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Mortality Forecasting using Variational Inference

Patrik Andersson* Mathias Lindholm?

Abstract

This paper considers the problem of forecasting mortality rates. A large num-
ber of models have already been proposed for this task, but they generally have
the disadvantage of either estimating the model in a two-step process, possibly los-
ing efficiency, or relying on methods that are cumbersome for the practitioner to
use. We instead propose using variational inference and the probabilistic program-
ming library Pyro for estimating the model. This allows for flexibility in modelling
assumptions while still being able to estimate the full model in one step.

The models are fitted on Swedish mortality data and we find that the in-sample
fit is good and that the forecasting performance is better than other popular models.

Code is available at https://github.com/LPAndersson/VImortality.

Keywords: Non-linear state-space-models; Mortality forecasting; Hidden Markov
model, Variational inference

1 Introduction

Attempts to forecast mortality go back at least as far as Gompertz (1825). A more
recent example is the Lee-Carter model (Lee and Carter, 1992) and its extensions, see
Booth and Tickle (2008); Haberman and Renshaw (2011); Carfora et al. (2017) for a
survey. Applications of mortality forecasting can be found in for example demographic
predictions and in the insurance industry.

The Lee-Carter model is a log-linear multivariate Gaussian model of mortality rates.
A major criticism of Lee-Carter-type models is that the model training is done as a two-
step process. In the first step, point estimates of the mortality rates are obtained, for
example as the maximum likelihood estimate of a Poisson distribution, and in the second
step, a latent process is fitted to these estimates. This method has the advantage that it
is simple and fast to implement, but it is inefficient when compared to the simultaneous
estimation of all unknown parameters. Also, it is not possible to distinguish between the
finite population noise of the mortality estimates and the noise from the latent process.
Both of these issues can potentially affect the quality of the forecasts.

Simultaneous estimation of parameters has been considered in Andersson and Lind-
holm (2021) where particle filtering methods are used to estimate a state-space model
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with Poisson distributed observations, similar to Brouhns et al. (2002). However, this
method has its drawbacks. It could be considered cumbersome for practitioners as it
requires custom implementation and tuning, and since the particle filter methods are
computationally expensive, the number of parameters must not be too large. The com-
plexity of the modelling is reduced when changing the observational model from a Poisson
distribution to a Gaussian, see e.g. De Jong and Tickle (2006) for a state-space model
treatment of a Gaussian Lee-Carter model.

Recently it has been suggested to use models from deep learning, sometimes called
deep factor models, to forecast high-dimensional multivariate time series. Some examples
of this can be found in Nguyen and Quanz (2021); Wang et al. (2019); Salinas et al.
(2020); Rangapuram et al. (2018). The applications presented in those articles differ
from mortality forecasting in the scale of the problem. In mortality forecasting, the
dimension of the time series is about 100 (the lifetime in years of a human) and the
number of observations of the time series is also about 100 (although some countries do
have reliable data for longer than that). As a consequence, to avoid overfitting, we need
to consider simpler models. This includes simpler functions for mapping latent variables
to the observed time series, linear Gaussian models instead of RNNs for propagating the
latent variables forward in time and fewer latent factors.

Compared to previous mortality forecasting models, the novelty of this paper is
therefore to use black-box variational inference (Ranganath et al., 2014) to solve the
inference problem. This means that after specifying how to sample from the model
and the approximate posterior, the inference is done automatically without any model-
specific customisation. The family of models that can be handled is also expanded. For
example, one can consider other families of functions for mapping the latent process to
mortality rates. Also, in this case, all the parameters can be estimated simultaneously.
This latter point is problematic when using particle filter techniques, where it is necessary
to estimate the linear mapping from the latent process to the mortality rates first, before
continuing with the estimation of the other parameters.

Other approaches that use machine learning techniques for forecasting mortality rates
can be found in e.g. Richman and Wuthrich (2019); Richman and Wiithrich (2021); Perla
et al. (2021) that consider various types of Gaussian recurrent neural network structures,
Nigri et al. (2019); Marino and Levantesi (2020); Lindholm and Palmborg (2022) that
consider univariate LSTM neural network, both with and without a Poisson population
assumption, and Deprez et al. (2017) that consider tree-based techniques.

