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Abstract

In the present note a general multi-parametric gradient boosting
machine (GBM) approach is introduced. The starting point is a stan-
dard univariate GBM, which is generalised to higher dimensions by
using cyclic coordinate descent. This allows for different covariate de-
pendencies in different dimensions. The suggested approach is also
easily extended to, e.g., multi-parametric versions of XGBoost.

Given weak assumptions the method can be shown to converge for
convex negative log-likelihood loss functions, which is the case, e.g., for
d-parameter exponential families. Further, when having d-parametric
distribution functions, it is important to design appropriate early stop-
ping schemes. A simple alternative is introduced and more advanced
schemes are discussed.

The flexibility of the method is illustrated both on simulated and
real insurance data examples using different multi-parametric distri-
butions, with both convex and non-convex losses.



1. Introduction

Standard regression analysis such as generalised linear models (GLMs), using exponential dis-
persion models (EDMs), focus on the situation

Y |X = x ∼ F (θ(x)), x ∈ X ,

where θ(x) = (µ(x), ϕ)T ∈ R2, i.e.

E[Y | X = x] = µ(x), and Var(Y | X = x) = u(µ(x), ϕ),(1)

where u(·) is a function depending on the particular EDM, see e.g. Jørgensen (1997). For ease of
exposition the possible dependence on deterministic weights has been suppressed. The important
point here is that it is only one of the dimensions of θ(x), θ1(x) := µ(x), that depends on
covariates. By using a constant dispersion parameter ϕ the mean function can be estimated in
isolation using a one-parametric loss function. In actuarial applications it is standard to use,
e.g., Poisson, Negative binomial and Gamma regression models that all can be parametrised in
agreement with (1), which extends to Tweedie models with fixed power variance parameter ξ;
see e.g. Ohlsson & Johansson (2010) and Jørgensen (1997). Here one can note that Poisson is
truly one-parametric (ϕ ≡ 1) with convex negative log-likelihood under the canonical link choice,
Gamma in its general form belongs to the two-parametric exponential family with convex negative
log-likelihood using the canonical link, whereas Negative binomial in its general form does not
belong to the two-parametric exponential family and lacks a convex negative log-likelihood; see
e.g. Example 9.33 in Barndorff-Nielsen (1978).

Further, when discussing d-parametric models there is no obvious analogy to a deviance function.
Due to this we will focus on the negative log-likelihood as the loss function to be minimised when
fitting d-parametric models.

When models of type (1) are not sufficient to capture the complexity in data, the natural
extension is to allow for covariate dependence in the dispersion dimension, i.e., to introduce ϕ(x).
One way of doing this, still within a GLM framework, is to use so-called double GLMs (DGLMs);
see e.g. Smyth (1989). In its simplest form, this relies on noting that one can alternate between
the estimation in the µ-dimension and the estimation in the ϕ-dimension, where a certain saddle
point approximation is used in order to arrive at an approximate Gamma GLM for the estimation
of ϕ; see e.g. Smyth (1989).

There are two obvious drawbacks with the above procedure:

(i) The estimation relies on that one a priori has managed to specify sufficiently flexible
parametric forms to describe µ(x) (and ϕ(x)),

(ii) when considering d-parametric models there are not always simple moment parametrisa-
tions.

Concerning (i), here one could, of course, use splines and similar models, but what tends to be
hard to capture in practice is (transformed) interaction terms.

In the setup of (1), so-called gradient boosting machines (GBMs), see Friedman (2001), have
proved to be powerful and easy to use in order to resolve the difficulties of (i) above in a data
driven manner. GBMs define a class of additive functional regression models, where so-called “weak
learners”, such as shallow trees, are fitted and added iteratively in order to successively construct a
more complex model. This approach is closely connected to forward stage-wise regression, since the
modelling starts from an intercept only model. In the present paper we will extend standard GBMs,
as defined in Friedman (2001) using shallow trees as learners, to a multi-parametric setting. This
allows one to estimate arbitrary d-parametric parameter functions, where the parameters do not
need to correspond to, e.g., moments. Further, given this setup, it is straightforward to construct
multi-parametric extensions of related models such as XGBoost; see e.g. Chen & Guestrin (2016),
and LightGBM; see e.g. Ke et al. (2017). For more on ensemble based methods, also covering
boosting, see Friedman & Popescu (2008), and the references therein.

The approach introduced in the present paper relies on cyclic gradient descent; see, e.g., Luen-
berger (2016, Chap. 8.6), Bazaraa et al. (2006, Chap. 8.5), and Saha & Tewari (2013), and is simple
to implement. Further, as with all over-parametrised models, regularisation will be necessary and
a simple multi-parametric early stopping scheme is presented together with possible extensions.
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Moreover, the basic algorithm can be shown to converge on training data under weak regularity
conditions when assuming a convex loss.

Our contribution is to present a generic method to fit unknown multi-parametric regression
functions using gradient boosting machines. There has been a recent interest in bespoke models
using similar ideas, and the presented material provides a unified framework in a minimalistic
setting: see for example; Lee (2020) introduces multi-parametric Delta-boosting, which performs
joint parameter updates on multi-parametric Negative Binomial data; Lee (2021) introduce cyclical
multi-parametric Delta-boosting for zero-inflated count models; Meng et al. (2022) introduces
cyclically boosted trees for zero-inflated Poisson and Negative binomial models.

