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Abstract

In the current paper we analyse an extended SIRS epidemic model in which immu-
nity at the individual level wanes gradually at exponential rate, but where the waning
rate may differ between individuals, for instance as an effect of differences in immune
systems. The model also includes vaccination schemes aimed to reach and maintain
herd immunity. We consider both the informed situation where the individual waning
parameters are known, thus allowing selection of vaccinees being based on both time
since last vaccination as well as on the individual waning rate, and the more likely
uninformed situation where individual waning parameters are unobserved, thus only
allowing vaccination schemes to depend on time since last vaccination. The optimal
vaccination policies for both the informed and uniformed heterogeneous situation are
derived and compared with the homogeneous waning model (meaning all individuals
have the same immunity waning rate), as well as to the classic SIRS model where
immunity at the individual level drops from complete immunity to complete suscep-
tibility in one leap. It is shown that the classic SIRS model requires least vaccines,
followed by the SIRS with homogeneous gradual waning, followed by the informed
situation for the model with heterogeneous gradual waning. The situation requiring
most vaccines for herd immunity is the most likely scenario, that immunity wanes
gradually with unobserved individual heterogeneity. For parameter values chosen to
mimic COVID-19 and assuming perfect initial immunity and cumulative immunity of
12 months, the classic homogeneous SIRS epidemic suggests that vaccinating individ-
uals every 15 months is sufficient to reach and maintain herd immunity, whereas the
uninformed case for exponential waning with rate heterogeneity corresponding to a co-
efficient of variation being 0.5, requires that individuals instead need to be vaccinated
every 4.4 months.

Keywords: SIRS model, Immunity waning, Heterogeneity, Vaccination, Herd immunity.
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1 Introduction

Among other things, the COVID-19 pandemic showed that immunity waning as well as
immunity escape for new virus strains play important roles when designing vaccination
schemes to reduce and ultimately stop the spreading of an epidemic. In the current paper
the focus lies on immunity waning for a fixed and specific strain and we thus study an
epidemic model for an infectious disease where immunity, both from vaccination as well
as natural infection, wanes gradually and monotonically following an exponential mode
Wheatley et al. (2021).

The classic SIRS model Hethcote (1976, 1978) is the first model to consider immunity
waning, and in this model population immunity decays gradually, but at the individual
level each individual is either fully immune or fully susceptible. In the last few years this
assumption has been relaxed (e.g. Reluga et al. (2008); Martcheva (2015); Forien et al.
(2022); El Khalifi and Britton (2023)) thus allowing for gradual waning of immunity also
at the individual level, resulting in individuals having different immunity levels, defined
either discretely or continuously. These models still assume that immunity wanes in a
similar fashion for all individuals, most often defined by a waning rate ω common for all
individuals. For these models it has been shown that such gradual immunity waning requires
more frequent vaccination to reach and maintain herd immunity as compared to the classic
SIRS model which assumes one single jump from fully immune to fully susceptible (having
the same average cumulative immunity) El Khalifi and Britton (2023).

Empirical measurements of antibodies however suggest large individual differences in
antibody decay between individuals Fabiani et al. (2022); Shrotri et al. (2021); Widge et al.
(2021); Pérez-Alós et al. (2022) thus suggesting different waning rates between individuals.
In the present paper we therefore extend a model with homogeneous gradual immunity
waning to a situation where the waning rate may differ between individuals. The general
situation, where waning rates of individuals are drawn independently from some general
random distribution is complicated to analyse, so here we focus on the situation where
there are two types of waning rates ω1 and ω2 with population frequencies p and 1 − p
respectively. We compare the heterogeneous situation with the homogeneous case having
the same cumulative immunity (= 1/ω) and we quantify the amount of heterogeneity by
the coefficient of variation of the immunity distribution.

This paper is structured as follows. In the next section we present the SIRS models with
heterogeneity under both situations: sudden loss and continuous waning of immunity. In
Section 3 we formulate the SIR(k)S model with heterogeneity. In Section 4, we introduce
vaccination into the model by taking into account the effect of the available information on
individuals immunity. To illustrate the results for our models, in Section 5, we compare the
long term prevalence and the optimal vaccination schemes under parameter values mimicking
the COVID-19 pandemic. We conclude the paper in Section 6 with a discussion and draw
some perspectives.

