) implies for every U ∈ U
lim inf
n→∞

P(Nn(U) = 0) ≥ P(N(U) = 0).

Therefore, we get by Lemma 4.6 of [28] that BN ⊂ BÑ and hence U ⊂ BÑ . Then, we get

P(Y ≤ y, N(U) = 0) = lim
j→∞

P(Ynmj
≤ y, Nnmj

(U) = 0) = P(Ỹ ≤ y, Ñ(U) = 0)

for every U ∈ U . Let R be the set of locally finite measures µ on (R,B), where B consists of all
bounded Borel sets with µ(B) ∈ N0 for all B ∈ B. Additionally, N is the σ-algebra on R that is
generated by the mappings µ 7→ µ(B), B ∈ B, i.e., the smallest σ-algebra making these mappings
measurable.

We now introduce the Dynkin-system

D := {M ∈ N : P(Y ≤ y,N ∈ M) = P(Ỹ ≤ y, Ñ ∈ M)}.
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As Yn
d→ Y , we have P(Y ≤ y) = P(Ỹ ≤ y) and therefore, R ∈ D. Moreover, D is closed under

proper differences and monotone limits. Let

C := {{µ ∈ R : µ(U) = 0}, U ∈ U}.
By assumption (K2), C ⊂ D and C is closed under finite intersection. Therefore, by 15.2.1 of [28] it
follows that σ(C) ⊂ D. By Lemmas 2.2, 1.3 and 1.4 of [28] it holds that ϕ : µ → µ∗ is measurable
σ(C) → N , where µ∗(B) =

∑
s∈B 1[1,∞)(µ{s}) for every B ∈ B. As σ(C) ⊂ D we get for every

M ∈ N
P(Y ≤ y,N∗ ∈ M) = P(Y ≤ y,N ∈ ϕ−1(M))

= P(Ỹ ≤ y, Ñ ∈ ϕ−1(M))

= P(Ỹ ≤ y, Ñ∗ ∈ M) .

A simple point process µ can be written as

µ =
∑

i∈I
εXi ,

where I is an index set and the Xi’s are random elements. Therefore, it holds for every B ∈ B that

µ∗(B) =
∑

s∈B
1[1,∞)(µ{s}) =

∑

s∈B
µ{s} =

∑

i∈I

∑

s∈B
1{Xi=s} =

∑

i∈I
1{Xi∈B} = µ(B).

As N is simple, we get

P(Y ≤ y, N ∈ M) = P(Ỹ ≤ y, Ñ∗ ∈ M),

for every M ∈ N and every y ∈ R. Therefore, we also get P(N ∈ M) = P(Ñ∗ ∈ M) for every
M ∈ N . We define the set of measures

M̂ := {µ ∈ R : µ(B1) ≤ l1, . . . , µ(Bk) ≤ lk} ∈ N .

Then, it follows that

P(N(B1) ≤ l1, . . . , N(Bk) ≤ lk) = P(Ñ∗(B1) ≤ l1, . . . , Ñ
∗(Bk) ≤ lk)

and as B1, . . . , Bk, l1, . . . , lk were chosen arbitrarily, we have N
d
= Ñ∗. Additionally, for I ∈ J it

holds that as j → ∞
P(Nnmj

(I) ≤ l) → P(Ñ(I) ≤ l). (3.18)

Then, by N
d
= Ñ∗, the definition of Ñ∗, (3.18), 15.4.3 of [28] and assumption (K1) we get

E[N(I)] = E[Ñ∗(I)] ≤ E[Ñ(I)] ≤ lim inf
j→∞

E[Nnmj
(I)] ≤ lim sup

n→∞
E[Nn(I)] ≤ E[N(I)].

Therefore, Ñ is a.s. simple and consequently

P(Y ≤ y, N ∈ M) = P(Ỹ ≤ y, Ñ ∈ M)

for every M ∈ N . Inserting M̂ , we get

P(Y ≤ y,N(B1) ≤ l1, . . . , N(Bk) ≤ lk) = P(Ỹ ≤ y, Ñ(B1) ≤ l1, . . . , Ñ(Bk) ≤ lk).