Concerning other related work, in Sigrist (2021) a non-cyclic multi-parametric GBM approach
is mentioned, but not analysed in detail. Another closely related method is the gamboostLSS;
see Mayr et al. (2012) and Thomas et al. (2018). The intended usage of gamboostLSS is to
obtain an extension of generalised additive models, i.e., where one uses basis functions applied
to (combinations of) components of the covariate vector, using gradient boosting machines when
not only modelling the mean, but also location, scale and skewness. In Mayr et al. (2012) and
Thomas et al. (2018) they also consider other types of base learners than regression trees. The
gamboostLSS method is a cyclic multi-parametric GBM, and if one uses a single learner taking
the full covariate vector as argument, together with using arbitrary parameter vectors instead of
moments, one obtains the method discussed in the present paper.

The remainder of the paper is organised as follows: In Section 2 background on univariate
GBMs is presented, see Section 2.1, together with the extension to cyclic multi-parametric GBMs
in Section 2.2. Section 3 covers basic results on convergence and discusses the influence of using
different parametrisations, which is followed by Section 4 that introduces a method for dimension
dependent early stopping. The paper ends with a number of numerical examples in Section 5
together with a discussion of extensions and concluding remarks in Section 6.

2. Estimating multi-parameter GBMs

Let (yi,xi)
n
i=1 be an i.i.d. sample from Y |X = x ∼ F (θ(x)), where x ∈ X is a vector of

covariates and where θ(x) ∈ Rd is a parameter function that parameterizes the distribution F .
The aim of a multi-parametric GBM is to estimate the unknown θ(x) by minimizing the negative
log-likelihood

∑
i L(yi;θ(xi). Before turning our attention to the multi-parametric situation, the

case d = 1 is treated in some detail.

2.1. One-parameter GBMs. The basic idea in Friedman (2001) is as follows, assuming that

L(y; θ) is differentiable w.r.t. θ: Given a starting guess θ̂(x) of the unknown function θ(x), the

direction in which the loss function improves the most for observation (yi,xi) with θ̂i := θ̂(xi) is
given by the negative of the gradient

g(xi; θ̂(xi)) :=
∂

∂θ
L(yi; θ)

∣∣∣∣∣
θ=θ̂i

.

Hence, by following the negative gradient direction for each (yi,xi) the updating procedure in
iteration k becomes; see e.g. Luenberger (2016), Nesterov (2018),

γ̂k := argmin
γ∈R+

n∑
i=1

L(yi, θ̂i,k−1 − γgi,k),

where gi,k := g(xi; θ̂i,k−1), and where

θ̂k(xi) := θ̂i,k−1 − γ̂kgi,k.

Even if θ̂i,k → θ∗i as k → ∞ for all i, this does not allow us to learn an unknown functional
form. In order to achieve this, Friedman (2001) suggests to include the additional step of fitting
an L2-regression tree to the individual observations’ gradients in each iteration: Let

h(x;ν) :=

w∑
l=1

δl1{x∈Rl},
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denote a binary split regression tree with w terminal nodes, with ν := (δl,Rl)
w
l=1. The parameters

defining the regression tree, ν, takes on values in V, where V corresponds to the set of recursive
partitionings of X based on log2(w) binary splits of single covariate dimensions that defines the
w terminal nodes together with the associated w-dimensional node vectors taking values in Rw;
see e.g. Chapter 2.4.1 in Breiman et al. (1984). This general definition is in practice restricted to
partitions based on the observed covariate values; see e.g. the CART algorithm in Breiman et al.
(1984).

By using the gi,ks as working responses we can fit an L2-regression tree according to

ν̂k := argmin
ν∈V

n∑
i=1

(gi,k − h(xi;ν))
2

The univariate GBM procedure that will serve as a basis for all further analysis is summarised in
Algorithm 1, see e.g. Friedman (2001).

Algorithm 1 One-parametric GBM

Initialise: Let
• (yi,xi)

n
i=1 be an i.i.d. sample from Y |X = x ∼ F (θ(x)), θ(x) ∈ R,

• L (y; θ) be the negative log-likelihood of distribution F ,
• ϵ ∈ (0, 1] be a shrinkage factor,
• κ be the number of boosting steps to be used,

• θ̂0(x) = argmin
θ∈R

n∑
i=1

L (yi; θ) .

For k = 1, . . . , κ do:
(i) Compute:

gi,k =
∂

∂θ
L(yi; θ)

∣∣∣∣
θ=θ̂k−1(xi)

, i = 1, . . . , n.

(ii) Approximate: Fit a tree

ν̂k = argmin
ν∈V

n∑
i=1

(gi,k − h(xi;ν))
2,

and adjust terminal node values according to

γ̂k,l = argmin
γ∈R

∑
i:xi∈R̂k,l

L(yi; θ̂k−1(xi) + γ).

(iii) Update:

θ̂k(x) = θ̂k−1(x) + ϵ

w∑
l=1

γ̂k,l1{x∈R̂k,l}.

End.
Output: θ̂κ(x)

2.2. Multi-parametric GBMs. The natural way to extend a GBM to a multi-parametric setting
is to use cyclic gradient (or coordinate) descent; see e.g. Luenberger (2016, Chap. 8.6), Bazaraa
et al. (2006, Chap. 8.5), and Saha & Tewari (2013). If we let θ ∈ Rd denote the d-dimensional
parameter vector, this means that we need to introduce the dimension dependent partial derivatives

gi,j :=
∂

∂θj
L(yi;θ)

∣∣∣∣∣
θ=θ̂

.

In this way each parameter dimension

(i) can have unique covariate dependencies,
(ii) is allowed to use an individual number of boosting steps,
(iii) is allowed to have an individual learning rate,
(iv) can have parameters θj that live on different scales.
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In order to be able to describe our proposed multi-parametric GBM in Algorithm 2 the following

notation is needed: Let θ̂j,k(x) denote the estimated parameter function θ̂(x) after the kth update
of the jth dimension. That is,

θ̂j,k (x) =
(
θ̂1,k (x) , . . . , θ̂j−1,k (x) , θ̂j,k (x) , θ̂j+1,k−1 (x) , . . . , θ̂d,k−1 (x)

)
and θ̂j,0(x) = θ̂0 (x) for all j = 1, . . . , d.

