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Abstract. The paper introduces a method for creating a categorical generalised linear model
(GLM) based on information extracted from a given black-box predictor. The procedure for

creating the guided GLM is as follows: For each covariate, including interactions, a covariate
partition is created using partial dependence (PD) functions calculated based on the given black-

box predictor. In order to enhance the predictive performance, an auto-calibration step is used

to determine which parts of each covariate partition that should be kept, and which parts that
should be merged. Given the covariate and interaction partitions, a standard categorical GLM

is fitted using a lasso penalty.

The performance of the proposed method is illustrated using a number of real insurance data
sets where gradient boosting machine (GBM) models are used as black-box reference models.

From these examples it is seen that the predictive performance of the guided GLMs is very close

to that of the corresponding reference GBMs. Further, in the examples, the guided GLMs have
few parameters, making the resulting models easy to interpret. It is also seen that the guided

GLMs often tend to be close to the corresponding GBMs in terms of fidelity, but there are

examples where these differences are non-negligible.

Keywords: Feature extraction, Black-box models, Surrogate models, Regularisation, Auto-
calibration

1. Introduction

Generalised linear models (GLMs) or general additive models (GAMs) are the standard bench-
mark models used in most non-life insurance pricing, see e.g. Ohlsson & Johansson (2010), Wüthrich
& Merz (2023). These types of models are well-studied, transparent and, hence, easy to interpret,
which is part of their popularity and widespread use in the decision making process. If one instead
considers machine learning (ML) methods such as gradient boosting machines (GBMs) and neural
networks (NNs), see e.g. Hastie et al. (2009) for a general introduction, and e.g. Denuit et al. (2020)
and Wüthrich & Merz (2023), which also discusses actuarial applications, these type of methods
tend to outperform GLMs and GAMs in terms of predictive accuracy. A potential problem, how-
ever, is that the predictors obtained when using ML-methods tend to be hard to interpret. In this
short note we introduce a method for guided construction of a categorical GLM based on a given
black-box predictor µ̂(x). From a practitioner perspective this is a very tractable approach, since
categorical GLMs are well understood and are widely used for non-life insurance pricing, see e.g.
Ohlsson & Johansson (2010). This approach is similar to the one introduced in Henckaerts et al.
(2022), but our focus is not on maintaining fidelity w.r.t. the original predictor µ̂(x), but rather
to find an as good categorical GLM as possible. For more on surrogate modelling, see e.g. Hinton
et al. (2015), Henckaerts et al. (2022) and the references therein.

The general setup is that we observe (Z,X,W ) data, where Z is the response, e.g. number of
claims or claim cost, X is a d-dimensional covariate vector, and W is an exposure measure, e.g.
policy duration. It will be assumed that Z, given X and W belongs to an exponential dispersion
family (EDF), see e.g. Jørgensen & Paes De Souza (1994), Ohlsson & Johansson (2010), Wüthrich
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2 M. LINDHOLM AND J. PALMQUIST

& Merz (2023), which includes e.g. the Tweedie distribution. Further, it will be assumed that

E[Z | X,W ] = Wµ(X) and Var(Z | X,W ) = Wσ2(X),(1)

which is common to use in insurance pricing, see e.g. Ohlsson & Johansson (2010), Wüthrich &
Merz (2023). Hence, if we let Y := Z/W , based on (1) it follows that

E[Y | X,W ] = µ(X) = E[Y | X] and Var(Y | X,W ) =
1

W
σ2(X).(2)

When it comes to building a guided GLM based on an exogenous black-box predictor µ̂(x), the
exposition will focus on at most two-way interactions, but the generalisation to higher order inter-
actions is straight forward. Further, focus will be on log-linear models, but the assumption of using
a log-link function can also be relaxed, and the procedure using other link-functions is analogous
to the one described below. The suggested procedure can be summarised as follows: In a first step,
start from a general d-dimensional covariate vector x′ := (x1, . . . , xd)

