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Abstract

We study a general formulation of the classical two-player Dynkin game in a Marko-
vian discrete time setting. We show that an appropriate class of mixed, i.e., randomized,
strategies in this context are Markovian randomized stopping times, which correspond to
stopping at any given state with a state-dependent probability. One main result is an
explicit characterization of Wald-Bellman type for Nash equilibria based on this notion
of randomization. In particular, this provides a novel characterization for randomized
equilibria for the zero-sum game, which we use, e.g., to establish a new condition for the
existence and construction of pure equilibria, to obtain necessary and sufficient conditions
for the non-existence of pure strategy equilibria, and to construct an explicit example with
a unique mixed, but no pure equilibrium. We also provide existence and characterization
results for the symmetric specification of our game. Finally, we establish existence of
a characterizable equilibrium in Markovian randomized stopping times for the general
game formulation under the assumption that the state space is countable.

Keywords: Dynkin games, Nash equilibrium, Markovian randomized stopping strate-
gies, subgame perfect equilibrium

AMS Subject Classifications: 91A55, 60G40, 91A15

1. Introduction Starting with the seminal paper [14], Dynkin games have been studied
extensively. In the present paper we restrict our attention to Dynkin games for Markov
processes in discrete time. Dynkin games in continuous time have been studied in, e.g.,
[2, 5, 10, 24, 27, 35], and for an overview we refer the reader to [25].

In the general discrete time Dynkin game formulation the rewards of the two players
i = 1, 2 read, for a given stopping time pair (τ1, τ2), as

E

[

F i
τiI{τi<τj} +Gi

τj I{τj<τi} +H i
τiI{τi=τj}

]

(1)

for i, j = 1, 2 with j 6= i, where F i, Gi,H i, i = 1, 2, are integrable discrete time processes
(with a suitable interpretation of H i

n for n = ∞). Here, F i corresponds to the payoff for
player i when player i stops first, Gi corresponds to the payoff for player i when the other
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player j 6= i stops first, and H i corresponds to the payoff for player i when both players stop
at the same time.

A pair of stopping times is for this game said to be a Nash equilibrium if it satisfies the
usual assumption of sub-optimal deviation for each of the two players; in particular, (τ1, τ2) is
a Nash equilibrium if τi maximizes (1) over admissible stopping times assuming that τj, j 6= i
is fixed, for i = 1, 2. Similarly, we say, for a fixed ǫ > 0, that we have an ǫ-equilibrium if
there exists a pair (τ1, τ2) such that τi achieves the supremum up to ǫ in (1), assuming that
τj, i 6= j is fixed, for i = 1, 2.

The most studied class of Dynkin games are zero-sum games, i.e., games where one
player’s gain is the other player’s loss. Mathematically, this means F 1 = −G2, H1 = −H2

and G1 = −F 2. If a game does not satisfy this we call it a non-zero-sum game.
Dynkin games are well-understood whenever the payoffs are ordered such that F 1 ≤ H1 ≤

G1 and F 2 ≤ H2 ≤ G2, both in the zero-sum as well as in the non-zero-sum formulation: in
this setting it is sufficient to consider pure strategies (i.e., stopping without randomization).
For the zero-sum version Neveu [29] proved existence of ǫ-equilibria, for every ǫ > 0, in pure
strategies and provided a characterization. Thereafter, existence and characterization of a
Nash equilibrium for the zero-sum game (again in pure strategies) has been established by
Ohtsubo in [30]. In the non-zero-sum case Ohtsubo [31] provides verification results and
constructs explicit (pure-strategy) Nash equilibria for finite time horizons and establishes
the existence of a Nash equilibrium for a Markovian game under the condition that G1 is a
supermartingale. In [32] Ohtsubo explicitly constructs (pure-strategy) Nash equilibria for a
monotone problem. Also non-constructive existence results for pure-strategy Nash equilibria
have been established. Namely, in [28] the existence of Nash equilibria for non-zero-sum games
under the assumption that F i is a submartingale and Gi is a supermartingale is established
and in [23] the existence of Nash equilibria for non-zero-sum n-player games is proved.

However, if we drop the assumption that F 1 ≤ H1 ≤ G1 and F 2 ≤ H2 ≤ G2, the
situation becomes more involved. First of all, we now need to consider a much larger and
more difficult class of strategies, namely randomized stopping strategies [41]. However, even
for this larger strategy class it can be the case that no Nash equilibrium exists even in the
case where an ǫ-equilibrium, for every ǫ > 0, does exist, see [39]. Nonetheless, the existence of
ǫ-equilibria, for every ǫ > 0, for general games can be established requiring only integrability
conditions. Indeed, in [41] the existence of a value for zero-sum games with finite time horizon
or discounting is established. Here, as usual for zero-sum games, existence of a value means
that the expected reward when first taking the supremum over τ1 and second taking the
infimum τ2 is the same as when first considering infimum over τ2 and second the supremum
over τ1. Moreover, the existence of ǫ-equilibria, for every ǫ > 0, has been established in
[36] for zero-sum games and in [38] for non-zero-sum games. However, these results are non-
constructive. Indeed, there are, according to the knowledge of the authors, no general results
on the characterization of randomized equilibria of Dynkin games.

In developing the theory for ordinary stopping problems, one typically assumes an ad-
ditional Markov structure, see, e.g., [34, 37]. This provides a general framework for solving
problems concretely, since one can restrict the class of stopping times to state-dependent first
entrance times. Surprisingly, this view has never previously been systematically adopted in
the treatment of Dynkin games. For discrete time Markovian Dynkin games (see Section 1.1
for the general formulation studied in the present paper), only specific formulations have,
according to the knowledge of the authors, been considered: [19] considers a zero-sum game
where depending on the state of the process only one player can stop at every time step,
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[17] considers the zero-sum version with the additional assumption that F 1 ≤ H1 ≤ G1,
[12, 13] both consider a zero-sum game for a particular Markov chain, and [18] considers a
non-zero-sum n-player game for a particular class of transition rates and allows only Marko-
vian strategies. In continuous time, Markovian zero-sum games have been considered under
the condition F 1 ≤ H1 ≤ G1. Here, too, it suffices to consider pure strategies, and in this
case there are general existence results [15], as well as characterization results in terms of
(quasi)-variational inequalities for diffusions [4, 20] and super- and subharmonic functions
[33]. Moreover, in [10] the existence of equilibria in (pure) threshold strategies has been
established for continuous time, non-zero-sum games with underlying diffusion whenever
F i ≤ H i ≤ Gi as well as additional conditions hold.

1.1. The Markovian Dynkin game and contributions Let us introduce the general
discrete time Markovian Dynkin games that we investigate in this paper: let X = (Xn)n∈N0

be a homogeneous Markov process with a Markov kernel Π on a probability space (Ω,F ,Px)
with state space E. The associated expectations under X0 = x ∈ E are denoted by Ex.
In this setting we consider a general Dynkin game with two players i = 1, 2, each choosing
a stopping time τi. In particular, for a given stopping time pair (τ1, τ2) the corresponding
expected rewards of the players are

Ji(x; τ1, τ2) := Ex

[

ατifi(Xτi)I{τi<τj} + ατjgi(Xτj )I{τj<τi} + ατihi(Xτi)I{τi=τj<∞}

]

for i, j = 1, 2 with j 6= i, where α is a constant (discount factor) satisfying 0 < α < 1 and
fi, gi, hi : E → R, i = 1, 2, are measurable functions; see Section 2 for details regarding,
e.g., the set of admissible stopping times and integrability assumptions, as well as the Nash
equilibrium definition.

The main contributions of the present paper are:

1. Our investigations indicate that a general theory for discrete time Dynkin games for
underlying Markov processes should be built on a very natural class of randomized
stopping times – which we refer to as Markovian randomized stopping times. The inter-
pretation of a Markovian randomized stopping time is that it corresponds to stopping at
each date according to a probability that depends only on the value of the state process
at that date; see Section 2 for details. Indeed, our investigations strongly indicate that
Markovian randomized stopping times correspond to the right type of randomized (also
known as mixed) strategy for discrete time stopping games, not only from an intuitive,
but also from a mathematical standpoint. In particular, by considering Markovian ran-
domized stopping times we are able to explicitly characterize and construct equilibria,
as well as to prove equilibrium existence results (see the items below). We remark that
we do not restrict the admissible stopping times to be of Markovian randomized type,
but instead allow a general class of stopping times; see Section 2.

2. For the general game formulation we provide an equilibrium characterization, as well as
a verification, result formulated in terms of a system of Wald-Bellman type equations,
for both randomized and pure equilibria. The main novelty is that this provides an
explicit equilibrium characterization encompassing also randomized equilibria.

3. Relying on our equilibrium characterization we study two specifications of our game.
For the well-known zero-sum game, we e.g., (i) provide a new condition on the payoff
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functions under which we prove that a pure equilibrium exists, and establish a corre-
sponding explicit equilibrium construction, (ii) obtain necessary and sufficient condi-
tions for the non-existence of pure equilibria, and (iii) construct an explicit example
with a unique randomized, but no pure equilibrium. For the symmetric specification of
our game – meaning that the two players have identical payoff functions – we establish
that a (possibly randomized) symmetric equilibrium exists under a certain condition on
the payoff functions, and we provide a corresponding equilibrium construction in terms
of an associated optimal stopping problem.

4. In addition to the existence results for the zero-sum and symmetric games, we establish
existence of an equilibrium in Markovian randomized stopping times for the general
game formulation under the assumption that the state space E is countable. This
stands in contrast to the known existence result in the literature in two ways. First of
all, for games without discounting only existence of ǫ-equilibria has been established
and there are counter-examples showing that Nash equilibria do not exist even for
deterministic and stationary rewards [39]. We now establish the existence of a Nash
equilibrium under the assumption of discounting in connection with a slightly stronger
integrability condition (see Remark 2.8). Secondly, in our formulation the equilibrium
can be characterized (see item 2. above).

In Section 2, we specify the mathematical model and the game formulation. Further
related literature is reviewed in Remarks 2.2 and 2.9. In Section 3 we study the best response
mapping for our game. Section 4 provides the equilibrium characterization. The zero-sum
game is studied in Section 5. The symmetric game is studied in Sections 6 and 7.1. General
equilibrium existence for countable state spaces is established in Section 7.

2. Randomized Markovian Stopping Times, Nash Equilibrium and Assumptions

Let us first define what we mean by Markovian randomized stopping times.

Definition 2.1 (Markovian randomized stopping times). Let (ξ
(i)
n )n∈N0 , i = 1, 2, be sequences

of iid random variables with ξ
(i)
n ∼ U(0, 1) which are independent of the state process X and

supported by our probability space. A Markovian randomized stopping time (for player
i = 1, 2) is given by

τp
(i)

= inf{n ∈ N0 : p
(i)(Xn) ≥ ξ(i)n } (2)

where p(i) : E → [0, 1] is a deterministic measurable function. We use the standard convention
that inf ∅ = ∞. ⋄

We identify a Markovian randomized stopping time (2) with the associated function p(i)

and will often, for example, refer to
(

p(1), p(2)
)

as a pair of stopping strategies.

Remark 2.2 (Markovian randomized stopping). The interpretation of a Markovian random-

ized stopping time is that ξ
(i)
n is a randomization device (corresponding to a coin flip) that

player i employs to randomize the stopping decision at time n; where the choice of function
x 7→ p(i)(x) determines the probability (the bias of the coin) of stopping when visiting each
individual state x ∈ E. Hence, a Markovian randomized stopping time corresponds essen-
tially to randomizing by stopping at each date independently according to a probability that
depends only on the value of the state process at that date. We remark that this type of
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stopping time has previously been studied in the context of an n-player stopping game in
[18], as well as in the context of time-inconsistent stopping problems; see [7, Example 2.9],
[3], and [9]. Markovian randomized stopping in continuous time is discussed in Remark 2.9
(below). ⋄

Definition 2.3 (Admissible stopping times). For each player i = 1, 2, the set of admissible
stopping times, denoted by Ti, is defined as stopping times with respect to the filtration

σ
(

X0, ...,Xn, ξ
(i)
0 , ..., ξ

(i)
n

)

, n ∈ N0. ⋄

Remark 2.4. The interpretation of an admissible stopping time is that the decision to stop
for each player can be based on the current and previous values of the state process and the
randomization device of that player. It is clear that Markovian randomized stopping times
are admissible. ⋄

Both players in our game are assumed (without loss of generality) to be maximizers and
we define our notion of equilibrium accordingly.