2 Models

First, we define a model where immune individuals lose their immunity at once. Next we
modify the model to allow for gradual (exponential) waning of individual immunity. For
both models we divide the population into two immunity waning classes with waning rates
ω1 and ω2 with fractions p and 1 − p, allowing for a certain degree of heterogeneity. We
compare the homogeneous case with cumulative immunity 1/ω to the heterogeneous case
with 1/ω1 = (1− α)(1/ω) and 1/ω2 = (1 + α p

1−p
)(1/ω) for some α (0 ≤ α ≤ 1) so that the
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cumulative immunity is set to 1/ω. The coefficient of variation of the immunity distribution

is given by σ = α
√
p/(1− p) which from now on is used as heterogeneity parameter rather

than α. Hence, we have

1

ω1

=
1

ω

(
1− σ

√
1− p

p

)
and

1

ω2

=
1

ω

(
1 + σ

√
p

1− p

)
.

2.1 The SIRS model with heterogeneity

The model that we consider in this section, also taking births and deaths into account, is
defined as follows. Let l ∈ {1, 2} be the index of the immunity waning classes and denote
sl(t), il(t), and rl(t) the community fractions of susceptible, infectious, and recovered l-
individuals at time t, respectively. The model parameters are as defined in Table 1. Then,

Table 1: Model Parameters and interpretation.

Parameter Description

µ Birth and death rate

β Effective infection rate

γ Recovery rate

ω Immunity waning rate

σ Coefficient of variation of immunity distribution

the differential equations for the SIRS model with heterogeneity are given by

s′l(t) = pl µ− βsl(t) (i1(t) + i2(t))− µsl(t) + ωlrl(t),

i′l(t) = βsl(t) (i1(t) + i2(t))− (γ + µ)il(t), (1)

r′l(t) = γil(t)− (µ+ ωl) rl(t),

with l ∈ {1, 2} (so sl(t) + il(t) + rl(t) = pl), p1 = p and p2 = 1 − p. We define the basic
reproduction number to be R0 =

β
γ+µ

representing the average number of new infections gen-
erated by an infectious person in an entirely susceptible population. We have the following
standard result for our model.

Proposition 2.1. The solution to Eq. (1) has a unique endemic equilibrium if and only if
R0 > 1.

When the endemic equilibrium exist, the endemic level is given by the sum of the constant
fractions of infectives î1 and î2 in the type-1 and type-2 communities respectively. We also
have the following result regarding the dependence of the endemic level on the population
heterogeneity. Recall the p is the community fraction having lower immunity and hence
higher waning rate ω1.

Proposition 2.2. Assume that R0 > 1 and 1/2 ≤ p < 1. Then, the endemic level is an

increasing function of the coefficient of variation σ on [0,
√
p/(1− p)).

The proofs of the Propositions 2.1 and 2.2 are given in the Appendix A. Although
the monotonicity in Proposition 2.2 is only proved for a fraction p satisfying 1/2 ≤ p < 1,

numerical simulations suggest that the endemic level is also increasing in σ on [0,
√
p/(1− p))

for any 0 < p < 1/2.
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2.2 The SIR(∞)S model with heterogeneity

When immunity wanes continuously and following an exponential decay, the recovered equa-
tion could be modelled using a PDE evolving in calendar time t and time-since-recovery a,
and the model equations become

s′l(t) = plµ− βsl(t)(i1(t) + i2(t))− µsl(t),

i′l(t) = β
(
sl(t) +

∫ ∞

0

(
1− e−ωla

)
rl(t, a) da

)
(i1(t) + i2(t))− (γ + µ)il(t),

(2)

∂rl(t, a)

∂t
+
∂rl(t, a)

∂a
= −β

(
1− e−ωla

)
rl(t, a)(i1(t) + i2(t))− µrl(t, a), a > 0,

with the boundary condition rl(t, 0) = γil(t), l ∈ {1, 2} where p1 = p and p2 = 1− p.
We call the model (2) the SIR(∞)S model with heterogeneity as it can be seen as the k-
limit of the heterogeneous SIR(k)S model where immunity drops in k steps, 1/k each time
El Khalifi and Britton (2023). We refer to El Khalifi and Britton (2023) for more details on
the construction (see also Section 3). We have the following expected result for the model
(2).