′ ∈ X, X := X1 × · · · × Xd,
where xj ∈ Xj , j = 1, . . . , d, and use a given mean predictor µ̂(x) to define categorical versions
of the original covariates, xj , and two-way interactions. This step uses partial dependence (PD)
functions, see e.g. Friedman & Popescu (2008), to construct categories, or, equivalently, a partition
of Xj . This is the same idea used in Henckaerts et al. (2022), but instead of aiming for fidelity
w.r.t. the original PD-function, the number of categories, or the size of the partition, is adjusted
using an auto-calibration step, see e.g. Krüger & Ziegel (2021), Denuit et al. (2021). In this way
focus is shifted from fidelity w.r.t. the initial predictor to accuracy of the new predictor, since the
auto-calibration step will remove categories that do not contribute to the final predictor’s predic-
tive performance. In a second step, once the categorical covariates have been constructed, fit a
standard categorical GLM with a mean function from (1) of the form

µ(x;β) := exp

β0 +

d∑
j=1

κ∑
k=1

β
(k)
j 1{xj∈B(k)

j } +

d∑
i=1

∑
i<j

κ∑
k=1

β
(k)
i,j 1{(xi,xj)∈B(k)

i,j }

 ,(3)

where ∪κ
k=1B

(k)
• =: X•, and where the β

(k)
• s are regression coefficients. Further, EDFs can be

parametrised such that σ2(X) = ϕV (µ(X)), where ϕ is the so-called disperision parameter, and
V is a variance function. Using this parametrisation together with the moment assumptions (1),
gives us that the β-coefficients from (3) can be estimated using the deviance loss function

D(y;β, λ) :=

n∑
i=1

wid(yi, µ(xi;β)),(4)

where d(y, µ) is the unit deviance function of an EDF, see e.g. Ohlsson & Johansson (2010),
Wüthrich & Merz (2023), µ(xi, β) is from (3).

The remainder of this short note is structured as follows: In Section 2 basic results on PD-
functions are provided. Section 2.1 discusses implications and interpretations of using PD-functions,
followed by Section 2.2, which describes how PD-functions can be used to partition the covariate
space, both marginally and w.r.t. interaction effects, in this way creating categorical covariates.
This section also describes how a marginal auto-calibration procedure can be used to remove
possibly redundant categories. Section 3 discusses various implementational considerations and
describes a full estimation procedure, which is summarised in Algorithm 1. The paper ends with
numerical illustrations based on Poisson models applied to real insurance data, see Section 4,
followed by concluding remarks in Section 5.

2. Partial dependence functions

The partial dependence function w.r.t. a, potentially exogenously given, (mean) function µ(x),
x′ = (x1, . . . , xd)

′ ∈ X, and the covariates xA, A ⊂ {1, . . . , d}, is given by

PD(xA) :=

∫
µ(xA, xAC)dP(xAC),(5)
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where AC = {1, . . . , d} \ A, see e.g. Friedman & Popescu (2008). Note that (5) can be rephrased
according to

PD(xA) = E[µ(xA, XAC)],(6)

which illustrates that PD(xA) quantifies the expected effect of XA = xA, when breaking all
potential dependence between XA and XAC , see Friedman & Popescu (2008). In particular, note
that if µ(x) := E[Y | X = x], the PD-function w.r.t. A is related to the expected effect of A
on Y , when adjusting for potential association between XA and XAC , see Zhao & Hastie (2021).
Henceforth, all references to µ will, unless stated explicitly, treat µ as a conditional expected value
of Y .

Remark 1.

(a) The PD-function (6) w.r.t. a potentially exogenously given µ is expressed in terms of an un-
conditional expectation w.r.t. XAC . This is qualitatively different to

µ(xA) := E[µ(XA, XAC) | XA = xA],(7)

which relies on the distribution of XAC | XA.
Further, note that the PD-function aims at isolating the effect of XA, when adjusting for

potential association with the remaining covariates. This is not the case for (7), where effects
in xA could be an artefact of a strong association with (a subset of the covariates in) XAC .