As the subsequence (nm)m was arbitrary, we conclude for every l1, . . . , lk ∈ N0 and B1, . . . , Bk ∈ BN

lim
n→∞

P(Yn ≤ y, Nn(B1) ≤ l1, . . . , Nn(Bk) ≤ lk) = P(Y ≤ y, N(B1) ≤ l1, . . . , N(Bk) ≤ lk)

= P(Y ≤ y)P(N(B1) ≤ l1, . . . , N(Bk) ≤ lk)

and therefore (Yn)n and (Nn)n are asymptotically independent.
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3.4. Proof of Theorem 2.7. By the proof of Theorem 2.1 we know that lim
n→∞

E[Nn(I)] = E[N(I)]

for every interval I. In view of Theorem 2.9, it suffices to show

lim
n→∞

P(Zn ≤ y, Nn(U) = 0) = Φ(y)P(N(U) = 0),

for every y ∈ R and U ∈ U , where Φ is the distribution function of the standard normal distribution

and U is the set of finite unions of intervals. As Zn
d→ N (0, 1), this is equivalent to

lim
n→∞

P(Zn ≤ y, Nn(U) 6= 0) = Φ(y)P(N(U) 6= 0), (3.19)

for every U ∈ U and y ∈ R. Throughout this proof, we let U ∈ U and y ∈ R be arbitrary.

Recall that p = O
(
n(s−2)/4

)
for some s ≥ 4 and that ε > 0 is such that E|X|s+ε] < ∞. We need

the following notation. For s̃ = s + ε let (βn)n be a positive sequence, which tends to zero and

satisfies βn ≫ (E[|X|s̃1{|X|>βn(np)1/s̃}])
1/s̃. Such a sequence exists by similar reasons as in the proof

of Theorem 2.2. We set

X it := Xit1{|Xit|≤βn(np)1/s̃},

ξijt := XitXjt, ξijt := XitXjt, 1 ≤ i, j ≤ p, 1 ≤ t ≤ n,

Tij :=
n∑

t=1

ξijt, T ij :=
n∑

t=1

ξijt, 1 ≤ i, j ≤ p.

By Lemma 4.4, we have for δ > 0

P(Zn ≤ y − δ, Nn(U) 6= 0)− P(|Zn − Zn| > δ) ≤ P(Zn ≤ y, Nn(U) 6= 0)

≤ P(Zn ≤ y + δ, Nn(U) 6= 0) + P(|Zn − Zn| > δ) , (3.20)

where

Zn =
1

n2σn

p∑

i,j=1

(T 2
ij − E[T 2

ij]) . (3.21)

Lemma 4.1 asserts that limn→∞ P(|Zn − Zn| > δ) = 0 for every δ > 0.
Assume for the moment that

lim
n→∞

P(Zn ≤ y, Nn(U) 6= 0) = Φ(y)P(N(U) 6= 0). (3.22)

In conjunction with (3.20), this yields for δ > 0

lim sup
n→∞

P(Zn ≤ y, Nn(U) 6= 0) ≤ Φ(y + δ)P(N(U) 6= 0),

lim inf
n→∞

P(Zn ≤ y, Nn(U) 6= 0) ≥ Φ(y − δ)P(N(U) 6= 0),

so that taking the limit δ → 0 establishes (3.19) by the continuity of the normal distribution.
Therefore, it remains to show (3.22) for which we proceed similarly to [17].

To this end, we set An = An(y) = {Zn ≤ y} and BI = BI(U) = {dp(
√
nSij − dp) ∈ U}, where

I = (i, j) ∈ Λn := {(i, j) : 1 ≤ i < j ≤ p}. For I1 = (i1, j1) ∈ Λn and I2 = (i2, j2) ∈ Λn we write
I1 < I2 if i1 < i2 or (i1 = i2 and j1 < j2). Then we have

P(Zn ≤ y, Nn(U) 6= 0) = P

( ⋃

I∈Λn

AnBI

)
,

P(Zn ≤ y)P(Nn(U) 6= 0) = P(An)P
( ⋃

I∈Λn

BI

)
,
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where AnBI = An ∩BI . Using Zn − Zn
P→ 0, Theorem 2.2 and Theorem 2.1, it holds

lim
n→∞

P(Zn ≤ y) = Φ(y) and lim
n→∞

P(Nn(U) 6= 0) = P(N(U) 6= 0) ,

so that equation (3.22) follows from

lim
n→∞

P

( ⋃

I∈Λn

AnBI

)
− P(An)P

( ⋃

I∈Λn

BI

)
= 0 . (3.23)

To prove (3.23), we start by setting

Wn,d :=
∑

I1<...<Id

P

( d⋂

l=1

AnBIl

)
, W̃n,d :=

∑

I1<...<Id

P

( d⋂

l=1

BIl

)
and W n,d := P(An)W̃n,d .

Then the Bonferroni bounds yield for k ≥ 1

2k∑

d=1

(−1)d−1Wn,d ≤ P

( ⋃

I∈Λn

AnBI

)
≤

2k−1∑

d=1

(−1)d−1Wn,d ,

2k∑

d=1

(−1)d−1W n,d ≤ P(An)P
( ⋃

I∈Λn

BI

)
≤

2k−1∑

d=1

(−1)d−1W n,d .

