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Abstract. The paper discusses duration effects on the consistency of mean

parameter and dispersion parameter estimators in exponential dispersion fam-
ilies (EDFs) that are the standard models used for non-life insurance pricing.

Focus is on the standard generalised linear model assumptions where both the

mean and variance, conditional on duration, are linear functions in terms of
duration. We derive simple convergence results that highlight consequences

when the linear conditional moment assumptions are not satisfied. These re-

sults illustrate that: (i) the resulting mean estimators always have a relevant
asymptotic interpretation in terms of the duration adjusted actuarially fair

premium – a premium that only agrees with the standard actuarial premium

using a duration equal to one, given that the expected value is linear in the
duration; (ii) deviance based estimators of the dispersion parameter in an EDF

should be avoided in favour of Pearson estimators; (iii) unless the linear mo-

ment assumptions are satisfied consistency of dispersion and plug-in variance
estimators can not be guaranteed and may result in spurious over-dispersion.

The results provide explicit conditions on the underlying data generating
process that will lead to spurious over-dispersion that can be used used for

model checking. This is illustrated based on real insurance data, where it is

concluded that the linear moment assumptions are violated, which results in
non-negligible spurious over-dispersion.

Keywords: Consistency, Duration, Exponential dispersion family, Generalised lin-
ear model, Over-dispersion, Dispersion estimators

1. Introduction

When using generalised linear models (GLMs) for insurance pricing, it is stan-
dard to include information about duration as a known exposure see e.g. Ohlsson
& Johansson (2010), Wüthrich & Merz (2023). More specifically, the data being
observed consists of triplets (Z,X,W ), where Z corresponds to the response e.g.
claim amount, X is a vector of covariates and W is an exposure weight e.g. policy
duration. The standard GLM assumption is

E[Z | X,W ] = Wµ(X), and Var[Z | X,W ] = Wσ2(X).(A1)

That is, one assumes that both the mean and the variance are linear in the expo-
sure W . Furthermore, concerning the variance assumption, it is common to use
Tweedie models from the exponential dispersion family (EDF), see e.g. Jørgensen
(1987), Ohlsson & Johansson (2010), Wüthrich & Merz (2023), whose variances are
expressed according to

Var[Z | X,W ] = Wφµ(X)ξ,(A2)

for some ξ ∈ R, and φ > 0. The parameter φ is referred to as a dispersion
parameter, and based on (A2) it is clear that this parameter can only be correctly
estimated, given that µ(X) is correctly specified, see e.g. Lindholm et al. (2023).
Further, when it comes to parameter estimation the influence of W when using
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model assumption (A1) is not obvious. This is commented on in Lindholm et al.
(2023).

Moreover, estimation of µ is typically based on deviance loss functions, where the
minimum is attained by the maximum likelihood estimator (MLE), see e.g. Ohls-
son & Johansson (2010), Wüthrich & Merz (2023). More specifically, if we consider
Bregman deviance losses, that include Gaussian models with fixed dispersion, Pois-
son models, and Gamma models with fixed dispersion, all under assumption (A1),
the deviance function for Y = Z/W can be written as

DBreg(Y, µ) ∝ Wd(Y, µ),

where d(Y, µ) is the so-called unit deviance function, see (5) below, with m = 1.
Furthermore, as discussed in Lindholm et al. (2023) Section 2.1.1, the MLE for µ
corresponds to the empirical version of the minimiser

π(X) ∈ argminf E[Wd(Y, f(X))],(1)

where the minimisation is over all X-measurable functions f such that

E[Wd(Y, f(X))] < ∞.

Further, as shown in Lindholm et al. (2023) the population minimiser π(X) is given
by

π(X) =
E[Z | X]

E[W | X]
.(2)

Note that (2) holds regardless of whether (A1) is satisfied or not, and does not rely
on any specific assumptions regarding the dependence between, Z,X, and W . In
addition, from (2) it is clear that π(X) will differ from µ(X) unless assumption
(A1) is satisfied. Thus, given that we assume a parametric form of f to which
the true model is a special case, this suggests that the corresponding MLE will
be a consistent estimator of π(X), which may, or may not, coincide with µ(X).
Another observation is that π(X) corresponds to the duration adjusted actuarially
fair premium, since π(X) satisfies the relation

E[Wπ(X) | X] = E[Z | X],

regardless of whether assumption (A1) holds or not, and does not rely on any
specific assumptions regarding the dependence between, Z,X, and W . Continuing,
from (2) it is clear that π(X) will capture randomness in W due to, e.g., new
policies being written, existing policies that are not renewed, or policies that are
annulled. On the other hand, it is clear that the reasonability in charging a premium
corresponding to µ(X) depends on whether (A1) holds or not. In the numerical
illustrations in Section 4 we provide an example where this does not hold, see
Section 3.2 in Lindholm et al. (2023) for an additional example.

In the present paper the effects of W on parameter estimation is analysed w.r.t.
consistency. Note that as the sample size tends to infinity, there will eventually
be a sufficiently large number of observations in any small (and shrinking) neigh-
bourhood of any X = x, and we may estimate µ(x) locally as a parameter. That
is, we will assume that we have data on the form (Zi, Xi,Wi)

m
i=1 = (Zi, x,Wi)

m
i=1.

This allows us to avoid introducing bias from a poorly specified mean model µ(x)
and makes it possible to assess the validity of the linearity assumption in terms of
W from assumption (A1). Moreover, in practice the trouble with using a too rigid
model for µ(X) can also be reduced by using flexible machine learning models. The
µ function will be estimated based on deviance functions that are in agreement with
(A1), but where the true underlying data generating process does not necessarily
comply with model assumption (A1).
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Particular focus will be on the situation when the data generating process is as-
sumed to follow an EDF model with moments given by (A1) typically also assuming
(A2). In agreement with the above, it is verified, see Lemma 2.1, that regardless of
whether the true data generating process agrees with the EDF model assumptions,
the maximum likelihood estimator (MLE) of µ(x) will always coincide with the
duration adjusted actuarially fair premium π(x) from (2). This, however, does not
justify that µ̂ is a consistent estimator of the mean of Y = Z/W , since this latter
statement relies on that (A1) is satisfied. Note that from Lemma 2.1 it is seen that
the estimator µ̂ is a function of scaled sums of Zs and W s, which means that in
order to be able to discuss convergence of µ̂ under potential model misspecification
we need to assume that there exists a limiting distribution for W , or that scaled
sequences of W s converge.