Another related alternative is to use accumulated local effects (ALEs), see Apley & Zhu
(2020), which is closely connected to (7), but making use of a local approximation, and, hence
suffers from similar problems as (7). See also the discussion about PDs and ALEs in Henck-
aerts et al. (2022).

(b) If the ambition is to construct a black-box guided (categorical) GLM model, it could be an
alternative to apply the black-box model directly to subsets of covariates, i.e.

µ(xA) := E[Y | XA = xA],

but recall Remark 1(a), and see Remark 2 below. Also note that this will likely become compu-
tationally intensive, and the sub-models based on µ(xA) are models that would not have been
used in practice, and the models are not necessarily consistent with the original full model µ(x).

(c) In practice, when using PD-functions a potentially exogenous predictor µ can be evaluated
without having access to the conditional distribution of XAC | XA, as opposed to (7).

2.1. Implications of partial dependence functions. Consider the following log-linear additive
model:

µ(x) := exp

β0 +

d∑
k=1

fk(xk) +

d∑
k=1

∑
j<k

fj,k(xj , xk)

 ,(8)

where the fs are, e.g., basis functions. Hence, if we let A = {j}, and introduce x\j := xAC , it
follows that the PD based on (8) w.r.t. xj reduces to

PD(xj) = exp{fj(xj)} exp{β0}
∫

exp


d∑

i=1

∑
k ̸=i

fi,k(xi, xk)

 dP(x\j)

= exp{fj(xj)}ν\j(xj).(9)

Thus, the PD-function provides a marginalised effect of xj , but it is not the same as exp{fj(xj)}.
Still, the changes in the PD-function w.r.t. xj are related to changes in the jth dimension of µ(x),
when adjusting for possible dependence between Xj and X\{j}, see Remark 1(a). This is also in
line with the critique against using PD-functions, in favour of using ALEs, in Apley & Zhu (2020).
Note, however, as discussed in the introduction, for our purposes the PD-function is only used to
obtain covariate partitions, so that whether the absolute level of a marginal effect is correct or not,
is of considerably less importance. We will come back to this discussion when describing how to
construct covariate partitions in Section 2.2, see also Remark 2(a) below.
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Further, note that if fj,k(·) = 0 for all j, k it follows that

PD(xj) ∝ exp{fj(xj)}.(10)

That is, when there are no interaction effects, the PD w.r.t. xj will, under model specification (8),
retrieve the true direct effect of xj up to scaling.

Analogously, if we instead consider bivariate PD-functions and consider A = {j, k}, with
x\{j,k} := xAC , it follows that

PD(xj , xk) = exp{fj(xj) + fk(xk) + fj,k(xj , xk)}ν\{j,k}(xj , xk),(11)

which neither retrieves the correct bivariate interaction (up to scaling), unless there are no direct
effects w.r.t. xj and xk, and there are no other interaction effects including either of xj and xk,
but again, recall Remark 1(a).

Similar relations hold for other link-functions than the log-link, but in this short note focus will
be on the log-link function.

2.2. Covariate engineering, PD-functions, and marginal auto-calibration. As discussed
when introducing the expectation representation of the PD-function in (6), see also Remark 1(a),
the PD-function of XA aims at isolating the expected effect of XA, when adjusting for potential
influence from XAC . This suggests to use PD-functions for covariate engineering w.r.t. individual
covariates, which allows us to partition the covariate space and, ultimately, construct a data driven
categorical GLM. That is, if PD(xj) ∈ B we can construct the corresponding covariate set on the
original covariate scale according to

xj ∈ B := {x∗
j ∈ Xj : PD(x∗

j ) ∈ B}.

This allows us to use the PD-function to partition Xj , based on where Xj is similar in terms of
PD-function values, which can be generalised to tuples of covariates.