Definition 2.5 (Nash equilibrium). A pair of admissible stopping times (τ̃1, τ̃2), τ̃i ∈ Ti, i =
1, 2 is a Nash equilibrium for x ∈ E if

J1(x; τ̃1, τ̃2) = sup
τ1∈T1

J1(x; τ1, τ̃2),

J2(x; τ̃1, τ̃2) = sup
τ2∈T2

J2(x; τ̃1, τ2).

If a pair of stopping strategies
(

p(1), p(2)
)

corresponds to a Nash equilibrium for x then we

refer to it as a Markovian randomized equilibrium for x. If
(

p(1), p(2)
)

corresponds to a Nash
equilibrium for all x ∈ E then we refer to it as a global Markovian randomized equilibrium. ⋄

The aim of the present paper is to study global Markovian randomized equilibria
(

p(1), p(2)
)

.
We remark that we will often let the randomized be implicit when referring to, e.g., Markovian
randomized stopping times.

Remark 2.6. From the perspective of classical game theory, it holds that a global Markovian
randomized equilibrium (p(1), p(2)) is a subgame perfect equilibrium as well as aMarkov perfect
equilibrium; for a reference for these terms see e.g., [21]. Indeed, subgames for discrete
time stopping games are given as those games that start at time n given the realizations of
X0,X1, . . . ,Xn for any n ∈ N. Moreover, since the expected rewards for a global Markovian
randomized equilibrium depend only on the current state and (p(1), p(2)), which by definition
is an equilibrium for any x ∈ E, it is clear that (p(1), p(2)) is subgame perfect. Noting also that
the strategies (p(1), p(2)) are Markov in the sense of game theory, i.e., they depend only on
past events that are payoff relevant, we immediately see that the equilibrium is also Markov
perfect. We refer to our equilibria as Markovian randomized equilibria to emphasize that
not only are they Markov perfect, but that the randomization itself has a particular form,
namely that the probability of stopping depends only on the current state. ⋄

If a Markovian stopping strategy p(i) is such that p(i)(x) ∈ {0, 1} for each x ∈ E then
there is effectively no randomization and we hence refer to it as pure. A global Markovian
equilibrium

(

p(1), p(2)
)

is classified as pure if it is comprised of pure Markovian stopping
strategies. Note that pure Markovian stopping strategies correspond to entry times of X into
subsets in the state space E.
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Our approach to studying the present game relies on the consideration of a process X̃ =
(X̃n)n∈N0 defined (path-wise) as the process X killed at each n with probability 1−α; which
we assume is supported by our probability space. As usual, if X̃ is killed, it means that it is
sent to a cemetery state K, where it is absorbed and where all functions take the value 0. In
particular, it holds that X0 = X̃0 and Xn = X̃n for each n > 0 with X̃n 6= K. Throughout
the paper, we assume that the following integrability conditions, well known from optimal
stopping theory, are satisfied.

Assumption 2.7. For the killed process X̃ it holds, for i = 1, 2, that

sup
n∈N0

|fi(X̃n)|, sup
n∈N0

|gi(X̃n)|, sup
n∈N0

|hi(X̃n)| ∈ L1. (3)

⋄

Note that this assumption implies that

sup
n∈N0

αn|fi(Xn)|, sup
n∈N0

αn|gi(Xn)|, sup
n∈N0

αn|hi(Xn)| ∈ L1, (4)

which we remark is the standard condition for uniform integrability of the payoff processes
for the associated ordinary discounted stopping problems. For later use we introduce the
notation

M = sup
n∈N0,i∈{1,2}

max{|fi(X̃n)|, |gi(X̃n)|, |hi(X̃n)|}

and note that Assumption 2.7 implies that M ∈ L1.

Remark 2.8. We note that the integrability condition in Assumption 2.7 is only slightly
stronger than (4). Namely, it holds that if Ex[supn∈N0

βnf(Xn)] < ∞ for some β ∈ (α, 1],

then Ex[supn∈N0
f(X̃n)] < ∞ for all non-negative functions f : E → R. Indeed, let T be a

geometric random variable with parameter α independent of (Xn)n∈N and define γ = α/β.
Then

Ex

[

sup
n∈N0

f(X̃n)
]

= Ex

[

sup
n≤T

f(Xn)
]

= Ex

[

∞
∑

k=0

(1− α)αk sup
n≤k

f(Xn)
]

≤ Ex

[

∞
∑

k=0

γk sup
n≤k

βnf(Xn)
]

≤ Ex

[

∞
∑

k=0

γk sup
n∈N0

βnf(Xn)
]

=
1

1− γ
Ex

[

sup
n∈N0

βnf(Xn)
]

< ∞.

In Example 7.4 (below) we argue how our integrability condition is essential for obtaining
general equilibrium existence. ⋄

Remark 2.9 (On Markovian randomized stopping in continuous time). A continuous time
interpretation of Markovian randomized stopping is to stop according to a state dependent
stopping rate; see [8, Section 2.1] for a motivation. Typically this state-dependent intensity
is of Lebesgue density type (see [8] for a definition). Generally there is however no need
to restrict attention to such intensities; in fact, it turns out that allowing the intensity to
increase in a singular fashion using a local time construction may facilitate the existence of
equilibria (in [6] a general construction of this type of randomized stopping is introduced
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in the context of studying a time-inconsistent stopping problem in an SDE setting). In
[16, Example 5.4], a similar local-time construction is used to find randomized equilibria for
a two-player stopping game in a setting where the players essentially agree that the state
process is driven by an SDE, but disagree on what the drift is. In [11] this type of local-time-
based randomized stopping time is used in the study of a general formulation of a two-player
stopping game corresponding to the war of attrition in an SDE setting. It seems to us an
interesting question for future research which class of randomized stopping times one should
use for a general theory of Markovian Dynkin games in continuous time. ⋄

3. Best Response Mapping In this section we define and establish properties of the
one-player best response mapping corresponding to our game. The analysis is without loss of
generality carried out from the view-point of player 1, i.e., the exact same analysis can also
be carried out from the view-point of player 2. The main results are Propositions 3.2 and 3.4
which are essential in subsequent sections.

In order to define this best response mapping we consider the optimal (in the usual sense)
stopping problem that player 1 faces when player 2 employs a fixed Markovian stopping
strategy p(2) : E → [0, 1], i.e.,

sup
τ1∈T1

J1

(

x; τ1, τ
p(2)

)

, x ∈ E. (5)

It turns out that a solution to this problem can be found in the class of Markovian stopping
times; see Proposition 3.4 below. Hence, we may define a best-response mapping correspond-
ing to problem (5) for each fixed x ∈ E restricted to Markovian stopping times, i.e., as the
(point-to-set) mapping defined according to

BR(1) : E ×M(E, [0, 1]) → P (M(E, [0, 1]))
(

x, p(2)
)

7→ BR(1)
(

x, p(2)
)

:= argmax
p(1)

J1

(

x; τp
(1)
, τp

(2)
)

where M(E, [0, 1]) denotes the set of measurable functions E → [0, 1] and P (M(E, [0, 1]))
denotes the corresponding power set. The interpretation is that BR(1)

(

x, p(2)
)

is the set
of optimal stopping strategies of Markovian type for problem (5), i.e., the set of optimal
stopping strategy functions E → [0, 1] for player 1, given that player 2 employs the strategy
p(2), for a fixed initial state x.

However, our main interest in the present paper is to study Markovian strategies that are
equilibria for all initial states (i.e., global Markovian equilibria, cf. Definition 2.5), and for
this reason the following definition – which gives as output the set of Markovian strategies
which are optimal responses to a fixed strategy p(2) for all x ∈ E – will, as we shall see, be
the right one.

Definition 3.1 (One-player best response mapping). We call the set-valued mapping

BR(1) : M(E, [0, 1]) → P (M(E, [0, 1])) (6)

p(2) 7→ BR(1)
(

p(2)
)

:=
⋂

x∈E

BR(1)
(

x, p(2)
)

,

the one-player best response mapping. ⋄

The following result will be proved at the end of this section.
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Proposition 3.2. For any fixed stopping strategy p(2) : E → [0, 1], the set of best responses
BR(1)

(

p(2)
)

is non-empty, convex, and closed (in the product topology).

In order for (6) to be a suitable definition we need, as we have mentioned, that a maximizer
in (5) can be attained in the set of Markovian stopping strategies (this result is contained in
Proposition 3.4 below). Our approach to showing that this is the case is to establish a link
between problem (5) and an associated optimal stopping problem (see (8), below), which we
can study using standard methods.

Note that (5) is a non-standard optimal stopping problem in the sense that the underlying
process is exogenously stopped randomly according to the strategy p(2). A main feature of the
associated problem (8) is that it will be constructed without discounting which in particular
means that the non-standard stopping feature corresponding to p(2) can be treated as a more
standard absorption feature for an associated state process X̂ (see the below for details).

To be able to construct the associated stopping problem we define a new reward function
– see (9) below – and an associated Markov process X̂ = (X̂n)n∈N0 defined on a state space

Ê = E × {C,S} ∪ {K}

in a path-wise manner based on our state processX, its killed counterpart X̃, and the stopping
behavior of player 2. We denote elements in Ê by x̂. Before giving the formal definition of X̂
let us give an interpretation of the state space: (i) if X̂n = (x, S) then player 2 has stopped

before time n (i.e., τp
(2)

< n) and x = X
τp

(2) , where (x, S), x ∈ E, are absorbing states, (ii) if

X̂n = K, then killing has occurred (recall that K is a cemetery state), and (iii) if X̂n = (x,C)
then neither killing nor stopping has occurred. The formal definition of X̂ is as follows:

Definition 3.3 (Killed and absorbed version of the state process). The initial value of the
process X̂ = (X̂n)n∈N0 is X̂0 = (X0, C). For each n > 1:

• if X̂n−1 = (Xn−1, C)

– and τp
(2)

= n− 1, then X̂n = (Xn−1, S)
– and τp

(2)
> n − 1 and X̃n = K, then X̂n = K (recall that X̃ is the killed version

of X; see Section 2)
– and τp

(2)
> n− 1 and X̃n 6= K, then X̂n = (Xn, C)

• if X̂n−1 = (Xm, S) for some m < n− 1, then X̂n = X̂n−1

• if X̂n−1 = K, then X̂n = K. ⋄

Noting that

ÊS∪K := {x̂ ∈ Ê : x̂ = K or x̂ = (x, S) for some x ∈ E}

are absorbing states, we see that X̂ is a Markov process on Ê and we denote the expectation
associated to X̂0 = x̂ ∈ Ê by Ex̂. The Markov kernel of X̂ , denoted by Π̂, can be represented
by

Π̂((x, S), B̂) = δ(x,S)(B̂)

Π̂(K, B̂) = δK(B̂)

Π̂((x,C), B̂) = p(2)(x)δ(x,S)(B̂) + (1− p(2)(x))(1 − α)δK(B̂)

+ (1− p(2)(x))αΠ(x, {y ∈ E : (y,C) ∈ B̂}),

(7)
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where B̂ ⊆ Ê. To see that this holds, note, for example, that Π̂((x,C), B̂) is a convex
combination of the measure δ(x,S) (with weight p(2)(x), corresponding to the probability that

player 2 stops), the measure δK (with weight (1 − p(2)(x))(1 − α), corresponding to the
probability that player 2 does not stop and the process is killed), and the Markov kernel for
X, i.e., Π, (with weight (1−p(2)(x))α, corresponding to the probability that neither stopping
nor killing occurs).

