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Abstract. A limit theorem for the largest interpoint distance of p independent and identically dis-
tributed points in Rn to the Gumbel distribution is proved, where the number of points p = pn tends
to infinity as the dimension of the points n → ∞. The theorem holds under moment assumptions
and corresponding conditions on the growth rate of p. We obtain a plethora of ancillary results such
as the joint convergence of maximum and minimum interpoint distances. Using the inherent sum
structure of interpoint distances, our result is generalized to maxima of dependent random walks
with non-decaying correlations and we also derive point process convergence. An application of the
maximum interpoint distance to testing the equality of means for high-dimensional random vectors
is presented. Moreover, we study the largest off-diagonal entry of a sample covariance matrix. The
proofs are based on the Chen-Stein Poisson approximation method and Gaussian approximation to
large deviation probabilities.

1. Introduction

In this paper we study the asymptotic distribution of the largest interpoint distance

Mn,p := max
1≤i<j≤p

∥xi − xj∥2 ,

where x1,x2, . . . ,xp are random vectors in Rn and ∥ · ∥2 denotes the Euclidean norm on Rn. Inter-
point distances are used in a wide range of applications in many areas of probability and statistics,
for example in distributional characterization, classification, independence testing and cluster anal-
ysis [28]. Thanks to their simplicity of computation and straightforward geometric interpretation,
interpoint distance-based procedures have been particularly appealing to practitioners for analyzing
data samples.

Several limit theorems for the largest interpoint distance Mn,p of independent and identically
distributed (iid) random vectors x1, . . . ,xp with a fixed dimension n have been proved. Typically
a distinction is made between bounded and unbounded support of the distribution of the points
xi. For instance, if the points are uniformly distributed on the two-dimensional unit ball, we
can see in Figure 1 that for a growing number of points, that is p → ∞, the largest interpoint
distance Mn,p converges to the diameter of the unit ball. Regarding the maximum interpoint
distance as the diameter of the convex hull of p independent points, Mayer and Molchanov [32] and
Lao and Mayer [24] obtained a Weibull distribution as the limiting law of the suitably centered
and normalized Mn,p in case of points distributed on the n-dimensional unit ball (including the
uniform distribution). For bounded support and fixed dimension n, Appel et al. [1] found a limiting
distribution for Mn,p in the case of uniformly distributed points in a compact set with a well defined
major axis and a suitable decay rate at the endpoints. For a uniform distribution in a proper ellipse
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2 J. HEINY AND C. KLEEMANN

with major axis 2, Jammalamadaka and Janson [18] gave a limiting law for Mn,p, which involved
two independent Poisson processes. This result was generalized by Schrempp [36] to uniform or
nonuniform distributions over an n-dimensional ellipsoid.

If the support of the xi is unbounded, then one single observation/outlier might cause Mn,p to
be large. An example of a distribution with unbounded support is given in Figure 2 which shows
a cloud of bivariate standard normal distributed points. In the unbounded case, Matthews and
Rukhin [31] obtained a Gumbel limiting distribution if the points follow a spherical symmetric
normal distribution. Henze and Klein [16], Jammalamadaka and Janson [18] and Demichel et
al. [7] generalized this result to any spherically symmetric distribution. Complementary to these
developments, Jammalamadaka and Janson [17] obtained a limiting distribution for the minimum
interpoint distance by considering the asymptotic distribution of a triangular scheme of U -statistics.
The minimum interpoint distance is usually attained by points in the bulk of the distribution,
whereas the maximum interpoint distance is achieved by outliers. Therefore, Mn,p is less suitable
for goodness of fit tests, but could be used to identify outliers.

(a) 10 points (b) 250 points

Figure 1. Uniformly distributed points on the two-dimensional unit ball

In all of these works, the dimension n is assumed to be fixed. Recent technological advances such
as the rapid improvement of computing power and measurement devices, however, have greatly fa-
cilitated the collection of high-dimensional data. Huge data sets arise naturally in genome sequence
data in biology, online networks, wireless communication, large financial portfolios, and natural sci-
ences. More applications where the dimension n might be of the same or even higher magnitude
than the sample size p are discussed in [8, 20]. In such a high-dimensional setting, one faces new
probabilistic and statistical challenges; see [21] for a review. Since interpoint distances can be eas-
ily computed in any dimension, they provide a promising approach to analyzing high-dimensional
data; see [41].

1.1. Objective and structure of this paper. Unfortunately, in the case of large data the tech-
niques developed for the case of fixed n do not work anymore. Our main objective is, therefore, to
prove limit theorems for the largest interpoint distance Mn,p in the high-dimensional case, where
p = pn → ∞ as n → ∞.
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Figure 2. 500 normal distributed points on R2

This paper is structured as follows. The main results on the convergence of the maximum are
presented in Section 2. Theorem 2.1 asserts that after suitable centering and normalization the
largest interpoint distance Mn,p converges in distribution to a standard Gumbel random variable
in the high-dimensional regime p, n → ∞. The correlation between the interpoint distances can
be expressed in terms of the fourth moment of the entries of the vectors xi. Interestingly, it turns
out that the fluctuations of Mn,p might be influenced by this correlation, whereas the first order
behavior of Mn,p is not (Theorem 2.14).

Theorem 2.1 is obtained from the analysis of dependent random walks in Section 2.2. In Theo-
rem 2.4, it is shown that the maximum of these random walks is asymptotically Gumbel distributed
under various types of moment assumptions and corresponding growth rates of p. We obtain a
plethora of ancillary results such as the joint convergence of maximum and minimum interpoint
distances (Theorem 2.9).

Section 3 is devoted to geometrical and statistical applications of our findings. First, we general-
ize the result for the interpoint distances regarding the Euclidean norm to the maximum interpoint
distance regarding q-norms in Theorem 3.1. Then we propose a test for the equality of means for
high-dimensional random vectors based on interpoint distances. In Theorem 3.3 we show the con-
sistency of this test under the null hypothesis of equal mean vectors and that significant deviations
from the null hypothesis will be detected. Section 3.3 contains an application to maximum-type
tests which have gained significant popularity in high-dimensional data analysis. In particular, we
study the asymptotic behavior of the largest off-diagonal entry of a sample covariance matrix of iid
random vectors from an equicorrelated normal population (Theorem 3.4).

Finally, we prove in Section 4 that the convergence of the maximum of the dependent random
walks can be extended to point process convergence to some Poisson random measure. Among
other interesting consequences, this yields the joint distribution of a fixed number of upper order
statistics. The proof of Theorem 2.4 is presented in Section 5, while the proofs of the remaining
results in Section 2 are deferred to Section 6. In the Appendix we collect some useful technical
tools.

1.2. Notation. Convergence in distribution (resp. probability) is denoted by
d→ (resp.

P→) and
unless explicitly stated otherwise all limits are for n → ∞. For sequences (an)n and (bn)n we
write an = O(bn) if an/bn ≤ C for some constant C > 0 and every n ∈ N, and an = o(bn) if
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limn→∞ an/bn = 0. Additionally, we use the notation an ∼ bn if limn→∞ an/bn = 1 and an ≲ bn
if an is smaller than or equal to bn up to a positive universal multiplicative constant. We further
write a∧ b := min{a, b} for a, b ∈ R and for a set A we denote |A| as the number of elements in A.

2. Main results: convergence of the maximum

2.1. Maximum interpoint distance. We are interested in the limit behavior of the maximum
of the interpoint distances,

D
(2)
ij := ∥xi − xj∥22 , 1 ≤ i < j ≤ p , (2.1)

where xi = (Xi1, . . . , Xin)
⊤, i = 1, . . . , p are n-dimensional random vectors, whose components

(Xit)i,t≥1 satisfy the following standard conditions:

• (Xit) are independent and identically distributed random variables with generic element X.
• E[X] = 0 and E[X2] = 1.

It is worth mentioning that this is a non-standard extreme value problem since the maximum inter-
point distance is a max U -statistic. Consequently, the limiting distribution might not necessarily
be an extreme value distribution. Further, notice that the mean of the random vectors xi has no
impact on the distance between the vectors, so we assume it to be zero for simplicity.

In this paper, p = pn is some integer sequence tending to infinity as n → ∞. For p̃ := p(p− 1)/2
and y ∈ R we define

dn,1 :=
√

2 log p̃− log log p̃+ log 4π

2(2 log p̃)1/2
and d(y)n := dn,1 −

y log p̃

3n1/2
, n ≥ 1. (2.2)

These sequences will also be used for the appropriate centralization and scaling of maxi<j D
(2)
ij

with the following heuristic explanation. By the central limit theorem (assuming E[X4] < ∞), the

distribution function of
(
D

(2)
12 − E[D(2)

12 ]
)
/

√
VarD

(2)
12 converges, as n → ∞, to the standard normal

distribution function Φ, where for i < j we have E[D(2)
ij ] = 2n and Var(D

(2)
ij ) = 2n(E[X4] + 1). For

an iid sequence (ξi) of standard normal random variables and dn,1 defined as in (2.2) it holds

lim
n→∞

P
(
dn,1

(
max

i=1,...,p̃
ξi − dn,1

)
≤ x

)
= exp(− exp(−x)) =: Λ(x) , x ∈ R .

The limit distribution function is the standard Gumbel Λ; see [9, Example 3.3.29]. Note that
the sequence (dn,1) is chosen such that p̃Φ(dn,1) → 1 as n → ∞, where Φ(x) := 1 − Φ(x). Of

course D
(2)
ij , 1 ≤ i < j ≤ p are not independent random variables. In particular, we have constant

correlations

Corr(D
(2)
ij , D

(2)
ik ) =

E[X4]− 1

2(E[X4] + 1)
∈ [0, 1/2) , i < j < k , (2.3)

and uncorrelatedness if and only if X follows the symmetric Bernoulli distribution P(X = −1) =
P(X = 1) = 1/2. For large p̃ (relative to the dimension n) we have to deal with large number of

dependent interpoint distancesD
(2)
ij , each of which satisfies a central limit theorem with convergence

rate only depending on n and X. Therefore, conditions on X and the interplay of n and p are
required for the asymptotic behavior of the maximum interpoint distance. Our techniques will rely
on Poisson approximation and precise large deviation results in Lemma A.3, which connects the
conditions on the moments of X and the rate of p = pn → ∞. We will assume one of the following
four moment conditions:

(B1) There exists s > 2 such that E[|X|2s(log(|X|))s/2] < ∞ and E[X4] ≤ 5 .
(B2) There exist constants η > 0 and 0 < r ≤ 2/3 such that E[exp(η |X|2r)] < ∞ and E[X4] < 5.
(B3) There exist constants η > 0 and r ≥ 1/2 such that E[exp(η |X|2r)] < ∞ and E[X4] = 5.
(B4) There exists a constant K with P(|X| ≤ K) = 1 and E[X4] = 5.



INTERPOINT DISTANCES 5

The next theorem is our main result for interpoint distances.

Theorem 2.1. Let (xi)i≤p be iid Rn-valued random vectors, whose components fulfill the standard
conditions. Assume one of the conditions (B1) – (B4) on X and that p = pn → ∞ satisfies

• p = O(n(s−2)/4), if (B1) holds.

• p = exp(o(nr/(2−r))), if (B2) holds.

• p = exp(o(n1/(3+2/r))), if (B3) holds.

• p = exp(o(n1/3)), if (B4) holds.

Then we have

max
1≤i<j≤p

c(2)n (D
(2)
ij − b(2)n )

d→ G ,

where G is standard Gumbel distributed. The sequences (b
(2)
n ) and (c

(2)
n ) are given by

b(2)n := 2n+
√

2n(E[X4] + 1) d̃n and c(2)n :=
d̃n√

2n(E[X4] + 1)
, (2.4)

where

d̃n :=

{
d
(κ̃)
n , if (B2) holds with r > 1/2 ,

dn,1, otherwise,

with

κ̃ :=
E[X6] + 9E[X4]− 10(E[X3])2 − 10√

2(E[X4] + 1)3/2
.

Remark 2.2. (1) Very recently, [39] studied the convergence in distribution of the maximum
interpoint distance in the special case p/n → c ∈ (0,∞) and assuming a finite moment generating
function of |X|. This is a lot more restrictive than the assumptions of Theorem 2.1, where in the
case p/n → c only E[|X|12(log |X|)3] < ∞ is required.

(2) By taking the square root, we see that P
(
max1≤i<j≤p ∥xi−xj∥2 <

√
x/c

(2)
n + b

(2)
n

)
→ Λ(x) for

x ∈ R, as n → ∞.
(3) Instead of considering the largest interpoint distance between all possible combinations of points
of one sample, we can study the largest distance between points of two different samples (xi)i≤p

and (yj)j≤p with the same mean. After similar normalization as in Theorem 2.1, it is shown in
Section 7 that max1≤i,j≤p ∥xi − yj∥22 converges to a Gumbel distributed random variable.
(4) Notice that the assumption E[X4] ≤ 5 in (B1) is equivalent to the correlation in (2.3) being
at most 1/3. The case of correlation larger than 1/3 will be discussed in Section 2.3. In (B2) we
consider exponential moments and require E[X4] < 5. In the special case E[X4] = 5 we need to
make stronger assumptions. One possibility is to require a slower rate for p depending on n, which
we consider in assumption (B3). Alternatively, we can demand stronger assumptions on X such as
(B4).