In order to construct a partition based on PD-functions, consider a sequence of b
(k)
j s such that

−∞ =: b
(0)
j < b

(1)
j < . . . < b

(κ−1)
j < b

(κ)
j := +∞,(12)

and set B
(k)
j := (bj,k−1, bj,k], i.e. ∪κ

k=1B
(k)
j = R. The corresponding partition of Xj , denoted

Πj := (B(k)
j )κk=1, is defined in terms of the parts

B(k)
j := {x∗

j ∈ Xj : PD(x∗
j ) ∈ Bk}, k = 1, . . . , κ.(13)

That is, ∪κ
k=1B

(k)
j = Xj . Thus, without having specified how to obtain a partition of the real

line according to (12), including both the size of the partition and the location of split points,
it is clear that given such a partition the procedure outlined above can be used to construct
a categorical GLM in agreement with (3). Moreover, note that (13) allows us to introduce an
auxiliary categorical covariate Xj , which is a categorical version of Xj :

Xj := Xj(Xj) :=

κ∑
k=1

k1{Xj∈B(k)
j }.(14)

The use of categorical covariates Xj will simplify the exposition in Setion 3.
Further, if the ambition is to construct a categorical GLM with good predictive accuracy it is

reasonable to only keep the parts in the partition Πj that actually impacts the response. One way
to achieve this is to use a marginal auto-calibration step: Define

µ
(k)
j := E[Y | Xj ∈ B(k)

j ], k = 1, . . . , κ,(15)

and introduce the following piece-wise constant mean predictor

µj(Xj) :=

κ∑
k=1

µ
(k)
j 1{Xj∈B(k)

j }, µ
(k)
j ∈ R.(16)

By using the µ
(k)
j s from (15) it is possible to compare how the mean predictions change as a

function of the parts in the partition defined by the B(k)
j s. Thus, the µjs from (15) can be used to
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remove, or merge, B(k)
j s in the partition that lacks an isolated impact on the response. The output

of such a procedure is again a partition.
Further, note that

µj(Xj) = E[Y | µj(Xj)],(17)

which follows directly from the Tower property, where (17) precisely corresponds to that µj(Xj)
is auto-calibrated, see Krüger & Ziegel (2021), Denuit et al. (2021). A consequence of this is that,
given the information contained in µj(Xj), the predictor can not be improved upon.

This procedure is analogously defined for tuples of covariates, and a precise implementation is
described in Section 3.

Remark 2.

(a) If we consider a numerical covariate, the idea of using a PD-function to construct a covariate
partition is only relevant when the PD-function is not monotone, since otherwise we could just
as well partition the covariate directly based on, e.g., quantile values. Note that this comment,
of course, if we would change from using PD-functions to using, e.g., ALEs or some other
covariate effect measure.

Further, from the above construction it is clear that the PD-function is only used to construct
covariate partitions. That is, the actual impact on the response, here measured in terms of
PD-functions values, is of lesser importance, as long as the PD-function changes when the
covariate values change. Consequently, it is the sensitivity of the measure being used, here
PD-functions, that matters, not the level, where the latter is the primary critique for using
PD-functions instead of, e.g., ALEs, see Apley & Zhu (2020) and the discussion in Henckaerts
et al. (2022). Also recall Remark 1(a) above.

(b) Note that the output of the auto-calibration step (17) is not a new PD-function, but a condi-
tional expected value. Still, the partitioning will be based on similarity in terms of PD-function
values, but those parts in the partition that do not effect the response will be removed. This is
believed to be beneficial, since the ambition is to construct a guided categorical GLM with good
predictive performance. If one instead favour models with as high fidelity w.r.t. the original
black-box predictor, i.e. a so-called surrogate model, see e.g. Henckaerts et al. (2022), the auto-
calibration step is problematic for, e.g., ordered categories, since the merging of categories does
not respect ordering. The corresponding step in the algorithm of Henckaerts et al. (2022), see
their Algorithm 1, merge categories only based on fidelity to the original PD-function, see their
equation (2). Also note that for numerical and ordinal covariates the procedure in Henckaerts
et al. (2022) only merge PD-function values that have adjacent covariate values.