(3.24)

By (3.24), we have for k ≥ 1
∣∣∣∣∣P
( ⋃

I∈Λn

AnBI

)
− P(An)P

( ⋃

I∈Λn

BI

)∣∣∣∣∣ ≤
2k−1∑

d=1

∣∣Wn,d −W n,d

∣∣+max{Wn,2k,W n,2k}

≤
2k−1∑

d=1

∣∣Wn,d −W n,d

∣∣+ W̃n,2k . (3.25)

From [23, p. 555] we know that

lim
n→∞

W̃n,k =
(µ(U))k

k!
, k ≥ 1. (3.26)

Note that limk→∞
(µ(U))k

k! = 0. By first letting n → ∞ and then k → ∞ in (3.25) we now obtain
(3.23) provided that

lim
n→∞

∣∣Wn,d −W n,d

∣∣ = 0 , d ≥ 1 . (3.27)

Proof of (3.27). For fixed I1 < . . . < Id ∈ Λn with Il = (il, jl) for l = 1, . . . , d we will identify
the summands of Zn in (3.21) that are dependent on BI1 , . . . , BId and show that their contribution
is negligible (in a suitable way). Therefore, we introduce the set Λn,d = Λn,d(I1, . . . , Id) through

Λn,d := {(il, j), (j, il) : 1 ≤ j ≤ p, 1 ≤ l ≤ d} ∪ {(i, jl), (jl, i) : 1 ≤ i ≤ p, 1 ≤ l ≤ d}.
The set Λn,d includes the indices (i, j) of all summands of Zn that are dependent on BI1 , . . . , BId .
Notice that Λn,d is not a subset of Λn because Λn,d might also contain indices (i, i) corresponding
to diagonal elements Sii of the covariance matrix. For our further arguments the following bound
on the cardinality of Λn,d is important:

|Λn,d| ≤ 4dp.

By the definition of Λn,d, Zn − Zn,d is independent of BI1 , . . . , BId , where

Zn,d :=
1

n2σn

∑

(i,j)∈Λn,d

(
T 2
ij − E[T 2

ij ]
)
.
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Using this independence and applying Lemma 4.4 twice we get for δ > 0,

P

(
An(y)

d⋂

l=1

BIl

)
≤ P

(
Zn − Zn,d ≤ y + δ,

d⋂

l=1

BIl

)
+ P(|Zn,d| > δ)

= P(Zn − Zn,d ≤ y + δ)P
( d⋂

l=1

BIl

)
+ P(|Zn,d| > δ)

≤ P(An(y + 2δ))P
( d⋂

l=1

BIl

)
+ 2P(|Zn,d| > δ)

and similarly,

P

(
An(y)

d⋂

l=1

BIl

)
≥ P(An(y − 2δ))P

( d⋂

l=1

BIl

)
− 2P(|Zn,d| > δ).

Therefore, it follows that

∣∣∣P
(
An(y)

d⋂

l=1

BIl

)
− P(An(y))P

( d⋂

l=1

BIl

)∣∣∣

≤ 2
(
P(An(y + 2δ)) − P(An(y − 2δ))

)
P

( d⋂

l=1

BIl

)
+ 4P(|Zn,d| > δ).

If we assume
∑

I1<...<Id

P(|Zn,d| > δ) → 0, (3.28)

we get using Theorem 2.2 and (3.26) that

lim sup
n→∞

|Wn,d −W n,d| ≤ 2(Φ(y + 2δ) − Φ(y − 2δ))
(µ(U))d

d!
.

Sending δ to zero establishes (3.27). Therefore it remains to show (3.28).

By Markov’s inequality we obtain for even τ ∈ N and δ > 0,

P(|Zn,d| > 2δ) ≤ 1

n2τστ
nδ

τ

(
E

[( ∑

(i,j)∈Λn,d

i6=j

(T 2
ij − E[T 2

ij ])
)τ]

+ E

[( ∑

(i,i)∈Λn,d

(T 2
ii − E[T 2

ii])
)τ])

. (3.29)

Letting K := {il, jl | l = 1, . . . , d} we write the first term on the right-hand side of (3.29) as
follows

1

n2τστ
nδ

τ
E

[( ∑

(i,j)∈Λn,d

i6=j

(T 2
ij − E[T 2

ij ])
)τ]

=
2τ

n2τστ
nδ

τ
E

[(∑

k∈K

p∑

i=1
i6=k

(T 2
ik − E[T 2

ik])
)τ]

≤ 2(8d)τ−1

n2τστ
nδ

τ

∑

k∈K

(
E

[( p∑

i=1
i6=k

(T 2
ik − E[T 2

ik|x̃k])
)τ]

+ E

[( p∑

i=1
i6=k

(E[T 2
ik|x̃k]− E[T 2

ik])
)τ])