2.2. Maximum of dependent random walks. Theorem 2.1 is a direct consequence of The-
orem 2.4 below, where more general random walks T̃ij with the following additive structure are
considered:

T̃ij :=

n∑
l=1

f(Xil, Xjl) , 1 ≤ i < j ≤ p , (2.5)

for some measurable function f : R2 → R with f(x, y) = f(y, x). If the random vectors (xi) have

iid components, then T̃ij is a sum of iid random variables. This suggests that after appropriate
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centering and scaling T̃ij will converge to a standard normal variable. More precisely, for 1 ≤ i <
j ≤ p we introduce the standardized sums

Tij :=
1√
n

n∑
l=1

Zi,j,l, where Zi,j,l :=
f(Xil, Xjl)− E[f(X11, X21)]√

Var(f(X11, X21))
(2.6)

are iid (with respect to l ≥ 1) mean zero, unit variance random variables with generic element Z.
Define the sequences (bn) and (cn) by

bn := nE[f(X11, X21)] +
√
nVar(f(X11, X21)) dn,1, cn :=

dn,1√
nVar(f(X11, X21))

,

for n ≥ 1. By construction, it holds for x ∈ R

P(cn(T̃ij − bn) > x) = P
(
Tij >

x

dn,1
+ dn,1

)
,

and the central limit theorem yields P
(
Tij > x

)
∼ Φ(x) , n → ∞. Note that for an iid sequence

(ξi)i≥1 the convergence

lim
n→∞

P
(
dn,1

(
max

i=1,...,p̃
ξi − dn,1

)
≤ x

)
= Λ(x) , x ∈ R ,

is equivalent to (see [35])

p̃P(ξ1 > xn) ∼ p̃Φ(xn) → e−x , n → ∞, x ∈ R ,

where we used the shorthand notation xn = x
dn,1

+ dn,1. Hence, it is natural to first establish the

corresponding limit relation p̃P(T12 > xn) → e−x.
Using Lemma A.3 we are able to find moment conditions on Z under which P(T12 > xn) ∼ Φ(xn)

as n → ∞. For instance, we get

p̃P
(
T12 > xn

)
∼ p̃Φ

(
xn
)
∼ e−x, n → ∞ (2.7)

if p = exp(o(n1/3)) and E[exp(η |Z|1/2)] < ∞ for some η > 0. If we want to choose a larger p,

we furthermore know by Lemma A.3 that for p = exp(o(n1/2)) and E[exp(η |Z|2/3)] < ∞ for some
η > 0 it holds that

p̃P
(
T12 > xn

)
∼ p̃Φ

(
xn
)
exp

(x3n E[Z3]

6n1/2

)
, n → ∞ . (2.8)

Therefore, we have to replace the sequence dn,1 by d
(κ)
n with κ := E[Z3] to get the convergence of

(2.8) to e−x for x ∈ R.
Interestingly, the influence of the dependence among the (Tij)i<j on the asymptotic distribution

of their maximum can be captured in one single correlation parameter

ρ := E[Z1,2,1Z1,3,1] = Corr(f(X11, X21), f(X11, X31)) .

Remark 2.3. The range of possible values for ρ is given by 0 ≤ ρ ≤ 1/2. This can be shown by
checking that the covariance matrix of the random variables (Tij)1≤i<j is positive semidefinite if
and only if 0 ≤ ρ ≤ 1/2.

To this end, note that for d ∈ N the covariance matrix of (T12, T13, . . . , T1,d+1) is given by

Σd = ρ1d1
⊤
d + (1 − ρ)Id, where 1d is the d-dimensional vector of ones. Since ρ is a correlation

coefficient we must have ρ ∈ [−1, 1]. It is well–known that Σd is positive semidefinite if and only
if ρ ≥ −1/(d − 1). Since d was arbitrary, we deduce that ρ ≥ 0. Next, one can check that the
covariance matrix M3 of (T12, T13, T23, T14, T24, T34) has an eigenvalue 1− 2ρ and therefore ρ ≤ 1/2
in order for M3 to be positive semidefinite.
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We will assume one of the following four moment conditions, where we recall that Z
d
= Z1,2,1

with Z1,2,1 as in (2.6):

(C1) There exists s > 2 such that E[|Z|s(log(|Z|))s/2] < ∞ and ρ ≤ 1/3.
(C2) There exist constants η > 0 and 0 < r ≤ 2/3 such that E[exp(η |Z|r)] < ∞ and ρ < 1/3.
(C3) There exist constants η > 0 and r ≥ 1/2 such that E[exp(η |Z|r)] < ∞ and ρ = 1/3.
(C4) There exists a constant K with P(|Z| ≤ K) = 1 and ρ = 1/3.

Our next result, Theorem 2.4, provides conditions for the convergence of the maximum

max
1≤i<j≤p

dn(Tij − dn) = max
1≤i<j≤p

cn(T̃ij − bn) ,

where

dn :=

{
d
(κ)
n , if (C2) holds with r > 1/2,

dn,1, otherwise.

Theorem 2.4. Let (Xit)i,t≥1 be iid random variables and let Z
d
= Z1,2,1 with Z1,2,1 as in (2.6).

Furthermore, assume one of the conditions (C1) – (C4) on Z and that p = pn → ∞ satisfies

• p = O(n(s−2)/4), if (C1) holds.

• p = exp(o(nr/(2−r))), if (C2) holds.

• p = exp(o(n1/(3+2/r))), if (C3) holds.

• p = exp(o(n1/3)), if (C4) holds.

Then

max
1≤i<j≤p

dn(Tij − dn)
d→ G, n → ∞ , (2.9)

where G is standard Gumbel distributed.

Sketch of the proof. We restrict ourselves to the proof under condition (C4). While this case might
appear as the easiest of the four, it deals with the largest correlation ρ = 1/3 and explains why
this particular value plays a special role.

Firstly, (2.7) already establishes the necessary and sufficient condition for the convergence of the
maximum of p̃ iid copies of T12. More precisely, letting xn := x/dn + dn for x ∈ R, an application

of Lemma A.3(iii) yields for p = exp(o(n1/3)) that

p̃P
( 1√

n

n∑
l=1

Z1,2,l > xn

)
= p̃Φ(xn) exp

(
x3nE[Z3]

6n1/2

)(
1 +O

(
1 + xn

n1/2

))
∼ p̃Φ(xn) → e−x , n → ∞ .

(2.10)

Notice that this convergence does not hold if p = exp(n1/3) and E[Z3] ̸= 0. This means that

the growth rate p = exp(o(n1/3)) cannot be increased without adjusting the normalization; c.f.
Remark 2.6. We would like to point out that similar optimality properties hold in all cases in
Theorem 2.4.

Secondly, combining (2.10) and Lemma A.1 we may conclude the desired result (2.9) if we can
show that

lim
n→∞

p3 P
(
dn(T12 − dn) > x, dn(T13 − dn) > x

)
= 0 .

As the |Zi,j,l| are bounded by K, we can apply Theorem 1.1 of [40] to obtain an approximation of
the distribution of the vector (T12, T13) by the distribution of a vector (N1, N2) of standard normal

variables with Cov(N1, N2) = ρ. From this approximation we deduce that for λn = (log p)−1/2

p3 P
(
min(T12, T13) > xn

)
≤ p3 P(min(N1, N2) > xn − λn) + p3 c1 exp

(
− c2

√
nλn

K

)
,
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where c1, c2 are absolute constants. Using properties of the tails of equicorrelated Gaussian random
variables in Lemma A.5, the terms on the right-hand side converge to zero provided that ρ ≤ 1/3

and p = exp(o(n1/3)).
It is worth mentioning that p3 P(min(N1, N2) > xn) → 0 if and only if ρ ≤ 1/3. The arguments

under conditions (C1)-(C3) are similar but more involved. Unfortunately, since Z is not bounded
in these cases a series of truncation steps is required. The detailed proof of Theorem 2.4 is given
in Section 5. □

An important step in the sketch of the proof is the normal approximation of the sum of indepen-
dent random variables. The independence requirement on the components of the random vectors
xi can be weakened if we accept stronger conditions on the moments of the components or the rate
of p. For example, using the moderate deviation result for locally dependent random variables in
[30, Theorem 2.1] and following the lines of the proof of Theorem 2.4 under (C2) we can show (2.9)

for locally dependent components if we demand p = exp(o(n1/3)) and a moment condition, which
is stronger than E[exp(η |Z|)] < ∞ and determined by the dependence of the components.

Remark 2.5. In the proof of Theorem 2.4 we employ the Chen-Stein Poisson approximation
method from [2]. For x ∈ R consider the sums

Wn(x) :=
∑

1≤i<j≤p

1{dn(Tij−dn)>x} , n ≥ 1.

Along the lines of the proof Theorem 2.4 it can be shown that Wn(x)
d→ W (x), where W (x) is a

Poisson distributed random variable with parameter e−x. It is easy to see

{Wn(x) = 0} =

{
max

1≤i<j≤p
dn(Tij − dn) ≤ x

}
, x ∈ R ,

so that the convergence in distribution of Wn(x) yields

lim
n→∞

P(Wn(x) = 0) = exp
(
− e−x

)
, x ∈ R ,

which in turn implies (2.9). Finally, we mention that in Section 4 the convergence of the maximum
will be extended to point process convergence (Theorem 4.1).

We proceed by discussing the assumptions of Theorem 2.4. One can see that the rate of p → ∞
is connected to conditions on the moments of |Z|. The larger p is relatively to n the more moments
have to exist to obtain (2.9). Intuitively this makes a lot of sense as a large p increases the
number of Tij ’s in the maximum, but does not improve the rate of convergence of the Tij ’s to the
normal distribution. If c1n ≤ p ≤ c2n holds for constants c1 and c2, then [26] and [27] proved
that E[Z6−δ] < ∞ for every δ > 0 is a necessary condition in the case f(x, y) = xy (see (2.5)).
According to our Theorem 2.4 a sufficient condition in this case is E[Z6 log(|Z|3)] < ∞ showing
that the moment condition (C1) cannot be weakened in general.

If p grows exponentially in n, then we need finite exponential moments of certain powers of |Z|.
If, for instance, E[exp(η |Z|1/2)] < ∞, we get (2.9) for p = exp(o(n1/3)) provided that ρ < 1/3. If

ρ = 1/3, one has to either reduce the range to p = exp(o(n1/7)) or assume that |Z| is bounded.
Noting that, for 0 < s < t, E[exp(η |Z|t)] < ∞ implies E[exp(η |Z|s)] < ∞, Theorem 2.4

generalizes several special cases known in the literature, where typically a finite moment generating
function of |Z| is assumed and the maximum is taken over uncorrelated terms, that is, ρ = 0; see
[13, 15, 19, 26].

Remark 2.6. Under (C2) choosing r > 1/2 equation (2.9) does not hold for dn = dn,1 anymore.

For example for log p = n1/3 we get

lim
n→∞

P
(

max
1≤i<j≤p

dn,1
(
Tij − dn,1

)
≤ x

)
= exp(− e−x+ 4

3
E[Z3]) , x ∈ R.
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We have to recenter max1≤i<j≤p Tij by d
(E[Z3])
n to obtain (2.9), compare also Shao and Zhou [37,

p. 625-626].

Our next result concerns the order of the maximum.

Proposition 2.7. (i) Under each of the conditions of Theorem 2.4 we have

max
1≤i<j≤p

1√
log p

Tij → 2 (2.11)

in probability as n → ∞.
(ii) Let 0 < s ≤ 1/2. If (2.11) holds for any p satisfying log p = o(ns) as n → ∞, then

E[exp(η|Z|
2s
1+s )] < ∞ for some η > 0.

From Proposition 2.7(ii) we conclude that an exponential growth of p requires a finite moment
generating function of some power of |Z| which is in line with conditions (C2)-(C4) of Theorem 2.4.
In particular, it is impossible to replace (C2)-(C4) by the weaker condition (C1).

By Theorem 2.4 we are able to draw conclusions for the minimum of the random walks Tij , for
example the minimum interpoint distance.

Corollary 2.8. Under the conditions of Theorem 2.4 we get

min
1≤i<j≤p

dn(Tij + dn)
d→ −G, n → ∞ ,

where G is standard Gumbel distributed.

Proof. The result is an immediate consequence of Theorem 2.4 as

min
1≤i<j≤p

Tij + dn = − max
1≤i<j≤p

−(Tij + dn).

□

Additionally, it turns out that the normalized maxima and minima are asymptotically indepen-
dent.

Theorem 2.9. Under the conditions of Theorem 2.4 we have(
max

1≤i<j≤p
dn(Tij − dn), min

1≤i<j≤p
dn(Tij + dn)

)
d→ (G,−G′), n → ∞ ,

where G and G′ are independent standard Gumbel distributed random variables.