Proposition 2.3.

• Assume that R0 ≤ 1. Then, the solution to Eq. (2) converges to the disease-free
equilibrium.

• Assume that R0 > 1. Then, Eq. (2) has a unique endemic equilibrium.

The proof of the Proposition 2.3 is given in Appendix A.1.3.

3 SIR(k)S model with heterogeneity

Similarly to the approach in El Khalifi and Britton (2023), we approximate the SIR(∞)S
model (2) by a system of ODEs allowing immunity to wane in k steps for some large value
of k.

We now describe how this reduction of immunity in k small steps down to no immunity,
each step having a high rate to drop to the next level. This can be done in several ways still
reaching the same continuous limit as k → ∞ and it is convenient to choose different choices
for different constructions why we define the general construction. The most important thing
is however that for large k immunity jumps in many small steps, each having a high jump
rate. Let {rl,j(t)}k−1

j=1 , l ∈ {1, 2} be the fractions of recovered individuals, at time t, with

the immunity levels {1− fl,j}k−1
j=1 (or susceptibility levels {fl,j}k−1

j=1), l ∈ {1, 2}, and {cl,j}kj=1,
l ∈ {1, 2} be the rates at which recovered individuals lose immunity portions through the
k steps. Since k is fixed and typically large, we drop it from the notation. The resulting
model equations are given by

s′l(t) = plµ− βsl(t) (i1(t) + i2(t)) + cl,krl,k−1(t)− µsl(t),

i′l(t) = β
(
sl(t) +

k−1∑
j=1

fl,jrl,j(t)
)
(i1(t) + i2(t))− (γ + µ)il(t),

r′l,0(t) = γil(t)− (cl,1 + µ)rl,0(t),
r′l,j(t) = cl,jrl,j−1(t)− βfl,jrl,j(t) (i1(t) + i2(t))− (cl,j+1 + µ)rl,j(t),

(3)
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sl(t) il(t) rl,0(t) rl,1(t) rl,k−1(t)

µ µ µ µ µ
plµ β(i1(t) + i2(t)) γ cl,1

βfl,k−1(i1(t) + i2(t))

cl,k

βfl,1(i1(t) + i2(t))

Figure 1: Diagram of the SIR(k)S epidemic model in the l-type individuals, l = 1, 2.

for j = 1, · · · , k − 1 and l ∈ {1, 2} where p1 = p and p2 = 1 − p. We call this model the
SIR(k)S model with heterogeneity. See Fig. 1 for a transition scheme and the Appendix
A.2 for a derivation of the immunity jumps and the transition rates (see also El Khalifi and
Britton (2023)).

4 SIR(k)S model with heterogeneity and vaccination

When immunity wanes over time, it is important to allow the vaccination strategies to
depend on time since last vaccination and vaccines should not be uniformly distributed.
Hence the vaccination rate in the j’th susceptibility class of an l-type individuals might
depend on both l and j. Let ηl,j to denote this vaccination rate. A vaccination strategy is
hence specified by these rates {ηl,j}, many rates often being 0 since strategies would often
be defined by vaccinating once immunity drops to a certain level. Then, the SIR(k)S model
with vaccination is given by the following equations

s′l(t) = plµ− βsl(t) (i1(t) + i2(t)) + cl,krl,k−1(t)− (µ+ ηl,k) sl(t),

i′l(t) = β
(
sl(t) +

k−1∑
j=1

fl,jrl,j(t)
)
(i1(t) + i2(t))− (γ + µ)il(t),

r′l,0(t) = ηl,ksl(t) +
k−1∑
j=1

ηl,jrl,j(t) + γil(t)− (cl,1 + µ)rl,0(t),

r′l,j(t) = cl,jrl,j−1(t)− βfl,jrl,j(t) (i1(t) + i2(t))− (cl,j+1 + µ+ ηl,j)rl,j(t),