Moreover, when analysing dispersion it is important that the mean estimator is
unbiased. If this is not the case it is not meaningful to proceed with an analysis
of dispersion, and local bias adjustment techniques should be applied first, see e.g.
Denuit et al. (2021), Lindholm et al. (2023), Wüthrich & Ziegel (2023).

Given that the mean estimator is unbiased, we derive results for the local disper-
sion parameter estimators based on (Zi, Xi,Wi)

m
i=1 = (Zi, x,Wi)

m
i=1 data and their

corresponding plug-in variances. Based on the analyses of local estimators of φ(x)
we obtain conditions on the underlying data generating process that will lead to
spurious over-dispersion caused by violating (A1) and (A2), see Lemmas 3.2 and
3.3. These results also allows us to assess whether a single global over-dispersion
parameter estimator complies with (A1) and (A2). Further, Lemmas 3.2 and 3.3
rely on Pearson estimators, since these estimators turn out to be consistent, given
that the underlying data generating process satisfies assumptions (A1) and (A2).
This cannot be guaranteed for the corresponding Bregman deviance based over-
dispersion estimators, see Lemma 3.1. In fact, Corollary 3.1 shows that even under
ideal circumstances the special case of the Poisson deviance will produce an over-
dispersion estimator that is not consistent unless also the mean tends to infinity.
Due to this we suggest to use Pearson estimators in favour of Bregman deviance
based dispersion parameter estimators.

As an alternative to using plug-in estimators of the variance, direct estimation
of the variance of Z is discussed in Section 3.1. This provides us with additional
results that can be used for model checking purposes.

The remainder of the paper is structured as follows: Section 2 introduces rele-
vant results relating to GLMs, EDFs, and discusses consistency of mean estimators
and the relation to the duration adjusted actuarially fair premium in more detail.
In Section 3 estimation and consistency of the dispersion parameter estimator is
discussed together with consistency of the corresponding plug-in estimator of the
variance of Z. This is followed by Section 3.1 where direct estimation of the vari-
ance of Z using the L2-loss is discussed and related to the previous results. Finally,
Section 4 illustrates the theoretical results using real insurance data, and the paper
ends with concluding remarks in Section 5.

2. Consistency of mean estimators

Assume that Y | X,W has the following conditional density (or probability
function) in the exponential dispersion family (EDF), see e.g. (Ohlsson & Johansson
2010, Sec. 2.1) and (Wüthrich & Merz 2023, Sec. 2.2),

f(y; θ(x), w/φ) = exp

{
yθ(x)− κ(θ(x))

φ/w
+ a(y, w/φ)

}
,(3)
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where κ′(θ(x)) = µ(x) = E[Y | X = x,W = w], and where a is a function normal-
ising the density (probability) function. Thus, if we let h(µ(x)) = θ(x) the density
(probability) function (3) can be re-written according to

f(y;µ(x), w/φ) = exp

{
yh(µ(x))− κ(h(µ(x)))

φ/w
+ a(y, w/φ)

}
.(4)

It is now possible to introduce the weighted Bregman deviance function:

DBreg(Y, µ) := 2

m∑
i=1

Wid(Yi, µ),(5)

where
d(y, µ) := ϕ(y)− ϕ(µ)− ϕ′(µ)(y − µ),

and where ϕ is a convex function with sub-gradient ϕ′, see Savage (1971), Gneiting
(2011) and (Wüthrich & Merz 2023, Sec. 2.3.2). By setting

ϕ(x) := xh(x)− κ(h(x)),

it follows that

DBreg(Y, µ) = 2φ

m∑
i=1

(log(f(Yi, Yi,Wi/φ))− log(f(Yi, µ,Wi/φ))),(6)

where f is from (4), see (Wüthrich & Merz 2023, Eqs. (2.28) - (2.29)). Thus, the µ
obtained by minimising (5) is equivalent to the µ obtained by maximising (4) with
µ(x) = µ, see also (Wüthrich & Merz 2023, Cor. 4.5).

In order to obtain a GLM for Y = Z/W , conditional on X of dimension k and
W , introduce the so-called link-function g defined such that

g(µ(x)) = β0 +

k∑
j=1

βjxj .

Examples of GLMs of particular interest in actuarial applications that are special
cases of (A1) and (A2) are Gaussian models with constant dispersion parameter
(ξ = 0, φ = σ2), Poisson models with unit dispersion parameter (ξ = 1, φ ≡ 1), and
Gamma models with constant dispersion parameter (ξ = 2), see e.g. (Wüthrich &
Merz 2023, Sec. 5).

Further, by using (3) it follows that (A1) is satisfied, and, in particular, it holds
that

E[Y | X,W ] = E
[
Z

W

∣∣∣ X,W

]
= µ(X),

together with

Var[Y | X,W ] = Var

[
Z

W

∣∣∣ X,W

]
=

1

W
σ2(X),

Moreover, for GLMs it is well known, that subject to regularity conditions, the
maximum likelihood estimator (MLE) based on (3) of the vector β using i.i.d.

observations of triplets (Zi, Xi,Wi)
m
i=1, denoted β̂m, is consistent, see e.g. (Wüthrich

& Merz 2023, Sec. 5.1.6). That is,

β̂m
p−→ β, as m → ∞.

This result, gives us, for a fixed covariate vector X = x, that

µ̂m(x)
p−→ µ(x), as m → ∞.

Concerning premium calculations, recall from the introduction that the duration
adjusted premium π(X) from (2) is the solution to the population minimisation
from (1), to which the MLE is the empirical counterpart. Consequently, by using
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a GLM, conditional on X = x, it follows that µ̂m(x) is a consistent estimator of
the actuarially fair premium π(x), and in this case π(x) = µ(x). Note, however,
that this consistency relies on that we know that the functional form of the true
model is a GLM. In practice the true model is unknown, and a misspecified mean
model µ(X), or more generally a model for E[Z | X], will lead to local bias, see
e.g. Lindholm et al. (2023) and Wüthrich & Ziegel (2023). This local bias will also
contaminate estimation of the dispersion parameter φ.