We are now ready to present the associated stopping problem. It is

V̂ (x̂) := sup
τ∈T̂1

Ex̂

[

r̂(X̂τ )
]

, x̂ ∈ Ê, (8)

where r̂ : Ê → R is defined by

r̂(x̂) :=











(1− p(2)(x))f1(x) + p(2)(x)h1(x), x̂ = (x,C)

g1(x), x̂ = (x, S)

0, x̂ = K,

(9)

and T̂1 is the set of a.s. finite stopping times for the filtration σ
(

X̂0, ..., X̂n, ξ
(1)
0 , ..., ξ

(1)
n

)

, n ∈

N0. In order to study (8) we consider stopping times of the kind

τ̂ (p) := inf{n ∈ N0 : p(Xn) ≥ ξ(i)n } ∧ τÊS∪K
(10)

where p : E → [0, 1] is measurable and τÊS∪K
:= inf{n ∈ N0 : X̂n ∈ ÊS∪K} is the first entry

time for X̂ into the set of absorbing states ÊS∪K . Note that τ̂ (p) is a.s. finite since τÊS∪K

is so; see the proof of Proposition 3.4 below. In particular, it holds that τ̂ (p) ∈ T̂1 for any
measurable function p : E → [0, 1], and in Proposition 3.4 we shall also see that stopping
times of this kind attain the supremum in (8). We also need

D̂ := {(x,C) ∈ Ê : Π̂V̂ (x,C) < r̂(x,C)}

Î := {(x,C) ∈ Ê : Π̂V̂ (x,C) = r̂(x,C)}
(11)

which we interpret as a (strict) stopping set and the indifference between stopping and con-
tinuing set, for problem (8), respectively, restricted to non-absorbed states x̂ = (x,C). It is
now easily verified that

D̂ ∪ Î ∪ ÊS∪K = {x̂ ∈ Ê : V̂ (x̂) = r̂(x̂)}

i.e., D̂ ∪ Î ∪ ÊS∪K is the stopping set – in the usual of sense of optimal stopping theory – for
the optimal stopping problem (8).

Proposition 3.4. (Ai) The first entry time

τD̂∪Î∪ÊS∪K
:= inf{n ∈ N0 : X̂n ∈ D̂ ∪ Î ∪ ÊS∪K} (12)

is an optimal stopping time for problem (8). Moreover, the optimal value function V̂ : Ê → R

corresponding to (8) satisfies, for x̂ ∈ Ê, the Wald-Bellman equation

V̂ (x̂) = max{Π̂V̂ (x̂), r̂(x̂)}. (13)
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(Aii) The optimal stopping time (12) can be represented in the form (10) with

{

p(y) = 1, for all (y,C) ∈ D̂ ∪ Î

p(y) = 0, otherwise.

(Aiii) Let p : E → [0, 1] be a measurable function. The stopping time τ̂ (p) (cf. (10)) is optimal
in (8) for all non-absorbing initial states x̂ ∈ {(x,C) : x ∈ E} if and only if











p(y) = 1, for all y ∈ E such that (y,C) ∈ D̂

p(y) ∈ [0, 1], for all y ∈ E such that (y,C) ∈ Î

p(y) = 0, otherwise.

(14)

(B) Let p : E → [0, 1] be a measurable function. The stopping time τ (p) ∈ T1 (cf. (2))
is optimal for the stopping problem (5) with initial value x ∈ E if and only if the stopping
time τ̂ (p) ∈ T̂1 (cf. (10)) is optimal for the stopping problem (8) with initial value x̂ = (x,C).
Moreover, the corresponding optimal values coincide, i.e.,

sup
τ1∈T1

J1

(

x; τ1, τ
p(2)

)

= sup
τ∈T̂1

E(x,C)

[

r̂(X̂τ )
]

. (15)

(Recall that the problem in the right hand side of (15) depends on p(2) via (7) and (9).)

Remark 3.5. Note that the optimal stopping problems (5) and (8) are equivalent (in the sense
of Proposition 3.4(B)) only when the initial state in the latter problem is non-absorbing, i.e.,
when x̂ = (x,C) for some x ∈ E. ⋄

Proof of Proposition 3.4. (Ai) Note that X̂ is a time-homogeneous Markov process on Ê.
Writing k1 = max{|f1|, |g1|, |h1|}, it is clear by construction (Definition 3.3) that |r̂(X̂n)| ≤
maxm≤n k1(X̃m) ≤ M , so that by Assumption 2.7 we have

Ex

[

sup
n∈N0

|r̂(X̂n)|

]

≤ Ex

[

sup
n∈N0

|k1(X̃n)|

]

< Ex [M ] < ∞. (16)

Moreover, the stopping time (12) is a.s. finite – this is verified using the killing feature of
X̂, which implies that Px(τÊS∪K

= ∞) ≤ limn→∞ αn = 0. Hence, the result follows from
standard optimal stopping theory (see, e.g., [34, Theorem 1.11]).

(Aii) This result is directly verified.
(Aiii) Let us first assume that τ̂ (p) is optimal in (8) and show that this implies that p

satisfies (14). The second part of (14) is trivially satisfied. Moreover, it follows from (Ai)
and standard optimal stopping theory (ibid.) that τD̂∪Î∪ÊS∪K

≤ τ̂ (p) a.s. From this (as well
as (Ai)-(Aii)) it directly follows that p satisfies the last part of (14).

Now assume (to obtain a contradiction) that p does not satisfy the first part of (14), i.e.,
p(x0) < 1 for some x0 ∈ E such that (x0, C) ∈ D̂. Using basic observations and the definition
of D̂ in (11) we obtain

E(x0,C)

[

r̂(X̂τ̂ (p))
]

= p(x0)r̂(x0, C) + (1− p(x0))E(x0,C)

[

EX̂1

[

r̂(X̂τ̂ (p))
]]

≤ p(x0)V̂ (x0, C) + (1− p(x0))E(x0,C)

[

V (X̂1)
]

= p(x0)V̂ (x0, C) + (1− p(x0))Π̂V̂ (x0, C) < V̂ (x0, C).
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Hence, τ̂ (p) cannot be optimal for (x0, C) and we have a contradiction. It follows that p
satisfies (14).

Let us now assume that p satisfies (14) and show that the corresponding stopping time
τ̂ (p) is optimal for (8) for any initial value x̂ = (x,C). Let p̃ : E → [0, 1] be defined so that it
corresponds to (12), i.e., as in (Aii). For N ∈ N0 let

τN := inf
{

n ∈ N0 :
(

p(Xn) ≥ ξ(1)n and n < N
)

or
(

p̃(Xn) ≥ ξ(1)n and n ≥ N
)}

∧ τÊS∪K

which corresponds to using the strategy p before time N and using the strategy p̃ from time
N and onwards (until absorption). Note that τ0 is then equal to the stopping time (12), and
τ0 is therefore optimal in (8). We now show that each stopping time τN , N ∈ N0, is optimal.
Note that

E(x,C)

[

r̂(X̂τN+1
)
]

= E(x,C)

[

∞
∑

n=0

I{τN+1=n}r̂(X̂n)

]

= E(x,C)

[

N
∑

n=0

I{τN+1=n}r̂(X̂n) + I{τN+1=N+1}r̂(X̂N+1) +

∞
∑

n=N+2

I{τN+1=n}r̂(X̂n)

]

= E(x,C)

[

N
∑

n=0

I{τN+1=n}r̂(X̂n) + I{τN+1>N}I{X̂N+1∈ÊS∪K}r̂(X̂N+1)

+ I{τN+1>N}I{X̂N+1 /∈ÊS∪K}I{p(Xn+1)≥ξ
(1)
N+1}

r̂(X̂N+1)

+I{τN+1>N}I{X̂N+1 /∈ÊS∪K}I{p(Xn+1)<ξ
(1)
N+1}

EX̂N+2

[

∞
∑

n=0

I{τ
D̂∪Î∪ÊS∪K

=n}r̂(X̂n)

]]

= E(x,C)

[

N
∑

n=0

I{τN=n}r̂(X̂n) + I{τN>N}I{X̂N+1∈ÊS∪K}r̂(X̂N+1)

+ I{τN>N}I{X̂N+1 /∈ÊS∪K}p(XN+1)r̂(X̂N+1) + I{τN>N}I{X̂N+1 /∈ÊS∪K}(1− p(XN+1))ΠV̂ (X̂N+1)
]

.

Since p satisfies (14) we have that p(x) = 1 implies V̂ (x,C) = r̂(x,C), p(x) ∈ (0, 1) implies
ΠV̂ (x,C) = r̂(x,C) = V̂ (x,C), and p(x) = 0 implies V̂ (x,C) = Π̂V̂ (x,C). Hence,

p(x)r̂((x,C)) + (1− p(x))ΠV̂ (x,C) = V̂ (x,C)

for all x ∈ E. Moreover, it holds that V̂ (x̂) = r̂(x̂) for each x̂ ∈ ÊS∪K since these states are
absorbing. Putting the parts above together yields

E(x,C)

[

r̂(X̂τN+1
)
]

= E(x,C)

[

N
∑

n=0

I{τN=n}r̂(X̂n) + I{τN>N}I{X̂N+1∈ÊS∪K}V̂ (X̂N+1) + I{τN>N}I{X̂N+1 /∈ÊS∪K}V̂ (X̂N+1)

]

= E(x,C)

[

N
∑

n=0

I{τN=n}r̂(X̂n) + I{τN>N}V̂ (X̂N+1)

]

= E(x,C)

[

N
∑

n=0

I{τN=n}r̂(X̂n) +
∞
∑

n=N+1

I{τN=n}r̂(X̂n)

]
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= E(x,C)

[

r̂(X̂τN )
]

.

Hence, E(x,C)

[

r̂(X̂τN )
]

= E(x,C)

[

r̂(X̂τ0)
]

, i.e., each τN is optimal. Now note that τN → τ (p)

a.s., as N → ∞. Hence, since |r̂(X̂τN )| ≤ M (cf. the beginning of the proof), we obtain

E(x,C)

[

r̂(X̂τ (p))
]

= E(x,C)

[

r̂(X̂τ0)
]

, which shows that also τ (p) is optimal.

(B) The states in ÊS∪K are absorbing, so that E(x,C)

[

r̂(X̂τ̂1)
]

= E(x,C)

[

r̂
(

X̂τ̂1∧τÊS∪K

)]

,

for τ̂1 ∈ T̂1. Hence, it suffices to consider stopping times of the form τ̂1 ∧ τÊS∪K
in the

supremum in the right-hand side of (15). Moreover, for τ1 ∈ T1, it is directly seen that
τ1∧τÊS∪K

∈ T̂1. Using that as long as X̂n is not absorbed we have X̂n = (Xn, C), we see that

we can for any τ̂1 ∈ T̂1 find a stopping time τ1 ∈ T1 such that τ1∧τÊS∪K
= τ̂1∧τÊS∪K

. Hence,
it actually suffices to consider stopping times τ1∧ τÊS∪K

with τ1 ∈ T1 in the supremum in the
right-hand side of (15). In the following we therefore prove that

J1

(

x; τ1, τ
p(2)

)

= E(x,C)

[

r̂
(

X̂τ1∧τÊS∪K

)]

(17)

for all x ∈ E and all stopping times τ1 ∈ T1. This in turn implies that for any starting value
x ∈ E, a stopping time is optimal in (5) if and only if it is also optimal for the stopping
problem (8) for the starting value (x,C) and the result follows.