(4)

for j = 1, · · · , k − 1 and l ∈ {1, 2} where p1 = p and p2 = 1− p.
What is the best, or optimal, vaccination strategy differs depending on amount of avail-

able information. In the situation where no information is available, a potential strategy
could be to randomly vaccinate in all non-infectious classes, including individuals with par-
tial immunity. Here we distinguish between two situations: both individual time since
last vaccination and waning rates are known (informed situation), and only time since last
vaccination is known (uninformed situation).
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4.1 Informed situation

When the individual waning rate and time since last vaccination for all individuals are
known, vaccines will be administrated to those with faster waning at different frequency
compared to individuals with slower waning. In this situation, we assume that the suscep-
tibility levels {fl,j}k−1

j=1 are the same for both types and fl,j = j
k
, j = 1, · · · , k − 1. Hence

the transition rates {cl,j}kj=1, l ∈ {1, 2} (depend on l) are such that the average cumulative
immunity equals 1/ω1 and 1/ω2 respectively (see Appendix A.2). For any l ∈ {1, 2}, we
denote by ηl,j the vaccination rate in the class rl,j for j = 1, · · · , k − 1, and by ηl,k the
vaccination rate of fully susceptible individuals sl. The resulting model equations are given
by

s′l(t) = plµ− βsl(t) (i1(t) + i2(t)) + cl,krl,k−1(t)− (µ+ ηl,k) sl(t),

i′l(t) = β
(
sl(t) +

k−1∑
j=1

j
k
rl,j(t)

)
(i1(t) + i2(t))− (γ + µ)il(t),

r′l,0(t) = ηl,ksl(t) +
k−1∑
j=1

ηl,jrl,j(t) + γil(t)− (cl,1 + µ)rl,0(t),

r′l,j(t) = cl,jrl,j−1(t)− β j
k
rl,j(t) (i1(t) + i2(t))− (cl,j+1 + µ+ ηl,j)rl,j(t),

(5)

for j = 1, · · · , k − 1, and l ∈ {1, 2} where p1 = p and p2 = 1− p.
Here the immunity class of each individual is known. The best vaccination scheme is

then to vaccinate 1-individuals once they have lost j1 steps of immunity and 2-individuals
once they have lost j2 immunity steps, for some values of j1 and j2 (see Fig. 2a). This
corresponds to vaccinating the two types of individuals at (possible different) fixed times, t1
and t2 respectively, since last vaccination (or infection). Clearly, the smaller j1 and j2 the
more vaccines are needed, and the optimal relation between j1 and j2 will depend on the
immunity waning rates ω1 and ω2.

0

1 − j1 k

1 − j2 k

1

t1 t2
Time since vaccination/recovery 

Immunity level 

(a)

0

1 − f1,j

1 − f2,j

1

t
Time since vaccination/recovery 

Immunity level 

(b)

Figure 2: Examples showing the vaccination strategy when immunity wanes in k = 10 steps
in (a) the informed situation (b) the uninformed situation.

4.2 Uninformed situation

Here we consider the more realistic situation where only time since last recovery/vaccination
is known. In this situation, we let the transition rates {cl,j}kj=1, l ∈ {1, 2} to be independent
on l, and then the susceptibilities {fl,j}kj=1 are no longer the same for l ∈ {1, 2} (see Appendix
A.2). In addition, for both l ∈ {1, 2} we let ηj to be the vaccination rate in the class rl,j
for j = 1, · · · , k − 1, and ηk to be the vaccination rate of fully susceptible individuals sl
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(the vaccination rate must be the same for both types in the uninformed situation). The
resulting model equations are given by

s′l(t) = plµ− βsl(t) (i1(t) + i2(t)) + ckrl,k−1(t)− (µ+ ηk) sl(t),

i′l(t) = β
(
sl(t) +

k−1∑
j=1

fl,jrl,j(t)
)
(i1(t) + i2(t))− (γ + µ)il(t),

r′l,0(t) = ηksl(t) +
k−1∑
j=1

ηjrl,j(t) + γil(t)− (c1 + µ)rl,0(t),

r′l,j(t) = cjrl,j−1(t)− βfl,jrl,j(t) (i1(t) + i2(t))− (cj+1 + µ)rl,j(t)− ηjrl,j(t),

(6)

for j = 1, · · · , k − 1, and l ∈ {1, 2} where p1 = p and p2 = 1− p.
Here vaccination is the same for both types since they are unobserved, and all individuals

are vaccinated (at the same time, t) once they have lost j steps of immunity (see Fig. 2b).