Due to this, we will focus on the situation where we start by estimating the
mean function for a specific covariate vector X = x, without assuming any specific
functional form of µ(X). That is, we estimate µ(x) as a parameter in order to
avoid introducing bias from a misspecified mean model. This is also a reasonable
assumption when we consider the situation of letting the sample size tend to infinity.
This also covers the situation with a mean function that can only take on a finite
number of unique values, see e.g. Lindholm et al. (2023) and Wüthrich & Ziegel
(2023), and the univariate local regression considered in Denuit et al. (2021).

We start with the following basic result:

Lemma 2.1. Consider an i.i.d. sample (Zi, Xi,Wi)
m
i=1 = (Zi, x,Wi)

m
i=1 and define

Yi := Zi/Wi. The estimator µ̂m(x) that minimises the duration weighted Bregman
deviance from (5) is given by

µ̂m(x) =
Êm[Z | X = x]

Êm[W | X = x]
,

where

Êm[Z | X = x] :=
1

m

m∑
i=1

Zi, and Êm[W | X = x] :=
1

m

m∑
i=1

Wi,

for which it holds that

µ̂m(x)
p−→ E[Z | X = x]

E[W | X = x]
, as m → ∞.

Proof. The first part follows by direct minimisation of (5) w.r.t. µ by using that
Z = WY , and the second part follows from Cramér-Slutsky. □
Remark 2.1.

(a) Note that Lemma 2.1 does not assume independence between Z and W , or that
the true data belongs to an EDF with expectation and variance being linear in
W .

Moreover, the setup used in Lemma 2.1 does not assume any explicit func-
tional form of µ(x), since it is estimated as a parameter. This, of course, is
identical to the situation where we assume that µ is a constant, when letting
x vary over the entire population, instead of conditioning on X = x. Related
to this, in practice the limiting object of Lemma 2.1 will be evaluated based on
local approximations in small neighbourhoods of observed points X = x. An
example of this based on real insurance data is given in Section 4 where local
piece-wise constant estimators are used.

Further, the convergence of µ̂m(x) relies on that Êm[W | X = x] converges,
or alternatively that there exists a limiting population distribution for W . This
assumption is needed in order to be able to analyse convergence properties of
µ̂m(x) under possible model misspecification.

(b) The predictor µ̂m(x) in Lemma 2.1 is always asymptotically actuarially fair
in the sense of π(x) from (2). Further, µ̂m(x) is not a consistent estimator
of E[Y | X = x] = E[Z/W | X = x], unless the true intensity is given by
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E[Z | X = x,W ] = Wµ(x), see also Proposition 2.1 in Lindholm et al. (2023)
and the discussion following (2) above.

(c) As discussed in Gneiting (2011), since d(y, µ) is a consistent scoring function
for predicting the mean, viewing the deviance as a loss function will always
bring us closer to the true unknown mean regardless of the underlying data
generating process. For a longer text book treatment, see (Wüthrich & Merz
2023, Sec. 4.1.3). For more on the situation with using duration weighted
Bregman deviances (i.e. with Wi ̸= 1), see (Lindholm et al. 2023, Sec. 2.1.1).

Recall that standard actuarial pricing practice, see e.g. (Ohlsson & Johansson
2010, Sec. 2), suggests that the premium to be charged to policyholders is obtained
by annualising the expected cost by setting W ≡ 1 based on (A1), i.e.,

π∗(x) := E[Z | X = x,W = 1] = E[Y | X = x,W = 1] = µ(x).

This means that the corresponding π̂∗
m(x) = µ̂m(x) is only guaranteed to be asymp-

totically actuarially fair in the sense of (2), which is not necessarily equal to the
expectation of Y , since this latter property relies on assumption (A1) being true.
In particular, unless (A1) holds, then

π̂∗
m(x) :=

Êm[Z | X = x]

Êm[W | X = x]

p−→ π∗(x) ≥ E[Z | X = x],(7)

since, in practice it will typically be the case that E[W | X = x] ≤ 1.

3. Dispersion estimators and variation

When discussing variation in observed data, and focus on the predictive setting
of Lindholm et al. (2023) where W is not a priori known, it is natural to consider
the variance

Var[Z | X] = E[Var[Z | X,W ]] + Var[E[Z | X,W ]].(8)

If we consider Tweedie models, assuming (A1) with variance functions given by
(A2), we arrive at

Var[Z | X] = φµ(X)ξE[W | X] + µ(X)2 Var[W | X].(9)

Further, even if we restrict our attention to Poisson data, assuming (A1), when we
know that φ = 1 should hold, it is of interest to estimate φ for model checking
purposes. Alternatively, by estimating φ, allowing this parameter to deviate from
1, gives us a so-called over-dispersed Poisson (ODP) model, see e.g. (Ohlsson &
Johansson 2010, Sec. 3.5.2) or (Wüthrich & Merz 2023, Sec. 5.4). The ODP model,
however, lacks a proper distribution function and can be seen as a simple way
of keeping a Poisson model for obtaining the mean function, while correcting a
variance function that is seen not to agree with observed data.

When turning to dispersion and variance estimators these estimators will be
centered based on mean estimators. That is, we will throughout this section assume
that

µ̂m(x)
p−→ E[Z | X = x]

E[W | X = x]
, as m → ∞,(10)

and if this is not the case, local bias adjustment techniques as those in e.g. Denuit
et al. (2021), Lindholm et al. (2023), Wüthrich & Ziegel (2023) should be applied
first.

In order to be able to evaluate plug-in estimators of (9), we will use

V̂arm[W | X = x] :=
1

m

m∑
i=1

(Wi − Êm[W | X = x])2.
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Further, in analogy with the argumentation in Section 2 this means that we will
start by analysing the asymptotic local dispersion and variance estimators in small
neighbourhoods surrounding X = x. That is, we will start by analysing estimators
of φ(x), and the results for these local estimators then allow us to assess the validity
of a single global dispersion estimator.