2.3. Maximum of dependent random walks in the case of strong correlation. In Re-
mark 2.3, we showed that 0 ≤ ρ ≤ 1/2 whereas the results so far were restricted to ρ ∈ [0, 1/3].
The sketch of the proof of Theorem 2.4 gives a first explanation as to why the case ρ > 1/3 is
different. Next, we provide some error bounds for the convergence in (2.9) under condition (C4).

Proposition 2.10. If p = exp(o(n1/3)) and there exists a constant K with |Z| < K, then it holds,
as n → ∞,∣∣P( max

1≤i<j≤p
dn,1(Tij − dn,1) ≤ x

)
− exp(− e−x)

∣∣
= O((log p)−ρ/(1+ρ)p−(1−3ρ)/(1+ρ)) +O

(√(log p)3

n

)
+O

((log(log p))2
log p

)
, x ∈ R.

We see that the first error term does not vanish asymptotically if ρ > 1/3. Therefore we need
an alternative approach.

To prove Theorem 2.4 under optimal assumptions we applied Theorem 1.1 of [40], which provides
a pointwise normal approximation of the random variables Tij . Another possibility is to use the
normal approximation for maxima of sums of high-dimensional random vectors in [6], which yields
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a bound on the Kolmogorov distance between the maximum of the Tij and the maximum of normal
distributed random variables. For this method stronger moment assumptions and more restrictions
on the rate of p are necessary but the advantage is that this bound does not limit the dependency
structure. Therefore, we can make statements about the maximum of the Tij even if ρ > 1/3.

To this end, consider a random field (Yij)1≤i<j , i, j ∈ N of standard normal random variables Yij .
For i < j and s < t assume that

Cov(Yij , Yst) =


0, {i, j} ∩ {s, t} = ∅
1, {i, j} = {s, t}
ρ, otherwise.

(2.12)

The range of possible values for ρ is given by 0 ≤ ρ ≤ 1/2. This can be shown by checking
that the covariance matrix of the random variables (Yij)1≤i<j is positive semidefinite if and only if
0 ≤ ρ ≤ 1/2; see Remark 2.3. Indeed, the covariance matrices of (Yij)1≤i<j≤p and (Tij)1≤i<j≤p are
the same. By Corollary 2.1 of [6] we get the following lemma.

Lemma 2.11. Assume there exist constants η, c, C > 0 such that

E[exp(η|Z|)] < ∞ and
(log(p̃n))7

n
≤ Cn−c , (2.13)

then it holds that

sup
t∈R

∣∣∣P( max
1≤i<j≤p

1√
n

n∑
l=1

Zi,j,l ≤ t
)
− P

(
max

1≤i<j≤p
Yij ≤ t

)∣∣∣ ≤ Cn−c.

If (2.13) is fulfilled, we obtain that the limiting distributions of maxTij and maxYij are the same.
More precisely, it holds

sup
t∈R

∣∣∣P( max
1≤i<j≤p

dn,1(Tij − dn,1) ≤ t
)
− P

(
max

1≤i<j≤p
dn,1(Yij − dn,1) ≤ t

)∣∣∣→ 0 , n → ∞ .(2.14)

Remark 2.12. The second condition in (2.13) holds if p = exp(o(n1/7−ε)) for ε > 0. For compar-

ison, in the case ρ < 1/3 Theorem 2.4 provides a result for the larger rate p = exp o(n1/3) under

the weaker moment assumption E[exp(η|Z|1/2)] < ∞ for some η > 0.

In view of (2.14), it is natural to ask for which values ρ a Gumbel limit can be achieved. By
similar arguments as in the proof of Proposition 2.10 we get for x ∈ R that∣∣∣P( max

1≤i<j≤p
dn,1(Yij − dn,1) ≤ x

)
− exp(− e−x)

∣∣∣
= O((log p)−ρ/(1+ρ)p−(1−3ρ)/(1+ρ)) +O

((log log p)2
log p

)
,

as n → ∞. Unfortunately, this does not yield a positive result for ρ > 1/3. To proceed, we define
the random variables

Vn,ρ(x) :=
∑

1≤i<j≤p

1{dn,1(Yij−dn,1)>x} , n ≥ 1, x ∈ R,

where the (Yij) are as in (2.12). For the same reasons as in Remark 2.5 it holds that

Vn,ρ(x)
d→ W (x) , n → ∞ , ρ ∈ [0, 1/3] ,

where W (x) is a Poisson distributed random variable with parameter e−x. Recall that the Poisson
distribution is uniquely characterized by its sequence of moments; see e.g. [23]. Our next result
reveals the asymptotic behaviors of the first two moments of Vn,ρ(x).
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Proposition 2.13. For ρ ∈ [0, 1/2] and x ∈ R we have, as n → ∞,

E[Vn,ρ(x)] → E[W (x)] = e−x ,

E[V 2
n,ρ(x)] ∼

{
E[W (x)2] = e−x+e−2x, ρ ≤ 1/3,
(1+ρ)3/2

8π(1−ρ)1/2
(log p)−ρ/(1+ρ)p(3ρ−1)/(1+ρ), ρ > 1/3.

In this sense we observe a phase transition at ρ = 1/3.
Our final goal is to show that the first order behavior of maxTij is the same for all ρ ∈ [0, 1/2].

The following result generalizes Proposition 2.7 to all possible values of ρ.

Theorem 2.14. Let (Xit)i,t≥1 be iid random variables and let Z
d
= Z1,2,1 with Z1,2,1 as in (2.6).

Assuming (2.13) it holds for all ρ ∈ [0, 1/2] that

max
1≤i<j≤p

1√
log p

Tij
P→ 2 , n → ∞ . (2.15)

In other words, there is no phase transition in the first order behavior of the maximum of the
Tij . The main step in the proof of Theorem 2.14 consists in establishing (2.15) with Tij replaced
by Yij .

3. More applications

We recall that xi = (Xi1, . . . , Xin)
⊤, i = 1, . . . , p, are n-dimensional random vectors, whose

components (Xit)i,t≥1 satisfy the standard conditions. Throughout this section, we are going to
work with the sequence dn := dn,1 defined in (2.2).

3.1. q-norms. Instead of using the Euclidean norm (or 2-norm) to investigate the maximum of the
interpoint distances, one can investigate more general q-norms. For q ≥ 1 the q-norm of a vector
x = (X1, . . . , Xn)

⊤ ∈ Rn is defined by

∥x∥q :=
( n∑

i=1

|Xi|q
)1/q

.

For 0 < E[|X|3q] < ∞ and p = o(n1/5(log n)−6/5), as n → ∞, Biau and Mason [3, Proposition 5]
obtained for appropriate sequences gn and hn that

gn

(
max
1≤i≤p

∥xi∥q − min
1≤j≤p

∥xj∥q
)
− hn

d→ G+G′, (3.1)

where G and G′ are independent, standard Gumbel distributed random variables. Accordingly, they
did not investigate the asymptotic behavior of the maximum interpoint distance but the asymptotic
behavior of the difference between the distance of the origin to its farthest and nearest neighbors
which is also known as contrast in the computational learning literature and is an important statistic
for high-dimensional data processing.

In order to consider the interpoint distances regarding q-norms, we set for q ≥ 1

D
(q)
ij := ∥xi − xj∥qq , 1 ≤ i < j ≤ p ,

and let

ρ̂ := Corr
(
|X11 −X21|q, |X11 −X31|q

)
= Corr

(
D

(q)
12 , D

(q)
13

)
.

Similarly to Theorem 2.1, we will need the following four moment conditions:

(D1) There exists s > 2 such that E[|X|qs(log(|X|))s/2] < ∞ and ρ̂ ≤ 1/3.
(D2) There exist constants η > 0 and 0 < r ≤ 1/2 such that E[exp(η |X|qr)] < ∞ and ρ̂ < 1/3.
(D3) There exist constants η > 0 and r ≥ 1/2 such that E[exp(η |X|qr)] < ∞ and ρ̂ = 1/3.
(D4) There exists a constant K with |X| < K and ρ̂ = 1/3.
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The next result is a generalization of Theorem 2.1 to q-norms.

Theorem 3.1. Let q ≥ 1 and assume one of the conditions (D1) – (D4) on X and that p = pn → ∞
satisfies

• p = O(n(s−2)/4) if (D1) holds.

• p = exp(o(nr/(2−r))) if (D2) holds.

• p = exp(o(n1/(3+2/r))) if (D3) holds.

• p = exp(o(n1/3)) if (D4) holds.

Then it holds that

max
1≤i<j≤n

c(q)n

(
D

(q)
ij − b(q)n

) d→ G ,

where G is standard Gumbel distributed and the sequences (b
(q)
n ) and (c

(q)
n ) are given by

b(q)n := nE[|X11 −X21|q] +
√
nVar(|X11 −X21|q)dn ,

c(q)n :=
dn√

nVar(|X11 −X21|q)
.

Proof. Theorem 3.1 is a special case of Theorem 2.4 as it holds that

D
(q)
ij − nE[|X11 −X21|q]√
nVar(|X11 −X21|q)

=
1√
n

n∑
l=1

Zi,j,l,

where

Zi,j,l :=
|Xil −Xjl|q − E[|X11 −X21|q]√

Var(|X11 −X21|q)
1 ≤ i < j ≤ p ; 1 ≤ l ≤ n.

We have Cov(Zi,j,1, Zr,s,1) = ρ̂ ≤ 1
3 for |{i, j, r, s}| = 3. Additionally, the conditions (C1)–(C4) for

Theorem 2.4 follow from (D1)–(D4). □

Using Theorem 2.9 one can deduce the following result for the maximum and minimum q-norm
distances.

Corollary 3.2. Under the assumptions of Theorem 3.1 it holds, as n → ∞,(
max

1≤i<j≤p
c(q)n

(
D

(q)
ij − b(q)n

)
, min
1≤i<j≤p

c(q)n

(
D

(q)
ij − b(q)n

)
+ 2d2n

) d→ (G,−G′) ,

where G and G′ are independent, standard Gumbel distributed random variables.

In combination with the continuous mapping theorem, we obtain from Corollary 3.2

c(q)n

(
max

1≤i<j≤n
D

(q)
ij − min

1≤i<j≤n
D

(q)
ij

)
− 2d2n

d→ G+G′, n → ∞ ,

which is of similar structure as (3.1).

3.2. Testing the equality of means for high-dimensional vectors. We consider high-dimensional
observations x̃1, . . . , x̃p of the form

x̃i = xi + µi ,

where (xi)i=1,...,p are iid random vectors whose components fulfill the standard conditions and
(µi)i=1,...,p are some vectors in Rn. We assume that E[X4], the fourth moment of the components,
is finite and known. Since x1 is centered, the mean vector of x̃i is given by E[x̃i] = µi. We are
interested in testing the equality of the mean vectors µi. The corresponding testing problem is
formulated by the null and alternative hypotheses

H0 : µ1 = µ2 = . . . = µp,

HA : µi∗ ̸= µj∗ for some 1 ≤ i∗ < j∗ ≤ p .
(3.3)
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Our test statistic Tn is going to be the maximum interpoint distance of the (x̃i), that is,

Tn := max
1≤i<j≤p

D̃
(2)
ij := max

1≤i<j≤p
∥x̃i − x̃j∥22 .

Observing that, under H0, we have D̃
(2)
ij = D

(2)
ij , the asymptotic distribution of the test statistic

Tn is stated in Theorem 2.1, namely c
(2)
n (Tn − b

(2)
n ) converges to a standard Gumbel distributed

random variable, where

b(2)n := 2n+
√
2n(E[X4] + 1) d̃n , c(2)n :=

d̃n√
2n(E[X4] + 1)

, (3.4)

and d̃n as in Theorem 2.1. We remark that E[X4] in (3.4) can be replaced by an estimate for E[X4]
such as the empirical fourth moment. For brevity of presentation this will not be pursued further.

The null hypothesis in (3.3) is rejected, whenever

Tn >
q1−α

c
(2)
n

+ b(2)n , (3.5)

where q1−α = − log(log( 1
1−α)) is the (1− α)-quantile of the standard Gumbel distribution with

distribution function exp(− exp(−x)), x ∈ R. The next result shows that this test has asymptotic
level α ∈ (0, 1) and analyzes its behavior under the alternative.

Theorem 3.3. Assume the conditions of Theorem 2.1. Under the null hypothesis H0, it holds for
any α ∈ (0, 1)

lim
n→∞

P
(
Tn >

q1−α

c
(2)
n

+ b(2)n

)
= α . (3.6)

Under the alternative hypothesis HA, assume that there exist integer sequences (i∗n)n≥1, (j∗n)n≥1

satisfying 1 ≤ i∗n < j∗n ≤ p such that

lim
n→∞

∥µi∗n − µj∗n∥
2
2√

n max(log p, n)
= ∞ . (3.7)

Then it holds for any α ∈ (0, 1)

lim
n→∞

P
(
Tn >

q1−α

c
(2)
n

+ b(2)n

)
= 1 .

Theorem 3.3 states that the test (3.5) is consistent under the null hypothesis H0. Moreover,
significant deviations (in the sense of (3.7)) from H0 will always be detected by this test. We
remark that conditions such as (3.7) are quite common for maximum-type tests (see [4, 12]).