Note, in order to prove (17) it suffices to show, for all n ∈ N0 and x ∈ E, that

Ex

[

αnf1(Xn)I{n<τ2} + ατ2g1(Xτ2)I{τ2<n} + αnh1(Xn)I{n=τ2}|X1, . . . ,Xn

]

= E(x,C)

[

r̂(X̂n)|X1, . . . ,Xn

]

,
(18)

where we have written τ2 = τp
(2)
. It is directly seen that

E(x,C) [r̂((x,C))] = (1− p(2)(x))f1(x) + p(2)(x)h1(x)

= Ex

[

I
{p2(x)<ξ

(2)
0 }

f1(x) + I
{p2(x)≥ξ

(2)
0 }

h1(x)
]

= Ex

[

f1(x)I{0<τ2} + h1(x)I{τ2=0}

]

,

which is (18) for n = 0 (to see this recall e.g., (9) and that X̂0 = (x,C) and X0 = x). For
n ≥ 1, it can be verified – using e.g., the definitions of X̂ and X̃ , as well as (2) and (9) – that

E(x,C)[r̂(X̂n)|X1, . . . ,Xn]

=

n
∑

i=1





i−2
∏

j=0

(1− p(2)(Xj))



 p(2)(Xi−1)α
i−1g1(Xi−1)

+





n−1
∏

j=0

(1− p(2)(Xj))



αn
(

(1− p(2)(Xn))f1(Xn) + p(2)(Xn)h1(Xn)
)

=

n
∑

i=1





i−2
∏

j=0

(1− p(2)(Xj))



 p(2)(Xi−1)α
i−1g1(Xi−1)

+





n
∏

j=0

(1− p(2)(Xj))



αnf1(Xn) +





n−1
∏

j=0

(1− p(2)(Xj))



 p(2)(Xn)α
nh1(Xn)

(19)
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= Ex

[

I{τ2<n}α
τ2g1(Xτ2) + I{τ2>n}α

nf1(Xn) + I{τ2=n}α
nh1(Xn)

∣

∣

∣
X1, . . . ,Xn

]

,

which means that (18) holds also for n ≥ 1.

We are now in a position to prove Proposition 3.2.

Proof of Proposition 3.2. It follows from Proposition 3.4(Aiii)–(B) that BR(1)
(

p(2)
)

is the
set of all measurable functions p : E → [0, 1] that satisfy (14). By inspection of (14) we find
that this set is non-empty, closed and convex.

4. Verification and Characterization for the General Game Formulation Suppose
(

p(1), p(2)
)

is a global Markovian (randomized) equilibrium. The corresponding (equilibrium)

values are defined as the function pair
(

V (1), V (2)
)

with

V (i)(x) := Ji

(

x, τp
(1)
, τp

(2)
)

, x ∈ E.

In this section we will characterize
(

p(1), p(2)
)

and
(

V (1), V (2)
)

as a solution to the system:

V (1)(x) = max
{

(1− p(2)(x))αΠV (1)(x) + p(2)(x)g1(x), (1 − p(2)(x))f1(x) + p(2)(x)h1(x)
}

(20a)

V (2)(x) = max
{

(1− p(1)(x))αΠV (2)(x) + p(1)(x)g2(x), (1 − p(1)(x))f2(x) + p(1)(x)h2(x)
}

(20b)

p(1)(x) > 0 ⇒ (1− p(2)(x))αΠV (1)(x) + p(2)(x)g1(x) ≤ (1− p(2)(x))f1(x) + p(2)(x)h1(x)
(20c)

p(1)(x) < 1 ⇒ (1− p(2)(x))αΠV (1)(x) + p(2)(x)g1(x) ≥ (1− p(2)(x))f1(x) + p(2)(x)h1(x)
(20d)

p(2)(x) > 0 ⇒ (1− p(1)(x))αΠV (2)(x) + p(1)(x)g2(x) ≤ (1− p(1)(x))f2(x) + p(1)(x)h2(x)
(20e)

p(2)(x) < 1 ⇒ (1− p(1)(x))αΠV (2)(x) + p(1)(x)g2(x) ≥ (1− p(1)(x))f2(x) + p(1)(x)h2(x)
(20f)

Remark 4.1. Let us interpret the system (20) from the view-point of player 1. The interpre-
tation for player 2 is analogous. The interpretation of (20a) is that the equilibrium value is
equal to the maximum of the (expected) values corresponding to stopping with probability
zero (first part of the maximum function) and stopping with probability one (second part of
the maximum function). The interpretation of (20c) is that if we assign a positive probability
to stopping then the value of stopping must dominate (at least weakly) that of continuing.
The interpretation of (20d) is analogous. Note that (20c) and (20d) imply that

(1− p(2)(x))αΠV (1)(x) + p(2)(x)g1(x) = (1 − p(2)(x))f1(x) + p(2)(x)h1(x)

whenever p(1)(x) ∈ (0, 1). This corresponds to the game theory indifference principle, which
for our game means that a player will randomize in equilibrium at a given state x only if the
player is indifferent between stopping and not stopping at that state. ⋄
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Theorem 4.2 (Equilibrium characterization and verification). Let p(1), p(2) : E → [0, 1],
V (1), V (2) : E → R be measurable functions. (A): Suppose

(

p(1), p(2)
)

is a global Markovian

randomized equilibrium with values
(

V (1), V (2)
)

. Then these functions satisfy the system (20).

(B): Suppose p(1), p(2), V (1), and V (2) satisfy the system (20) as well as

V (i)(X̃1) ∈ L1 and Ex

[

sup
n∈N0

V (i)(X̃n)

]

< ∞, x ∈ E, i = 1, 2. (21)

Then
(

p(1), p(2)
)

is a global Markovian randomized equilibrium with values
(

V (1), V (2)
)

.

Proof. (A) The analysis in Section 3 was without loss of generality performed from the view-
point of player 1. Based on this analysis we will show that

(

p(1), p(2)
)

and V (1) satisfy (20a),
(20c) and (20d). Analogous arguments can be used for (20b), (20e) and (20f). We set
V = V (1) in this proof. By definition of equilibrium we have that

V (x) = J1

(

x; τp
(1)
, τp

(2)
)

= sup
τ1∈T1

J1

(

x; τ1, τ
p(2)

)

. (22)

The stopping problems (5) and (8) are equivalent (in the sense of Proposition 3.4) and the
states (x, S), x ∈ E, and K are absorbing. Hence,

V̂ (x̂) =











V (x) if x̂ = (x,C)

g1(x) if x̂ = (x, S)

0 if x̂ = K

. (23)

(Recall that V̂ is defined in (8), which depends on p(2) through (7) and (9).) Using the
relation between Π̂ and Π (cf. (7)), the definition of r̂ (cf. (9)) and (23) we obtain

Π̂V̂ (x,C) = (1− p(2)(x))αΠV (x) + p(2)(x)g1(x) (24)

r̂(x,C) = (1− p(2)(x))f1(x) + p(2)(x)h1(x). (25)

Using the above and that V̂ satisfies (13) (in particular for each x̂ = (x,C)) we find

V (x) = V̂ (x,C)

= max
{

Π̂V̂ (x,C), r̂(x,C)
}

= max
{

(1− p(2)(x))αΠV (x) + p(2)(x)g1(x), (1 − p(2)(x))f1(x) + p(2)(x)h1(x)
}

.

Hence (20a) holds. By assumption
(

p(1), p(2)
)

is an equilibrium and it hence holds that p(1)

is optimal in the sense of (22). Hence p(1) is also optimal in (8) (in the sense of Proposi-
tion 3.4(B)). Consider x ∈ E with p(1)(x) > 0, then (x,C) ∈ D̂ ∪ Î (by Proposition 3.4(Aiii))
which implies (by (11)) that Π̂V̂ (x,C) ≤ r̂(x,C). This implies (using (24)–(25)) that (20c)
holds. (20d) can be verified using similar arguments.

(B) The functions p(1), p(2), V (1) and V (2) satisfy (20) by assumption. With this in mind
we will below use the notation of Section 3 to show (i) that V 1 is equal to the supremum V in
(22) and (ii) that this supremum is attained by p(1), for any x ∈ E. The analogous statement
can be proved for V 2 and p(2). By definition of global Markovian randomized equilibrium
this concludes the proof of (B). To this end we here define the function V̂ according to

V̂ (x̂) :=











V (1)(x) if x̂ = (x,C)

g1(x) if x̂ = (x, S)

0 if x̂ = K

. (26)
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Let us first prove that V̂ solves the Wald-Bellman equation (13) for all x ∈ Ê. For all
absorbed states x̂ = (x, S) and x̂ = K, this follows immediately from the definition (26)
and (9). For x ∈ E we note, again by the definition (26), that V̂ also satisfies (24). Thus,
combining (24) and (25), and using that V (1) satisfies (20a) we immediately see that V̂ solves
the Wald-Bellman equation also for x̂ = (x,C). Moreover, by definition of V̂ , Assumption 2.7
and (21) we find that

Ex̂

[

sup
n∈N0

V̂ (X̂n)

]

≤ Ex̂

[

sup
n∈N0

max
{

V (1)(X̃n), g1(X̃n), 0
}

]

< ∞.

It can be similarly shown that V̂ (X̂1) ∈ L1. Finally, using that X̂ is absorbed in finite time
a.s. and that V̂ (x̂) = r̂(x̂) for all absorbing states x̂ ∈ ÊS∪K we obtain limn→∞ V̂ (X̂n) =
limn→∞ r̂(X̂n) a.s. All these observations lead us to conclude – based on standard stopping
theory, see, e.g., [34, Theorem 1.13] – that V̂ is equal to the optimal value in (8), which in
turn implies that item (i) above is true (to see this use (26) and Proposition 3.4(B)).

All we have left is to prove item (ii) above. First note (using (20c)–(20d) and (24)–
(25)) that p(1) satisfies: p(1)(x) > 0 ⇒ Π̂V̂ (x,C)≤r̂(x,C) ⇒ x ∈ D̂ ∪ Î and p(1)(x) < 1 ⇒
Π̂V̂ (x,C)≥r̂(x,C) ⇒ x /∈ D̂ (recall (11)). But this in turn implies that p(1) and V̂ satisfies
(14). It hence follows (cf. Proposition 3.4(Aiii)-(B)) that (ii) is true.

5. Results for Zero-Sum Games In this section we study the zero-sum game speci-
fication. The main results are as follows. In Section 5.1 we establish that if the reward of
simultaneous stopping lies between the rewards associated to only one of the player’s stopping
for each state x ∈ E (see (29) below), then a global Markovian pure equilibrium exists and
we also provide an explicit equilibrium construction. In Section 5.2 we obtain sufficient and
necessary conditions for the non-existence of a global Markovian pure equilibrium. In Sec-
tion 5.3, we present an explicit example in which a global Markovian randomized equilibrium
but no global Markovian pure equilibrium exists.

We obtain the usual zero-sum game in our setting in case the payoff functions satisfy

f1 = f, g1 = g, h1 = h, f2 = −g, g2 = −f, h2 = −h,

with f, g, h : E → R. This implies that the reward of one player is the loss of the other player
and it is easily seen that the game can be viewed as follows: player 1 chooses a strategy τ1
to maximize the expected value

Ex

[

ατ1f(Xτ1)I{τ1<τ2} + ατ2g(Xτ2)I{τ2<τ1} + ατ1h(Xτ1)I{τ1=τ2<∞}

]

,

while player 2 chooses a strategy τ2 to minimize it. Given a global Markovian (possibly ran-

domized) equilibrium
(

p(1), p(2)
)

, and writing τi = τp
(i)
, i = 1, 2, we identify the equilibrium

value with V : E → R defined by

V (x) = Ex

[

ατ1f(Xτ1)I{τ1<τ2} + ατ2g(Xτ2)I{τ2<τ1} + ατ1h(Xτ1)I{τ1=τ2<∞}

]

. (27)

(In the terminology of Section 4, V is the value for player 1 whereas −V is the value for
player 2.) For this game we immediately find that Theorem 4.2 corresponds to:

Corollary 5.1 (Equilibrium characterization and verification). Let p(1), p(2) : E → [0, 1]
and V : E → R be measurable functions. (A): Suppose

(

p(1), p(2)
)

is a global Markovian
randomized equilibrium with value V . Then these functions satisfy the system:

V (x) = max
{

(1− p(2)(x))αΠV (x) + p(2)(x)g(x), (1 − p(2)(x))f(x) + p(2)(x)h(x)
}

(28a)
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V (x) = min
{

(1− p(1)(x))αΠV (x) + p(1)(x)f(x), (1 − p(1)(x))g(x) + p(1)(x)h(x)
}

(28b)

p(1)(x) > 0 ⇒ (1− p(2)(x))αΠV (x) + p(2)(x)g(x) ≤ (1− p(2)(x))f(x) + p(2)(x)h(x) (28c)

p(1)(x) < 1 ⇒ (1− p(2)(x))αΠV (x) + p(2)(x)g(x) ≥ (1− p(2)(x))f(x) + p(2)(x)h(x) (28d)

p(2)(x) > 0 ⇒ (1− p(1)(x))αΠV (x) + p(1)(x)f(x) ≥ (1− p(1)(x))g(x) + p(1)(x)h(x) (28e)

p(2)(x) < 1 ⇒ (1− p(1)(x))αΠV (x) + p(1)(x)f(x) ≤ (1− p(1)(x))g(x) + p(1)(x)h(x). (28f)

(B): Suppose p(1), p(2) and V satisfy (28) and that supn∈N0
|V (X̃n)| ∈ L1. Then

(

p(1), p(2)
)

is a global Markovian randomized equilibrium with value V .