Moreover, when it comes to estimation of φ, one alternative is to use the following
deviance based estimator:

φ̂Breg
m (x) :=

1

m− 1
DBreg(Y, µ̂m(x)),(11)

see e.g. (McCullagh & Nelder 1989, Sec. 2.3), (Ohlsson & Johansson 2010, Sec.
3.1.1) and (Wüthrich & Merz 2023, Sec. 5.3.1). When suppressing the dependence
on X we have the following result:

Lemma 3.1. Given an i.i.d. sample (Zi, Xi,Wi)
m
i=1 = (Zi, x,Wi)

m
i=1, and ϕ is

continuous, it holds that

φ̂Breg
m (x)

p−→ 2

(
E
[
Wϕ

(
Z

W

) ∣∣∣ X = x

]
− E[W | X = x]ϕ

(
E[Z | X = x]

E[W | X = x]

))
,

as m → ∞.

The proof of Lemma 3.1 is a direct consequence of Cramér-Slutsky, and does not
rely on assumed independence between Z and W , or that the true data generating
process satisfies (A1).

From Lemma 3.1 it is not obvious that φ̂Breg
m (x) converges in probability to φ(x),

even if the true data generating process has a likelihood which is consistent with
an EDF. We continue with analysing the Poisson deviance under assumption (A1)
given by

DPois(Y, µ) = 2

m∑
i=1

Wi(Yi log(Yi)− Yi log(µ)− Yi + µ),(12)

see e.g. Section 2.3.1 in McCullagh & Nelder (1989), which is a special case of the
Bregman deviance. This gives us the following result:

Corollary 3.1. Given an i.i.d. sample (Zi, Xi,Wi)
m
i=1 = (Zi, x,Wi)

m
i=1 it holds

that

φ̂Pois
m (x) :=

1

m− 1
DPois(Y, µ̂m(x))

p−→ φ∗(x), as m → ∞,

where

φ∗(x) := 2

(
E[Z log(Z) | X = x]− E[Z log(W ) | X = x]

− E[Z | X = x] log

(
E[Z | X = x]

E[W | X = x]

))
.

If data is truly Poisson according to (A1) with W = 1 then φ∗(x) := φ∗(µ(x))
satisfies

φ∗(µ(x)) = 1 +O(1/µ(x)).

The first part of the proof follows directly from Lemma 3.1, and the proof of the
asymptotic behaviour of φ∗ in terms of µ is given in Appendix B.

Corollary 3.1 reveals that the estimate for the over-dispersion parameter is in-
consistent even when data is truly Poisson according to (A1) with W = 1. In an
insurance context µ usually takes on small values, e.g., in the range 0.05 to 0.15.
Clearly, in this case the dispersion parameter estimate will be erroneous. More
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specifically, from the proof of Corollary 3.1 it follows that a crude upper bound of
φ∗(x) is given by

φ∗(µ(x)) = 2µ(x)E[log((1 + Z)/µ(x)) | X = x] ≤ 2µ(x) log((1 + µ(x))/µ(x)),

which gives us that, e.g., φ∗(µ(x) = 0.1) ≤ 0.48 < 1. Consequently, since the
estimator φ̂Pois

m (x) is not consistent even under ideal circumstances, the estimator’s
performance with non-constant W will likely be even more erratic. A numeri-
cal example illustrating this for the Poisson deviance is given in Example 5.17 in
Wüthrich & Merz (2023). Lemma 3.2 is concerned with the Poisson deviance, and a
similar inconsistency for Binomial data is noted in (McCullagh & Nelder 1989, Sec.
4.5.2), and in (Ohlsson & Johansson 2010, Sec. 3.1.1) numerical issues for Gamma
distributed data is discussed. Due to the above we will not continue to analyse the
effects of φ̂Breg

m on plug-in estimators of the variance of Z, and advice against using
deviance based estimates of φ for model checking.

An alternative to using an estimator of φ based on deviances is to use the cor-
responding Pearson estimator, see e.g. (Ohlsson & Johansson 2010, Sec. 3.1.1) and
(Wüthrich & Merz 2023, Sec. 5.3.1). By assuming that data is Tweedie distributed
according to (A1) with the explicit variance expression given by (A2), the (local)
Pearson estimator of φ(x) is given by

φ̂P
m(x) :=

1

m− 1

m∑
i=1

Wi(Yi − µ̂m(x))2

µ̂m(x)ξ
,(13)

and we have the following result:

Lemma 3.2. Given an i.i.d. sample (Zi, Xi,Wi)
m
i=1 = (Zi, x,Wi)

m
i=1 it holds that

φ̂P
m(x)

p−→ φ∗,P(x) :=

(
E[W | X = x]

E[Z | X = x]

)ξ (
E
[
Z2

W

∣∣∣ X = x

]
− E[Z | X = x]2

E[W | X = x]

)
= φ(x)− E[W | X = x]ξ−1

E[Z | X = x]ξ
Cov

[
Z2

W
,W

∣∣∣ X = x

]
,

as m → ∞, where

φ(x) :=
E[W | X = x]ξ−1 Var[Z | X = x]

E[Z | X = x]ξ
.(14)

If the underlying data generating process agrees with moment assumptions (A1) and
(A2) then φ∗,P(x) = φ(x).

The first part of the proof of Lemma 3.2 follows from Cramér-Slutsky without
making any assumptions about the dependence between Z and W or the distribu-
tion of the data generating process. That φ∗,P = φ follows from direct verification.
Also recall from Remark 2.1 that φ(x) can be replaced by φ if µ(x) ≡ µ.

From Lemma 3.2 it is seen that unless assumptions (A1) and (A2) hold the
dependence between Z and W matters. Further, φ(x) from (14) can be thought of
as a dispersion index, and note that given that (A1) and (A2) are satisfied it holds
that

φ(x) > φ(x).(15)

Thus, if we believe that assumptions (A1) and (A2) hold, then it must hold that
Cov[Z2/W,W | X = x] > 0. Consequently, by observing

φ∗,P(x) ≥ φ(x),(16)

implies that assumptions (A1) and (A2) are violated. Example A.1 shows an ex-
ample where the covariance term in φ∗,P from Lemma 3.2 can be both positive and
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ON DURATION EFFECTS IN NON-LIFE INSURANCE PRICING 9

negative. Consequently, observing (16) based on real data indicates that assump-
tions (A1) and (A2) are violated.