Proof of Theorem 3.3. Assertion (3.6) follows from the fact that c
(2)
n (Tn − b

(2)
n ) converges in distri-

bution to a standard Gumbel random variable.
Let us turn to HA. For simplicity we will write i∗, j∗ instead of i∗n, j

∗
n, respectively. Using the

definition of Tn we have

Tn = max
1≤i<j≤p

∥µi − µj + xi − xj∥22

≥ ∥µi∗ − µj∗ + xi∗ − xj∗∥22
≥ ∥µi∗ − µj∗∥22 − 2∥µi∗ − µj∗∥2∥xi∗ − xj∗∥2 + ∥xi∗ − xj∗∥22 .

Setting gn,α := q1−α/c
(2)
n + b

(2)
n − 2n, we thus get for α ∈ (0, 1) and ε > 0

P
(
Tn >

q1−α

c
(2)
n

+ b(2)n

)
= P

(
Tn − 2n > gn,α

)
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≥ P
(
∥µi∗ − µj∗∥22 − 2∥µi∗ − µj∗∥2∥xi∗ − xj∗∥2 + ∥xi∗ − xj∗∥22 − 2n > gn,α

)
≥ P

(
∥µi∗ − µj∗∥22 − 2∥µi∗ − µj∗∥2∥xi∗ − xj∗∥2 > (1 + ε)gn,α

)
− P

(
∥xi∗ − xj∗∥22 − 2n ≤ −ε gn,α

)
=: P1 − P2 .

Using the definitions of b
(2)
n , c

(2)
n in (3.4), we get

gn,α =
q1−α

c
(2)
n

+ b(2)n − 2n =
q1−α

√
2n(E[X4] + 1)

d̃n
+
√
2n(E[X4] + 1) d̃n .

Since by the central limit theorem

∥xi∗ − xj∗∥22 − 2n√
2n(E[X4] + 1)

d→ N (0, 1) , n → ∞ , (3.8)

and d̃n ∼ 2
√
log p, we have P2 → 0.

Next, we turn to P1 which we write as follows

P1 = P
(
∥xi∗ − xj∗∥2 <

−(1 + ε)gn,α
2∥µi∗ − µj∗∥2

+
∥µi∗ − µj∗∥2

2

)
.

Note that by (3.7) we have
−(1 + ε)gn,α
2∥µi∗ − µj∗∥2

+
∥µi∗ − µj∗∥2

4
> 0

for sufficiently large n. Therefore, we obtain

P1 ≥ P
(
∥xi∗ − xj∗∥2 < 1

4∥µi∗ − µj∗∥2
)

= P
(
∥xi∗ − xj∗∥22 − 2n√

2n(E[X4] + 1)
<

1
16∥µi∗ − µj∗∥22 − 2n√

2n(E[X4] + 1)

)
.

In combination with (3.8) and the fact that

lim
n→∞

1
16∥µi∗ − µj∗∥22 − 2n√

2n(E[X4] + 1)
= ∞

we deduce P1 → 1, as n → ∞. □

3.3. Largest off-diagonal entry of a sample covariance matrix. In the literature, the largest
off-diagonal entry of a sample covariance matrix is a popular and powerful statistic for structural
tests on the underlying dependence structure of a population; we refer to the review paper [5]
for an extensive summary and detailed references. Let y1, . . . ,yn with yk := (Yk1, . . . , Ykp) be
a random sample from the multivariate normal population Np(0,Σp), where for ρn ∈ [0, 1] the
positive semidefinite population covariance matrix is

Σp = (1− ρn)Ip + ρn1p1
⊤
p

with Ip the p × p identity matrix and 1p denotes the p-dimensional vector with all ones. An
important statistic for testing independence in high dimensions is

√
n times the largest off-diagonal

entry of the sample covariance matrix n−1
∑n

k=1 y
⊤
k yk, which is given by

Wn := max
1≤i<j≤p

n−1/2
n∑

k=1

YkiYkj .

The study of Wn was heavily influenced by Jiang. In [19], assuming ρn = 0 he showed that that Wn

is asymptotically Gumbel distributed. Note that in this case our Theorem 2.4 is applicable with
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the function f(x, y) = xy. Other cases for ρn are more involved and allow for interesting phase
transitions. The following result is the main result of Fan and Jiang [10] whose proof is quite long
and involved. Using our techniques we provide a significantly shorter alternative proof.

Theorem 3.4. For a nonnegative sequence (ρn)n≥1 satisfying supn≥1 ρn < 1/2 set

µn :=
√
nρn + (1− ρn)dn + 2

√
ρn(1− ρn)

√
2 log p .

If p = pn → ∞ and p = exp(o(n1/3)), the following statements hold as n → ∞.

(i) If ρn
√
log p → 0, then

dn(Wn − µn)
d→ G ,

where G is standard Gumbel distributed.
(ii) If ρn

√
log p → λ ∈ (0,∞), then

Wn − µn√
2ρn

d→ ξ + 1√
8λ

G,

where ξ ∼ N (0, 1), G is as in (i) and G is independent of ξ.
(iii) If ρn

√
log p → ∞, then

Wn − µn√
2ρn

d→ N (0, 1).

Proof. Following [10] we first derive a decomposition of Wn − µn. To this end, let ξk, ξki; k, i =
1, 2, . . . be independent standard normal random variables. Defining ρ′n = 1− ρn, we have(√

ρnξk +
√
ρ′nξki, 1 ≤ k ≤ n, 1 ≤ i ≤ p

) d
=
(
Yki, 1 ≤ k ≤ n, 1 ≤ i ≤ p

)
,

and therefore we will assume that

Yki =
√
ρnξk +

√
ρ′nξki, 1 ≤ k ≤ n, 1 ≤ i ≤ p.

Denote

An =
1√
n

n∑
k=1

(ξ2k − 1) , Bnij =
1√
n

n∑
k=1

ξkiξkj , Cnij =
1√
n

n∑
k=1

ξk(ξki + ξkj)

for all 1 ≤ i ≤ j ≤ p. Setting dn,2 =
√
2 log p− (log log p+ log 4π)/(2(2 log p)1/2) we get

1√
n

n∑
k=1

YkiYkj − µn = ρnAn + ρ′n(Bnij − dn) +
√
ρnρ′n(Cnij − 2dn,2) +

√
ρnρ′nDn , (3.9)

where

Dn := 2dn,2 − 2
√

2 log p = O
(
log log p√

log p

)
, n → ∞ .

Next, we make the following claims about the terms in (3.9).

(1) An
d→
√
2ξ, as n → ∞, where ξ ∼ N(0, 1).

(2) dn(max1≤i<j≤pBnij − dn)
d→ G, as n → ∞, where G is standard Gumbel distributed.

(3) If ρn
√
log p → 0, then dn

√
ρnρ′n max1≤i<j≤p(Cnij − dn,2)

P→ 0, as n → ∞. If

limn→∞ ρn
√
log p > 0, then

√
ρ′n/ρn max1≤i<j≤p(Cnij − dn,2)

P→ 0, as n → ∞.

Now we shall prove (1)-(3). (1) holds by the central limit theorem. Since (ξki) are iid centered
random variables with unit variance, (2) follows from Theorem 2.4 choosing the function f(x, y) =
xy in (2.5); see also [15, 27] for additional references where this result was derived.
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Regarding (3), we note that max1≤i<j≤pCnij = S(1)+S(2), where S(1) (respectively S(2)) denotes

the first (respectively second) largest order statistic of n−1/2
∑n

k=1 ξkξki, 1 ≤ i ≤ p. From Corollary
3.3 in [15] and its proof we know that, as n → ∞,

dn,2(S(1) − dn,2, S(2) − dn,2)
d→ (− logE1,− log(E1 + E2)) ,

where E1, E2 are independent, unit exponential random variables. It follows that, as n → ∞,

dn,2

(
max

1≤i<j≤p
Cnij − 2dn,2

)
d→ − logE1 − log(E1 + E2) . (3.10)

Using dn,1 ∼
√
4 log p and dn,2 ∼

√
2 log p, we deduce (3) from (3.10).

In view of (3.9), we have

Wn − µn = ρnAn + max
1≤i<j≤p

[
ρ′n(Bnij − dn) +

√
ρnρ′n(Cnij − 2dn,2)

]
+O

(√
ρnρ′n log log p√

log p

)
.

We now consider the three cases from the theorem.
Case (i): ρn

√
log p → 0. By (1) and (3), an application of the Slutsky lemma yields that the

sequence dn(Wn − µ) has the same distributional limit as ρ′ndn(max1≤i<j≤pBnij − dn). By (2) and
since ρ′n → 1, it holds that

ρ′ndn( max
1≤i<j≤p

Bnij − dn)
d→ G , n → ∞ .

Case (ii): ρn
√
log p → λ ∈ (0,∞). By (3), the sequence (Wn − µ)/(

√
2ρn) has the same distri-

butional limit as
An√
2
+

ρ′n√
2ρn

(
max

1≤i<j≤p
Bnij − dn

)
,

which is a sum of two independent terms. The first one converges to a standard normal random
variable ξ by (1). Noting that

ρ′n√
2ρn

∼
√
log p√
2λ

∼ 1√
8λ

dn , n → ∞ ,

the second term converges to (
√
8λ)−1G, where G is standard Gumbel distributed.

Case (iii): ρn
√
log p → ∞. Noting that dn/ρn → 0, an application of the Slutsky lemma combined

with (2) and (3) shows that the sequence (Wn − µ)/(
√
2ρn) has the same distributional limit as

An/
√
2, which converges to a standard normal random variable by (1).

The proof of the theorem is complete. □

4. Extension to point process convergence

In Theorem 2.4 we considered the asymptotic behavior of the maximum of dependent and iden-
tically distributed random variables (Tij). In the case of an iid sequence of real-valued random
variables (Yi) the convergence

lim
n→∞

P
(

1

an

(
max
1≤i≤n

Yi − bn

)
≤ x

)
= H(x), x ∈ R,

to some max-stable distribution function H and the weak point process convergence
n∑

i=1

ε(Yi−bn)/an
d→ N,

where N is a Poisson random measure with mean measure µH(a, b) = logH(b) − logH(a) for
a < b ∈ supp(H), are equivalent (see [35, Proposition 3.21]). Here εx(A) = 1{x∈A} for a set A ⊂ R.
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A sequence of point processes (Nn)n on the state space E ⊂ R equipped with the σ-algebra E of
the Borel sets converges weakly in the space of all point measures on E to a point process N on E,
if for any bounded Borel sets A1, . . . , Am ∈ E with P(N(∂Ai) = 0) = 1, i = 1, . . . ,m and m ≥ 1,
where ∂A denotes the boundary of a set A, it holds that

P(Nn(A1), . . . , Nn(Am)) → P(N(A1), . . . , N(Am)),

as n → ∞; see [9, Definition 5.2.1].
Thus, in case of iid points (Yi), the convergence of the maximum is equivalent to the convergence

of the point processes. In general, the latter is a stronger statement. In our case the random
variables (Tij) in (2.6) have a special dependency structure so that we cannot directly conclude the
convergence of the point processes

Nn :=
∑

1≤i<j≤p

εdn(Tij−dn)

from the convergence in distribution of max1≤i<j≤p dn(Tij − dn) to standard Gumbel, which was
established in Theorem 2.4. Nevertheless, with some additional effort we obtain convergence of
(Nn).

Theorem 4.1. In the setting of Theorem 2.4 it holds that

Nn
d→ N , n → ∞ ,

where N is a Poisson random measure with mean measure µ(x,∞) = e−x for x ∈ R.

Proof. Since µ has a density, the limit process N is simple and we can apply Kallenberg’s Theorem
(see for instance [9, p.233, Theorem 5.2.2] or [22, p.35, Theorem 4.7]). Therefore, it suffices to
prove that for any finite union of bounded intervals

R =

q⋃
k=1

Ak ⊂ R, with Ak = (rk, sk],

it holds that

lim
n→∞

E[Nn(R)] = µ(R) and lim
n→∞

P(Nn(R) = 0) = e−µ(R) . (4.11)

Without loss of generality we assume that the Ak’s are disjoint. We start with the first limit in
(4.11) and get

E[Nn(R)] =

q∑
k=1

E[Nn(Ak)] =

q∑
k=1

p(p− 1)

2
P(T12 ∈ Ak).

According to assertion (A1) in the proof of Theorem 2.4 we have the convergence
q∑

k=1

p(p− 1)

2
P(T12 ∈ Ak) →

q∑
k=1

µ(Ak) = µ(R), n → ∞.