The model is implemented using the probabilistic programming language Pyro (Bing-
ham et al., 2018) and the code is available at https://github.com/LPAndersson/
VImortality.

The rest of the paper is organised as follows: In Section 2 we describe the probabilistic
model that will be used for forecasting. In Section 3 we give a brief introduction to
variational inference and in Section 4 we describe how to forecast the mortality once the
model has been trained and how we validate the forecast. In Section 5 we demonstrate
our method on an example and compare to other models. Section 6 concludes the paper.
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2 Model

In this section, we describe the probabilistic model that defines the mortality dynamics.
Uppercase letters will denote random variables and lowercase letters the corresponding
observed value. Greek letters will denote unknown parameters that are to be estimated.

Mortality data can be aggregated in different forms and clearly the choice of model
will have to be adjusted accordingly. For example, the data could contain the population
size of each age group at the beginning of the year and the number of deaths during the
year. In this case, a binomial model seems natural. We however consider data on the
yearly number of deaths and the exposure to risk in each age group. The exposure to
risk in this setting is the total time that the individuals in the population were a certain
age in a certain year. The number of deaths in age a € {0,1,...,a}, yeart € {0,1,...,¢}
is denoted by D, ; and the exposure by F ;.

Our model is a state-space model that can be written as:

Dgt | X¢, Eq ~ Poisson <Ea7t exp (f;f’(Xﬂ)) , (1)
Xit = Xip1+ Kig—1+ Uiz, Uiy iid N(0, 0% ), (2)
Kiy = pi +0i(Kig—1 — pi) + Vig, Vi iid N(O, U%{,i)- (3)
Here i = 1,2,...,d, where d is the dimension of the latent variables. We also require

0 < ¢; < 1. The function fff is the a:th component of f¥ : R4 — R, In our examples
in Section 5, f¥ will be given by either an affine transformation or a sum of radial basis
functions. That is either, f¥(r) = Ax + b, where A and b are trainable or the ath
component of f¥ is

P L
) =aT Y w1,
=1

We will fix 72 and therefore {w;, u;}?_; and {b,}?_, are the trainable parameters. Com-
pared to the more general affine transformation, radial basis functions have the advantage
of inducing a certain smoothness of f, as a function of a, encoding a prior that similar
ages should have similar mortality.

We remark here that the exact specification of the above model is not critical for
the continuation. For example, the exponential link function in the Poisson distribution
could be changed to some other positive differentiable function without complication.
We are assuming that the components of the latent process are independent, instead,
we let any dependence be captured by f. However, this latent process could be replaced
with some other Markov process.

3 Variational inference

Here we explain the main ideas of variational inference in a general setting. At the end
of the section, we connect this to our specific model. For more on variational inference
in general we refer to Ranganath et al. (2014) and for the application to state space
models, see Archer et al. (2015).



We are observing y, whose distribution depends on a latent variable x and an un-
known parameter 1. This is modelled by the joint distribution

Py(y, ) = py(y | )py ().
The likelihood,
L) = pol) = [ poly. o),

is in general not tractable and therefore approximations are needed in order to be able
to estimate ¢. Consider a parametrised distribution, the approximate posterior, gg(x).
Then observe that, due to Jensen’s inequality, the log-likelihood is

py(y, @)
q6()

> / (log py (3 ) — log go(x)) qo(x)dz =: L(1,6).

(1)) :=log L()) = log / go()da

The right-hand side is known as the evidence lower bound (ELBO). The idea of vari-
ational inference is to instead of maximising the log-likelihood, maximise the ELBO.
Towards this, we calculate the gradients

0,L(0,0) = [ Dylozpu(y. 2)ap(a)d.
0Lw.0) = [ ogpy(ys) ~ o a0(x)00 og a0 () oz

We can then proceed to obtain unbiased estimates of the gradients by sampling from
gp and maximise £ using stochastic optimisation algorithms. Once converged, gg(x)
can be used as an approximation of the posterior distribution of the latent variables
py(z | y).