Algorithm 2 Multi-parametric GBM

Initialise: Let
• (yi,xi)

n
i=1 be an i.i.d. sample from Y |x ∼ F (θ(x)), θ(x) ∈ Rd,

• L (y;θ) be the negative log-likelihood for distribution F ,
• ϵj ∈ (0, 1], j = 1, . . . , d, be shrinkage parameters,
• κj , j = 1, . . . , d, be the number of boosting steps to be used, and set

κ+ := max
1≤j≤d

κj ,

• ej be the jth unit vector in Rd,

• θ̂0(x) = argmin
θ∈Rd

n∑
i=1

L (yi;θ) .

For k = 1, . . . , κ+ do:
For j = 1, . . . , d do:

If k ≤ κj do:
(i) Set:

θ̂k−1(x) :=

{
θ̂d,k−1(x), j = 1

θ̂j−1,k(x), j = 2, . . . , d

(ii) Compute:

gi,j,k =
∂

∂θj
L(yi;θ)

∣∣∣∣
θ=θ̂k−1(xi)

, i = 1, . . . , n.

(iii) Approximate: Fit a tree

ν̂j,k = argmin
ν∈V

n∑
i=1

(gi,j,k − h (xi;ν))
2,

and adjust terminal node values according to

γ̂j,k,l = argmin
γ∈R

∑
i:xi∈R̂j,k,l

L(yi; θ̂k−1(xi) + ejγ).

(iv) Update:

θ̂j,k(x) = θ̂k−1(x) + ejϵj

w∑
l=1

γ̂j,k,l1{x∈R̂j,k,l}.

Else set:

θ̂j,k(x) =

{
θ̂d,k−1(x), j = 1

θ̂j−1,k(x), j = 2, . . . , d

End.
End.
Output: θ̂d,κ+(x)

Remark 1.



5

(a) As for Algorithm 1, Algorithm 2 uses a gradient approximation in each iteration in order
to partition data. Given this partition, optimal node values are obtained based on the
original loss function. This is different from using, e.g. a DGLM which iterates cyclically
between a mean model and dispersion model based on a saddle point approximation of the
loss function, see e.g. Smyth (1989). In Section 5 a cyclic GLM approach will be used as
a benchmark, for more on this, see CGLM in Section 5.

(b) Concerning the updating order in a GBM setting, see Thomas et al. (2018) where cyclic
updating is compared with updating in the steepest partial derivative dimension. In Thomas
et al. (2018) it is stated that the speed of convergence may be improved using the steepest
descent direction, but convergence per se is not affected. Due to this, we continue with the
simpler cyclic updating procedure.

(c) In a standard GAM with covariates x one models the link transformed mean function,
typically, starting with adding functions fi(xi), moving on to fij(xi, xj) and so on. An
extension of this is to use so-called GAMLSS, see e.g. Rigby & Stasinopoulos (2005), where
location, scale, and shape parameters are modelled simultaneously in a GAM manner. A
gradient based cyclic boosted version of GAMLSS, gamboostLSS, is introduced in Mayr et al.
(2012). Using gamboostLSS on an arbitrary parameter vector θ with a single function f(x)
in all parameter dimensions will recover Algorithm 2 in the present paper. This, however,
is a non-standard usage of gamboostLSS, see e.g. the usage in Sections 3 and 4 in Mayr
et al. (2012) and Section 4 in Thomas et al. (2018).

3. Convergence, parametrisations, and hyper-parameter tuning

3.1. Convergence and parametrisations. Recall from Section 1 that for GLMs it is possible to
estimate the mean function separately from the dispersion parameter dimension. This, however,
relies on that the dispersion dimension of θ(x) is constant, i.e. θ1(x) := µ(x) and θ2(x) = ϕ(x) ≡ ϕ
constant. If this is not the case it is still, of course, possible to estimate the mean and dispersion
functions separately if the likelihood factorises into one part only depending on µ and one part only
depending on ϕ. This, however, is a very strong assumption that is not even fulfilled for a Gaussian
distribution with mean µ(x) and variance σ2(x). Consequently, in general, estimation needs to be
done either by updating the parameter dimensions jointly, or cyclically. For the purposes of the
present paper, as argued in Section 2.2, cyclic updating is more natural.

Further, when turning to d-parametric distributions it is not always possible to obtain analogs
to mean dispersion parametrisations. For the special case when having distributions that belong
to the proper d-parametric exponential family, it is always possible to obtain block diagonal Fisher
parametrisations, see e.g. Ch. 9.8(vi) in Barndorff-Nielsen (1978) and Lemma 2.3 in Barndorff-
Nielsen (1988). This is particularly helpful when d = 2, but remains problematic for d > 2. Still,
as stated above, Fisher orthogonality is still too weak in order to justify estimating the regression
functions in different dimensions separately. With this said, it may still be computationally bene-
ficial to use a Fisher (block) orthogonal parametrisation if available. We will henceforth focus on
estimating θ(x) directly.

When it comes to convergence we start with basic results for the univariate GBM:

Proposition 1. Let (yi,xi)
n
i=1 be an i.i.d. sample from Y |x ∼ F (θ(x)), θ(x) ∈ R. Assume that

L(y, θ) is convex in θ and that the loss for a given y evaluated in the unique minimum is finite.
Then Algorithm 1 converges.

Proof. Given that L(y, θ) is convex in θ there are unique minimisers for each observation (yi,xi),

denoted by θ∗i . That is, L(yi, θ̃i) ≥ L(yi, θ∗i ) for all θ̃i := θ̃(xi) ̸= θ∗i .