, (3.30)

where we used the Marcinkiewicz-Zygmund inequality (see [9, Theorem 2, p. 386]) and the in-
equality (a+ b)c ≤ 2c−1(ac + bc) for a > 0, b > 0 and c ≥ 1. We apply the law of total expectation
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and the Marcinkiewicz-Zygmund inequality to the first term of (3.30) and obtain

E

[
E

[( p∑

i=1
i 6=k

(T 2
ik − E[T 2

ik|x̃k])
)τ ∣∣∣x̃k

]]
≤ Kτ (p− 1)τ/2−1

p∑

i=1
i 6=k

E[(T 2
ik − E[T 2

ik|x̃k])
τ ]

where Kτ is a constant only depending on τ , which may vary from line to line. Recalling the
notation T ij =

∑n
t=1 ξijt we may write

E[(T 2
ik − E[T 2

ik|x̃k])
τ ] =

n∑

t1,u1,...,tτ ,uτ=1

E[(ξikt1ξiku1
− E[ξikt1ξiku1

|x̃k]) . . . (ξiktτ ξikuτ − E[ξiktτ ξikuτ |x̃k])]. (3.31)

If more than τ + 1 of the indices t1, u1, . . . , tτ , uτ are different, then there exists a tuple (tk, uk)
such that tk 6= tl, tk 6= ul, uk 6= tl and uk 6= ul for every l 6= k and therefore one of the factors in
the mean of (3.31) is independent, so that the summand disappears. The remaining summands are
bounded above by

C|E[ξikt1ξiku1
· · · ξiktτ ξikuτ ]| = CE[Xit1Xiu1

· · ·XitτX iuτ ]
2. (3.32)

Similar to (3.10), (3.11) and (3.12) it holds that E[X ] = o((np)−(s̃−1)/s̃), E[X
r
] ≤ C for r ≤ s̃ and

E[X
r
] = o((np)(r−s̃)/s̃) for r > s̃. From this we deduce that if |{t1, u1, . . . , tτ , uτ}| = ℓ one has

E[X it1Xiu1
· · ·X itτX iuτ ]

2 . (E[X
2
]ℓ−1

E[X
2τ−2ℓ+2

])2 = o((np)2(2τ−2ℓ+2−s̃)/s̃). (3.33)

Therefore, we get for the first term of (3.30)

2(8d)τ−1

n2τστ
nδ

τ

∑

k∈K

E

[( p∑

i=1
i6=k

(T 2
ik − E[T 2

ik|x̃k])
)τ]

=
pτ/2

n2τστ
n

max
1≤ℓ≤τ+1

o(nℓ(np)(4τ−4ℓ+4−2s̃)/s̃). (3.34)

The term in the maximum is either increasing or decreasing with ℓ or it is equal to o((np)4τ+4−2s̃)/s̃)

if n ≍ (np)4/s̃. Therefore, the right-hand side in (3.34) is

pτ/2

n2τστ
n

max{o(n4τ/s̃−1p4τ/s̃−2), o(nτ−1p−2)} = o
(n(s+2)τ/s̃−1pτ/2−2

n2τστ
n

)
= o(n(4−s̃)τ/(2s̃)−1), (3.35)

where we used that p = O(n(s−2)/4) and (s + 2)/s̃ > 1 for an ε < 1, and additionally, σ2
n ≍

(p/n)3 + p/n if E[X4] 6= 1.
In the Bernoulli case E[X4] = 1, (3.32) is bounded by a constant and therefore the first term of

(3.30) is O(n/pτ/2) as σ2
n ≍ (p/n)2.

By Jensen’s inequality the second term of (3.30) is bounded above by

K ′
τ (p − 1)τ−1

p∑

i=1
i 6=k

E[(E[T 2
ik|x̃k]− E[T 2

ik])
τ ],

where K ′
τ is a constant only depending on τ , which may vary from line to line. For the mean in

the sum we can write

E[(E[T 2
ik|x̃k]− E[T 2

ik])
τ ] =

n∑

t1, u1,...,tτ ,uτ=1

E[((Xkt1Xku1
− E[Xkt1Xku1

])E[X it1X iu1
]) · · ·

× ((XktτXkuτ − E[XktτXkuτ ])E[X itτX iuτ ])].
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We consider one of the summands above. There can be 0 ≤ q ≤ τ pairs of indices (ti, ui) with
ti = ui. Assume these pairs are (t1, u1), . . . , (tq, uq) and for i > q it holds that ti 6= ui. Then the
mean in the sum equals

E[X]2(τ−q)
E[X

2
]q

× E[(X2
kt1 − E[X

2
]) · · · (X2

ktq − E[X
2
])(Xktq+1

Xkuq+1
− E[X ]2) · · · (XktτXkuτ − E[X]2)].