Regarding the second limit in (4.11) we see that

|P(Nn(R) = 0)− e−µ(R) | ≤ |P(Nn(R) = 0)− e−E[Nn(R)] |+ | e−E[Nn(R)]− e−µ(R) | ,
where the latter term tends to zero as E[Nn(R)] → µ(R). To show that the first term converges

to zero as well we apply Lemma A.1. To this end, set I = I(n) = {(i, j) : 1 ≤ i < j ≤ p}. For
α = (i, j) ∈ I, we define W = Nn(R) and

Bα = {(k, l) : (k, l) ∈ I and |{i, j, k, l}| ≤ 3} .
Then we see that

|P(Nn(R) = 0)− e−E[Nn(R)] | ≤ (1 ∧ E[Nn(R)]−1)(b1 + b2 + b3),
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Here E[Nn(R)] → µ(R) and the terms b1, b2 and b3 are as in the proof of Theorem 2.4, where it is
shown that those three terms tend to zero. □

Since Theorem 2.1 follows from Theorem 2.4, we can also formulate a point process convergence

result for the interpoint distances D
(2)
ij defined in (2.1).

Corollary 4.2. Under the assumptions of Theorem 2.1 it holds that∑
1≤i<j≤p

ε
c
(2)
n (D

(2)
ij −b

(2)
n )

d→ N, n → ∞,

where b
(2)
n and c

(2)
n are defined in (2.4), and N is a Poisson random measure with mean measure

µ(x,∞) = e−x for x ∈ R.

An advantage of having even point process convergence is that the convergence of the joint
distribution of a fixed number of upper order statistics is a direct consequence.

Corollary 4.3. Assume the conditions of Theorem 2.4. For k ∈ N let

Gn,(1) ≥ Gn,(2) ≥ · · ·Gn,(k)

be the k largest upper order statistics of the random variables (dn(Tij − dn)), 1 ≤ i < j ≤ p. Then
for real numbers xk < . . . < x1 the distribution function

P(Gn,(1) ≤ x1, . . . , Gn,(k) ≤ xk)

converges as n → ∞ to

P
(
N(x1,∞) = 0, . . . , N(xk,∞) ≤ k − 1

)
= P(− log Γ1 ≤ x1, . . . ,− log Γk ≤ xk), (4.12)

where N is a Poisson random measure with mean measure µ(x,∞) = e−x and Γi = E1 + . . .+ Ei

for iid standard exponentially distributed random variables (Ei)i≥1.

Note that in (4.12) we have implicitly used the representation N
d
=
∑∞

i=1 ε− log Γi
; we refer to

[35] for details.

5. Proof of Theorem 2.4

In the following C, c1, c2, c3 and c4 are positive constants that do not depend on n and that may
vary from line to line.

5.1. Preliminaries. We claim that

max
1≤i<j≤p

dn(Tij − dn)
d→ G, n → ∞ , (5.1)

follows from the assertions

(A1) p̃P
(
dn
(

1√
n

∑n
l=1 Z1,2,l − dn

)
> x

)
→ e−x and

(A2) P
(
dn
(

1√
n

∑n
l=1 Z1,2,l − dn

)
> x, dn

(
1√
n

∑n
l=1 Z1,3,l − dn

)
> x

)
= o(p−3),

where x ∈ R and n → ∞.
Our goal is to prove this claim by means of Lemma A.2. To this end, set I = I(n) = {(i, j) : 1 ≤
i < j ≤ p}. For α = (i, j) ∈ I, we define ηα = dn

(
1√
n

∑n
l=1 Zi,j,l − dn

)
and

Bα = {(k, l) ∈ I : |{i, j, k, l}| ≤ 3} .
For x ∈ R, we have by (A1) that

λ := λ(n) :=
∑
α∈I

P(ηα > x) → e−x , n → ∞ .
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Recall the definition of b1, b2, b3 from Lemma A.2. By construction, ηα is independent of {ηβ : β /∈
Bα} for all α ∈ I. Thus, b3 = 0. Therefore, it remains to prove that b1, b2 → 0 as n → ∞. We
start with b1. We easily see that |Bα| ≤ 2p which implies

b1 ≤
p2

2
2p
(
P(η12 > x)

)2
=

4

p

[ p2
2
P(η12 > x)︸ ︷︷ ︸
→e−x

]2
= O(1/p) , n → ∞ .

(5.2)

Regarding b2, we conclude from (A2) that

b2 ≤ p3 P(η12 > x, η13 > x) → 0 , n → ∞ ,

which establishes the claim in view of Lemma A.2.

5.2. Proof under condition (C1). First, we will show that we may work with the truncated and
recentered random variables

Ẑi,j,l := Zi,j,l1{|Zi,j,l|≤τn} − E[Z1{|Z|≤τn}],

where τn := n1/s. By the Slutsky lemma, (5.1) is an immediate consequence of

lim
n→∞

P
(

max
1≤i<j≤p

1√
n

n∑
l=1

Ẑi,j,l ≤ x/dn + dn

)
= exp(− e−x) , x ∈ R (5.3)

and

dn√
n

max
1≤i<j≤p

∣∣∣ n∑
l=1

(
Zi,j,l − Ẑi,j,l

)∣∣∣ P→ 0 , n → ∞ . (5.4)

Regarding (5.4), we get by the Fuk-Nagaev inequality [34, p.78] for ε > 0 that

P
( dn√

n
max

1≤i<j≤p

∣∣∣ n∑
l=1

(
Zi,j,l − Ẑi,j,l

)∣∣∣ > ε
)
≤ p̃P

(∣∣∣ n∑
l=1

(
Z1,2,l − Ẑ1,2,l

)∣∣∣ > √
n

dn
ε
)

≲ p̃ nE[|Z − Ẑ|s]
(√nε

dn

)−s
+ p̃ exp

(
− c2

ε2

d2nVar(Z − Ẑ)

)
, (5.5)

where Ẑ = Z1{|Z|≤τn} − E[Z1{|Z|≤τn}]. Since E[|Z|s(log |Z|)s/2] < ∞ we get

E[|Z − Ẑ|s] ≲ E[|Z|s1{|Z|>τn}]

≤
E[|Z|s(log |Z|)s/21{|Z|>τn}]

(log(τn))s/2
= o((log n)−s/2), n → ∞.

Therefore, the first term in (5.5) tends to zero as n → ∞ for p = O(n(s−2)/4). Additionally, we
obtain

Var(Z − Ẑ) = Var(Z1{|Z|>τn}) ≤ E[Z21{|Z|>τn}]

≤ E[|Z|s(log |Z|)s/2]
τ s−2
n (log(τn))s/2

≲ n−(s−2)/s(log n)−s/2.

Hence, as n → ∞, the second term in (5.5) tends to zero for p = O(n(s−2)/4). This establishes
(5.4).

Therefore, to complete the proof of Theorem 2.4 under condition (C1) it suffices to prove (5.3).

To this end, we will verify conditions (A1), (A2) with Z replaced by Ẑ. Note that |Ẑ| is bounded
from above by τn +

∣∣E[Z1{|Z|≤τn}]
∣∣ = τn + o(1). For simplicity1 we will assume that |Ẑ| ≤ τn.

1All our arguments would remain valid if |Ẑ| ≤ 2τn.
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Let x ∈ R and set xn := x/dn + dn and εn := (log p)−1. By Theorem 1.1 of [40], we get for a

normal random variable N ∼ N (0,Var(Ẑ)) that

P
( 1√

n

n∑
l=1

Ẑ1,2,l > xn

)
≥ P(N > xn + εn)− c1 exp

(
− c2

√
nεn
τn

)
, (5.6)

P
( 1√

n

n∑
l=1

Ẑ1,2,l > xn

)
≤ P(N > xn − εn) + c3 exp

(
− c4

√
nεn
τn

)
. (5.7)

For the exponential term we get

p2 exp
(
− c2

√
nεn
τn

)
= exp

(
2 log p− c2 n

s−2
2s (log p)−1

)
, (5.8)

which tends to zero for p = O(n
s−2
4 ). Since Var(Ẑ) ≤ Var(Z) = 1, we have

P(N > xn − εn) ≤ P
(

N√
Var(N)

> xn − εn

)
= Φ(xn − εn).

By Mill’s ratio and the fact that (xn − εn)
2 = x2n + o(1), one obtains

p2

2
Φ(xn − εn) ∼

p2

2

1√
2π(xn − εn)

exp
(
− (xn − εn)

2

2

)
∼ p2

2

1√
2πxn

exp
(
− x2n

2

)
→ e−x , n → ∞. (5.9)

From (5.8) and (5.9) we deduce that p2/2 times the right-hand side in (5.7) converges to e−x. A
similar argument yields that p2/2 times the right-hand side in (5.6) converges to e−x. A combination
of the last two observations proves that

lim
n→∞

p2

2
P
( 1√

n

n∑
l=1

Ẑ1,2,l > xn

)
= e−x , x ∈ R .

Next, we turn to the proof of (A2) with Z replaced by Ẑ, that is

lim
n→∞

p3 P
(

min
j∈{2,3}

1√
n

n∑
l=1

Ẑ1,j,l > x/dn + dn

)
= 0, x ∈ R . (5.10)

We set λn := (log p)−1/2 and ρn := Cov(Ẑ1,2,1, Ẑ1,3,1). For a normal distributed vector(
N1

N2

)
∼ N

((
0
0

)
,

(
Var(Ẑ) ρn

ρn Var(Ẑ)

))
(5.11)

Theorem 1.1 of [40] yields

P
(

min
j∈{2,3}

1√
n

n∑
l=1

Ẑ1,j,l > xn

)
≤ P

(
min

j∈{1,2}
Nj > xn − λn

)
+ c1 exp

(
− c2

√
nλn

τn

)
.

Since p = O(n
s−2
4 ), the exponential term

p3 exp
(
− c2

√
nλn

τn

)
= exp

(
3 log p− c2 n

s−2
2s (log p)−1/2

)
tends to zero as n → ∞. Furthermore, by virtue of Lemma 5.1, we have

p3 P
(

min
j∈{1,2}

Nj > x/dn + dn − λn

)
= o(1), n → ∞ ,

completing the proof of (5.10).
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5.3. Proof under condition (C2). In this setting, we assumed p = exp(o(nr/(2−r))) for some
r ∈ (0, 2/3]. First, we consider the case r ∈ (0, 1/2]. Recalling the notation xn := x/dn + dn, an
application of part (ii) of Lemma A.3 yields

p2

2
P
( 1√

n

n∑
l=1

Z1,2,l > xn

)
∼ p2

2
Φ(xn) → e−x , x ∈ R , n → ∞ .

It remains to show (A2). To this end, we bound

P
(

min
j∈{2,3}

1√
n

n∑
l=1

Z1,j,l > xn

)
≤ P

( 1√
n

n∑
l=1

(Z1,2,l + Z1,2,l) > 2xn

)
= P

( 1√
2(1 + ρ)n

n∑
l=1

(Z1,2,l + Z1,3,l) >

√
2xn√
1 + ρ

)
≤ exp

(
− 1− ε

1 + ρ
x2n

)
, n → ∞ ,

for ε > 0, where part (i) of Lemma A.3 was applied in the last line. Note that xn = o(nr/(2(2−r)))
under (C2). Choosing ε = 1

2

(
1
3 − ρ

)
> 0 and using the fact that x2n ∼ 4 log p, it follows

p3 exp
(
− 1− ε

1 + ρ
x2n

)
= exp

(
3 log p− 1− ε

1 + ρ
x2n

)
→ 0 , x ∈ R , n → ∞ ,

which finishes the proof of (A2) for r ∈ (0, 2/3].

Therefore it remains to show (A1) in the case r ∈ (1/2, 2/3], our strategy is to ultimately apply
part (iii) of Lemma A.3. However, since the moment generating function of |Z| is not necessarily
finite in some neighborhood of zero, we will work with the truncated random variables

Ẑi,j,l := Zi,j,l1{|Zi,j,l|≤τn} and τn := η−1/rn1/(2−r) ,

with the constant η > 0 from (C2). A union bound and the Markov inequality show that

P
( dn√

n
max

1≤i<j≤p

∣∣∣ n∑
l=1

(Zi,j,l − Ẑi,j,l)
∣∣∣ > ε

)
≤ p2 P

(
max
1≤l≤n

|Z1,2,l| > τn

)
≤ p2nE[exp(η|Z|r)] exp(−nr/(2−r)) = o(1), n → ∞.

Therefore, (A1) is implied by

p2

2
P
( 1√

n

n∑
l=1

Ẑ1,2,l > xn

)
→ e−x , n → ∞ , (5.12)

where for x ∈ R we write xn = x/dn + dn and recall that, under (C2) with r > 1/2, dn = d
(E[Z3])
n

(see (2.2) for the latter’s definition). Now we turn to the proof of (5.12) and get

P
( 1√

n

n∑
l=1

Ẑ1,2,l > xn

)
= P

( xn√
n

n∑
l=1

Ẑ1,2,l − x2n > 0
)
= P

( n∑
l=1

ξl > 0
)
,

where

ξl :=
xn√
n
Ẑ1,2,l −

x2n
n

≤ xn√
n
τ1−r
n |Z1,2,l|r = o(1)|Z1,2,l|r , n → ∞ .

Under (C2) we have sup1≤l≤n,n≥1 E[eξl ] < ∞. For 1 ≤ l ≤ n we have

E[ξl] =
xn√
n
E[Z1{|Z|≤τn}]−

x2n
n

= −x2n
n

+O
( xn√

n
exp(−1/2nr/2−r))

)
and



22 J. HEINY AND C. KLEEMANN

Var(ξl) =
x2n
n

Var(Z1{|Z|≤τn}) =
x2n
n
(1 +O(exp(−1/2nr/2−r)))).