(c) Recall Remark 1(a) and note that if we would replace the PD(xj) with µ(xj), it by construction
holds that

µ(Xj) = E[Y | µ(Xj)],

if µ(xj) is the true mean function. This choice, however, is likely computationally demanding
and not practically feasible based on a finite sample, see Lindholm et al. (2023).

Further, also recall from Remark 1(a), by using µ(xj) we are no longer targeting the isolated
effect of xj, due to the possible dependence with the remaining covariates.

3. Constructing a guided categorical GLM

The first step in creating a guided GLM is to calculate the PD-function values from the external
black-box predictor µ̂(x). For each covariate dimension j this is done based on either κ equidis-
tributed quantile values if the jth covariate is continuous, or at all categorical levels if the jth

covariate dimension is categorical. This defines a partition Πj = (B(k)
j ) of Xj .

Given a candidate partition Πj , evaluate if some parts of the partition should be merged using
marginal auto-calibration as discussed in Section 2.2. A simple way to do this is to use regression
trees: A regression tree with κ terminal nodes (or leafs), denoted T (x), is defined according to

T (x) :=

κ∑
k=1

δk1{x∈Gk}, δk ∈ R,(18)
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6 M. LINDHOLM AND J. PALMQUIST

where ∪κ
k=1Gk =: X, see e.g. Hastie et al. (2009), which is of the same form as µj from (16). In

particular, recall that xj from (14) is a compact way to encode the PD-function partitions, which
allows (16) to be re-written according to

µj(xj) :=

κ∑
k=1

µ
(k)
j 1{xj=k}.

Further, in this short note we will use L2-regression trees estimated using square loss in a greedy
manner, using cross-validation (CV), see e.g. Hastie et al. (2015). That is, if we use the categorical
representation of xj , i.e. xj from (14), the empirical loss that will be (greedely) minimised is given
by

µ̂j(xj) := argmin
T∈Tκ

n∑
i=1

wi(yi − T ((xj)i))
2,(19)

where (xj)i denotes the ith observation of the xjth categorical covariate, where the wi weights
have been added in order to agree with the GLM assumptions from (1), and where Tκ corresponds
to the set of binary regression trees with at most κ terminal nodes. Thus, by minimising (19)
redundant levels in the categorical covariate xj will be merged. Recall that this is equivalent to

merging redundant B(k)
j s, and this produces an updated, possibly reduced, partition. Further,

the motivation of using L2-trees instead of, e.g., a Tweedie loss is because all Tweedie losses that
are special cases of the Bregman deviance losses, see Denuit et al. (2021), result in the same
mean predictor for a given partition Bk, see e.g. Lindholm & Nazar (2023). In particular, note

that the resulting µ̂js correspond to empirical means, regardless of the Tweedie loss functions

used, hence making this step model-free. For alternatives to using L2-regression trees to achieve
auto-calibration, see e.g. Denuit et al. (2021), Wüthrich & Ziegel (2023).

If the procedure from Section 2.2 is applied to all covariates and interactions, the resulting
number of categorical levels, and, hence, β coefficients to be estimated in (3) can become very
large. This suggests that regularisation techniques should be used when fitting the final categorical
GLM. One way of achieving this is to use L1-regularisation, or so-called lasso-regularisation, see

e.g. Hastie et al. (2015). If we consider EDF models, this means that we, given the B(k)
• s, use the

following penalised deviance loss function

D(y;β, λ) :=

n∑
i=1

wid(yi, µ(xi;β)) + λ|β|,(20)

which is the loss from (4), but where the L1-penalty term λ|β| has been added, where λ is the
penalty parameter. The λ-parameter is chosen using k-fold CV.