4.3 Extending to imperfect (leaky) vaccines

In the previous section, both infection and vaccination are assumed to initially confer per-
fect immunity. This could be relaxed by considering imperfect vaccines producing partial
protection level to any vaccinated person. Although, these partial immunities could differ
between the two subpopulations, we here consider a leaky vaccine conferring immunity e to
all vaccinated individuals in both subpopulations.

4.4 Reproduction number and optimal vaccination

Recall that e is the protection level that vaccines are assumed to confer to any vacci-
nated individual. Each constant vaccination scheme gives rise to a disease free equilibrium
E0 = (ŝ1, ŝ2, r̂1,0, r̂2,0, · · · , r̂1,k−1, r̂2,k−1) (see Appendix A.3). The corresponding reproduc-
tion number Rv is given by

Rv = R0

2∑
l=1

ŝl + e
k−1∑
j=1

fk
l,j r̂l,j

 . (7)

In the expressions E0 and Rv, we omit the dependence on the vaccination strategy (informed
or uninformed) for the sake of convenience. Within a certain class of vaccination schemes,
the optimal is the one solving the following optimization problem

θkc = min
η

θk(η) subject to Rv ≤ 1,

where θk(η) is the vaccine usage given by

θk(η) =
2∑

l=1

ηl,kŝl +
k−1∑
j=1

ηl,j r̂l,j, (8)

for a (2× k)-matrix of vaccination rates η within the class of possible vaccination schemes.

Informed optimal vaccination strategy

Within each type it is always better to vaccinate less immune individuals compared to
more immune individuals. The optimal vaccination strategy in the informed situation is
hence to vaccinate 1-individuals and 2-individuals as soon as their immunities drop below
some levels ι1 = 1 − j1/k and ι2 = 1 − j2/k, respectively, for some j1 and j2. For finite
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k and by referring to model (5), this is equivalent to not vaccinate type-1 individuals in
states (r1,0, r1,1, · · · , r1,j1−1) (and (r2,0, r2,1, · · · , r2,j2−1) for type-2 individuals) up to some
j1, j2 ∈ {1, · · · , k}, to vaccinate in r1,j1 (resp. r1,j2) at some rate η⋆1,j1 (resp. η⋆1,j2), and to
immediately vaccinate individuals leaving the state r1,j1 (resp. r1,j2). The states (j1, j2) and
the rates (η⋆1,j1 , η

⋆
1,j2

) correspond to the minimal immunity levels and the minimal vaccination
rates respectively, satisfying Rv ≤ 1. For large k this means we vaccinate type-1 and type-2
individuals once their immunities have dropped to 1− j1/k and 1− j2/k respectively. What
are the optimal values of j1 and j2 for a given overall vaccination rate θ we solve numerically.

Uninformed optimal vaccination strategy

As only individual time since vaccination is known, the optimal vaccination strategy consists
of vaccinating all individuals, irrespective of type, as soon as they reach some time t since
their last vaccination. The shorter t, the bigger the vaccine coverage θkc . For finite k and by
referring to model (6), this is to not vaccinate up to some j ∈ {1, · · · , k}, to vaccinate in
both r1,j and r2,j at some rate η⋆j , and immediately vaccinate individuals leaving the states
r1,j and r2,j. The state j and the rate η⋆j correspond to the minimal immunity levels and the
minimal vaccination rate respectively, satisfying Rv ≤ 1 and this we also solve numerically.
At time t, individuals immunities are different and equal to ιu,1 = 1− f1,j and ιu,2 = 1− f2,j
for type-1 individuals and type-2 individuals respectively.