If there are more than τ − q/2 + 1 different indices, the summand is equal to zero. For 1 ≤ ℓ ≤
τ − q/2 + 1 different indices the summand is bounded above by

CE[X]2(τ−q)
E[X2

it1 · · ·X2
itqXitq+1

X iuq+1
· · ·XitτXiuτ ] . E[X]2(τ−q)(E[X

2
]ℓ−1

E[X
2τ−2ℓ+2

])

= o((np)(2τ−2ℓ+2−2(s̃−1)(τ−q))/s̃).

Therefore, we get for the second term of (3.30)

2(8d)τ−1

n2τστ
nδ

τ

∑

k∈K
E

[( p∑

i=1
i 6=k

(E[T 2
ik|x̃k]− E[T 2

ik])
)τ]

=
pτ

n2τστ
n

max
1≤ℓ≤τ−q/2+1

0≤q≤τ

o(nℓ(np)−2ℓ/s̃(np)(2τ+2−2(s̃−1)(τ−q))/s̃). (3.36)

The term in the maximum is either increasing or decreasing with ℓ or it is equal to
o((np)2τ+2−2(s̃−1)(τ−q))/s̃) if n ≍ (np)2/s̃. Therefore, the expression in (3.36) is

pτ

n2τστ
n

max{ max
0≤q≤τ

o(n(np)(2(2−s̃)τ+2(s̃−1)q)/s̃), max
0≤q≤τ

o(nτ−q/2+1(np)((2s̃−1)q−2(s̃−1)τ)/s̃)}

=
pτ

n2τστ
n

max{o(n(np)2τ/s̃), o(nτ/2+1(np)τ/s̃)} = o
(nτ/2+1(np)τ/s̃pτ

n2τστ
n

)
,

since in the first step both terms in the maximum are growing with q, so that the terms are the
largest for q = τ , and since in the second step the last term of the maximum is larger than the first
term for every p = O(n(s−2)/4). As σ2

n ≍ p/n+ (p/n)3 if E[X4] 6= 1, we have

o
(nτ/2+1(np)τ/s̃pτ

n2τστ
n

)
= o(n−(s̃−4)τ/(2s̃)+1). (3.37)

In the Bernoulli case the second term of (3.30) is equal to zero.

For the second term of (3.29) it holds that

1

n2τστ
nδ

τ
E

[( ∑

(i,i)∈Λn,d

(T 2
ii − E[T 2

ii])
)τ]

≤ 1

n2τστ
nδ

τ
(2d)τ−1

∑

(i,i)∈Λn,d

E[(T 2
ii − E[T 2

ii])
τ ] ,

where

E[(T 2
ii − E[T 2

ii])
τ ] = E

[( n∑

t,u=1

(ξiitξiiu − E[ξiitξiiu])
)τ]

=
n∑

t1,u1,...,tτ ,uτ=1

E[(ξiit1ξiiu1
− E[ξiit1ξiiu1

]) . . . (ξiitτ ξiiuτ − E[ξiitτ ξiiuτ ])].

Again the summands with more than τ +1 indices disappear and a summand with ℓ ≤ τ+1 indices
is bounded by

CE[X2
it1X

2
iu1

. . . X2
itτX

2
iuτ

] . (E[X
2
]ℓ−1

E[X
4τ−4ℓ+4

]) = o((np)(4τ−4ℓ+4−s̃)/s̃)
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by similar arguments as for (3.33), so that we obtain

1

n2τστ
nδ

τ
E

[( ∑

(i,i)∈Λn,d

(T 2
ii − E[T 2

ii])
)τ]

=
1

n2τστ
nδ

τ
max

1≤ℓ≤τ+1
o(nℓ(np)(4τ−4ℓ+4−s̃)/s̃).

The term in the maximum is either increasing or decreasing with ℓ or it is equal to o((np)4τ+4−s̃)/s̃,

if n ≍ (np)4/s̃. We deduce

1

n2τστ
nδ

τ
max{o(n4τ/s̃p4τ/s̃−1), o(nτp−1)} = o

(n(s+2)τ/s̃p−1

n2τστ
nδ

τ

)
= o((n+ p)(2−s̃)/s̃), (3.38)

where we used that (s+2)/s̃ > 1 for an ε < 1 and σ2
n ≍ p/n+(p/n)3, if E[X4] 6= 1. In the Bernoulli

case the second term of (3.29) is zero.

In summary we derive by (3.35), (3.37), (3.38) and noting that all estimates are uniform in
I1, . . . , Id that

max
I1,...,Id

P(|Zn,d| > δ) = o(n−(s̃−4)τ/(2s̃)+1) = o(n−(s−2)d/2−1),

where τ can be chosen as the smallest even integer larger than

s̃(s− 2)

s̃− 4
d+

4s̃

s̃− 4
.