The above analysis is concerned with local dispersion parameter estimators, i.e.
estimators of φ(x). In practice, however, the assumption complying with (A2) tells
us that we should use a single over-dispersion parameter, whose Pearson estimator
is given by

φ̂P
m :=

1

m− 1

m∑
i=1

Wi(Yi − µ̂m(Xi))
2

µ̂m(Xi)ξ
,(17)

see e.g. Equation (3.9) in Ohlsson & Johansson (2010), where we in addition assume
that

φ̂P
m

p−→ φ∗,P, as m → ∞.(18)

Still, by observing

φ∗,P ≥ φ(x),(19)

this implies that the global φ∗,P violate assumptions (A1) and (A2) locally as well.
In Section 4 we will evaluate both (16) and (19) using real insurance data.

Similarly, by observing (16) the plug-in estimator of Var[Z | X = x,W = 1]
when assuming (A1) and (A2) satisfies

V̂arm[Z | X = x,W = 1]
p−→ φ∗,P(x)π(x)ξ ≥ Var[Z | X = x]

E[W | X = x]
, as m → ∞.(20)

Hence, if
Var[Z | X = x]

E[W | X = x]
≥ Var[Z | X = x,W = 1],

then the plug-in variance estimator from (A1) will result in local spurious over-
dispersion. A situation when this occurs is described in Example A.1. The same
argument applies if we instead use the global dispersion estimator (17) and (19)
holds.

This brings us to the final result of this section:

Lemma 3.3. Assume the moment structure given by (A1) and (A2), i.e. Var[Z |
X = x] is given by (9). Let V̂arm[Z | X = x] denote the corresponding plug-in
estimator when using µ̂m from Lemma 2.1, and φ̂P

m(x) from Lemma 3.2. It then
holds that

V̂arm[Z | X = x]
p−→ (σ∗(x))2, as m → ∞,

where

(σ∗(x))2 := Var[Z | X = x]− Cov

[
Z2

W
,W

∣∣∣ X = x

]
+Var[W | X = x]

(
E[Z | X = x]

E[W | X = x]

)2

.

Further, given that assumptions (A1) and (A2) hold, then the plug-in variance
estimator is consistent.

Thus, unless the moments of the data generating process are in agreement with
assumptions (A1) and (A2), the dependence between Z and W matters when using
plug-in estimation of the variance of Z, and the resulting variance estimator will
be biased. Further, it is seen that

Cov

[
Z2

W
,W

∣∣∣ X = x

]
< Var[W | X = x]

(
E[Z | X = x]

E[W | X = x]

)2
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is a necessary condition for the plug-in estimator of the unconditional variance to
overestimate the true variance. Overestimation of the variance has been noted
in Lindholm et al. (2023) for the freMTPL2freq data from CASdatasets when
analysing Poisson regression models, starting from assumption (A1) and (A2). It
can be verified that in fact Cov[Z2/W,W | X = x] < 0 for this data set. For a
detailed analyses of another real insurance data set, see Section 4 below.

If we instead consider a single global φ estimator, φ̂P
m from (17), the plug-in

variance estimator based on (9) is given by

V̂arm[Z | X = x] = φ̂P
mµ̂m(x)ξÊm[W | X = x] + µ̂m(x)2V̂arm[W | X = x],(21)

which results in

V̂arm[Z | X = x]
p−→ φ∗,P E[Z | X = x]ξ

E[W | X = x]ξ−1
+Var[W | X = x]

(
E[Z | X = x]

E[W | X = x]

)2

≥ φ∗,P E[Z | X = x]ξ

E[W | X = x]ξ−1
.

That is, a sufficient condition for spurious over-dispersion is again given by

φ∗ ≥ E[W | X = x]ξ−1 Var[Z | X = x]

E[Z | X = x]ξ
=: φ(x),

where φ(x) is precisely the dispersion index from (14), which implies that assump-
tions (A1) and (A2) are violated.

To summarise this far, Lemmas 3.2 and 3.3 provide local conditions on the de-
pendence between Z and W in order to observe spurious over-dispersion. Based
on these results it is also possible to assess whether a global dispersion parameter
estimate agrees with assumptions (A1) and (A2) or not. In Section 4 both local
and global dispersion parameter estimators will be assessed, and in the next section
we discuss direct estimation of Var[Z | X = x].

3.1. L2 estimation of mean and variance parameters. The (unweighted) L2

deviance loss based on Z avoids explicit assumptions on W and is given by

DL2(Z, µ) :=

m∑
i=1

(Zi − µ)2,(22)

which applied to (Zi, Xi,Wi)
m
i=1 = (Zi, x,Wi)

m
i=1 gives us

µ̂m(x) = Ê[Z | X = x],(23)

together with the duration adjusted actuarially fair premium from (2):

π̂m(x) :=
Ê[Z | X = x]

Ê[W | X = x]
=

µ̂m(x)

Ê[W | X = x]
= µ̂m(x),

or alternatively

µ̂m(x) = Ê[W | X = x]µ̂m(x).(24)

Thus, we can directly assess the variance of Z without making explicit assumptions
about W by using the estimator

V̂arm[Z | X = x] :=
1

m− 1
DL2(Z, µ̂m(x)),(25)

which is obtained by combining (22) and (23). This is always a consistent estimator
of Var[Z | X = x]. That is, if we in a first step estimate µ̂m(x) in accordance with

Electronic copy available at: https://ssrn.com/abstract=4474908



ON DURATION EFFECTS IN NON-LIFE INSURANCE PRICING 11

Lemma 2.1, in order to avoid potential issues related to the dependence between Z
and W , the variance of Z should be assessed using

µ̂m(x) = Ê[W | X = x]µ̂m(x),

in accordance with (24) instead of Wiµ̂m(x). This is in agreement with the discus-
sion in Lindholm et al. (2023).