Moreover, if the covariate vector x is high-dimensional it can be demanding already to evaluate
all two-way interactions fully. An alternative is here to consider only those two-way interactions
that are believed to have an impact on the final model. This can be achieved by using Friedman’s
H-statistic, see Friedman & Popescu (2008):

Hj,k =
Ê[(PD(Xj , Xk)− PD(Xj)− PD(Xk))

2]

Ê[PD(Xj , Xk)2]
,(21)

where Ê[·] refers to the empirical expectation. That is, (21) provides an estimate of the amount of
excess variation in PD(Xj , Xk) compared with PD(Xj) + PD(Xk).

By combining all of the above, focusing on a categorical GLM with at most two-way interactions,
we arrive at Algorithm 1. Of course, if two-way interactions turn out to be insufficient, the
procedure can be extended analogously to consider higher order interactions as well.
Remark 3.

(a) Note that there is a qualitative difference between using L2-trees, or other deviance based binary
trees, and using L1-penalisation: Trees merge categories (parts in a partition), whereas using

an L1-penalty will remove categories, or, equivalently, merge removed categories with a global
intercept.
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(b) The L1-penalty from (20) has a single λ applied to all β-coefficients. An alternative is to use
a grouped penalty, see e.g. Hastie et al. (2015). That is, one could, e.g., use one λ-penalty for
individual covariates and one λ for interaction terms, see e.g. Henckaerts et al. (2022).

Algorithm 1 – Guided GLM

Input.
– Black-box mean function µ̂
– Observed i.i.d. training data (yi, xi, wi)

n
i=1

– κ denote the maximum grid range for PD-function
– γ denote the number of interaction terms
– θtree denote hyperparameters for regression trees

A. Marginal effects
For each dimension j of x

Initial marginal effect: Compute PD(xj) based on µ̂(x) at each categorical level or at κ∗

equally sized quantiles of xj and construct the candidate categorical version of xj , xj , from
(14). Let κ∗

j := |Xj | if Xj is categorical and finite, otherwise κ∗
j = κ

Auto-calibration:Merge possibly redundant categories in xj by fitting an L2-regression tree,

µ̂j(xj), with at most max(κ, κ∗
j ) terminal nodes according to (19) and hyperparameters

θtree

Output marginal partition: Extract covariate partition Πj := (B(k)
j )κk=1 from µ̂j(xj)

B. Interaction effects
Calculate the Friedman H-statistic for all factor combinations according to (21)

For the factor combinations (xj , xl) with the γ highest scores

Initial interaction effect: Compute PD(xj , xl) based on µ̂(x) at each integer κ∗
j / κ∗

l / κ
level combination of (xj , xl) and construct the candidate categorical version of (xj , xl),
xj,l := xj,l(xj , xl), in analogy with (14)

Auto-calibration: Merge possibly redundant categories in xj,l by fitting an L2-regression

tree, µ̂j,l(xj,l), with at most max(κκ∗
j , κκ

∗
l , κ

∗
jκ

∗
l , κ

2) terminal nodes in analogy with (19)
and hyperparameters θtree.

Output interaction partition: Extract interaction partition Πj,l := (B(k)
j,l )

κ
k=1 from µ̂j,l(xj,l)

C. Final model
Use the marginal partitions Πj , from A., and the Πj,l interaction partitions, from B. to
define the structure of the categorical GLM given by (3). Estimate the β-coefficients from
(3) using the L1 penalised deviance from (20). The value of λ is obtained using k-fold CV.

4. Numerical illustrations

In the current section we will construct guided categorical GLMs based on reference models that
are GBMs, following the procedure described in Algorithm 1, using the freMTPL, beMTPL, auspriv,
and norauto data sets available in the R-package CASdataset, see Dutang & Charpentier (2020).
Only Poisson claim count models will be considered, i.e. the Poisson deviance

DPois(y;µ) :=

n∑
i=1

wi (yi log(yi)− yi log(µi)− yi − µi) ,(22)

will be used for model estimation and prediction evaluation. Concerning data, for all data sets
analysed 2/3 of the data have been used for in-sample training, and 1/3 for out-of-sample (hold
out) evaluation.
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Further, all GBM models use a tree depth of two, 0.01 learning rate and a bag fraction of 0.75
corresponding to the fraction of training data used for each tree iteration. The maximum number
of trees is set to 4 000 with the optimal number chosen via 5-fold cross validation and the remaining
hyperparameters are the default levels in the R-package GBM. Hence, hyperparameters for the GBM
modelling are the same as those used in Henckaerts et al. (2022), as described in their section 3.2.1.