Since the number of possible choices for I1 < . . . < Id is
(p(p−1)/2

d

)
≤ p2d and p = O(n(s−2)/4) we

conclude that
∑

I1<...<Id

P(|Zn,d| > δ) .
p2d

n(s−2)d/2+1
→ 0,

as n → ∞, which finishes the proof of (3.28).

4. Auxiliary results

Throughout this section p = pn is a sequence of positive integers tending to infinity as n → ∞.
Furthermore, let X, (Xit)i,t≥1 be iid random variables with E[X] = 0 and E[X2] = 1.

Lemma 4.1. Assume E[|X|s] < ∞ for some s ≥ 4. For a positive sequence (βn)n, which tends to

zero and satisfies βn ≫ (E[|X|s1{|X|>βn(np)1/s}])
1/s, set

Xit := Xit1{|Xit|≤βn(np)1/s}, 1 ≤ i ≤ p, 1 ≤ t ≤ n,

Tij :=

n∑

t=1

XitXjt, T ij :=

n∑

t=1

XitXjt, 1 ≤ i, j ≤ p.

Then it holds that
1

n2σn

∑

1≤i,j≤p

(T 2
ij − T 2

ij − E[T 2
ij − T 2

ij])
P→ 0 , n → ∞ ,

where σn is defined in (2.4).

Proof. We set

Qn :=

p⋃

i=1

n⋃

t=1

{|Xit| > βn(np)
1/s}.
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The probability of Qn tends to zero as n → ∞, since by the union bound and Markov’s inequality

P(Qn) ≤ npP(|X| > βn(np)
1/s) ≤ npP

(
|X|1{|X|>βn(np)1/s} > βn(np)

1/s
)

≤ np
E[|X|s1{|X|>βn(np)1/s}]

βs
nnp

→ 0 ,

where the properties of the sequence βn were used in the last step. Therefore, we have for δ > 0,

P

( 1

n2σn

∣∣∣
∑

1≤i,j≤p

(T 2
ij − T 2

ij − E[T 2
ij − T 2

ij ])
∣∣∣ > δ

)

≤ P

( 1

n2σn

∣∣∣
∑

1≤i,j≤p

(T 2
ij − T 2

ij − E[T 2
ij − T 2

ij ])
∣∣∣ > δ,QC

n

)
+ P(Qn)

≤ P

( 1

n2σn

∣∣∣
∑

1≤i,j≤p

E[T 2
ij − T 2

ij]
∣∣∣ > δ

)
+ o(1). (4.39)

We observe that

|E[X]| ≤
E[|X|s1{|X|>βn(np)1/s}]

βs−1
n (np)(s−1)/s

= o((np)−(s−1)/s) (4.40)

and similarly it follows

E[X
2
] = 1 + o((np)−(s−2)/s) and E[X

4
] = E[X4] + o((np)−(s−4)/s). (4.41)

Thus we obtain for 1 ≤ i < j ≤ p,

E[|T 2
ij − T 2

ij|] = E[|T 2
12 − T 2

12|]
≤ nE[X2

11X
2
21 −X2

11X
2
21] + n(n− 1)E[|X11X21X12X22 −X11X21X12X22|]

. n(1− E[X
2
]2) + n(n− 1)E[|X |]4 = o(n2/sp−(s−2)/s)

and as T 2
11 − T 2

11 is nonnegative we get

E[|T 2
11 − T 2

11|] = nE[X4 −X
4
] + n(n− 1)(1− E[X

2
]2) = o(n) + o(n1+2/sp−1+2/s).

Thereby, it holds

1

n2σn

∑

1≤i≤j≤p

E[|T 2
ij − T 2

ij |] = o
(n2/s−2p1+2/s

σn

)
+ o

( p

nσn

)
+ o

(n2/s−1p2/s

σn

)
.

In the case E[X4] 6= 1, the right-hand side tends to zero as σn ≍ (p/n)1/2 + (p/n)3/2. In the
symmetric Bernoulli case X2 = 1, the probability in (4.39) is zero, establishing the desired result.

�

Lemma 4.2. Let T 11, T 12 and T 13 be defined as in (3.9). Under the assumptions of Theorem 2.2
it holds, as n → ∞,

Var(T 2
11) = 4(E[X4]− 1)n3 + o(n3) + o(n2p)

Var(T 2
12) = 2n2 + ((E[X4])2 − 3)n + o(n) + o(n3/2p−1/2)

Cov(T 2
12, T

2
13) = (E[X4]− 1)n + o(n)

Cov(T 2
11, T

2
12) = 2(E[X4]− 1)n2 + o(n2) + o(n5/2p−1/2).