We set µn := nE[ξ1], σ2
n := nVar(ξ1) and obtain, as n → ∞

−µn

σn
=

xn +O(
√
n exp(−1/2nr/(2−r)))√

1 +O(exp(−1/2nr/(2−r)))

= xn +
( 1√

1 +O(exp(−1/2nr/(2−r)))
− 1
)
xn +O(

√
n exp(−1/2nr/(2−r)))

= xn +O
(
xn exp(−1/4nr/(2−r))

)
. (5.13)

Additionally, we get, as n → ∞
E
[
(ξl − E[ξl])3

]
Var3/2(ξl)

=
E
[
(Ẑ1,2,l − E[Z1{|Z|≤τn}])

3
]

(1 +O(exp(−1/2nr/2−r))))3/2

=
E[Z3] +O(exp(−1/2nr/2−r)))

(1 +O(exp(−1/2nr/2−r))))3/2
= E[Z3] +O

(
exp(−1/4nr/(2−r))

)
,

where we used similar arguments for the last step as for (5.13). Notice that µn/σn ∼ xn =

o(nr/(2(2−r))) which implies µn/σn = o(n1/4) for r ∈ (1/2, 2/3]. Therefore, from part (iii) of Lemma
A.3 and the computations above, we deduce

P
( n∑

l=1

ξl > 0
)
= P

(∑n
l=1(ξl − E[ξl])

σn
> −µn

σn

)
∼ Φ

(
− µn

σn

)
exp

((−µn/σn)
3

6n1/2
E
[(ξ1 − E[ξ1]√

Var(ξl)

)3])
∼ Φ(xn) exp

(x3nE[Z3]

6n1/2

)
, n → ∞.

Using the definition of dn, we get x3n/n
1/2 =

(
2 log

(
p̃
))3/2

/n1/2 + o(1). Note that this term does

not necessarily tend to zero for p = exp(o(nr/(2−r)) with r > 1/2. Hence as n → ∞,

p̃Φ(xn) exp
(x3nE[Z3]

6n1/2

)
∼ p̃Φ(xn) exp

((2 log (p̃))3/2E[Z3]

6n1/2

)
→ e−x ,

where Mill’s ratio was used in the last step. That completes the proof of (A1) under (C2) and
r ∈ (1/2, 2/3].

5.4. Proof under condition (C3). For the proof of Theorem 2.4 under condition (C3), we will
proceed similarly as under (C1). We will show that we may truncate the random variables Zi,j,l

and than we will verify conditions (A1), (A2) for the truncated variables.
We set

Ẑi,j,l := Zi,j,l1{|Zi,j,l|≤τn} − E[Z1{|Z|≤τn}],

where τn :=
(
2
η log(np)

)1/r
. As in the proof under (C1), it suffices to show that

lim
n→∞

P
(

max
1≤i<j≤p

1√
n

n∑
l=1

Ẑi,j,l ≤ x/dn + dn

)
= exp(− e−x) , x ∈ R , (5.14)

and

dn√
n

max
1≤i<j≤p

∣∣∣ n∑
l=1

(
Zi,j,l − Ẑi,j,l

)∣∣∣ P→ 0. (5.15)
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First, we prove (5.15). For ε > 0 we have

P
( dn√

n
max

1≤i<j≤p

∣∣∣ n∑
l=1

(
Zi,j,l − Ẑi,j,l

)∣∣∣ > ε
)
≤ p̃P

( dn√
n

∣∣∣ n∑
l=1

(
Z1,2,l − Ẑ1,2,l

)∣∣∣ > ε
)

= p̃P
( dn√

n

∣∣∣ n∑
l=1

(
Z1,2,l1{|Z1,2,l|>τn} − E[Z1{|Z|>τn}]

)∣∣∣ > ε
)

≤ p̃P
( dn√

n

∣∣∣ n∑
l=1

Z1,2,l1{|Z1,2,l|>τn}

∣∣∣ > ε/2
)
+ p̃P

( dn√
n

∣∣∣ n∑
l=1

E[Z1{|Z|>τn}]
∣∣∣ > ε/2

)
. (5.16)

Using condition (C3), we obtain

1√
n

n∑
l=1

E[|Z|1{|Z|>τn}] ≤
√
n

exp(η2τ
r
n)

E[|Z| exp(η
2
|Z|r)] ≲ 1√

np
.

By virtue of dn/p → 0, the second term of (5.16) tends to zero as n → ∞. Using the union bound
and Markov’s inequality, the first term of (5.16) can be bounded by

p2 P
(
max
1≤l≤n

|Z1,2,l| > τn

)
≤ p2nP

(
exp(η|Z|r) > exp(ητ rn)

)
≲

p2n

exp(ητ rn)
= o(1),

as n → ∞. This establishes (5.15). To show (5.14), we will verify conditions (A1), (A2) with Z

replaced by Ẑ. We write xn := x/dn + dn. An application of Lemma A.3 (iii) yields

p2

2
P
( 1√

n

n∑
l=1

Ẑ1,2,l > xn

)
∼ p2

2
Φ(xn) → e−x , n → ∞ ,

since xn ∼
√
2 log p = o(n1/6) as p = exp(o(n1/(3+2/r))), which proves condition (A1).

It remains to show (A2), that is

p3 P
(

min
j∈{2,3}

1√
n

n∑
l=1

Ẑ1,j,l > x/dn + dn

)
= o(1), n → ∞. (5.17)

Setting λn := (log p)−1/2 and ρn := Cov(Ẑ1,2,1, Ẑ1,3,1), one obtains as in Section 5.2 that

P
(

min
j∈{2,3}

1√
n

n∑
l=1

Ẑ1,j,l > xn

)
≤ P

(
min

j∈{1,2}
Nj > xn − λn

)
+ c1 exp

(
− c2

√
nλn

τn

)
.

where the normal random variables N1, N2 satisfy (5.11). For p = exp(o(n(3+ 2
r
)−1

)), the exponential
term

p3 exp
(
− c2

√
nλn

τn

)
= exp

(
3 log p− c2

n1/2

(log(np))1/r
√
log p

)
≤ exp

(
3 log p− c2n

(3+ 2
r )

−1
)
,

tends to zero, as n → ∞, and so does p3 P
(
minj∈{1,2}Nj > xn − λn

)
by Lemma 5.1, finishing the

proof of (5.17).

5.5. Proof under condition (C4). In contrast to the unbounded case, a trunction of the Zi,j,l’s
is not needed to show conditions (A1) and (A2). Writing xn := x/dn + dn, an application of [33,
p. 251, 8. in Section VIII.4] yields

p2

2
P
( 1√

n

n∑
l=1

Z1,2,l > xn

)
∼ p2

2
Φ(xn) → e−x , x ∈ R , n → ∞ ,
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for p = exp(o(n1/3)) under (C2), and hence, under (C4). Thereby, condition (A1) holds.
Because the Zi,j,l are bounded by K, an application of Theorem 1.1 of [40] gives

P
(

min
j∈{2,3}

1√
n

n∑
l=1

Z1,j,l > xn

)
≤ P( min

j∈{1,2}
Nj > xn − λn) + c1 exp

(
− c2

√
nλn

K

)
, (5.18)

where λn = (log p)−1/2 and N1, N2 are standard normal variables with Cov(N1, N2) = ρ. For

p = exp(o(n
1
3 )), the exponential term p3 exp

(
− c2

√
nλn/K

)
converges to zero. Finally, we see

that p3 P
(
minj∈{1,2}Nj > xn−λn

)
→ 0 by Lemma 5.1, finishing the proof of (A2) under condition

(C4).

5.6. An auxiliary result. The following lemma is needed in the proof of Theorem 2.4.

Lemma 5.1. Let Z,Z1, Z2 be identically distributed random variables with E[Z] = 0, Var(Z) = 1

and Cov(Z1, Z2) = ρ ≤ 1
3 , which satisfy one of the conditions (C1), (C3) and (C4). Let Ẑj :=

Zj1{|Zj |≤τn} − E[Z1{|Z|≤τn}] for j ∈ {1, 2}, where

• τn = n1/s, if (C1) holds;

• τn =
(
2
η log(pn)

)1/r
, if (C3) holds;

• τn = K, if (C4) holds;

and set

ρn := Cov(Ẑ1, Ẑ2) = ρ− E[Z1Z21{maxj∈{1,2} |Zj |>τn}]−
(
E[Z11{|Z1|≤τn}]

)2
.

(Under (C4) we have Ẑj = Zj and ρn = ρ.) For a normal distributed vector(
N1

N2

)
∼ N

((
0
0

)
,

(
Var(Ẑ1) ρn

ρn Var(Ẑ1)

))
,

and

• p = O( s−2
4 ), if (C1) is valid,

• p = exp(o(n1/(3+2/r))), if (C3) is valid,

• p = exp(o(n1/3)), if (C4) is valid,

it holds that

lim
n→∞

p3 P
(

min
j∈{1,2}

Nj > x/dn + dn − λn

)
= 0 , x ∈ R , (5.19)

where λn := 1/
√
log p and dn is defined as in Theorem 2.4.

Proof. According to Lemma A.4 it suffices to show (5.19) for ρn ≥ 0. Writing xn := dn + x
dn

for
x ∈ R, an application of Lemma A.5 gives

P
(

min
j∈{1,2}

Nj > xn − λn

)
= P

(
min

j∈{1,2}

Nj√
Var(N1)

>
xn − λn√
VarN1

)
∼ (1 + ρn)

3/2Var(N1)

2π(1− ρn)1/2(xn − λn)2
exp

(
−(xn − λn)

2

(1 + ρn)Var(N1)

)
≲

1

(xn − λn)2
exp

(
−(xn − λn)

2

1 + ρn

)
, n → ∞.

By the definition of dn, we have

(xn − λn)
2 = x2n +O(1) = d2n +O(1) = 4 log p− log(2 log p) +O(1), n → ∞.
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Hence, we conclude that

P
(

min
j∈{1,2}

Nj > xn − λn

)
≲

1

log p
exp

(
− 4 log p− log(2 log p)

1 + ρn

)
≲ (log p)

− ρn
1+ρn p−4/(1+ρn) , n → ∞ , (5.20)

which implies (5.19) provided that

p−βn(log p)
− ρn

1+ρn → 0 , n → ∞ , (5.21)

where βn = (1− 3ρn)/(1 + ρn).
Obviously, the claim is true for βn ≥ 0. If βn < 0, we must have ρ = 1/3 because from ρ < 1/3

it follows that ρn < 1/3 for n large enough, since ρn converges to ρ. If βn < 0, then ρn > 1/3, and
thus, E[Z1Z21{maxj∈{1,2} |Zj |>τn}] < 0. Therefore, we have

|βn| =
|1− 3ρn|
1 + ρn

=
∣∣∣ 3

1 + ρn

[
E[Z1Z21{maxj∈{1,2} |Zj |>τn}] +

(
E[Z1{|Z|≤τn}]

)2]∣∣∣
≤
∣∣∣ 3

1 + ρn
E[Z1Z21{maxj∈{1,2} |Zj |>τn}]

∣∣∣. (5.22)

Under (C1), (5.22) is up to a positive constant bounded above by

E[Z21{|Z|>τn}] ≤
E[|Z|s]
τ s−2
n

≲ τ−(s−2)
n .

For p = O(n(s−2)/4) and τn = n1/s, we therefore have

p−βn ≤ pC/n(s−2)/s
= exp

( C

n(s−2)/s
log p

)
,

which tends to 1 as n → ∞ since s > 2.
Under (C3), (5.22) is up to a positive constant bounded above by

E[Z21{|Z|>τn}] ≤
E[|Z|2(exp(η|Z|r))1/4]

(exp(ητ rn))
1/4

≲ (exp(ητ rn))
−1/4.

For p = exp(o(n(3+ 2
r
)−1

)) and τn =
(
2
η log(pn)

)1/r
, we deduce that p−βn ≤ pC/(pn)1/2 → 1.

Finally, under (C4), one has βn = 0. This establishes (5.21) in all cases and completes the proof
of the lemma. □

6. Proofs of the remaining results

6.1. Proof of Theorem 2.1. Set Zi,j,l =
(Xil−Xjl)

2−2√
2(E[X4]+1)

for 1 ≤ l ≤ n and 1 ≤ i < j ≤ p. Then we

have

D
(2)
ij − 2n√

2n(E[X4] + 1)
=

1√
n

n∑
l=1

Zi,j,l.

By simple calculations one can check that

Cov(Zi,j,1, Zr,s,1) = E[Zi,j,1Zr,s,1] =
E[X4]− 1

2(E[X4] + 1)
for |{i, j, r, s}| = 3 .