When implementing Algorithm 1 the number of interaction terms is set to 5 (γ) and the max-
imum grid size for the PD-functions is set to 30 (κ). Concerning the hyperparameters for the
L2-trees (θtree), the minimum bucket size is set to 10 and the cost penalty parameter is set to
0.00001 in order to allow for very deep un-pruned trees, after which the optimal tree size, includ-
ing pruning, is determined using cross validation as implemented according to the rpart-package
in R.

From Algorithm 1 it is clear that there is no ambition to replicate the PD-functions of the
initial model, which here is a GBM. An example of PD-functions for the different models for the
freMTPL-data is given in Figure 1. From Figure 1 it is also seen that the GBM’s PD-functions
are monotone for the covariates “Vehicle age” and “Bonus Malus”, which, hence could have been
adjusted directly using an L2 tree, see Remark 2(a). Moreover, from Figure 1 it is also seen that
the number of categories in the guided categorical GLM is reduced by using a final lasso (L1) step
in Algorithm 1. Further, the number of active parameters in the final guided categorical GLM are
summarised in Table 1, and it can be noted that the number of parameters tends to be very low.

Furthermore, Table 1 shows the fidelity of the guided categorical GLM w.r.t. the original GBM
model, where fidelity is defined as the correlation between the initial GBM mean predictor and
the corresponding guided categorical GLM predictor. From, this it is seen that fidelity tends to
be rather high for the data sets being analysed, with no fidelity less than 88%. These numbers,
however, tend to deviate considerably for freMTPL and beMTPL compared to the surrogate model
of Henckaerts et al. (2022), see their Table 5. This could, at least, partly be caused by the use
of different seeds, or other model differences. A more detailed comparison of the differences of
the two predictors is seen in the scatter plots provided in Figure 2, which agree with the fidelity
calculations.

Continuing, in order to compare the predictive performance of the guided categorical GLM and
the reference GBM, we calculate the out-of-sample relative difference in Poisson deviance, ∆DPois,
defined according to

∆DPois :=
DPois(y; µ̂

GLM⋆

)−DPois(y; µ̂
GBM)

DPois(y; µ̂GBM)
,(23)

where DPois(y;µ) is given by (22), and where the gudied GLM is denoted by GLM⋆. From Table 1
it is seen that the ∆DPois values for the different data sets are very small indicating that the
guided categorical GLMs tends to track the performance of the initial GBMs closely. One can also
note that the guided categorical GLM in fact outperforms the corresponding GBMs for the beMTPL
and auspriv data sets, although these results could be due to random fluctuations. Further,
by comparing with the surrogate model from Henckaerts et al. (2022), see their Table 4, their
relative Poisson deviances are comparable to those in Table 1. It is, however, worth noting that
the guided categorical GLMs with the lowest fidelity, beMTPL and freMTPL, are the ones that also
differ the most compared with Henckaerts et al. (2022), in favour for the current guided GLM.
Still, as commented on above, the observed differences could, at least partly, be due to not using
the same seed or other model differences. Continuing, the relative Poisson deviance values provide

Data No. of parameters ∆DPois Fidelity
norauto 2 0.11% 100%
beMTPL 90 -0.29% 88%
auspriv 2 -0.04% 98%
freMTPL 49 0.58% 89%

Table 1. Summary statistics for the different data sets, where ∆DPois is defined
in (23), and where fidelity refers to the correlation between the GBM predictor
and the corresponding guided categorical GLM.
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(a) Vehicle Age (b) Driver Age

(c) Bonus Malus (d) Density

Figure 1. Comparison of model factor effects (PDPs) for the freMTPL data be-
tween initial GBM-model (black lines), guided categorical GLM including final
lasso (L1) step (red lines) and a model including all levels found by the tree-
calibration (blue lines).

a summary of the overall out-of-sample performance. In order to asses local performance of the
mean predictors, we use concentration curves, see e.g. Denuit et al. (2019), see Figure 3. From
Figure 3 it is again seen that the local performance of the mean predictors of the guided categorical
GLMs are comparable to the corresponding GBMs’ performance.