Remark 5.2. Whenever an equilibrium exists, the definition of a value V coincides, as ex-
pected, with the classical definition of a value in the theory of zero-sum games (as in e.g.,
[30, 36]). In this literature, the lower and upper value are defined as

V (x) := sup
τ1∈T1

inf
τ2∈T2

J1(x; τ1, τ2) and V (x) = inf
τ2∈T2

sup
τ1∈T1

J1(x; τ1, τ2),

respectively, and it is immediate that V (x) ≤ V (x). If the two values coincide for all x ∈ E,
then we call Ṽ : E → R, x 7→ V (x) = V (x) the value. Now, let (p(1), p(2)) be a global

Markovian equilibrium with value V , then, writing τ̃i = τp
(i)
, we have for any x ∈ E and any

pair (τ1, τ2) of strategies

J1(x; τ1, τ̃2) ≤ J1(x; τ̃1, τ̃2) ≤ J1(x; τ̃1, τ2).

Hence, we obtain

V (x) ≤ sup
τ1∈T1

J1(x; τ1, τ̃2) ≤ J1(x; τ̃1, τ̃2) = V (x) ≤ inf
τ2∈T2

J1(x; τ̃1, τ2) ≤ V (x)

for all x ∈ E, which means that Ṽ = V . In particular, we obtain that every equilibrium of a
zero-sum game has the same value V . ⋄

5.1. Zero-sum Games and Pure Equilibria For the middle value among the constants
a, b, c ∈ R we use the notation med(a, b, c) = min {max{a, b},max{a, c},max{b, c}} . The
results of the present subsection rely on the assumption that

h(x) = med(f(x), h(x), g(x)), for all x ∈ E, (29)

i.e., we assume that the simultaneous reward h is always in the middle. Remark 5.5 relates this
assumption to the literature. Under this assumption we here establish the existence of a pure
strategy equilibrium. We remark that when this assumption is violated, we may observe that
one player strictly prefers simultaneous stopping or simultaneous continuation, whereas the
other player strictly prefers that exactly one agent stops, and in this situation it is reasonable
to expect that randomization is necessary for equilibrium existence; see Section 5.2.

The main result of this subsection is Theorem 5.3 which establishes the existence of, and
explicitly constructs, a global Markovian equilibrium, which can be chosen to be pure. Hence,
we can conclude that for zero-sum games satisfying the assumption (29) there is in this sense
no need for randomized strategies.
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Theorem 5.3 (Existence and construction of a pure equilibrium). Suppose (29) holds.
(A): There exists a measurable function V : E → R solving the equation

V (x) =

{

med(f(x), αΠV (x), g(x)) if f(x) < g(x)

h(x) if f(x) ≥ g(x)
, for all x ∈ E. (30)

Indeed, such a solution can be found via V (x) := limn→∞ V n+1(x), x ∈ E, with V 0(x) :=
f(x) ∧ h(x) and

V n+1(x) :=

{

med(f(x), αΠV n(x), g(x)) if f(x) < g(x)

h(x) if f(x) ≥ g(x).
(31)

(B): Let V : E → R be a measurable solution to (30). Choose any two measurable functions
p(1), p(2) : E → [0, 1] so that

(i) f(x) > g(x) ⇒ p(1)(x) = p(2)(x) = 1

(ii) f(x) = g(x), αΠV (x) < V (x) ⇒ p(1)(x) = 1, p(2)(x) ∈ [0, 1]

(iii) f(x) = g(x), αΠV (x) = V (x) ⇒ p(1)(x) = p(2)(x) ∈ [0, 1]

(iv) f(x) = g(x), αΠV (x) > V (x) ⇒ p(1)(x) ∈ [0, 1], p(2)(x) = 1

(v) f(x) < g(x), g(x) < αΠV (x) ⇒ p(1)(x) = 0, p(2)(x) = 1

(vi) f(x) < g(x), g(x) = αΠV (x) ⇒ p(1)(x) = 0, p(2)(x) ∈ [0, 1]

(vii) f(x) < g(x), f(x) < αΠV (x) < g(x) ⇒ p(1)(x) = p(2)(x) = 0

(viii) f(x) < g(x), f(x) = αΠV (x) ⇒ p(1)(x) ∈ [0, 1], p(2)(x) = 0

(ix) f(x) < g(x), αΠV (x) < f(x) ⇒ p(1)(x) = 1, p(2)(x) = 0.

(It is directly seen that such functions can be found). Then
(

p(1), p(2)
)

is a global Markovian

equilibrium with value V . Moreover, the equilibrium
(

p(1), p(2)
)

can be taken to be pure (i.e.,

with p(i) : E → {0, 1}, i = 1, 2).

Using Corollary 5.1 one straightforwardly proves Theorem 5.3; see Appendix A.

Remark 5.4. From Remark 5.2 and Theorem 5.3 we can now conclude that there is a unique
solution to (30). Indeed, by Remark 5.2, the value of any zero-sum game is unique. Since by
Theorem 5.3, every solution of (30) is the value of an equilibrium, the claim follows. ⋄

Remark 5.5. Let us briefly relate our result to the existence results in the literature. As
outlined in the introduction, characterization results have only been obtained under the
assumption F 1 ≤ H1 ≤ G1 (e.g., [17] for Markov games and [30] for general zero-sum
games). Without this assumption only the existence of ǫ-equilibria (e.g., [36]) could be
established. Here, we describe the explicit construction of an equilibrium while only requiring
that h(x) = med(f(x), h(x), g(x)) for all x ∈ E. ⋄

5.2. Zero-sum Games and Randomized Equilibria In the previous section we found
that if the functions f, g and h satisfy the condition (29), then a pure equilibrium always
exits. A natural question to ask is if we should expect a pure equilibrium to exist also in case
this condition is not satisfied. Note that if (29) does not hold then at least one of the sets

M1 := {x ∈ E : (f ∨ g)(x) < h(x)} and M2 := {x ∈ E : h(x) < (f ∧ g)(x)}, (32)
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is non-empty. We here give an answer to this question by providing conditions under which no
pure global Markovian equilibrium exists. The first result, Theorem 5.6, gives necessary and
sufficient conditions for the non-existence of pure equilibria in terms of the value function of
the game. The second result, Proposition 5.8, which relies on the first result, gives sufficient
conditions for the non-existence of pure equilibria in terms of the payoff functions f, g and h
and certain standard optimal stopping problems. Both results are, as we will see, obtained
from the Wald-Bellman system equilibrium characterization in Corollary 5.1.

Theorem 5.6 (Sufficient and necessary conditions for non-existence of pure equilibria).
Suppose a global Markovian equilibrium exists and let V denote its value function. Then, a
pure global Markovian equilibrium exists if and only if

h(x) ∨ αΠV (x) ≥ (f ∧ g)(x) and h(x) ∧ αΠV (x) ≤ (f ∨ g)(x), for all x ∈ E. (33)

Remark 5.7. The condition (33) has a clear interpretation. Indeed, at every time point the
players can decide to continue or to stop the game. If both players choose the same action
(i.e., both continue or both stop), then the reward of player 1 is h (when both stop) or
αΠV (when both continue). If one player stops and the other continues the reward of player
1 is f if player 1 stops and g if player 2 stops. Hence, condition (33) requires that the
rewards associated to choosing the same action do not dominate or are not dominated by
the reward associated to choosing different actions. We immediately see that condition (33)
should be necessary for the existence of a pure equilibrium: Suppose that (33) does not hold.
Suppose first that the reward associated to choosing the same action dominates the reward
associated to choosing different actions. Then player 1 would always want to choose the
action player 2 chooses and player 2 would always want to choose the action that player 1
does not choose. Hence, no pure equilibrium can exists (as detailed in the proof below). An
analogous argument works also for the case that the reward associated to choosing the same
action is dominated by the reward associated to choosing different actions. ⋄

Proof of Theorem 5.6. Let us first show that if there exists a pure global Markovian equilib-
rium (p(1), p(2)), then (33) holds. By Corollary 5.1 we know that V and (p(1), p(2)) satisfy
(28a)–(28b) for each x ∈ E. For a pure equilibrium we have four possible cases for (p(1), p(2))
for each x ∈ E, and given each of these it is easily verified, that (33) holds:

Case 1: (p(1)(x), p(2)(x)) = (1, 1). In this case both player’s stop immediately and the
equilibrium value therefore satisfies V (x) = h(x) (by definition, see (27)). Moreover, in this
case it follows from (28a)–(28b) that h(x) = max {g(x), h(x)} and h(x) = min {f(x), h(x)}.
It follows that, g(x) ≤ h(x) ≤ f(x), which in turn directly implies that (33) holds.

Case 2: (p(1)(x), p(2)(x)) = (1, 0). In this case V (x) = f(x) and (28a)–(28b) imply that
f(x) = max {αΠV (x), f(x)} and f(x) = min {f(x), h(x)}. Hence, αΠV (x) ≤ f(x) ≤ h(x),
which in turn implies that (33) holds.

Case 3: (p(1)(x), p(2)(x)) = (0, 1). In this case V (x) = g(x) and (28a)–(28b) imply that
g(x) = max {g(x), h(x)} and g(x) = min {αΠV (x), g(x)}. Hence, h(x) ≤ g(x) ≤ αΠV (x),
which in turn implies that (33) holds.

Case 4: (p(1)(x), p(2)(x)) = (0, 0). In this case V (x) = αΠV (x) and (28a)–(28b) imply
that αΠV (x) = max {αΠV (x), f(x)} and αΠV (x) = min {αΠV (x), g(x)}. Hence, f(x) ≤
αΠV (x) ≤ g(x), which in turn implies that (33) holds.

Let us now show that if (33) holds, then there exists a pure global Markovian equilibrium.
A simple argument (presented in the appendix (Lemma A.1)) shows that if (33) holds, then
for each x ∈ E at least one of the following four conditions is satisfied: g(x) ≤ h(x) ≤ f(x)
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(cf. Case 1 above), or αΠV (x) ≤ f(x) ≤ h(x) (Case 2), or h(x) ≤ g(x) ≤ αΠV (x) (Case 3),
or f(x) ≤ αΠV (x) ≤ g(x) (Case 4).

By assumption there is an equilibrium (p(1), p(2)) with associated value function V . By
Corollary 5.1(A) the function (p(1), p(2)) and V satisfy the Wald-Bellman system (28). More-
over, we note that f(x)∧ h(x) ≤ V (x) ≤ g(x)∨ h(x); to see this use that V (x) ≥ f(x)∧ h(x)
(since the maximizing player obtains the value (1− p(2)(x))f(x) + p(2)(x)h(x) ≥ f(x) ∧ h(x)
by stopping, cf. (28a)) and V (x) ≤ g(x) ∨ h(x) (similar, cf. (28b)). This implies |V (x)| ≤
max{|f(x)∧h(x)|, |h(x)∨ g(x)|}. Hence, by Assumption 2.7 the function V satisfies the inte-
grability conditions in Corollary 5.1(B). We will now show that we can select pure strategies
(p̃(1), p̃(2)) such that (p̃(1), p̃(2)) and V satisfy (28), which concludes the proof (by Corol-
lary 5.1(B)). We consider the different cases for x ∈ E separately:

Case 1: g(x) ≤ h(x) ≤ f(x). In this case we find V (x) = h(x) since we proved f(x) ∧
h(x) ≤ V (x) ≤ g(x) ∨ h(x) above. We may choose (p̃(1)(x), p̃(2)(x)) = (1, 1) for each x
corresponding to this case and it holds that (p̃(1), p̃(2)) and V satisfy (28) (this is directly
verified).