Proof. Recalling that X = X1{|X|≤(np)1/4βn}, we get by (4.40) and (4.41) with s = 4

|E[X ]| = o((np)−3/4) , E[X
2
] = 1 + o((np)−1/2) , E[X

4
] = E[X4] + o(1) . (4.42)
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For higher moments we obtain

E[|X |4+k] ≤ E[X
4
](np)k/4βk

n = o((np)k/4) , k ≥ 1 . (4.43)

After these preparations we will now prove the first claim of the lemma. By the multinomial
theorem we have

E[T 4
11] =

n∑

t1,t2,t3,t4=1

E[X2
1t1X

2
1t2X

2
1t3X

2
1t4 ]

= n(n− 1)(n − 2)(n − 3)E[X
2
]4 + 6n(n− 1)(n − 2)E[X

4
]E[X

2
]2

+ 3n(n− 1)E[X
4
]2 + 4n(n− 1)E[X

6
]E[X

2
] + nE[X

8
]

= n4 + 6n3(E[X4]− 1) + o(n3) + o(n2p),

where we used (4.42) and (4.43) in the last step. The same arguments also yield

E[T 2
11] = nE[X

4
] + n(n− 1)E[X

2
]2 = n2 + n(E[X4]− 1) + o(n). (4.44)

Since E[T 2
11]

2 = n4 + 2n3(E[X4]− 1) + o(n3), we conclude that

Var(T 2
11) = E[T 4

11]− E[T 2
11]

2 = 4(E[X4]− 1)n3 + o(n3) + o(n2p),

which proves the first part of the lemma. For the second part we consider Var(T 2
12) = E[T 4

12] −
E[T 2

12]
2. Using (4.42) and (4.43), we get

E[T 4
12] = n(n− 1)(n − 2)(n − 3)E[X ]8 + 6n(n− 1)(n − 2)E[X

2
]2E[X]4

+ 3n(n − 1)E[X
2
]4 + 4n(n− 1)E[X

3
]2E[X]2 + nE[X

4
]2

= 3n2 − 3n+ nE[X4]2 + o(n) + o(n3/2p−1/2).

as well as

E[T 2
12] =

n∑

t1,t2=1

E[X1t1X2t1X1t2X2t2 ] = nE[X
2
]2 + n(n− 1)E[X ]4 = n+ o(1) , (4.45)

which implies E[T 2
12]

2 = n2+o(n). Since Var(T 2
12) = E[T 4

12]−E[T 2
12]

2 the second part of the lemma
is established.

To show part three of the lemma, we compute, using (4.42), that

E[T 2
12T

2
13] =

n∑

t1,t2,t3,t4=1

E[X1t1X1t2X1t3X1t4 ]E[X2t1X2t2 ]E[X3t3X3t4 ]

= n(n− 1)(n − 2)(n − 3)E[X ]8 + 2n(n− 1)(n − 2)E[X ]4E[X
2
]2

+ 4n(n − 1)(n − 2)E[X
2
]E[X ]6 + n(n− 1)E[X

2
]4

+ 2n(n − 1)E[X
2
]2E[X]4 + 4n(n− 1)E[X

3
]E[X

2
]E[X ]3 + nE[X

4
]E[X

2
]2

= n2 + n(E[X4]− 1) + o(n).

In conjunction with (4.45), we then obtain

Cov(T 2
12, T

2
13) = E[T 2

12T
2
13]− E[T 2

12]E[T
2
13] = n(E[X4]− 1) + o(n).

Finally, using (4.42) and (4.43), we have

E[T 2
11T

2
12] =

n∑

t1=1

n∑

t2=1

n∑

t3=1

n∑

t4=1

E[X2
1t1X

2
1t2X1t3X1t4 ]E[X2t3X2t4 ]

= n(n− 1)(n − 2)(n − 3)E[X
2
]2E[X]4 + n(n− 1)(n − 2)E[X

4
]E[X ]4
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+ n(n− 1)(n − 2)E[X
2
]4 + 4n(n− 1)(n − 2)E[X

3
]E[X

2
]E[X]3

+ n(n− 1)E[X
4
]E[X

2
]2 + 2n(n − 1)E[X

3
]2E[X]2 + 2n(n− 1)E[X

5
]E[X]3

+ 2n(n− 1)E[X
4
]E[X

2
]2 + nE[X

6
]E[X

2
]

= n3 + 3(E[X4]− 1)n2 + o(n2) + o(n5/2p−1/2).