Remark 3.1. By first estimating µ̂m(x) and adjusting with Ê[W | X = x], the
plug-in variance from Lemma 3.3 can be compared with the corresponding variance
estimated according to (25), since both estimators are based on the same mean
predictor. Further, recall that the L2 loss is a consistent scoring rule for the mean,
see Remark 2.1. This implies that differences observed between the two variance
estimators are due to violation of assumptions (A1) and (A2). That is, the observed
differences correspond to spurious over- or under-dispersion.

4. Numerical illustration

In the present note we consider the freMTPLfreq data from CASdatasets. This
data set has n = 413 169 policies where 96.3% of the policies have 0 claims and
3.5% of the policies have 1 claim, i.e. 0.2% of the policies have more than 1 claim
and there is no policy with more than 4 claims. Concerning the policy duration,
99.9% of the policies have a duration no larger than 1, 29.4% of the policies have
precisely a duration equal to 1, and the maximum observed duration is 1.99, see
Figure 1(A). Further, the data set has seven covariates; four categorical and three
numerical. For more information about the data set we refer the reader to Dutang
& Charpentier (2020). No additional data cleaning has been done.

To reduce effects from using a poorly specified regression function, i.e., the func-
tional form of µ(X), we use a Poisson gradient boosting machine (GBM) regression
model, see Friedman (2001), in accordance with (A1) and (A2) using ξ = 1. The
current numerical illustration uses the gbm-package in R, see Ridgeway (2020), with
default parameters except that we set the interaction depth to 2 instead of 1, to-
gether with a maximum of 5 000 trees. We here only focus on in-sample behaviour
and use 5-fold cross-validation for training the model, see Hastie et al. (2009). The
optimal number of trees using seed 201126 for the freMTPLfreq data set is 192.

Let µ̂(X) denote the mean predictor obtained from the Poisson GBM, henceforth
dropping the subscript w.r.t. n. In order to analyse the local performance of the
GBM model we start by ordering (µ̂(xi))

n
i=1 from highest to lowest risk to obtain

(µ̂(x(i)))
n
i=1, where x(i) corresponds to the covariate resulting in the ith largest

in-sample mean prediction. That is, by evaluating µ̂ in x(i) produces an estimate
of the 100i/n%th percentile of the distribution of µ̂(X). This allows us to analyse
the connection between µ̂(x(i)) and E[W | X = x(i)]. As an empirical locally
approximate unbiased estimator of E[W | X = x(i)] we use

Ê[W | X = x(i)] :=
1

2k + 1

i+k∑
j=i−k

w(j), k < i < n− k,(26)

where we assume that contracts that are close in x(i) should be reasonably close in

terms of the distribution W | X = x(i). Figure 1(B) shows Ê[W | X = x(i)] as a
function of x(i), which is equivalent to the 100i/n%th percentile of the distribution
of µ̂(X), where the moving average calculation (26) is done using 0.5%n = 2 066
data points. If W would be independent of X, we expect to see uniform noise,
but we rather see a pronounced trend where the risk is negatively correlated with
policy duration. This is similar to what is observed in Lindholm et al. (2023) for
the freMTPL2freq data set.
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Further, if assumption (A1) holds we expect to see that the expected number of
claims obtained by setting W ≡ 1, given by

µ̂Z|X,W=1(x(i)) := µ̂(x(i)),(27)

should be close to

Ê[Y | X = x(i)] :=
1

2k + 1

i+k∑
j=i−k

z(j)

w(j)
, k < i < n− k.(28)

Recall that from Lemma 2.1 we know that a reasonably well specified µ-model
estimated using a sufficient amount of data should be close to

π̂(x(i)) :=
Ê[Z | X = x(i)]

Ê[W | X = x(i)]
,(29)

where

Ê[Z | X = x(i)] :=
1

2k + 1

i+k∑
j=i−k

z(j), k < i < n− k.(30)

From Figure 1(C) it is clear that µ̂Z|X,W=1(x(i)) from (27) closely follows π̂(x(i))
from (29), which is in agreement with Lemma 2.1. It is, however, also clear that

µ̂Z|X,W=1(x(i)) is far off from Ê[Y | X = x(i)] from (28). This again implies that
assumption (A1) is violated.

Furthermore, assume that the observed durations are representative for a typical
year, neglecting the 0.1% of the data with policy durations in the range (0, 1.99]
years. As discussed in relation to Lemma 2.1, see Remark 2.1(b) and (7), assump-
tion (A1) matters: The duration annualised expected number of claims is given
by

µ̂Z|X(x(i)) := Ê[W | X = x(i)]µ̂(x(i)),(31)

which can be compared with the expected number of claims obtained by merely
setting W ≡ 1, i.e. µ̂Z|X,W=1(x(i)) from (27). From Figure 1(B) we know that
the expected duration is smaller than one, which together with (7) suggests that
µ̂Z|X(x(i)) ≤ µ̂Z|X,W=1(x(i)). This can be observed by comparing Figure 2(A),
where the solid black line corresponds to µ̂Z|X(x(i)), with Figure 1(C), where the
dashed black line corresponds to µ̂Z|X,W=1(x(i)). Consequently, if the distribu-
tion of the duration produces Figure 2(B), then Figures 1(C) and 2(A) tells us
that we will systematically overestimate the expected number of claims when us-
ing µ̂Z|X,W=1(x(i)) instead of µ̂Z|X(x(i)). Further, note that µ̂Z|X(x(i)) is nicely
aligned with the empirical counterpart given by (30). If this would not be the case,
one should first do local bias corrections as discussed in e.g. Denuit et al. (2021),
Lindholm et al. (2023), Wüthrich & Ziegel (2023), since any further analysis of
dispersion would not be meaningful.