Next, in iteration k in Algorithm 1, starting from our current estimate θ̂k−1(x), Step (ii) pro-
duces new node regions that defines the new tree to be added to the previous update of the function
approximation. Given the node regions, the node values are updated according to

γ̂k,l = argmin
γ∈R

∑
i:xi∈R̂k,l

L(yi; θ̂k−1(xi) + γ),
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and by the assumed convexity of L(y, θ) it follows that∑
i:xi∈R̂k,l

L(yi; θ̂k−1(xi)) ≥ min
γ∈R

∑
i:xi∈R̂k,l

L(yi; θ̂k−1(xi) + γ) ≥
∑

i:xi∈R̂k,l

L(yi; θ̂∗i ) > −∞,

where the last strict inequality follows by assumption. Since this relation holds for all k, this means
that the overall loss will be non-increasing and bounded from below, and the desired conclusion
follows from monotone convergence. □

Recall that the regular d-parametric exponential family has a convex negative log-likelihood,
see e.g. Ch. 9.3 in Barndorff-Nielsen (1978), which means that Algorithm 2 will converge when
optimising in any single one of the d-dimensions, when keeping the other dimensions constant.
Note, however, that Proposition 1 only states that Algorithm 1 converges if sufficiently large κs
are used, and this is a pure in-sample result.

If we continue with the univariate GBM and Algorithm 1: Introduce the stacked vector θ̂
+

k

defined as

θ̂
+

k := (θ̂k(x1), . . . , θ̂k(xn))
T,

together with the shorthand notation

L(θ+) := −
n∑

i=1

L(yi; (θ+)i),

where (θ+)i := θ+i := θ(xi) and let

(∇L(θ+))i :=
∂

∂θ+i
L(θ+), i = 1, . . . , n.

The optimal stacked θ+ vector can be found using the gradient updating procedure for j > 0

θ̂
+

k := θ̂
+

k−1 − γ∇L(θ̂
+

k−1),

where θ̂
+

k denotes the kth parameter vector update, and where we use the shorthand notation

(∇L(θ̂
+

k ))j :=
∂

∂θ+j
L(θ+)

∣∣∣∣∣
θ+=(θ̂

+

k )j

.

This allows us to state the following basic result:

Lemma 1. Let

θ̂
+

k := θ̂
+

k−1 − γĥk, γ > 0,(2)

where (ĥk)i := h(ν̂k;xi) is a tree approximation of ∇L(θ̂
+

k−1). Assume that there exists a vector

θ̃
+
, such that ∇L(θ̃

+
) = 0. It then holds that (2) generates a sequence of θ̂

+

k s such that

∥θ̂
+

k+1 − θ̃
+
∥ ≤ ∥θ̂

+

k − θ̃
+
∥+ γ∥ĥk+1∥,

where ∥ · ∥ denotes the Euclidean norm, and∑
k≥0

∥θ̂
+

k − θ̃
+
∥ < +∞ if

∑
k≥0

γ∥ĥk+1∥ < +∞.

That is, given that the norm of the tree-approximations converge to 0, then

(θ̂
+

k )i := θ̂k(xi) → θ̃(xi), as k → ∞, where i = 1, . . . , n.

The proof of Lemma 1 follows directly from the triangle inequality and an application of Com-
bettes (2001, Lemma 3.1).
Remark 2.

(a) From Proposition 1 it follows that the gradient approximations converge, and that the
conclusion of Lemma 1 holds for Algorithm 1.
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(b) Note that the recursive formulation of (2) will coincide with standard gradient descent if
one uses a tree with n terminal nodes in each iteration. This means that all observations
could be assigned a unique value, which together with the assumed convexity satisfies the
condition in Lemma 1 for Algorithm 1. This is, however, not a particularly interesting
situation.

(c) Using the same setup as in Lemma 1, using stacked θ+ vectors, it is straight forward to
obtain bounds on the loss improvement by modifying the steps for standard gradient descent,
see e.g. Nesterov (2018), if one in addition assumes Lipschitz bounds on the gradients.

(d) Note that Lemma 1 does not rely explicitly on that the loss function is convex.
(e) Proposition 1 and Lemma 1 only tells us that if the GBM converges in-sample, then it has

found the optimal parameter values based on the unique values of the observed covariates.

Concerning the corresponding results for the situation with a d-parametric θ and Algorithm 2
the situation becomes more complicated. Even if L(y;θ),θ ∈ Rd, is convex in θ, implicating
a unique minimum θ∗ based on a single observation y, it may be problematic to assume that
L(y;θ∗) > −∞. As an example, this condition is not satisfied for, e.g., a Gaussian distribution
with unknown mean and variance parameters. A situation where the above argumentation works
in the d-parametric setting is if one assumes a discrete finite covariate space and a sufficiently large
n: Let

X (n) := {x̃ ∈ X : x̃ = xi, for some i, i = 1, . . . , n} = {x̃1, . . . , x̃m(n)},

where m(n) := |X (n)| ≤ n, and let

θ
∗,(n)
j := argmin

θ∈Θ

∑
i:xi=x̃j

L(yi;θ).

Note that X (n) corresponds to the finest resolution of the observed covariates that could ultimately
be explored using the GBM. Note that given that n is sufficiently large it is clear that∑

i:xi=x̃j

L(yi;θ∗,(n)
j ) > −∞(3)

holds for j = 1, . . . ,m(n), and it is possible to re-use the arguments underlying Proposition 1 for
Algorithm 2 as well. That is, the above corresponds to assuming a sufficient number of unique
y observations per x̃i-value. Further, by using the resolution of the covariates given by X (n) and
only consider the overall loss per unique x̃j , Lemma 1 can be applied cyclically.1

Remark 3.