Case 2: αΠV (x) ≤ f(x) ≤ h(x). In this case we find V (x) = f(x); to see this to see this
use that it generally holds that V (x) ≥ f(x) ∧ h(x) (by (28a)) and V (x) ≤ αΠV (x) ∨ f(x)
(by (28b)). We may hence set (p̃(1)(x), p̃(2)(x)) = (1, 0) for each x corresponding to this case
and it holds that (p̃(1), p̃(2)) and V satisfy (28).

Case 3: h(x) ≤ g(x) ≤ αΠV (x). In this case we find V (x) = g(x); to see this to see this
use that it generally holds that V (x) ≥ αΠV (x) ∧ g(x) (by (28a)) and V (x) ≤ g(x) ∨ h(x)
(by (28b)). We may hence set (p̃(1)(x), p̃(2)(x)) = (0, 1) for each x corresponding to this case
and it holds that (p̃(1), p̃(2)) and V satisfy (28).

Case 4: f(x) ≤ αΠV (x) ≤ g(x). In this case we find V (x) = αΠV (x); to see this to see this
use that it generally holds that V (x) ≥ αΠV (x)∧g(x) (by (28a)) and V (x) ≤ αΠV (x)∨f(x)
(by (28b)). We may hence set (p̃(1)(x), p̃(2)(x)) = (0, 0) for each x corresponding to this case
and it holds that (p̃(1), p̃(2)) and V satisfy (28).

Thus, we can indeed find a pure strategy pair (p̃(1), p̃(2)) such that it and V together solve
(28), for each x ∈ E. Using Corollary 5.1(B), we conclude that (p̃(1), p̃(2)) is a pure global
Markovian equilibrium.

Proposition 5.8 (Sufficient conditions for non-existence of pure equilibria). Consider the
sets Mi, i = 1, 2 defined in (32) and the standard stopping problems

VM1(x) := sup
τ∈T1,τ≤τM1

Ex [α
τk1(Xτ )] , x ∈ M1,

VM2(x) := inf
τ∈T2,τ≤τM2

Ex [α
τk2(Xτ )] , x ∈ M2,

where τMi
:= inf{t ≥ 0 : Xt /∈ Mi} and

k1(x) := I{x∈M1}f(x) + I{x/∈M1}(f ∧ h)(x), (34)

k2(x) := I{x∈M2}g(x) + I{x/∈M2}(g ∨ h)(x).

(A) If VM1(x0) > (f ∨ g)(x0) for some x0 ∈ M1 then no pure global Markovian equilibrium
exists. (B) If VM2(x0) < (f ∧ g)(x0) for some x0 ∈ M2 then no pure global Markovian
equilibrium exists.

Proof. (A) We prove the statement using a contradiction argument. Suppose (p(1), p(2)) is a
pure global Markovian equilibrium with value function V .
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Recall that x ∈ M1 means that (f ∨ g)(x) < h(x). Note that p(1)(x) = p(2)(x) = 1
cannot hold since in this case V (x) = h(x), which means that player 2 (the minimizer) would
deviate and obtain f(x) < h(x) = V (x) (in other words, (28b) implies the contradiction
V (x) = min {f(x), h(x)} = f(x) < h(x) = V (x)). Similarly, p(1)(x) = 0, p(2)(x) = 1 cannot
hold since in this case V (x) = g(x), which is a contradiction to (28a) which implies that
V (x) = max {g(x), h(x)} = h(x) > g(x) = V (x). We conclude that p(2)(x) = 0, for x ∈ M1,
i.e., player 2 does not stop on M1.

Since player 2 does not stop on M1, it follows that the equilibrium value V must be
dominated by the value of the one-player optimization problem where player 1 obtains f(x)
if stopping on M1 and (f ∧ h)(x) if stopping directly after leaving M1 (cf. the function k1 in
(34)), specifically for x = x0

V (x0) ≥ VM1(x0) > (f ∨ g)(x0)

(the second inequality is a condition in the statement of the result). This implies that
V (x0) > f(x0) and using also the finding p(2)(x0) = 0, we conclude with (28a) that V (x0) =
max {αΠV (x0), f(x0)} = αΠV (x0). Hence,

αΠV (x0) > (f ∨ g)(x0).

Using this and that x0 ∈ M1 we find that h(x0) ∧ αΠV (x0) > (f ∨ g)(x0), which means that
(33) does not hold. This is the desired contradiction (cf. Theorem 5.6).

(B): The proof is analogous to the one above.

5.3. A Zero-sum Game With a Randomized But No Pure Equilibrium Here we
present a game with only two states with a global Markovian randomized equilibrium, which
does not have a global Markovian pure equilibrium. The construction relies on the idea
presented in Remark 5.7. Namely, if the game is in state 1, then one player prefers either
that both players do not stop or that they stop simultaneously, while the other player prefers
that exactly one player stops. As explained before, with these preferences, it indeed seems
reasonable that only randomized equilibria are possible.

Let E = {1, 2}, α = 4/5, f(1) = g(1) = 0, h(1) = 2, f(2) = 5, g(2) = 3, h(2) = 4 and

Π =

(

1/2 1/2
0 1

)

.

We first note that this example satisfies the conditions of Corollary 5.8 with M1 = {1}. Hence,
by Corollary 5.8 no global Markovian pure equilibrium exists. Nonetheless a unique global
Markovian randomized equilibrium exists:

Claim: The randomized stopping strategy pair
(

p(1), p(2)
)

where

p(1)(1) = p(2)(1) = 1/2 and p(1)(2) = p(2)(2) = 1 (35)

is the unique global Markovian equilibrium.

Proof. We start by showing that
(

p(1), p(2)
)

given by (35) is indeed an equilibrium. For this it

suffices that p(1), p(2) and V given by V (1) = 1 and V (2) = 4 satisfy (28). This immediately
follows from

4
5(1− p(2)(2))V (2) + 3p(2)(2) = 3 < 4 = 5(1 − p(2)(2)) + 4p(2)(2)
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4
5(1− p(1)(2))V (2) + 5p(1)(2) = 5 > 4 = 3(1 − p(1)(2)) + 4p(1)(2)

(1− p(2)(1))
[

2
5V (1) + 8

5

]

= 1 = 2p(2)(1)

(1− p(1)(1))
[

2
5V (1) + 8

5

]

= 1 = 2p(1)(1).

To prove uniqueness, suppose
(

p(1), p(2)
)

to be any global Markovian equilibrium. From
Remark 5.2, we know that it has value V (1) = 1 and V (2) = 4 as well. By Corollary 5.1,
p(1), p(2) and V satisfy (28). Using that we know V , (28a) for x = 2 reads

4 = max
{

4
5(1− p(2)(2))4 + 3p(2)(2), 5(1 − p(2)(2)) + 4p(2)(2)

}

.

which implies p(2)(2) = 1 and similarly we find p(1)(2) = 1. (28a) for the state x = 1 simplifies
to

1 = max
{

2(1 − p(2)(1)), 2p(2)(1)
}

,

yielding p(2)(1) = 1
2 . With analogous arguments it can also be shown that p(1)(1) = 1

2 .

6. Results for Symmetric Games We have a symmetric game when the players’ payoff
functions coincide, i.e., when

f1 = f2 = f, g1 = g2 = g and h1 = h2 = h. (36)

In the case of a countable state space it holds that every symmetric game admits a global
Markovian symmetric equilibrium – by which we mean a global Markovian equilibrium
(

p(1), p(2)
)

satisfying p(1) = p(2); see Section 7.1 below. Here, however, we consider general
state space and the case f = h – i.e., the payoffs of stopping first and stopping simultane-
ously coincide – and search for global Markovian symmetric equilibria. Indeed under this
condition we obtain that such an equilibrium can always be constructed explicitly in terms
an associated standard optimal stopping problem:

Theorem 6.1 (Existence and construction of a symmetric equilibrium). Suppose f = h. Let
V : E → R be given by

V (x) := sup
τ∈T1

Ex[α
τf(Xτ )], x ∈ E.

Choose a measurable function p : E → [0, 1] so that

(i) αΠV (x) = f(x), g(x) = f(x) ⇒ p(x) ∈ [0, 1]

(ii) αΠV (x) = f(x), g(x) 6= f(x) ⇒ p(x) = 0

(iii) αΠV (x) < f(x), g(x) > f(x) ⇒ p(x) = f(x)−αΠV (x)
g(x)−αΠV (x)

(iv) αΠV (x) < f(x), g(x) ≤ f(x) ⇒ p(x) = 1

(v) αΠV (x) > f(x) ⇒ p(x) = 0.

(It is directly seen that such a function can be found). Then
(

p(1), p(2)
)

with p(1) = p(2) = p

is a (symmetric) global Markovian equilibrium with values V (1) = V (2) = V .

The proof of this result uses Theorem 4.2 after verifying that V and p satisfy (20) with
V (i) = V, p(i) = p, i = 1, 2 and (21). Indeed, the proof is similar to that of Theorem 5.3 and
is for the sake of brevity not included in the paper. Let us highlight that the probability
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with which the players randomize in case (iii) is exactly the probability that makes the other
player indifferent between stopping and continuing, i.e., for which

(1− p(x))αΠV (x) + p(x)g(x) = (1− p(x))f(x) + p(x)h(x).

An interesting special case is when f is strictly α-excessive, i.e., αΠf < f , and g > f . Locally,
the players then want to stop as early as possible on the one hand because of the excessivity,
but on the other hand prefer to stop later than the other player because of g > f . This
situation is known as the war of attrition and leads to a situation where randomization seems
rational. Indeed:

Corollary 6.2. Suppose f is strictly α-excessive and g > f = h. Then, for all x ∈ E

p(x) =
f(x)− αΠf(x)

g(x)− αΠf(x)
∈ (0, 1)

and
(

p(1), p(2)
)

with p(1) = p(2) = p is a (symmetric) global Markovian equilibrium with values

V (1) = V (2) = f .

Proof. For α-excessive rewards, we have V (x) = supτ∈T1 Ex[α
τf(Xτ )] = f(x), since imme-

diate stopping is optimal. We are thus in case (iii) of Theorem 6.1, which proves the result
(the conclusion p(x) ∈ (0, 1) follows from the assumptions for f and g).

Note that although V (1) = V (2) = f = h in the result above, it holds that immediate
stopping (for any, or both, of the players) does not constitute an equilibrium.

7. General Existence of Equilibria for Countable State Spaces In this section we
establish the following general existence result.

Theorem 7.1. Let the state space E be countable. Then a global Markovian randomized
equilibrium

(

p(1), p(2)
)

exists.

Based on the best response mapping (6) we define a two-player best response mapping as
follows. As usual we equipp the countable set E with the discrete σ-algebra. Hence, every
function p : E → [0, 1] is measurable, that is M(E, [0, 1]) = [0, 1]E .