The final part of the analysis is concerned with over-dispersion and variance
estimators, and we start by comparing φ̂P(x) from (13) with an estimate of φ(x)
from (14). That is, in analogy with (13) define

φ̂P(x(i)) :=

i+k∑
j=i−k

w(j)(y(j) − µ̂(x(i)))
2

µ̂(x(i))
,(32)

and as an estimator of (14) use

φ̂(x(i)) :=
σ̂
2

Z|X(x(i))

µ̂Z|X(x(i))
,(33)
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where

σ̂
2

Z|X(x(i)) := Ê[(Z − µ̂Z|X(X))2 | X = x(i)]

:=
1

2k + 1

i+k∑
j=i−k

(z(j) − µ̂Z|X(x(i)))
2, k < i < n− k,(34)

which corresponds to (25). This is summarised in Figure 2(A), and it seen that the

risk ordered φ̂Ps from (32) tend to be higher than the corresponding φ̂s from (33);
also recall relation (16). Further, when calculating the single global φ̂P from (17)

we get φ̂P = 1.72, which should be compared with the average φ̂ = 1.05. Thus,
this implies that assumptions (A1) and (A2) are violated for this data set, which
here will lead to non-negligible spurious over-dispersion, as discussed in Section 3.
Furthermore, from Figure 2(B) there are instances where the risk ordered (on the

µ̂-scale) φ̂Ps are lower than the corresponding φ̂s. This, however, is not in conflict
with Lemma 3.2, since this is an asymptotic result.

Continuing, the plug-in variance estimator when assuming (A1) and (A2), i.e.
using (9), is given by

σ̂2
Z|X(x(i)) := V̂ar[Z | X = x(i)]

= Ê[W | X = x(i)]φ̂
Pµ̂Z|X(x(i))

+ V̂ar[W | X = x(i)](µ̂Z|X(x(i)))
2,(35)

where V̂ar[W | X = x(i)] is calculated in analogy with (26). Recall that the

reference observations (i.e. the dots) in Figure 2(A) correspond to Ê[Z | X = x(i)]
from (30) that are weighted sums of responses. That is, each dot in Figure 2(A) is
an outcome from the random variable Z | X = x(i), whose variance is given by

Var[Z | X = x(i)] =
1

2k + 1
Var[Z | X = x(i)],(36)

which under assumptions (A1) and (A2) is estimated using (35). Further, as dis-
cussed in Remark 3.1, the plug-in variance estimator can be compared with the
locally unbiased empirical estimator from (34).

The results for the freMTPLfreq data is given in Figure 2(A), where the thin blue
lines correspond to ± one standard deviation based on (36) calculated using (35),
and the thin red lines are the corresponding standard deviations calculated using
(34). From this it is seen that the plug-in variance (35) is affected by spurious over-
dispersion indicating that assumptions (A1) and (A2) are violated, see Remark 3.1.
Upon closer inspection, the standard deviation based on (35) is on average about
30% higher than the standard deviation based on (34). This is reasonable, since√

φ̂P ≈ 1.3, and Ê[Z | X = x(i)] ≈ V̂ar[Z | X = x(i)]

when using the corresponding locally unbiased distribution-free estimators. Finally,
since we have been using a flexible GBM model, we believe that the observed
over-dispersion primarily is due to model misspecification through the violation of
assumptions (A1) and (A2) rather than being a consequence of using a too rigid
model for describing the influence of X on the response.

Further, the above analyses have been concerned with model evaluation w.r.t.
both model assumptions (A1) and (A2), and the corresponding GBM predictor.
An alternative is to, e.g., replace the GBM predictor with a piece-wise constant
auto-calibrated predictor as in Lindholm et al. (2023). By doing so it is possible
to reduce both the model complexity and the variance. For more on this, see e.g.
Denuit et al. (2021), Lindholm et al. (2023), Wüthrich & Ziegel (2023).
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Figure 1. Analyses of freMTPLfreq data, consisting of n = 413 169 observations,
using a Poisson GBM model. All moving averages are calculated using a centered
window of size [0.5%n] = 2 066 observations. All references to percentiles corresponds
to conditioning on X = x(i), where x(i) is the observed covariate value that produces
the 100i/n%th percentile value in the distribution of µ̂(X). The percentile values
have been evaluated in [

√
n] = 643 equidistant points. Panel (A) shows a histogram

of observed policy durations, W . Note the cut off at W = 1, which excludes 0.1%

of the data. Panel (B) shows Ê[W | X = x(i)] calculated according to (26). Panel
(C) shows average claims frequency; the dashed line shows the GBM predictor µ̂(X)
using the normalisation W ≡ 1, i.e. µ̂Z|X,W=1(x(i)) from (27); the green dots show

Ê[Y | X = x(i)] from (28), and the pink dots show π̂(x(i)) from (29).

As a final note, the above analyses are in agreement with the conclusions from
Lindholm et al. (2023), where the freMTPL2freq data set is analysed.

5. Concluding remarks

For all Bregman deviance functions we will obtain the same predictor for the
mean. This predictor will always be a consistent estimator of the duration adjusted
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Figure 2. Analyses of freMTPLfreq data, consisting of n = 413 169
observations, using a Poisson GBM model. All moving averages are
calculated using a centered window of size [0.5%n] = 2 066 observations.
All references to percentiles corresponds to conditioning on X = x(i),
where x(i) is the observed covariate value that produces the 100i/n%th
percentile value in the distribution of µ̂(X). The percentile values have
been evaluated in [

√
n] = 643 equidistant points. Panel (A) shows

annualised premia; the solid black line shows µ̂Z|X(x(i)) from (31); the

grey dots show Ê[Z | X = x(i)] from (30), and the thin blue and red lines
show the corresponding standard deviations given by (36), centered at
µ̂Z|X(x(i)), calculated according to (35) and (34), respectively. Panel

(B) shows Pearson estimators of φ; the blue dots correspond to φ̂P(x(i))s

from (32), the solid blue line corresponds to the global estimator φ̂P from

(17), the red dots correspond to φ̂(x(i))s from (33), the solid red line

corresponds to the mean of the φ̂(x(i))s.

actuarially fair premium, regardless of the true underlying data generating process,
and regardless of any potential dependence between Z and W . It is, however,
important to note that a consistent estimator of the annualised mean intensity,
E[Y | X = x] = E[Z/W | X = x], is not obtainable, unless the pro rata moment
assumption from (A1) is satisfied by the underlying data generating process. These
results that concern consistency of the mean estimator only relies on that there
exists a limiting population distribution for W .