(a) The assumption of assuming a discrete finite covariate space is a common assumption in
insurance pricing applications, and is, hence, not very restrictive.

(b) Note that the arguments leading up to (3) is in order to assure that there are a sufficient
number of unique observations per x̃i in order for the loss to be bounded from below when
evaluated in the corresponding optimal value.

Continuing, Proposition 1 and Lemma 1 provides information about in-sample convergence,
and illustrates that the method will converge to the finest partitioned model, given the observed

data. The results do not, however, tell us anything about how the estimated function θ̂(x), or its

multi-parameter analog θ̂(x), performs on test data, when letting n → ∞, or when using early
stopping. One can, however, note that similar arguments as those that lead to Lemma 1 can be
applied to the situation with unseen test data. That is, if we again focus on the univariate GBM,

let Xtest be a sample from the distribution of X not used in training, let θ̂testk,n := θ̂k,n(X
test),

ĥtest
k,n := h(Xtest; ν̂k,n), and let

Ltest(η) := E[L(Y ; η(X))].

1A more non-standard approach is to enforce this manually: take all training data (yi,xi)
n
i=1 and duplicate

adding small perturbations to the yis according to (yi, yi + δi)
n
i=1. This can be repeated until the loss evaluated in

the θ∗
i s becomes finite.
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Similar to the above, this leads to that adding an additional iteration to the approximation of the
function θ based on Xtest, analogously to the iteration scheme (2), results in the inequality

|θ̂testk+1,n − θ̃test| ≤ |θ̂testk,n − θ̃test|+ γ|ĥtest
k+1,n|,

where θ̃test ∈ arg infθ∈Θ Ltest(θ). Here one can note that in order for the convergence to the (local)

minimum to hold, there is need of uniform convergence, since θ̂k,n is trained on the in-sample loss
L(·) := Ln(·). Moreover, this also implies that k ≤ n, which implies early stopping, see Zhang &
Yu (2005) and Section 4 below. Concerning, the cyclic GBM, as before, the univariate arguments
can be applied cyclically.

The above intuitive discussion based on Proposition 1 and Lemma 1 only provide general con-
ditions for when convergence can be achieved, but state no practically implementable conditions
relating specifically to Algorithms 1 and 2, and, ultimately, conditions on the tree-approximations
and loss functions. For the univariate case this is analysed in detail assuming certain convex loss
functions that are Lipschitz in specific senses using a general “greedy boosting algorithm” in Zhang
& Yu (2005). Their analysis treats consistency and early stopping and is based on empirical pro-
cess theory, but focuses mainly on classification problems, and their univariate arguments can be
applied cyclically.

4. Hyperparameter tuning

GBMs are over-parametrised and hyperparameter tuning is necessary. The relevant hyper pa-
rameters are, apart from the ones connected to the regression trees, the shrinkage factors ϵj and
the number of boosting steps κj . Finding appropriate values for these in the one-parametric setting
can be done using so called early stopping ; see e.g. Zhang & Yu (2005). This is done by fitting
a GBM with a small ϵ to a training set until the boosting step where the loss on a validation set
no longer improves by adding a new tree. Extending this to the setting with d > 1 comes with
apparent issues, relating to that the complexity of the parameter function θ(x) may vary between
different dimensions. Hence, using the same shrinkage ϵ and stopping time κ for all dimension will
likely result in a compromise between under- and overfitting in different dimensions. Due to this
we suggest a simple approach where individual stopping times are obtained by looking at the loss
improvement per dimension and boosting step, see Algorithm 3.
Remark 4.

(a) Note that the training procedure in Algorithm 3 first train all dimensions for κ0 iterations.
This means that if the resulting κ∗

j s differ considerably between dimensions, some of the
larger κ∗

j s will be influenced by dimensions that have been over-trained. Consequently, in
this situation, one can consider adjusting the shrinkage parameters ϵj in order to push the
κ∗
j s closer to each other.

(b) There are other tuning procedures in the literature, see e.g. Thomas et al. (2018) and the
references therein. A simple procedure, similar in spirit to Thomas et al. (2018), is the
following:

• In iteration (j, k), for each fold try to add a new tree and store the validation loss
when doing so.

• Let tj,k ∈ {0, 1} indicate whether a tree should be added or not: If the fraction of
folds where adding a tree improves the validation loss is greater than a pre-specified
threshold value π, add a tree in all folds and calculate the cross-validation error when
doing so and set tj,k = 1; else, do not add a tree in any of the folds and calculate the
cross-validation error when doing so and set tj,k = 0.

• Iterate until all dimensions have been trained for κ0 boosting steps.
• Let κ∗ := min{k, k = 1, . . . , κ0 : tj,k = 0 for all j}

This procedure will generate a sequence of tj,ks that indicate whether or not to add a
tree in each of the κ∗ iterations, which will, at least partly, circumvent the problems of
Remark 4(a). In the numerical examples the simpler Algorithm 3 will be used.
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Algorithm 3 Tuning procedure for the multi-parametric GBM

Initialise: Let
• (yi,xi)

n
i=1 be an i.i.d. sample from Y |x ∼ F (θ(x)), θ(x) ∈ Rd,

• L (yi;θ) be the negative log-likelihood for distribution F ,
• ϵj ∈ (0, 1], j = 1, . . . , d. be shrinkage parameters,
• κ0 be the number of boosting steps to be used for tuning,

• (I(l)
v )Kl=1 be a random partition of I = {1, . . . , n}, where |I(l)

v | = [n/K], and let

I(l)
t = I \ I(l)

v .