Further, to obtain faster convergence, various variance reduction techniques are often
used. Here we only mention the so-called reparametrisation trick. Suppose that we can
find functions xy such that

/ f(@)ap(x)dz = / f(o(=))a(2)dz, (4)

which makes the sampling distribution independent of 8. In particular, the gradient
satisfies

9 / £(2)go )z = B / f(za(2))a(2)dz = / 00 f(x0(2))a(2)dz,

which usually improves the sampling variance, compared to differentiating the density
directly. An important example of a distribution that allows for reparametrisation ac-
cording to (4) is the Gaussian, since if Z ~ N(0,1) then p+ 0Z ~ N(u, o?).



In the numerical illustrations in Section 5, the approximate posterior is modelled as
a Gaussian distribution with an autoregressive covariance. That is, the distribution of
the process is given by

- X - XX 2
Xip = iy T 0ipXip1 + &, €y iid N(0, 0% ,),

Kiy = iy + BiaKig—1 + pig Xe1 + €5, &1 iid N(0, 6% ,).

4 Forecasting and validation

By maximizing the ELBO we have obtained estimates of ¢ and 8 and the joint distribu-
tion of (Xif, [N(,t-) This allows us to proceed with forecasting the mortality, as will be
discussed in this section.

Since both the approximate posterior and the latent process is Gaussian, the fore-
casting distribution of the latent process is also Gaussian. That is, for ¢ >,

% ~ X ~2 Ao o
Xi,t ~ N M% OXxt PitOXtOK ¢

o ~ ) AA ~ ~2 ’
Ki,t i ¢ PitOXtOKt Okt

where the parameters can be calculated iteratively from (2) and (3), by using the initial

value ) -
() (3
Kig)  \Kii)’
and the forecast of mortality rates is given by exp(f? (Xt))

If one wants to forecast the actual number of deaths, a forecast of the number of
living at the beginning of the year is also needed, together with some assumption on the
distribution of when in the year people are born. For a longer discussion on how this
can be done, we refer to Andersson and Lindholm (2021).

The forecast is validated by calculating the logarithmic score of the forecast on the
validation data set. The logarithmic score is the logarithm of the predicted density
evaluated at the observed value, see for example Gneiting and Raftery (2007). That is,
if P+ is the forecasted distribution of death counts from (1) and d,+ is the observation,
the log-score is

logs(P;, dy) = Z log Pa.t(dat)-

We will evaluate the models using a rolling window of training and evaluation data and
calculate the average score over these windows, which we call logs(P, d). An alternative
that we also calculate is

2 logs(P, d) — logs(P, d)

logs(P, d) — logs(P, d)

Here, P denotes the model with only a constant intercept and P the saturated model,
i.e. the model that forecasts with mean equal to the observation.
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Figure 1: Affine model: Evaluation of the model when fitted on Swedish male mortality
data with the first year from 1931 to 1952. Each model is fitted using 60 years of data
and evaluated on the following 10 years. The figures show that 3 latent dimensions give
the best out-of-sample performance.

5 Results

In this section, we illustrate the performance of the models by fitting it to a dataset
on the mortality of Swedish males. The dataset is collected from Human Mortality
Database (2022). We evaluate the models using a rolling window; using 60 years to fit
the model and 10 years to evaluate the forecast against the actual outcome. The training
and evaluation windows are then rolled forward one year and the process repeats.

The model is as in (1) - (3) where f is either affine or a sum of radial basis functions.
We begin by selecting hyperparameters for each model, e.g. dimension of the affine
transformation or the number of radial bases. We then illustrate the fitted model and
the out-of-sample forecasting performance. Finally, we compare our model with the
Lee-Carter model and the model by Plat (2009).