Moreover, we observe that E[X4]−1
2(E[X4]+1)

≤ 1/3 if E[X4] ≤ 5. If E[X6] < ∞, one obtains for the third

moment

E[Z3
1,2,1] =

E[X6] + 9E[X4]− 10(E[X3])2 − 10√
2(E[X4] + 1)3/2

= κ̃ .
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Additionally, the conditions (C1)–(C4) for Theorem 2.4 follow from (B1)–(B4). Recalling the

notations b
(2)
n and c

(2)
n in Theorem 2.1, we see that

max
1≤i<j≤p

c(2)n (D
(2)
ij − b(2)n ) = max

1≤i<j≤p
dn

( 1√
n

n∑
l=1

Zi,j,l − dn

)
.

Finally, an application of Theorem 2.4 establishes the claim of Theorem 2.1.

6.2. Proof of Theorem 2.9. For x, y ∈ R we set Qx,y := Q
(n)
x,y := (dn + x/dn,∞) ∪ (−∞,−dn +

y/dn] and recall the notation Tij = n−1/2
∑n

l=1 Zi,j,l. Additonally, we write M(1) := max1≤i<j≤p Tij

and M(p̃) := min1≤i<j≤p Tij . We have

P(dn(M(1) − dn) ≤ x, dn(M(p̃) + dn ≤ y) = P(dn(M(1) − dn) ≤ x)−Gn(x, y) ,

where

Gn(x, y) := P(dn(M(1) − dn) ≤ x, dn(M(p̃) + dn > y) = P
( ∑

1≤i<j≤p

1Qx,y(Tij) = 0
)
.

It suffices to show that

lim
n→∞

Gn(x, y) = exp(−(e−x+ey)) = P(G ≤ x)P(G ≤ −y), (6.3)

which would imply

lim
n→∞

P(dn(M(1) − dn) ≤ x, dn(M(p̃) + dn ≤ y) = P(G ≤ x)− P(G ≤ x)P(G ≤ −y)

= P(G ≤ x)P(−G ≤ y) .

As in the proof of Theorem 2.4, we may replace the Zi,j,l by their truncated versions Ẑi,j,l without
changing the limit of Gn(x, y). For simplicity we will from now on assume that Gn(x, y) and Tij

are defined as above but with Ẑi,j,l instead Zi,j,l. As in Section 5.1 of the proof of Theorem 2.4,
equation (6.3) follows from

(A1’) p̃P(T12 ∈ Qx,y) → e−x+ey and
(A2’) P(T12 ∈ Qx,y, T13 ∈ Qx,y) = o(p−3),

where x, y ∈ R and n → ∞.
We first consider assertion (A1’). For sufficiently large n we have

P(T12 ∈ Qx,y) = P(T12 > dn + x/dn or − T12 ≥ dn − y/dn)

= P(T12 > dn + x/dn) + P(−T12 ≥ dn − y/dn) .

Therefore, (A1’) follows from (A1) in the proof of Theorem 2.4.
For (A2’) and sufficiently large n we get

P(T12 ∈ Qx,y, T13 ∈ Qx,y)

= P((T12 > dn + x/dn or − T12 ≥ dn − y/dn), (T13 > dn + x/dn or − T13 ≥ dn − y/dn))

= P(T12 > dn + x/dn, T13 > dn + x/dn) + 2P(T12 > dn + x/dn,−T13 ≥ dn − y/dn)

+ P(−T12 ≥ dn − y/dn,−T13 ≥ dn − y/dn)

The fact that the first and the last terms are o(p−3) follows directly from (A2) in the proof of
Theorem 2.4. The argument for the middle term is similar. This establishes (A2’) and finishes the
proof.
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6.3. Proof of Proposition 2.7. Since dn ∼ 2
√
log p, as n → ∞, part (i) of Proposition 2.7 is an

immediate consequence of Theorem 2.4.
We turn to the proof of (ii). If

max
1≤i<j≤p

1√
log p

Tij → 2

holds, we have for any constant C0 > 2,

P
(

max
1≤i<j≤p

1√
n log p

n∑
l=1

Zi,j,l ≥ C0

)
→ 0, n → ∞ .

In view of the inequality max1≤i<j≤p
∑n

l=1 Zi,j,l ≥ max1≤i<p/2

∑n
l=1 Zi,[p/2]+i,l, where [p/2] denotes

the integer part of p/2, and because
{∑n

l=1 Zi,[p/2]+i,l, 1 ≤ i < p/2
}
are iid random variables, we

have

1−

(
1− P

( n∑
l=1

Z1,2,l ≥ C0

√
n log p

))[p/2]

= P
(

max
1≤i<p/2

n∑
l=1

Zi,[p/2]+i,l ≥ C0

√
n log p

)
≤ P

(
max

1≤i<j≤p

n∑
l=1

Zi,j,l ≥ C0

√
n log p

)
→ 0, n → ∞.

We deduce that pP
(∑n

l=1 Z1,2,l ≥ C0
√
n log p

)
→ 0 and since the same arguments hold for −Z, we

obtain

pP
(∣∣ n∑

l=1

Z1,2,l

∣∣ ≥ C0

√
n log p

)
→ 0, n → ∞.

Now, we set Dn := {
∣∣∑n

l=2 Z1,2,l

∣∣ < √
n}. By the central limit theorem, we know that P(Dn)

converges to 2Φ(1)− 1 ≥ 1/2 as n → ∞. We have{∣∣∑n
l=1 Z1,2,l

∣∣
√
n

≥ C0

√
log p

}
∩Dn ⊇

{
|Z1,2,l| −

√
n√

n
≥ C0

√
log p

}
∩Dn ,

where the two events on the right-hand side are independent. Thus, we get for sufficiently large n

pP
(∣∣∣ n∑

l=1

Z1,2,l

∣∣∣ ≥ C0

√
n log p

)
≥ pP

(∣∣∣ n∑
l=1

Z1,2,l

∣∣∣ ≥ C0

√
n log p,Dn

)
≥ pP(Dn)P(|Z| −

√
n ≥ C0

√
n log p)

≥ p

2
P(|Z| ≥ (C0 + 1)

√
n log p) → 0, n → ∞

for any p with log p = o(ns). Following the argument in [37, p.632], this tail decay of |Z| can be

used to show that E
[
exp

(
η|Z|

2s
1+s
)]

< ∞ for some η > 0. We omit details.

6.4. Proof of Proposition 2.10. As in Section 5.1 in the proof of Theorem 2.4, we introduce
I = I(n) = {(i, j) : 1 ≤ i < j ≤ p} and for α = (i, j) ∈ I, we set ηα = dn

(
1√
n

∑n
l=1 Zi,j,l − dn

)
. In

addition, we define

Bα = {(k, l) ∈ I : |{i, j, k, l}| ≤ 3} ,
and for x ∈ R we write

λ := λ(n) :=
∑
α∈I

P(ηα > x).
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Then we get by Lemma A.2 and the triangle inequality∣∣∣P( max
1≤i<j≤p

dn

( 1√
n

n∑
l=1

Zi,j,l − dn

)
≤ x

)
− e−e−x

∣∣∣
≤ (1 + λ−1)(b1 + b2 + b3) + | e−λ− e−e−x |, (6.4)

where

b1 =
∑
α∈I

∑
β∈Bα

P(ηα > x)P(ηβ > x) ,

b2 =
∑
α∈I

∑
β∈Bα\{α}

P(ηα > x, ηβ > x) ,

b3 =
∑
α∈I

E
∣∣∣P(ηα > x|σ(ηβ, β /∈ Bα))− P(ηα > x)

∣∣∣ .
We already know that b3 = 0 and, by (5.2), b1 = O(p−1). From (5.18) we get

b2 ≤ p3P(min(N1, N2) > xn − (log p)−1/2) + p3c1 exp
(
− c2

√
n(log p)−1

)
,

where xn = x/dn,1 + dn,1 and N1, N2 are standard normal variables with Cov(N1, N2) = ρ. Since

p = exp(o(n1/3)) we may write p = exp(γnn
1/3), where γn → 0 as n → ∞. Hence, we obtain for

the second term

p3 exp
(
− c2

√
n(log p)−1

)
= exp(3γnn

1/3 − c2n
1/3γ−1/2

n )

= exp(γnn
1/3(3− c2γ

−3/2
n ) = O(p−1).

For the first term we get by (5.20)

p3P(min(N1, N2) > xn − (log p)−1/2) ≲ p3 (log p)
− ρ

1+ρ p−4/(1+ρ)

= O((log p)−ρ/(1+ρ)p−(1−3ρ)/(1+ρ)) , n → ∞ .

Therefore, the first term of (6.4) is of the order O((log p)−ρ/(1+ρ)p−(1−3ρ)/(1+ρ)).

Now, we consider the second term of (6.4). By the mean value theorem there exists a yn between
λ and e−x such that

|e−λ − e−e−x | = e−yn |λ− e−x | ≤ e−yn(|λ− p̃ Φ̄(xn)|+ |p̃ Φ̄(xn)− e−x |). (6.5)

We proceed by bounding the right-hand side of (6.5). For the first term we get by Lemma A.3(iii)

|λ− p̃ Φ̄(xn)| = p̃
∣∣∣P( 1√

n

n∑
l=1

Z1,2,l > xn

)
− Φ̄(xn)

∣∣∣
= p̃ Φ̄(xn)

∣∣∣ exp(x3nE[Z3]

6
√
n

)[
1 +O

(1 + xn√
n

)]
− 1
∣∣∣.

By the mean value theorem there exists a ỹn between 0 and x3nE[Z3]/(6
√
n) with∣∣∣ exp(x3nE[Z3]

6
√
n

)
− 1
∣∣∣ = eỹn

x3n|E[Z3]|
6
√
n

= O
(√(log p)3

n

)
, n → ∞ .

As p̃ Φ̄(xn) → e−x and (1 + xn)n
−1/2 = O(

√
n−1 log p), we get

|λ− p̃ Φ̄(xn)| = O(
√
n−1(log p)3). For the second term of (6.5) we have

|p̃ Φ̄(xn)− e−x | ≤ p̃
∣∣∣Φ̄(xn)− ϕ(xn)

xn

∣∣∣+ ∣∣∣p̃ ϕ(xn)

xn
− e−x

∣∣∣ ,
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where ϕ is the density of the standard normal distribution. Using the following classical inequality
(e.g. [11]) for the tail of the standard normal distribution function(1

y
− 1

y3
)
ϕ(y) ≤ Φ̄(y) ≤ 1

y
ϕ(y) , y > 0 ,

we deduce that

p̃
∣∣∣Φ̄(xn)− ϕ(xn)

xn

∣∣∣ ≤ p̃
ϕ(xn)

x3n
= O((log p)−1).

Additionally, we get by the definition of dn,1∣∣∣p̃ ϕ(xn)

xn
− e−x

∣∣∣ ≲ ∣∣∣∣e− 1
2
(x2/d2n,1+cn)

√
log p̃

x/dn,1 + dn,1
− 1

∣∣∣∣ ≲ ∣∣∣ e− 1
2
(x2/d2n,1+cn)−1

∣∣∣,
where cn := (log log p̃+ log 4π)2/(8 log p̃). By the mean value theorem there exists a ŷn between 0
and −1/2(x2/d2n,1 + cn) with∣∣∣ e− 1

2
(x2/d2n,1+cn)−1

∣∣∣ = (x2/d2n,1 + cn

)
eŷn = O

((log(log p))2
log p

)
.

To summarize, the second term of (6.4) is of order O(
√

n−1(log p)3) + O((log p)−1 log log p), which
finishes the proof.

6.5. Proof of Proposition 2.13. We check that for ρ ∈ [0, 1/2], p̃ = p(p − 1)/2 and xn :=
x/dn,1 + dn,1

E[Vn,ρ(x)] = p̃P(Y12 > xn) = p̃ Φ̄(xn) → e−x

by the choice of dn,1. For the second moment we get

E[V 2
n,ρ(x)] =

∑
1≤i1<j1≤p

∑
1≤i2<j2≤p

P(Yi1j1 > xn, Yi2j2 > xn)

= p̃ Φ̄(xn) + p̃
(p− 2)(p− 3)

2
Φ̄(xn)

2 + p̃ (2p− 4)P(Y12 > xn, Y13 > xn) .

The last expression is asymptotically equal to

p̃ Φ̄(xn) +
(
p̃ Φ̄(xn)

)2
+ p3P(Y12 > xn, Y13 > xn)

∼ e−x+e−2x+
(1 + ρ)3/2

8π(1− ρ)1/2
(log p)−ρ/(1+ρ)p(3ρ−1)/(1+ρ), (6.6)

where we applied Lemma A.5 (see also the proof of Lemma 5.1) and the fact that p̃ Φ̄(xn) → e−x in
the last step. The last term of (6.6) tends to zero for ρ ∈ [0, 1/3] and to infinity for ρ ∈ (1/3, 1/2].