(i) For l = 1, . . . ,K do:

Run Algorithm 2 using (xi, yi)i∈I(l)
t
, ϵj , j = 1, . . . , d, and κ0 to get θ̂

(l)

j,k(x), j =

1, . . . , d, k = 1, . . . , κ0.
End.

(ii) For j = 1, . . . , d do:
Get number of boosting steps

κ∗
j = min

k, k = 1, . . . , κ0 :

K∑
l=1

∑
i∈I(l)

v

L
(
yi;θ

(l,j)
k (x)

)
≥

K∑
l=1

∑
i∈I(l)

v

L
(
yi;θ

(l,j)
k−1

) ,

where

θ̂
(l,j)

k−1(x) :=

θ̂
(l)

d,k−1(x), j = 1

θ̂
(l)

j−1,k(x), j = 2, . . . , d

End.
(iii) Output: κ∗ := (κ∗

j )
d
j=1

5. Numerical illustrations

The performance of the cyclical GBM method, henceforth referred to as CGBM, will be illus-
trated in a number of numerical examples. Regarding implementation, the individual trees are, in
all examples, fitted using the DecisionTreeRegressor function of the sklearn package in Python

where individual node values are optimised using scipy’s function minimize, and the resulting
set of trees is used as the CGBM. The hyperparameters maximal tree depth and number of data
points per node have been set to reasonable, but fixed values. Algorithm 3 is used to find dimension
dependent number of trees, κ∗

j , using 10-fold cross validation. Further, 20% of the original data is
saved for proper out-of-sample testing.

The CGBM’s performance will be compared with the following benchmark models for d = 2:

Intercept an intercept only model.
CGLM a GLM fitted to both parameters using cyclical gradient descent. This corresponds to

assuming linear regression functions, using suitable link functions, in each parameter
dimension, and updating the resulting gradients cyclically. This differs from a DGLM,
since no saddle point approximation of the loss function is used.

GBM a univariate GBM model for the mean function assuming an auxiliary constant dis-
persion parameter. Both parameter dimensions are initiated in the constant MLE,
but only one of the dimensions is fitted using a GBM.

CGBM the cyclical GBM presented in this paper.

Note, however, below we also have a d = 3 example, a multivariate Gaussian distribution, but
this is only used to illustrate that the method works for situations with d > 2, and no in-depth
assessment is carried out.

In the real data examples where we have a low signal to noise ratio, we do not expect to see any
dramatic improvement in the global loss on test data. In order to visualise localmodel performance,
two different types of plots will be used: (i) binned response plots, (ii) concentration curves. In
order to be able to describe the different plots, it will throughout the numerical illustrations be
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assumed that

E[Y | X = x,W = w] := wµ(x), and Var(Y | X = x,W = w) := wσ2(x),

where W corresponds to either policy duration (claim counts) or number of claims (total claim
payment). For simulated data we set W ≡ 1.

The binned response plots are constructed as follows: Let µ̂i := µ̂(xi), i = 1, . . . , n, and let πi

be such that µ̂πi
= µ̂(i), where µ̂(i) corresponds to the ith smallest µ̂i-value. This allows us to

construct (yπi
, wπi

, µ̂πi
)i ordered according to the µ̂-predictions. Next, split the data into κ bins

and introduce

Ij :=
{
i = 1, . . . , n :

⌊
(j − 1)n

κ

⌋
+ 1 ≤ i ≤

⌊
jn

κ

⌋}
, j = 1, . . . , κ,

and define

ȳj :=
1∑

i∈Ij
wπi

∑
i∈Ij

yπi
,(4)

together with

(5) ̂̄µj :=
1∑

i∈Ij
wπi

∑
i∈Ij

wπi
µ̂πi

, and ̂̄σ2
j :=

1

(
∑

i∈Ij
wπi

)2

∑
i∈Ij

wπi
σ̂2
πi
.

The binned response plots are then given by plotting (ȳj , ̂̄µj)j together with adding ± the predicted

within-bin standard deviations ̂̄σj . This is similar to what is done in Lindholm et al. (2022).
Regarding the concentration curves, these are used in insurance applications in e.g. Denuit et al.

(2019) and Wüthrich (2023). In the present paper we will calculate concentration curves only in
the real data examples, and analogously as for the binned response plots, risk orderings will be
based on the standardised µ̂-predictions. That is, following Eq. (3.1) in Denuit et al. (2019) we
define the concentration curve as follows:

CC(Y, µ̂(X);α) :=
E[Y 1{µ̂(X)≤F−1

µ̂
(α)}]

E[Y ]
, α ∈ [0, 1],(6)

where F−1
µ̂ (α) corresponds to the 100α%-percentile of µ̂(X). In the real data illustrations all

predictions have been adjusted to be globally unbiased, and the expected values in Eq. (6) will be
replaced with their empirical counterparts.

Further, the standard usage of concentration curves focuses on the performance of mean predic-
tions. Since we are assessing multi-parametric models it is also of interest to assess, e.g. variance
predictions. This can be done by changing Y to the corresponding squared residuals (treating W
as known). When calculating concentration curves for variance predictions, the expected values
needed for centering will be replaced with the corresponding model predictions, and the model
which is being compared with the CGBM will be used for centering (i.e. its µ̂ will be used). This
ought to be disadvantageous for the performance evaluation of the CGBM. We will come back to
this in the numerical real data illustrations below.

5.1. Tuning procedure example. In order to illustrate the tuning procedure described in Al-
gorithm 3, consider the following stylised situation: Sample 100, 000 data points from a Gaussian
distribution with mean function µ(x) := 0 (dimension 1) and variance function σ2(x) (dimension
2), where x ∈ R5. That is, the optimal number of trees in dimension 1 is given by κ∗

1 = 0.
As an alternative to Algorithm 3, we use the following naive early stopping procedure:

κ∗ = min

k, k = 1, . . . , κ0 :

K∑
l=1

∑
i∈I(l)

v

L
(
yi;θ

(l,d)
k (x)

)
≥

K∑
l=1

∑
i∈I(l)

v

L
(
yi;θ

(l,d)
k−1

) .