5.1 Affine

For model selection, we compare the out-of-sample log-score for varying dimensions of
the latent process. In Figure 1 we see that 3 latent dimensions overall performs best.
We have performed experiments also for dimensions 1 and 2, but the performance was
considerably worse, and they are therefore excluded from the figure. Figure 2 illustrates
the fitted model. In particular, we note in Figure 2d that the in-sample fit of the
mortality rates are quite good. Figure 3 shows the smoothed and forecasted mortality
rates for the ages 20, 40, 60 and 80. The shaded regions represent + 1 standard deviation
and the grey dots are the observed mortality rates. That is, we should expect that around
7 out of 10 observations are within the shaded region. The pictures seem to confirm this.
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Figure 2: Affine model: Illustration of the model fitted to Swedish data from 1952 to

2011 with three latent dimensions.
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Figure 3: Affine model: Mortality forecasts for the age groups 20, 40, 60 and 80 (from
the bottom up). The solid line is the smoothed mortality rate, the dashed line is the
mean forecasted mortality rate and the shaded region is + 1 standard deviation of the
forecasted realised mortality rate. Dots indicate observed mortality rates.

5.2 Radial basis functions

This section follows the same pattern as the previous one. We choose hyperparameters
for the radial basis functions and illustrate the fitted model. In all models we choose
7 =10. Although this is a parameter that could be trained, our experiments show that
it is difficult to train well. Our choice of T corresponds to a typical width of the radial
basis of about 14 years, which seems reasonable.

In Figure 4 we see that four latent dimensions and 15 radial basis functions give the
best out-of-sample performance. In Figure 5 the model fit is illustrated. In particular,
we note in figures 5¢ and 5d that the radial basis functions do indeed make both the
factor loadings and the fitted mortality curves more smooth, compared to the affine
model. In Figure 6 we see that the forecasted mortality rates are quite similar to the
affine model.

5.3 Comparison

In this section we compare our two models to two other commonly used mortality models,
the Lee-Carter model with Poisson distribution from Brouhns et al. (2002) and the model
from Plat (2009). Both are fitted using the StMoMo package in R (Villegas et al., 2018).
They both model mortality as

Dg ~ Poisson(Eq ¢ exp (1a,t)),
where in the Lee-Carter model,

Nat = Qq + Bakt,
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Figure 4: Radial basis model: Evaluation of the model when fitted on Swedish male
mortality data with the first year from 1931 to 1952. Each model is fitted using 60
years of data and evaluated on the following 10 years. The figures show that 4 latent
dimensions and 15 radial basis functions give the best out-of-sample performance.

where «, and 3, are factor loadings and x; is the dynamic factor, modelled as a random
walk with drift. In the Plat model,

1
Na,t = Qg + K/l(f )

+(@—a)r® +@-a) k! + ..
Here the s follow a multivariate random walk with drift and Yi—a is ARIMA(2,0,0)
with intercept. The unknowns are estimated using maximum likelihood, and then the
dynamic factors are modelled and forecasted.

The model performance is summarized in Table 1 and Figure 7 where the log-score
and R? are shown for each model. We see that our two models perform almost identically
and improve substantially on the two compared models.

Model Log-score R?

Affine -448.2 0.686
Radial basis -447.3 0.687
Lee-Carter  -584.6 0.263
Plat -477.6 0.610

Table 1: Out-of-sample model evaluation metrics for Sweden. Numbers are averaged
over all forecast horizons and rolling windows.
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6 Conclusions

In this paper, we have considered a state-space model for mortality forecasting and we
have shown how it is possible to fit such a model using variational inference. Using
variational inference it is possible to not only use a Poisson likelihood for the observed
number of deaths but also to estimate the complete model in one step. The model is
also flexible in that, for example, we can consider different functions for projecting the
latent variables to the mortality curve. We considered both affine functions and radial
basis functions, but the practitioner has the freedom to choose other classes of functions
without complication. Another advantage is that the model is implemented in Pyro, so
that very little custom code is needed. Finally, we show that our model and inference
method outperform other popular methods.

Data availability statement

The data used in this paper can be downloaded free of charge from https://www.
mortality.org.
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