Electronic copy available at: https://ssrn.com/abstract=4691626



10 M. LINDHOLM AND J. PALMQUIST

(a) freMTPL, fidelity 0.89. (b) auspriv, fidelity 0.98.

(c) beMTPL, fidelity 0.88. (d) norauto, fidelity 1.00.

Figure 2. Scatter plots for different CASDatasets data, comparing the original
GBM models and the corresponding guided categorical GLMs. Fidelity corre-
sponds to the correlation between the two predictors.

Electronic copy available at: https://ssrn.com/abstract=4691626



BLACK-BOX GUIDED GLM BUILDING WITH NON-LIFE PRICING APPLICATIONS 11

(a) freMTPL. (b) auspriv.

(c) beMTPL. (d) norauto.

Figure 3. Concentration curves for different CASDatasets data comparing the
original GBM models (red lines) and the corresponding guided categorical GLM
(blue lines).
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5. Concluding remarks

In the current short note we introduce a simple procedure for constructing a categorical GLM
making use of implicit covariate engineering within a black-box model, see Algorithm 1. The
resulting model is referred to as a guided categorical GLM. The central part of the modelling
aims at identifying how single covariates (and interactions) impact the response. This is here done
using PD-functions together with a marginal auto-calibration step in order to construct covariate
partitions. The rationale behind this procedure is as follows: The PD-functions are used to assess
the impact of a covariate w.r.t. the initial black-box predictor and in this way generate candidate
covariate partions. Given a partition, by using marginal auto-calibration only the parts in the
candidate partition that have an impact on the response will remain, regardless of the underlying
black-box model. Consequently, as long as the PD-functions are able to differentiate between
covariate values, the actual level of the PD-functions are not important, and the PD-functions can
be replaced with any other meaningful covariate effect measures, such as ALEs. Further, note that
if the PD-functions, or equivalent effect measures, are applied to numerical or ordinal covariates,
and the resulting function is monotone, the suggested procedure could just as well be replaced by
binning the covariates based on, e.g., their quantile values, see Remark 2(a).

The above procedure is closely related to the modelling approach introduced in Henckaerts et al.
(2022), where the main difference is that they aim for fidelity w.r.t. the (PD-function) behaviour of
the original black-box predictor. The guided categorical GLM, on the other hand, focuses on high
predictive accuracy. Although the two approaches will be close if the PD-functions are monotone,
the numerical illustrations show situations where the guided categorical GLMs reduction in fidelity
coincides with an increase in predictive performance. This also connects to the wider discussion on
the use of auto-calibration and (complex) black-box predictors in non-life insurance pricing, see e.g.
Lindholm et al. (2023), Wüthrich & Ziegel (2023). In these references it is noted that a low signal to
noise ratio, which is common in non-life insurance data, may result in complex predictors that are
spuriously smooth. In their examples, by applying the auto-calibration techniques in Lindholm
et al. (2023), Wüthrich & Ziegel (2023) to a complex predictor, the resulting auto-calibrated
predictor only has a few unique predictions; in the examples around 100 unique predictions. This
is still considerably less than the current guided GLMs’ predictors that use up to 90 parameters,
see Table 1 in Section 4 above. Consequently, if the number of parameters in the guided categorical
GLM is not too large it may be possible to construct a new interpretable categorical GLM that
is auto-calibrated by using the techniques from, e.g., Lindholm et al. (2023), Wüthrich & Merz
(2023).
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