That is, training is evaluated after full parameter vector updates, and the training is stopped
the first time a full parameter vector update does not improve the cross-validation error. In this
example, this means that κ∗

1 = κ∗
2 = κ∗. For our simulated data this results in κ∗ = 192. When

instead using Algorithm 3 on the same data this results in κ∗
1 = 0 and κ∗

2 = 241. Since data is
simulated we can calculate the root mean squared error (RMSE) for the function estimates resulting
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in 2.27 and 0.05 for the mean function using the naive tuning and Algorithm 3, respectively. For
the variance function the RMSE becomes 2.19 and 1.64, respectively. This illustrates that the naive
method needs to settle with a compromise where, in this situation, the mean function µ(x) has
been over-trained, and the variance function σ2(x) has been under-trained. Since we use simulated
data we know that the difference in κ∗

j s is expected, but also recall Remark 4.

5.2. Simulated data. We will illustrate the CGBM performance based on a number of simulated
data sets using the distributions in Table 1. In all simulations we will use n = 100, 000 i.i.d. sampled
data points. The same simulated covariates will be used in all examples, where the covariates are
simulated from an 8-dimensional standardised Gaussian distribution. The parameter functions
that are used can be found in Table 3 in Appendix A. Note that not all features of x are used
in all functions. Results in terms of average negative log-likelihood can be found in Table 1. It is
apparent that the CGBM outperforms the other methods in terms of minimising the loss function.
The univariate GBM, i.e. only modelling one of the parameter dimension using a GBM, the other
set to a constant, performs particularly poorly on simulated data from the Beta Prime distribution,
which can also be seen in the binned response plot in Figure 1. In Figure 1 all predictions have
been ordered and split into

√
n bins, where the corresponding observed bin averages are represented

by dots and the model’s average bin prediction is given by solid lines. The grey area represents
the models’ predicted within bin standard deviation. The poor performance of the univariate
GBM in Figure 1 illustrates the dependence between the partial derivatives, something that is
no problem for the CGBM. One can also note that that the CGBM performs well on Negative
binomial distributed data despite not having a convex loss function.

As a final example with d = 3 parameters, we consider a multivariate Gaussian distribution with
equal µ and σ for the two response dimensions, and correlation ρ. It is again seen, from Table 1,
that the CGBM performs well.

Simulated data

Gamma
Train 3.15 3.21 3.16 3.19 3.14
Test 3.13 3.20 3.14 3.18 3.13

Beta Prime
Train −3.03 −2.81 −2.94 −2.99 −3.04
Test −3.01 −2.79 −2.93 −2.97 −3.00

Inverse Gaussian
Train −0.16 −0.01 −0.04 −0.09 −0.16
Test −0.15 −0.00 −0.04 −0.08 −0.15

Gaussian
Train 2.37 3.16 2.78 3.14 2.37
Test 2.38 3.18 2.79 3.16 2.39

Negative Binomial
Train 0.18 0.25 0.20 0.18 0.18
Test 0.19 0.25 0.20 0.19 0.19

Multivariate Gaussian
Train 2.88 3.74 - - 2.88
Test 2.87 3.74 - - 2.88

True Intercept CGLM GBM CGBM

Real data (freMTPL2)
Number of claims Train - 0.21 0.21 0.20 0.20
(Negative binomial) Test - 0.21 0.21 0.20 0.20

Payment size Train - 1.25 1.22 1.25 1.20
(Gamma) Test - 1.24 1.22 1.24 1.20

- Intercept CGLM GBM CGBM

Table 1. Average negative log-likelihood results for the numerical illustrations.
The numbers in bold face indicate the best performing method.

5.3. Real data. The real data examples use the freMTPL2 dataset from CASdatasets, consisting
of rating factors, claim numbers, and payment information for third-party French motor liability
policies. The dataset consists of a total of 678, 013 contracts, 34, 060 of which has 1 or more claims
in the observed time period. We use a CGBM to model the number of claims (Negative binomial
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Figure 1. Simulated Beta Prime data. Binned response plot where the test
dataset of size m has been split into [

√
m] bins based on the model’s sorted mean

predictions using standardised exposure. Dots correspond to the observed bin av-
erages according to (4). The thick black line represents the model’s mean predic-
tions per bin and the grey area corresponds to ± one standard deviation predicted
by the model within each bin calculated according to (5).

distribution) and payment sizes (Gamma distribution) respectively, using contract duration and
number of claims as observed exposures. In both cases, parameterisations such that both the
mean and variance are assumed to vary linearly with the exposure are used, see e.g. Ohlsson &
Johansson (2010). The tree depth was set to 2 and 3 for the number of claims and total payment
data respectively, and the corresponding minimum number of datapoints per node was set to 5 for
both datasets. The features used for the regression are presented in Table 4 in Appendix A.

The results for average overall negative log-likelihood are presented in Table 1. One can here
note that there is only a modest improvement in overall loss, but this is to be expected, since there
are only 5% claims (i.e. non-zero observations).