6.6. Proof of Theorem 2.14. Let 0 ≤ ρ ≤ 1/2. We will provide an explicit construction of the
field (Yij). Let (ξi)i≥1 and (ηj)j≥1 be two independent sequences of iid standard Gaussian random
variables and let (Nij)i,j≥1 be a field of iid standard Gaussians. It is easy to check that

Uij :=
√
1− 2ρNij +

√
ρ(ξi + ηj) , 1 ≤ i < j ,

are standard Gaussian random variables with the same covariance function as (Yij), i.e., Cov(Yij , Yst) =
Cov(Uij , Ust). Therefore we may assume that

Yij = Y
(ρ)
ij :=

√
1− 2ρNij +

√
ρ(ξi + ηj) , 1 ≤ i < j ,

where superscript (ρ) highlights the dependence on ρ. We will need the following notation

M
(ρ)
n1 := max

1≤i<j≤p
Y

(ρ)
ij and M (ρ)

n := max
1≤i ̸=j≤n

Y
(ρ)
ij .
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An important tool will be Slepian’s lemma [38] (see also [25, Corollary 4.2.3]): If G,G′ ∈ Rn are
centered Gaussian vectors with standarized entries, and if their correlation matrices R,R′ satisfy
the entrywise inequality Rij ≤ R′

ij for all 1 ≤ i, j ≤ p, then it holds for all t ∈ R that

P
(

max
i=1,...,p

Gi ≤ t

)
≤ P

(
max

i=1,...,p
G′

i ≤ t

)
. (6.7)

An application of (6.7) yields for ρ ∈ [0, 1/2]

P(M (0)
n1 ≤ t) ≤ P(M (ρ)

n1 ≤ t) ≤ P(M (1/2)
n1 ≤ t) , t ∈ R .

For ε > 0 it follows that

P

(
M

(ρ)
n1√
log p

≥ 2 + ε

)
≤ P

(
M

(0)
n1√
log p

≥ 2 + ε

)
.

As M
(0)
n1 is a maximum of p̃ iid standard Gaussian random variables it is well-known from extreme

value theory (see [9]) that M
(0)
n1 /

√
log p

P→ 2 from which we conclude

lim
n→∞

P

(
M

(ρ)
n1√
log p

≥ 2 + ε

)
= 0 , ρ ∈ [0, 1/2] . (6.8)

Applying (6.7) and using the fact that

M (1/2)
n ≥ 1√

2

(
max

1≤i≤p/2
ξi + max

p/2+1≤j≤p
ηj

)
yields

P

(
M

(ρ)
n1√
log p

≤ 2− ε

)
≤ P

(
M

(1/2)
n1√
log p

≤ 2− ε

)

≤ P
(
max1≤i≤p/2 ξi +maxp/2+1≤j≤p ηj√

2
√
log p

≤ 2− ε

)
.

Since max1≤i≤p/2 ξi/
√
log p

P→
√
2 and maxp/2+1≤j≤p ηj/

√
log p

P→
√
2 we obtain

lim
n→∞

P

(
M

(ρ)
n1√
log p

≤ 2− ε

)
= 0 , ρ ∈ [0, 1/2] .

which in conjunction with (6.8) proves that

max
1≤i<j≤p

1√
log p

Yij
P→ 2 , n → ∞ . (6.9)

From (6.9) and Lemma 2.11 it follows for all ρ ∈ [0, 1/2] that

max
1≤i<j≤p

1√
log p

Tij
P→ 2 , n → ∞ ,

establishing the desired result.
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7. Maximum interpoint distance between two samples

Instead of considering the largest interpoint distance between all possible combinations of points
of one sample, we can also take a look at the largest distance between points of two different
samples. Let (xi)i≤p and (yj)j≤p be two iid sequences of Rn-valued random vectors, which are
independent from each other and whose components fulfill the standard conditions. We study the
asymptotic distribution of the maximum of the modified interpoint distances,

D̂
(2)
ij := ∥xi − yj∥22, 1 ≤ i, j ≤ p.

The distances D̂
(2)
ij , 1 ≤ i, j ≤ p are not independent and for the correlations it holds that

ρ1 := Corr(D̂
(2)
ij , D̂

(2)
ik ) =

E[X4]− 1

E[X4] + E[Y 4] + 2
, i, j, k ≤ p, j ̸= k ,

ρ2 := Corr(D̂
(2)
ij , D̂

(2)
hj ) =

E[Y 4]− 1

E[X4] + E[Y 4] + 2
, i, j, h ≤ p, i ̸= h.

Additionally, we define the sequence of norming constants

d̂n :=
√
2 log p2 − log log p2 + log 4π

2(2 log p2)1/2
.

To formulate an analogous result to Theorem 2.1 for the case of two samples, we need similar
assumptions as (B1)-(B4).

(B1’) There exists s > 2 such that E[|X|2s(log(|X|))s/2] < ∞ and E[|Y |2s(log(|Y |))s/2] < ∞.
Additionally, ρ1 ≤ 1

3 and ρ2 ≤ 1
3 .

(B2’) There exist constants η > 0 and 0 < r ≤ 2/3 such that E[exp(η |X|2r)] < ∞ and
E[exp(η |Y |2r)] < ∞. Additionally, ρ1 <

1
3 and ρ2 <

1
3 .

Theorem 7.1. Let (xi)i≤p and (yj)j≤p be two iid sequences of Rn-valued random vectors, which
are independent from each other and whose components fulfill the standard conditions. Assume one
of the conditions (B1’) or (B2’) on X and Y and that p = pn → ∞ satisfies

• p = O(n(s−2)/4), if (B1’) holds.

• p = exp(o(nr/(2−r))), if (B2’) holds.

Then we have

max
1≤i,j≤p

ĉ(2)n (D̂
(2)
ij − b̂(2)n )

d→ G ,

where G is standard Gumbel distributed. The sequences (b̂
(2)
n ) and (ĉ

(2)
n ) are given by

b̂(2)n := 2n+
√

n(E[X4] + E[Y 4] + 2) d̂n and ĉ(2)n :=
d̂n√

n(E[X4] + E[Y 4] + 2)
.

Proof. The proof is similar to the proof of Theorem 2.4. To apply Lemma A.2 we make the
following definitions. Let Î = {(i, j) : 1 ≤ i, j ≤ p} be an index set and for every α = (i, j) ∈ Î set

η̂α = ĉ
(2)
n (D̂

(2)
ij − b̂

(2)
n ) and

B̂α :=
{
(k, l) ∈ Î : k = i or l = j

}
.

Additionally, we set λ̂ :=
∑

α∈Î P(η̂α > x). Then, it follows by Lemma A.2 that

max
1≤i,j≤p

ĉ(2)n (D̂
(2)
ij − b̂(2)n )

d→ G

if the claims

(A1’) p2P
(
ĉ
(2)
n

(
D̂

(2)
11 − b̂

(2)
n

)
> x

)
→ e−x,



32 J. HEINY AND C. KLEEMANN

(A2’) P
(
ĉ
(2)
n

(
D̂

(2)
11 − b̂

(2)
n

)
> x, ĉ

(2)
n (D̂

(2)
12 − b̂

(2)
n

)
> x

)
= o(p−3) and

(A3’) P
(
ĉ
(2)
n

(
D̂

(2)
11 − b̂

(2)
n

)
> x, ĉ

(2)
n

(
D̂

(2)
21 − b̂

(2)
n

)
> x

)
= o(p−3),

where x ∈ R and n → ∞, are fulfilled. Following the lines of the proof of (A1) in the proof of
Theorem 2.4 under condition (C1) and (C2) we can show Assertion (A1’). Likewise we can derive
(A2’) and (A3’) by following the lines of the proof of (A2). □

Appendix A. Technical Tools

A.1. Poisson approximation. The first tool is a Poisson approximation, which can be found in
Theorem 1 of [2].

Lemma A.1. Let I be an index set and {Bα, α ∈ I} be a set of subsets of I, that is, Bα ⊂ I. Let
also {θα, α ∈ I} be Bernoulli random variables. Set W =

∑
α∈I θα and λ = E[W ] =

∑
α∈I P(θα =

1) ∈ (0,∞). Then ∣∣∣P(W = 0
)
− e−λ

∣∣∣ ≤ (1 ∧ λ−1)(b1 + b2 + b3) ,

where

b1 =
∑
α∈I

∑
β∈Bα

P(θα = 1)P(θβ = 1) ,

b2 =
∑
α∈I

∑
β∈Bα\{α}

P(θα = 1, θβ = 1) ,

b3 =
∑
α∈I

E
∣∣∣P(θα = 1|σ(θβ, β /∈ Bα))− P(θα = 1)

∣∣∣ ,
and σ(θβ, β /∈ Bα) is the σ-algebra generated by {θβ, β /∈ Bα}. In particular, if θα is independent
of {θβ, β /∈ Bα} for each α, then b3 = 0.

The next result is a special case of Lemma A.1 which is obtained by setting θα = 1{ηα>t}.

Lemma A.2. Let I be an index set and {Bα, α ∈ I} be a set of subsets of I, that is, Bα ⊂ I. Let
also {ηα, α ∈ I} be random variables. For a given t ∈ R, set λ =

∑
α∈I P(ηα > t). Then∣∣∣P(max

α∈I
ηα ≤ t

)
− e−λ

∣∣∣ ≤ (1 ∧ λ−1)(b1 + b2 + b3) ,

where

b1 =
∑
α∈I

∑
β∈Bα

P(ηα > t)P(ηβ > t) ,

b2 =
∑
α∈I

∑
β∈Bα\{α}

P(ηα > t, ηβ > t) ,

b3 =
∑
α∈I

E
∣∣∣P(ηα > t|σ(ηβ, β /∈ Bα))− P(ηα > t)

∣∣∣ ,
and σ(ηβ, β /∈ Bα) is the σ-algebra generated by {ηβ, β /∈ Bα}. In particular, if ηα is independent
of {ηβ, β /∈ Bα} for each α, then b3 = 0.

A.2. Large deviations and tails of multivariate Gaussian distribution. The next lemma is
due to [33] and [29]. For the current formulation see also [37, Lemma 3.2].

Lemma A.3. Let X,X1, X2, . . . be i.i.d. random variables with E[X] = 0 and E[X2] = 1 and set
Sn :=

∑n
i=1Xi.
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(i) If E[exp(η|X|r)] < ∞ for some 0 < r ≤ 1 and η > 0, then

lim
n→∞

1

x2n
logP(Sn/

√
n ≥ xn) = −1/2

for any xn → ∞, xn = o(n
r

2(2−r) ).
(ii) If E[exp(η|X|r)] < ∞ for some 0 < r ≤ 1/2 and η > 0, then

P(Sn/
√
n ≥ xn)

1− Φ(xn)
→ 1, n → ∞

holds uniformly for xn = o(n
r

2(2−r) ), xn ≥ 0.
(iii) If E[exp(ηX)] < ∞ for some η > 0, then

P(Sn/
√
n ≥ xn)

1− Φ(xn)
= exp

(
x3nE[X3]

6n1/2

)(
1 +O

(
1 + xn

n1/2

))
holds for xn = o(n1/4), xn ≥ 0.

Next, we study the tails of a multivariate Gaussian distribution. The following lemma is a direct
consequence of Slepian’s Lemma (see [25, Corollary 4.2.3.]).

Lemma A.4. Let X1, ..., Xd and X ′
1, ..., X

′
2 be standard Gaussian random variables with Cov(X ′

i, X
′
j) ≤

Cov(Xi, Xj) for each i, j. Then, for all x ∈ R

P
(

min
i=1,...,d

X ′
i > x

)
≤ P

(
min

i=1,...,d
Xi > x

)
.

The case of equicorrelation plays a special role in the analysis of Gaussian tails as it contains the
strongest possible dependencies given an upper bound ρ on the correlations of the Xi.

Lemma A.5. Let (X1, ..., Xd)
⊤ be a centered Gaussian random vector with covariance matrix

Σd := (1− ρ)Id + ρ11⊤,

where 1 = (1, ..., 1)⊤ ∈ Rd and −1/(d− 1) < ρ < 1. Then, as t → ∞

P
(

min
i=1,...,d

Xi > t

)
∼ 1

(2π)d/2|Σd|1/2

(
1 + (d− 1)ρ

t

)d

exp

( −1
2 t

2d

1 + (d− 1)ρ

)
,

where |Σd| = (−1)d−1(ρ− 1)d−1((d− 1)ρ+ 1). In particular, if d = 2 we have

P
(
min
i=1,2

Xi > t

)
∼ (1 + ρ)3/2

2π(1− ρ)1/2t2
exp

(
−t2

1 + ρ

)
.

Proof. Let ⟨·, ·⟩ denote the Euclidean inner product. By Example 4 of [14] we get for t ∈ R as
t → ∞

P
(

min
i=1,...,d

Xi > t

)
∼ 1

(2π)d/2|Σd|1/2

(
1 + (d− 1)ρ

t

)d

exp

(
−⟨t1,Σ−1

d t1⟩
2

)
=

1

(2π)d/2|Σd|1/2

(
1 + (d− 1)ρ

t

)d

exp

(
−

t2
∑d

i,j=1Σ
−1
dij

2

)
.

For the inverse of Σd we get

Σ−1
d =

1

1− ρ
Id −

ρ

(1− ρ)(1 + (d− 1)ρ)
11⊤,
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and therefore, the sum of the entries of Σ−1
d equals

d∑
i,j=1

Σ−1
dij =

d

1− ρ
− d2ρ

(1− ρ)(1 + (d− 1)ρ)
=

d

1 + (d− 1)ρ
,

which establishes the desired result. □
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