Definition 7.2 (Two-player best response mapping). We call the set-valued mapping

F : [0, 1]E × [0, 1]E → P
(

[0, 1]E
)

× P
(

[0, 1]E
)

(

p(1), p(2)
)

7→ F
(

p(1), p(2)
)

:= BR(1)
(

p(2)
)

× BR(2)
(

p(1)
)

,

the two-player best response mapping. ⋄

The interpretation is that F takes as input a pair of strategies
(

p(1), p(2)
)

and outputs all

stopping strategy pairs
(

p̃(1), p̃(2)
)

such that p̃(1) is a best response to p(2) and p̃(2) is a best

response to p(1). Thus, it is immediately seen that a fixed point in the two-player best response
mapping

(

p(1), p(2)
)

∈ F
(

p(1), p(2)
)

is a global Markovian equilibrium. Indeed, by definition of

F , it holds that if
(

p(1), p(2)
)

is a fixed point then p(2) ∈ BR(2)
(

p(1)
)

and p(1) ∈ BR(1)
(

p(2)
)

,

which means that
(

p(1), p(2)
)

is a global Markovian randomized equilibrium (for details in
this argument compare also Definition 2.5 and Proposition 3.4). Hence, in order to prove
equilibrium existence, it suffices to show that the set-valued mapping F has a fixed point.
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Remark 7.3. Our approach to proving that F has a fixed point relies on a version of Kaku-
tani’s fixed point theorem (see [22, Theorem 7.8.6]). It states that any set-valued mapping
from a compact and convex subset of a locally convex space to its power set that is upper-
semicontinuous and has non-empty, closed and convex values has a fixed point. A central
difficulty in applying this result for any set-valued mapping G : C → P (C) is to find a
topological space X such that on the one hand G is upper-semicontinuous with respect to
the topology and on the other hand C ⊆ X is a compact (and convex) subset. In our case,
we essentially need to find a topology such that the best response mapping F is upper semi-
continuous and such that the set in which all best responses lie in is compact. We equip
the set of all strategies [0, 1]E with the topology of pointwise convergence, i.e., the product
topology. We remark that we require E to be countable in order to conclude that [0, 1]E

is metrizable, which in turn is the reason we can use the sequential criterion (37) to prove
equilibrium existence (cf. the proof below). ⋄

Proof of Theorem 7.1. As argued above, it suffices to prove that the two-player best re-
sponse mapping F has a fixed point. In particular, it suffices to show that F and the space
[0, 1]E × [0, 1]E equipped with the product topology satisfy the assumptions of the version of
Kakutani’s fixed point theorem stated in Remark 7.3.

It is immediate that the space [0, 1]E×[0, 1]E is convex. Moreover, by Tychonoff’s theorem,
this space is, as a product of compact spaces, compact. Finally, by [26, §18.3], we note that
this space equipped with the product topology is locally convex. Hence, [0, 1]E × [0, 1]E

satisfies the assumptions of Kakutani’s fixed point theorem.
It follows from Proposition 3.2 that the values of F are non-empty, closed and convex.

Hence, it suffices to show that F is upper semicontinuous. It is however clear that it suffices
to prove this component-wise, i.e., it suffices to prove that BR(1) is upper semicontinuous,
which we will now do. Since [0, 1]E is compact and Hausdorff, it suffices, by the closed graph
theorem ([1, Theorem 17.11]), to show that the mapping BR(1) has a closed graph, i.e., it
suffices to show that the set {

(

p(1), p(2)
)

: p(1) ∈ BR(1)
(

p(2)
)

} is closed. However, since E is
countable it holds the space [0, 1]E is metrizable, and it hence suffices to show that

p(i)n → p(i), i = 1, 2 and p(1)n ∈ BR(1)
(

p(2)n

)

for all n ∈ N ⇒ p(1) ∈ BR(1)
(

p(2)
)

, (37)

which we will now do. In order to highlight the dependence on the strategy of player 2, i.e.,
p(2) we will here write Π̂p(2) for the Markov kernel (7), r̂p

(2)
for reward function (9), X̂p(2) for

the process given by Definition 3.3, and V̂ p(2) for the value function of the stopping problem
(8). We also write, cf. (8),

Jp(2)

τ (x̂) = Ex̂

[

r̂p
(2)
(X̂p(2)

τ )
]

.

Since p
(2)
n → p(2) if and only if p

(2)
n (x) → p(2)(x) for all x ∈ E, it is immediately clear that

r̂p
(2)
n (x̂) → r̂p

(2)
(x̂) for all x̂ ∈ E. The proof of (37) consists of three steps:

(i) We prove that for any sequence p
(2)
n → p(2), we have that V̂ p

(2)
n (x̂) → V̂ p(2)(x̂) for all

x̂ ∈ Ê.

(ii) We prove that for any sequence p
(2)
n → p(2), we have that Π̂p

(2)
n V̂ p

(2)
n (x̂) → Π̂p(2) V̂ p(2)(x̂)

for all x̂ ∈ Ê.

(iii) We use (i) and (ii) to prove (37).
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(i): Since the states x̂ ∈ ÊS∪K are absorbing and the rewards for these states are inde-

pendent of p
(2)
n and p(2), the claim holds for x̂ ∈ ÊS∪K . Hence, we now consider the states

(x,C) = x̂ /∈ ÊS∪K . Let us write T̃1 for the set of stopping times with respect to the filtration
σ(X0, . . . ,Xn), n ∈ N0. In Proposition 3.4 we proved that for any p(2) ∈ [0, 1]E at least one
strategy from T̃1 is optimal for (8), and hence

V̂ p(2)(x̂) = sup
τ∈T̃1

Jp(2)

τ (x̂).

Using the equality (19) we find, for all m ∈ N0,

E(x,C)

[

r̂p
(2)
(X̂p(2)

m )|X0, . . . ,Xm

]

=

m
∑

i=1





i−2
∏

j=0

(1− p(2)(Xj))



 p(2)(Xi−1)α
i−1g1(Xi−1) +





m
∏

j=0

(1− p(2)(Xj))



αmf1(Xm)

+





m−1
∏

j=0

(1− p(2)(Xj))



 p(2)(Xm)αmh1(Xm).

Hence, for any stopping time τ ∈ T̃1 with τ ≤ m we find measurable functions Gi : E
i+1 → R

(i = 0, . . . ,m) and H : Em+1 → R with

Gi(X0, . . . ,Xi) ≤ M, i = 0, . . . ,m, and H(X0, . . . ,Xm) ≤ M,

such that

E(x,C)[r̂
p(2)(X̂p(2)

τ )|X0, . . . ,Xm]

=
m
∑

i=0

i−1
∏

j=0

(1− p(2)(Xj))p
(2)(Xi)Gi(X0, . . . ,Xi) +

m
∏

j=0

(1− p(2)(Xj))H(X0, . . . ,Xm).

(Recall that M is defined in connection to Assumption 2.7). Taking expectations we find

∣

∣

∣E(x,C)

[

r̂p
(2)
(X̂p(2)

τ )
]

− E(x,C)

[

r̂p
(2)
n (X̂p

(2)
n

τ )
]∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E(x,C)





m
∑

i=0





i−1
∏

j=0

(1− p(2)(Xj))p
(2)(Xi)−

i−1
∏

j=0

(1− p(2)n (Xj))p
(2)
n (Xi)



Gi(X0, . . . ,Xi)

+





m
∏

j=0

(1− p(2)(Xj))−
m
∏

j=0

(1− p(2)n (Xj))



H(X0, . . . ,Xm)





∣

∣

∣

∣

∣

∣

.

It follows that
∣

∣

∣

∣

sup
τ≤m

Jp(2)

τ (x̂)− sup
τ≤m

Jp
(2)
n

τ (x̂)

∣

∣

∣

∣

≤ sup
τ≤m

∣

∣

∣
Jp(2)

τ (x̂)− Jp
(2)
n

τ (x̂)
∣

∣

∣
≤

sup
Gi,H≤M

∣

∣

∣

∣

∣

∣

E(x,C)





m
∑

i=0





i−1
∏

j=0

(1− p(2)(Xj))p
(2)(Xi)−

i−1
∏

j=0

(1− p(2)n (Xj))p
(2)
n (Xi)



Gi(X0, . . . ,Xi)
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+





m
∏

j=0

(1− p(2)(Xj))−
m
∏

j=0

(1− p(2)n (Xj))



H(X0, . . . ,Xm)





∣

∣

∣

∣

∣

∣

.

The random variable inside the last expectation is dominated by 2(m + 1)M and converges

pointwise to 0, since p
(2)
n → p(2) (by assumption). Relying on dominated convergence we thus

obtain
sup
τ≤m

Jp
(2)
n

τ (x̂) → sup
τ≤m

Jp(2)
τ (x̂).

Since the reward associated to stopping at a time later than m is bounded by αmM we obtain
using dominated convergence that

sup
τ≤m

Jp(2)
τ (x̂)

m→∞
→ sup

τ∈T̃1

Jp(2)
τ (x̂) = V̂ p(2)(x̂)

and similarly for p
(2)
n . We conclude that the desired claim holds, i.e.,

V̂ p
(2)
n (x̂) = sup

τ∈T̃1

Jp
(2)
n

τ (x̂) → V̂ p(2)(x̂).

(ii): Since the states x̂ ∈ ÊS∪K are absorbing, the claim holds (similarly to the above) for
x̂ ∈ ÊS∪K . Hence, we now consider the states (x,C) = x̂ /∈ ÊS∪K . The claim then follows,
by dominated convergence, according to

Π̂p
(2)
n V p

(2)
n (x,C)

= (1− p(2)n (x))

∫

E
αV p

(2)
n (y)Π(x,dy) + p(2)n (x)V̂ p

(2)
n (x, S) + (1− α)(1 − p(2)n (x)) · 0

→ (1− p(2)(x))

∫

E
αV p(2)(y)Π(x,dy) + p(2)(x)V̂ p(2)(x, S) + (1− α)(1 − p(2)(x)) · 0

= Π̂p(2)V p(2)(x,C).

(iii): In order to show that (37) holds, it suffices to show, by Proposition 3.4, that for any
x ∈ E, it holds that

(a) p(1)(x) = 0 ⇒ (x,C) /∈ D̂

(b) p(1)(x) ∈ (0, 1) ⇒ (x,C) ∈ Î

(c) p(1)(x) = 1 ⇒ (x,C) ∈ Î ∪ D̂.

Recall that for x̂ = (x,C) and p
(2)
n → p(2) we have

V̂ p
(2)
n (x̂) → V̂ p(2)(x̂), Π̂p

(2)
n V̂ p

(2)
n (x̂) → Π̂p(2) V̂ p(2)(x̂) and r̂p

(2)
n (x̂) → r̂p

(2)
(x̂). (38)

Below we show that (a)–(c) hold. We use the definitions of D̂ and Î in (11) repeatedly.

(a): Suppose p(1)(x) = 0. It suffices to show that Π̂p(2) V̂ p(2)(x,C) ≥ r̂p
(2)
(x,C). Since

p
(1)
n (x) → p(1)(x) we have that there is an n0 ∈ N such that for all n ≥ n0 we have p

(1)
n (x) < 1

2 ,

which means, by Proposition 3.4 that Π̂p
(2)
n V̂ p

(2)
n (x,C) ≥ r̂p

(2)
n (x,C) for all n ≥ n0, and using

(38) we obtain the desired statement.

(b): Suppose p(1)(x) ∈ (0, 1). It suffices to show that Π̂p(2) V̂ p(2)(x,C) = r̂p
(2)
(x,C). Since

p
(1)
n (x) → p(1)(x) there is an n0 ∈ N such that p

(1)
n (x) ∈ (0, 1) for all n ≥ n0. Hence, by
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Proposition 3.4, we have Π̂p
(2)
n V̂ p

(2)
n (x,C) = r̂p

(2)
n (x,C) for all n ≥ n0, and using (38), we

obtain the desired statement.
(c): Analogous to (a).

Example 7.4. Let us illustrate that our integrability condition (Assumption 2.7) is necessary
for the existence of Nash equilibria in that it does not suffice to require (4). Namely, let us
consider a deterministic zero-sum game and set Xn = n, f(n) = g(n) = 2n, h(n) = 0 and
α = 1/2. With these choices we recover the example in [39], for which no Nash equilibrium
exists (although an ǫ-equilibrium, for every ǫ > 0, does exist). We immediately observe
that E[supn∈N0

αnf(Xn)] < ∞. However, E[supn∈N0
f(X̃n)] = ∞. This shows how our

integrability condition is essential. ⋄

Remark 7.5. It is well-known that we can interpret any general stochastic process (Xn)n∈N0 on
a countable space E as a Markov chain on the space of all sample paths Ẽ := {(xk)k≤n : xk ∈
E, n ∈ N}. In this case, our notion of Markovian randomized stopping times coincides with
the notion of general behavior stopping times, see [40, Section 3.2]. In practical applications,
as always with the use of general randomized stopping times, the problem arises that the
stopping rules are path-dependent and thus difficult to handle. Nevertheless, Theorem 7.1 is
applicable and we obtain that in this case a Nash equilibrium (and not only an ǫ-equilibrium)
always exists. ⋄

7.1. Symmetric Equilibrium Existence for Symmetric Games For symmetric games

we immediately find that the one-player best response mappings BR(i), i = 1, 2 are identical.
Using this observation and arguments analogous to those in the proof of Theorem 7.1 one can
prove that BR(1) has a fixed point p(1), which in turn is such that

(

p(1), p(2)
)

with p(1) = p(2)

is a global Markovian randomized equilibrium. Indeed we have the following result:

Theorem 7.6. Let the state space E be countable and consider a symmetric game (cf. (36)).
Then, a global Markovian randomized equilibrium

(

p(1), p(2)
)

with p(1) = p(2) exists.