Therefore, we obtain in combination with (4.44) and (4.45),

Cov(T 2
11, T

2
12) = E[T 2

11T
2
12]− E[T 2

11]E[T
2
12] = 2(E[X4]− 1)n2 + o(n2) + o(n5/2p−1/2) ,

completing the proof of the lemma. �

Lemma 4.3. Let (T ij) be defined as in (3.9) an write Fj for the sigma algebra generated by
{x̃1, . . . , x̃j}, where x̃i = (Xi1, . . . ,Xin). Under the conditions of Theorem 2.2 it holds for 1 ≤
i1, i2 < j ≤ p that

E[T 2
i1jT

2
i2j |Fj−1]− E[T 2

i1j|Fj−1]E[T
2
i1j|Fj−1]

= (E[X
4
]− (E[X

2
])2)

n∑

t=1

X2
i1tX

2
i2t

+ E[X ](2E[X
3
]− E[X

2
])

n∑

t1,t2=1
t1 6=t2

(
X2

i1t1Xi2t1Xi2t2 +X2
i2t1Xi1t1Xi1t2

)

+ 2((E[X
2
])2 − E[X ]4)

n∑

t1,t2=1
t1 6=t2

Xi1t1X i1t2Xi2t1Xi2t2

+ 4E[X ]2(E[X
2
]− E[X ]2)

n∑

t1,t2,t3=1
|{t1,t2,t3}|=3

X i1t1Xi1t2Xi2t1X i2t2 .

Proof. By straightforward calculation we get

E[T 2
i1jT

2
i2j|Fj−1] = E[X]4

n∑

t1,...,t4=1
|{t1,...,t4}|=4

X i1t1X i1t2Xi2t3X i2t4

+ E[X
2
]E[X ]2

n∑

t1,t2,t3=1
t1 6=t2 6=t3

(
X2

i1t1Xi2t2Xi2t3 +X2
i2t1Xi1t2Xi1t3 + 4X i1t1Xi1t2X i2t1Xi2t3

)

+ E[X
2
]2

n∑

t1,t2=1
t1 6=t2

(
X2

i1t1X
2
i2t2 + 2X i1t1X i1t2Xi2t1X i2t2

)

+ 2E[X]E[X
3
]

n∑

t1,t2=1
t1 6=t2

(
X2

i1t1Xi2t1X i2t2 +X2
i2t1Xi1t1X i1t2

)

+ (E[X
4
]− E[X

2
]2)

n∑

t=1

X2
i1tX

2
i2t. (4.46)
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Additionally it holds that

E[T 2
i1j|Fj−1] = E[X

2
]

n∑

t=1

X2
i1t + E[X]2

n∑

t1,t2=1
t1 6=t2

Xi1t1X i1t2

and therefore

E[T 2
i1j|Fj−1]E[T

2
i2j |Fj−1]

= E[X
2
]2

n∑

t1,t2=1

X2
i1t1X

2
i2t2 + E[X

2
]E[X ]2

∑

t1,t2,t3=1
t2 6=t3

X2
i1t1Xi2t2X i2t3 +X2

i2t1Xi1t2X i1t3

+ E[X]4
n∑

t1,...t4=1
t1 6=t2, t3 6=t4

X i1t1Xi1t2X i2t3X i2t4 . (4.47)

The lemma follows from (4.46) and (4.47). �

Lemma 4.4. Let Y and Y ′ be real-valued random variables and B an arbitrary event. Then it
holds for every y ∈ R and δ > 0 that

P(Y ≤ y, B) ≤ P(Y − Y ′ ≤ y + δ, B) + P(|Y ′| > δ) ,

P(Y ≤ y, B) ≥ P(Y − Y ′ ≤ y − δ, B)− P(|Y ′| > δ) .

Proof. We have

P(Y ≤ y, B) ≤ P(Y ≤ y, B, |Y ′| ≤ δ) + P(|Y ′| > δ)

≤ P(Y − Y ′ ≤ y + δ, B) + P(|Y ′| > δ)

and

P(Y ≤ y, B) + P(|Y ′| > δ) ≥ P(Y − Y ′ ≤ y − δ, B, |Y ′| ≤ δ) + P(|Y ′| > δ)

≥ P(Y − Y ′ ≤ y − δ, B).

�
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(1979), North-Holland, Amsterdam-New York, pp. 81–92.

[9] Chow, Y. S., and Teicher, H. Probability theory. Springer-Verlag, New York-Heidelberg,
1978. Independence, interchangeability, martingales.

[10] Daley, D. J., and Vere-Jones, D. An introduction to the theory of point processes. Springer
Series in Statistics. Springer-Verlag, New York, 1988.

[11] Davis, R. A., Mikosch, T., and Pfaffel, O. Asymptotic theory for the sample covariance
matrix of a heavy-tailed multivariate time series. Stochastic Processes and their Applications
126, 3 (2016), 767–799.

[12] Drton, M., Han, F., and Shi, H. High-dimensional consistent independence testing with
maxima of rank correlations. Ann. Statist. 48, 6 (2020), 3206–3227.

[13] Durrett, R. Probability—theory and examples, vol. 49 of Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019. Fifth edition of [
MR1068527].
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