From the binned response plots in Figure 2 it is clear that both the GBM and CGBM work
well for claim counts. For the total claim payment data, however, the signal is very weak and
the mean predictor is essentially constant, although one can see more variation in the standard
deviations for the CGBM. These observations are supported by the concentration curves based on
the mean predictions, see Figure 3, where a slight improvement is seen for the count data CGBM,
whereas the claim payment (C)GBM essentially coincides with the intercept model, corresponding
to the 45 degree line. It is, however, interesting to see that the risk ordering based on variance
predictions of the squared residuals finds a clear signal for the CGBM for both claim count and
claim payment data. This illustrates a benefit of using the CGBM instead of the simpler GBM.
Regarding the concentration curves based variance predictions, since the mean predictions are very
similar between CGBM and GBM, the concentration curves for the variance predictions look very
similar when basing the squared residuals instead on the CGBM’s mean predictions. For more on
the use of concentration curves when the predictors are not auto-calibrated, see Wüthrich (2023).

Again note that the CGBM works reasonably well also when using Negative binomial models
with non-convex losses.

6. Comments on extensions and concluding remarks

The general multi-parametric method described in Algorithm 2 is intentionally simple. It is,
however, straight forward to define, e.g. multi-parametric versions of XGBoost, which rely on a
second order Taylor approximation of the empirical loss. This results in a tree fitting procedure
closely related to a standard Newton step. Moreover, the consistency analysis from Section 3.1
applies to this model as well if one replaces the original loss with the corresponding Taylor ap-
proximated loss. It is, however, important to note that XGBoost uses Hessians, due to the second
order approximation, and if the original loss is not convex, this must be done with care, since an
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Figure 2. Claim count and total claim cost data from the the freMTPL2 dataset.
Binned response plot where the test dataset of size m has been split into [

√
m]

bins based on the model’s sorted mean predictions using standardised exposure.
Dots correspond to the observed bin averages according to (4). The thick black
line represents the model’s mean predictions per bin and the grey area corresponds
to ± one standard deviation predicted by the model within each bin calculated
according to (5).

indefinite Hessian may change the direction of the search. Suggestions on how to deal with this
is discussed in e.g. Lee (2020, 2021) for the closely related Asymptotic Delta boosting method.
Other alternatives to circumvent this could be to consider quasi-Newton methods using expected
Hessians. Note that this will not be an issue when using Algorithm 2, since each iteration will
always result in a loss improvement. Further, by not requiring explicit Hessian calculations Algo-
rithm 2 will be easier to implement compared to e.g. multi-parametric XGBoost or Asymptotic
Delta-boost.

Moreover, in Section 5 Algorithm 2 was applied to multivariate response data, here simple mul-
tivariate Gaussian data, but Algorithm 2 could of, course be applied to more complex multivariate
distributions.

Concerning non-convexity of the loss function, if the loss function is non-convex there are no
guarantees for convergence. In this situation one needs to restort to massive grid searches, which is
computationally expensive, see e.g. Thomas et al. (2018) and the references therein. Note, however,
that this can be less of a problem if one is primarily interested in modelling, e.g. moments, since
even if there are multiple minima w.r.t. θ(x), moments can still be stable.

The definition of Algorithm 2 is intended to be simple and generic. One can, however, note
that for distributions, such as the Gamma distribution, the line search in the node adjustment in
Step (iii) in Algorithm 2 can be replaced with closed form expressions. This will improve speed.
Another alternative is to merely ignore the node adjustment and use smaller shrinkage parameters
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Figure 3. Concentration curves for the test data of the freMTPL2 dataset, for
mean and variance predictions, calculated according to (6). The variance plots
contain squared residuals based on the GBM estimates of the mean, sorted by the
corresponding models’ variance estimates.

(ϵjs). Concerning approximations that may improve speed; see e.g. Chen & Guestrin (2016) and
Ke et al. (2017).

As a final comment, Algorithm 2 produces parameter dimension dependent GBMs, where each
parameter dimension may depend differently on the covariates. This construction makes it possible
to measure covariate importance using e.g. Shapley values, see e.g. Lundberg & Lee (2017), or
feature importance, see Friedman (2001) to explain the covariate influence in each parameter
dimension.
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Table 2. Parameter functions for the simulated data

Distribution Parameter Functional form

Gamma
µ exp

{
a1x1 + a2x

2
2 + a3|x3| sin (a4x3) + a5x4x5 + a6x

2
5x6

}
ϕ exp {b0 + b1x2 + b2|x1|}

Beta Prime
µ exp {a0 + a1 sin (a2x2) + a3x3x4}
ν exp {b0 + b1x2 + b2min (b3, b4|x3|) + b5x6x3}

Inverse Gaussian
µ exp {a1x1x2x3 + a2|x4|}
λ exp

{
b0 + b1 · 1{x1>0} + b2x2 · 1{x5>0}

}
Gaussian

µ a1x1 + a2x
2
2 + a3|x3| sin (a4x2) + a5x4x

2
5

σ2 exp
{
b0 + b1x2 + b2|x1| sin (b3x2) + b4 · 1{x2>0}

}
Negative Binomial

µ exp
{
a0 + a1min (a2, x5)

2
+ a3min (a4, x2) + a5sin (a6x3)

}
θ exp

{
b0 + b1 · 1{x2>0} + b2|x3| · 1{x6>0} + b3x4

}
Multivariate Gaussian

µ a1x1 + a2x
2
2 + a3|x3| sin (a4x2) + a5x4x

2
5

σ2 exp
{
b0 + b1x2 + b2|x1| sin (b3x2) + b4 · 1{x2>0}

}
ρ sigm

{
c0 + c1x4 + c2x

2
3

}
Table 3. Parameter functions for the simulated data in the numerical illustration

Feature Description Type
Brand Brand of car Categorical (7)
Gas Gas used by car Categorical (2)

Density Population density in car-owners city Continuous
Area Area of car Categorical
Region Region of car Categorical

BonusMalus Bonus/Malus level of driver Continuous
Power Power level of car Ordinal (12)

Vehicle age Age of the car in years Continuous
Driver age Age of driver in years Continuous

Table 4. Features used in the real data example.
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