Further, not surprisingly, if the mean estimator is not consistent, this will result
in inconsistent estimators of the dispersion parameter in a Tweedie model and
the corresponding plug-in variances. In this situation, the dependence between Z
and W matters and we derive conditions for when spurious over-dispersion occurs.
These conditions are consequences of that the duration W is included incorrectly
in the modelling and can be used for model checking purposes.

All of the above has been illustrated for real insurance data using a Poisson GBM
claim count model for the freMTPLfreq data set. For this data it is concluded that
the linear moment assumptions are violated and non-negligible over-dispersion is
present.

Electronic copy available at: https://ssrn.com/abstract=4474908



16 M. LINDHOLM AND T. NAZAR

Acknowledgments

The authors are grateful to F. Lindskog for comments and discussions. M. Lind-
holm gratefully acknowledges financial support from the Länsförsäkringar Alliance
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Appendix A. Examples

Example A.1. Assume that Z | W ∼ Pois(µW 1+ϵ), which gives us that

Cov[Z2/W,W ] = µCov[W,W ϵ] + µ2 Cov[W,W 1+2ϵ].

Hence, if ϵ = −1/2 we get that

Cov[Z2/W,W ] = µCov

[
W,

1√
W

]
= µ

(
E[
√
W ]− E[W ]E

[
1√
W

])
≤ µE[

√
W ]

(
1− E[

√
W ]E

[
1√
W

])
≤ 0,

due to Jensen’s inequality, and if ϵ = 0

Cov[Z2/W,W ] = µ2 Var[W ] ≥ 0,
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as it should. Further, if ϵ = 1 it follows that

Cov[Z2/W,W ] = µVar[W ] + Cov[W,W 3] ≥ 0,

where the inequality follows by noting that E[W ] ≤ E[W 4]1/4 and E[W 3] ≤ E[W 4]3/4,
which follows from concavity and Jensen’s inequality.

The above illustrates that the covariance may become both negative and positive.

Appendix B. Proof of Lemma 3.2: the asymptotics of φ∗ in terms of µ

In order to simplify the exposition (possible) dependence onX = x is suppressed.
From the first part of the lemma we have that

φ∗(µ) = 2(E[Z log(Z)]− µ log(µ)).

Taylor expanding the first term inside the expectation around Z = µ yields

φ∗(µ) = 2

(
1

2
+

∞∑
k=3

(−1)k

k

E[(Z − µ)k]

µk−1

)
.

Thus, if it holds that E[(Z − µ)k] = O(µk−2), k ≥ 3, it follows that

φ∗(µ) −→ 1, as µ −→ ∞.

We start by proving the following result which ascertains that the central moments
are bounded in the desired way:

Proposition B.1. Let Z ∼ Pois(µ), µ > 0. It holds that

E[(Z − µ)n] = O(µn−2), ∀n ≥ 3.

N.B. It is possible to show that certain central moments are of even lower order
than O(µn−2), but this is not needed for the current purposes.

To prove Proposition B.1 we use the following lemmas.

Lemma B.1. For m = 0, 1, 2 it holds that

n∑
k=0

(−1)k
(
n

k

)
km = 0,

together with

n−1∑
k=0

(−1)k
(
n

k

)
km = (−1)n+1nm.

Proof. The result for m = 0 follows directly from the binomial theorem:

n∑
k=0

(−1)k
(
n

k

)
=

n∑
k=0

(
n

k

)
1n−k(−1)k = (1− 1)n = 0.

For m = 1, 2 we take a different approach. Examine the function

g(x) =

n∑
k=1

(−1)k
(
n

k

)
xk = (1− x)n − 1.

The last equality holds from the binomial theorem (subtract 1 since we are summing
from k = 1). Clearly

g′(1) =

n∑
k=1

(−1)k
(
n

k

)
k = −n(1− 1)n−1 = 0,
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from which it follows that

g′′(1) =

n∑
k=1

(−1)k
(
n

k

)
k(k − 1) = n(n− 1)(1− 1)n−2 = 0,

and it, hence, holds that
n∑

k=1

(−1)k
(
n

k

)
k2 =

n∑
k=1

(−1)k
(
n

k

)
k = 0.

This finishes the proof of the first part. The proof of the second part follows by
splitting the sum into two parts: the sum from 0 to n − 1 and the n:th term and
finally carrying over the n:th term to the r.h.s. This concludes the proof of the
lemma. □

The second lemma needed to prove the proposition is the following:

Lemma B.2. Let Z ∼ Pois(µ), µ > 0. It then holds that

E[(Z − µ)n] =

n∑
a=0

µaS2(n, a), ∀n ∈ N,

where

S2(a, b) =

b∑
k=0

(−1)k
(
a

k

)
S(a− k, b− k)

and S(m,n) are Stirling numbers of the second kind.

Proof. See Privault (2011). □

Proof of Proposition B.1. Given Lemma B.2, what remains to show is that

S2(n, n) = S2(n, n− 1) = 0.

To start off, for Stirling numbers of the second kind it holds that

S(n, n) = 1 and S(n, n− 1) =
n(n− 1)

2
, ∀n ∈ N.

Next, note that

S2(n, n) =

n∑
k=0

(−1)k
(
n

k

)
S(n− k, n− k) =

n∑
k=0

(−1)k
(
n

k

)
= 0,

where the last equality follows from Lemma B.1. Continuing,

S2(n, n− 1) =

n−1∑
k=0

(−1)k
(
n

k

)
S(n− k, n− k − 1)

=

n−1∑
k=0

(−1)k
(
n

k

)
(n− k)(n− k − 1)

2

=
1

2

n∑
k=0

(−1)k
(
n

k

)
(n2 − 2nk + k2 − n+ k)

=
1

2

(
(n2 − n)

n−1∑
k=0

(−1)k
(
n

k

)
− (2n− 1)

n−1∑
k=0

(−1)k
(
n

k

)
k

+

n−1∑
k=0

(−1)k
(
n

k

)
k2

)

=
(−1)n+1

2

(
n2 − n− (2n− 1)n+ n2

)
= 0,
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where the last equality holds from Lemma B.1. This proves the proposition. □
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