A. Appendix

Proof of Theorem 5.3. (A): It can be verified that (V n)n∈N0 is an increasing sequence of
measurable functions, bounded from below by f(x) ∧ h(x) and from above by h(x) ∨ g(x).
Hence, using (31) we obtain that V (x) := limn→∞ V n(x) satisfies (30). The statement follows.

(B): For the first claim it suffices, by Corollary 5.1(B), to prove that V and
(

p(1), p(2)
)

satisfy (28) (proved first) and that V satisfies the required integrability of Corollary 5.1(B)
(proved last). In fact we will prove that (28a), (28c) and (28d) hold, and note that the
remaining parts of (28), i.e., (28b), (28e) and (28f), can be similarly proved. It can be
verified that the cases (i)–(ix) describe all possibilities for any x ∈ E and we will show that
(28a), (28c) and (28d) hold for these. Assumption (29) is used repeatedly.

(i): Let x ∈ E be such that f(x) > g(x). Then p(1)(x) = p(2)(x) = 1. Using p(2)(x) = 1
and (29) we obtain

max{(1− p(2)(x))αΠV (x) + p(2)(x)g(x), (1 − p(2)(x))f(x) + p(2)(x)h(x)}

= max{g(x), h(x)} = h(x) = V (x),

which is (28a). Since p(1)(x) = 1, (28d) is trivially satisfied. Now use p(2)(x) = 1 and
h(x) ≥ g(x) (cf. (29)) to obtain

(1− p(2)(x))αΠV (x) + p(2)(x)g(x) = g(x) ≤ h(x) = (1− p(2)(x))f(x) + p(2)(x)h(x).
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Hence, (28c) holds.
(ii): Let x ∈ E be such that f(x) = g(x) and αΠV (x) < V (x). Then p(1)(x) = 1. Using

that V (x) = f(x) = g(x) = h(x) we obtain

max{(1− p(2)(x))αΠV (x) + p(2)(x)g(x), (1 − p(2)(x))f(x) + p(2)(x)h(x)}

= max{(1 − p(2)(x))αΠV (x) + p(2)(x)f(x), f(x)} = f(x) = V (x),

which is (28a). Since p(1)(x) = 1, (28d) is trivially satisfied. Use that g(x) = V (x) > αΠV (x)
and obtain

(1− p(2)(x))αΠV (x) + p(2)(x)g(x) ≤ g(x) = (1− p(2)(x))f(x) + p(2)(x)h(x).

Hence, (28c) holds.
(iii): Let x ∈ E be such that f(x) = g(x) and αΠV (x) = V (x). Verify first that

V (x) = f(x) = g(x) = h(x) = αΠV (x), and obtain

max{(1− p(2)(x))αΠV (x) + p(2)(x)g(x), (1 − p(2)(x))f(x) + p(2)(x)h(x)}

= f(x) = V (x),

which is (28a). Moreover, (28c) and (28d) hold, since

(1− p(2)(x))αΠV (x) + p(2)(x)g(x) = g(x) = (1− p(2)(x))f(x) + p(2)(x)h(x).

(iv): Let x ∈ E be such that f(x) = g(x) and αΠV (x) > V (x). Then, p(2)(x) = 1. Using
V (x) = h(x), we obtain

max{(1− p(2)(x))αΠV (x) + p(2)(x)g(x), (1 − p(2)(x))f(x) + p(2)(x)h(x)}

= max{g(x), h(x)} = h(x) = V (x),

which is (28a). Since f(x) = h(x) = g(x), we obtain

(1− p(2)(x))αΠV (x) + p(2)(x)g(x) = g(x) = (1− p(2)(x))f(x) + p(2)(x)h(x),

which shows that (28c) and (28d) hold.
(v): Let x ∈ E be such that f(x) < g(x) and g(x) < αΠV (x). Then p(1)(x) = 0 and

p(2)(x) = 1. This together with h(x) ≤ g(x) and med(f(x), αΠV (x), g(x)) = g(x) implies

max{(1− p(2)(x))αΠV (x) + p(2)(x)g(x), (1 − p(2)(x))f(x) + p(2)(x)h(x)}

= max{g(x), h(x)} = g(x) = med(f(x), αΠV (x), g(x)) = V (x),

which is (28a). Since p(1)(x) = 0, (28c) is trivially satisfied. Obtain now using p(2)(x) = 1
and h(x) ≤ g(x) that

(1− p(2)(x))αΠV (x) + p(2)(x)g(x) = g(x) ≥ h(x) = (1− p(2)(x))f(x) + p(2)(x)h(x).

Hence, (28d) holds.
(vi): Let x ∈ E be such that f(x) < g(x) and g(x) = αΠV (x). Then p(1)(x) = 0. Hence,

f(x) ≤ h(x) ≤ g(x) and med(f(x), αΠV (x), g(x)) = g(x) yields

max{(1− p(2)(x))αΠV (x) + p(2)(x)g(x), (1 − p(2)(x))f(x) + p(2)(x)h(x)}
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= g(x) = med(f(x), αΠV (x), g(x)) = V (x),

which is (28a). Since p(1)(x) = 0, (28c) is trivially satisfied. We obtain, using f(x) ≤ h(x) ≤
g(x) and g(x) = αΠV (x), that

(1− p(2)(x))αΠV (x) + p(2)(x)g(x) = g(x) ≥ h(x) ≥ (1− p(2)(x))f(x) + p(2)(x)h(x)

Hence, (28d) holds.
(vii): Let x ∈ E be such that f(x) < g(x) and f(x) < αΠV (x) < g(x). Then p(1)(x) =

p(2)(x) = 0. This and med(f(x), αΠV (x), g(x)) = αΠV (x) yields

max{(1− p(2)(x))αΠV (x) + p(2)(x)g(x), (1 − p(2)(x))f(x) + p(2)(x)h(x)}

= max{αΠV (x), f(x)} = αΠV (x) = med(f(x), αΠV (x), g(x)) = V (x),

which is (28a). Since p(1)(x) = 0, (28c) is trivially satisfied. We obtain using p(2)(x) = 0 and
αΠV (x) > f(x) that

(1− p(2)(x))αΠV (x) + p(2)(x)g(x) = αΠV (x) > f(x) = (1− p(2)(x))f(x) + p(2)(x)h(x).

Hence, (28d) holds.
(viii): Let x ∈ E be such that f(x) < g(x) and f(x) = αΠV (x). Then p(2)(x) = 0. This

and med(f(x), αΠV (x), g(x)) = f(x) gives

max{(1− p(2)(x))αΠV (x) + p(2)(x)g(x), (1 − p(2)(x))f(x) + p(2)(x)h(x)}

= max{αΠV (x), f(x)} = f(x) = med(f(x), αΠV (x), g(x)) = V (x),

which is (28a). Since p(2)(x) = 0 and f(x) = αΠV (x) we have

(1− p(2)(x))αΠV (x) + p(2)(x)g(x) = αΠV (x) = f(x) = (1− p(2)(x))f(x) + p(2)(x)h(x),

which shows that (28c) and (28d) hold.
(ix): Let x ∈ E be such that f(x) < g(x) and αΠV (x) < f(x). Then p(1)(x) = 1 and

p(2)(x) = 0. This and med(f(x), αΠV (x), g(x)) = f(x) yields

max{(1− p(2)(x))αΠV (x) + p(2)(x)g(x), (1 − p(2)(x))f(x) + p(2)(x)h(x)}

= max{αΠV (x), f(x)} = f(x) = med(f(x), αΠV (x), g(x)) = V (x),

which is (28a). Since p(1)(x) = 1, (28d) is trivially satisfied. Using p(2)(x) = 0 and αΠV (x) <
f(x) we obtain

(1− p(2)(x))αΠV (x) + p(2)(x)g(x) = αΠV (x) < f(x) = (1− p(2)(x))f(x) + p(2)(x)h(x).

Hence, (28c) holds.
Observe that since V satisfies (30), we have |V (x)| ≤ max{|f(x)|, |g(x)|} for x ∈ E.

Hence, the required integrability in Corollary 5.1(B) is satisfied (see Assumption 2.7 and
subsequent observations). Finally, we observe that p(1) and p(2) satisfying (i)-(ix) obviously
can be chosen to take values in {0, 1}, which is the second claim.

Lemma A.1. Assume that (33) holds. Then for each x ∈ E at least one of the following
four conditions holds:

(i) : g(x) ≤ h(x) ≤ f(x) (ii) : αΠV (x) ≤ f(x) ≤ h(x)

(iii) : h(x) ≤ g(x) ≤ αΠV (x) (iv) : f(x) ≤ αΠV (x) ≤ g(x).
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Proof. Let x ∈ E be arbitrary. We prove that at least one of the four conditions is satisfied.
For this assume that (i) does not hold. Then we are in one of the following cases:

Case a: f(x) ≤ h(x) ≤ g(x). The value αΠV (x) either satisfies αΠV (x) ≤ f(x) (hence
(ii) holds) or f(x) ≤ αΠ(x) ≤ g(x) (hence (iv) holds) or g(x) ≤ αΠV (x) (hence (iii) holds).

Case b: g(x)∨f(x) < h(x). Then by (33) we have αΠV (x) ≤ g(x)∨f(x). If f(x)∨g(x) =
f(x) then (ii) holds. Else, we have αΠV (x) ≤ g(x) < h(x). If f(x) ≤ αΠV (x) then (iv) holds.
If f(x) ≥ αΠV (x) then (ii) holds.

Case c: h(x) < f(x) ∧ g(x). By (33) we have αΠV (x) ≥ f(x) ∧ g(x). If f(x) ∧ g(x) =
g(x), then (iii) holds. If f(x) ∧ g(x) = f(x), then we have h(x) < f(x) ≤ αΠV (x). If
g(x) ≤ αΠV (x), then (iii) holds. If g(x) ≥ αΠV (x) then (iv) holds.
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Birkhäuser, 2006.

[35] Frank Riedel and Jan-Henrik Steg. Subgame-perfect equilibria in stochastic timing
games. Journal of Mathematical Economics, 72:36–50, 2017.

[36] Dinah Rosenberg, Eilon Solan, and Nicolas Vieille. Stopping games with randomized
strategies. Probability Theory and Related Fields, 119:433–451, 2001.

[37] Albert N Shiryaev. Optimal stopping rules, volume 8. Springer, 2007.

[38] Eran Shmaya and Eilon Solan. Two-player nonzero-sum stopping games in discrete time.
The Annals of Probability, 32(3):2733–2764, 2004.

[39] Eran Shmaya, Eilon Solan, and Nicolas Vieille. An application of Ramsey theorem to
stopping games. Games and Economic Behavior, 42:300–306, 2003.

[40] Eilon Solan, Boris Tsirelson, and Nicolas Vieille. Random Stopping Times in Stopping
Problems and Stopping Games. arXiv:1211.5802, 2012.

[41] M. Yasuda. On a randomized strategy in Neveu’s stopping problem. Stochastic Processes
and their Applications, 21(1):159–166, 1985.

31


	Introduction
	The Markovian Dynkin game and contributions

	Randomized Markovian Stopping Times, Nash Equilibrium and Assumptions
	Best Response Mapping
	Verification and Characterization for the General Game Formulation
	Results for Zero-Sum Games
	Zero-sum Games and Pure Equilibria
	Zero-sum Games and Randomized Equilibria
	A Zero-sum Game With a Randomized But No Pure Equilibrium

	Results for Symmetric Games
	General Existence of Equilibria for Countable State Spaces
	Symmetric Equilibrium Existence for Symmetric Games

	Appendix