Remark: While both informed and uninformed vaccination strategies will be considered
when immunity wanes gradually, only the informed situation is considered when immunity
wanes in one jump. Indeed, introducing an uninformed vaccination in the SIRS model ne-
cessitates the change of the distribution of immunity duration and probably using a PDE
model for the dynamics of vaccinated/recovered individuals, something which we do not
consider in this paper.

5 Results

We now illustrate our results numerically, studying the effect of heterogeneity of the grad-
ual waning, for parameter values consistent with Covid-19 (of course lacking many other
features of reality). Our primary focus is to study the effect of heterogeneity measured by
its coefficient of variation σ, but also to compare the informed situation, which assumes the
individual heterogeneities to be known, to the uninformed case. We also compare our model
to the classical homogeneous SIRS epidemic model as well as to the heterogeneous SIRS
(loosing all immunity at once).

To illustrate how various waning assumptions affect disease prevalence and the vaccina-
tion frequency needed to avoid an outbreak to occur, we use the following parameter values.
The life expectancy is set to µ−1 = 80 years, the mean infectious period is set to γ−1 = 0.02
years (one week) and the average cumulative immunity is to ω−1 = 1 year. These parameter
values are reasonable for several infectious diseases including COVID-19, influenza, common
cold, etc Byrne et al. (2020); Davies et al. (2020); Hall et al. (2022); CDC (2022). Although
the waning rate ω could be estimated using for instance the antibody decay data Goldberg
et al. (2021); Bobrovitz et al. (2023), we do not attempt to do so here. The amount of wan-
ing heterogeneity is measured by the coefficient of variation σ of immunity heterogeneity,

which is always smaller than
√
p/(1− p). We vary β (or equivalently R0) and σ (often with

p = 50% fixed but sometimes also varying p). Using the different models we compare the

8



endemic prevalence levels without vaccination, and the required amount of vaccines to reach
a sustainable herd immunity.

5.1 Endemic prevalence

Fig. 3 shows heatmaps of the endemic level for the heterogeneous SIRS model (1) and our
new heterogeneous SIR(∞)S model (2), as functions of R0 and σ (without vaccination). It
can be seen from Figs. 3a-3b that the long term prevalence is increasing in R0 (as expected)
but also in population heterogeneity σ. Moreover, Fig. A.1 in the Appendix A shows that
the difference between homogeneous and heterogeneous populations increases with p (the
community fraction having the lower immunity, i.e. higher waning rate). The homogeneous
models (σ = 0) have the lowest endemic levels irrespective of the immunity waning mode
(sudden or gradual loss).
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Figure 3: Heatmaps of the endemic level for different values of R0 and σ (p = 50%) in (a)
the heterogeneous SIRS model and (b) the heterogeneous SIR(∞)S model. The value at the
origin is 0 and the contour interval is 2% of the population.

5.2 Optimal vaccination: Perfect vaccine

5.2.1 Possible vaccination times

Fig. 4 shows the best vaccination strategies for the informed and uninformed situations. The
optimal strategy always vaccinate type 1 (with higher waning rate) at a lower immunity level
compared to type 2 individuals (both informed and uninformed). In the informed situation
it may even be optimal to only vaccinate type 2 individuals, e.g. when R0 is small enough
(Fig. 4a) or if ω1 is very large so these individuals loose their immunity very quickly implying
that there is not much gain in vaccinating them. However, the time (since vaccination) at
which we vaccinate type 1 could be bigger or smaller than the time for type 2. Plot 4a
shows that only type-2 need to be vaccinated, at time t2, when R0 = 1.6, but later on also
type-1 have to be vaccinated, at time t1, when R0 increases to 2 as shown in Fig. 4b. When
R0 = 2.4, the vaccination time t1 of type-1 becomes smaller compared to t2 for type-2 as
seen in Fig. 4c. In the uninformed situation all individuals need to be vaccinated after the
same time t since their last vaccination.
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(a) R0 = 1.6.
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(c) R0 = 2.4.

Figure 4: Informed and the uninformed optimal vaccination times for different values of
R0 with σ = 0.5 (p = 50%). Blue and Red solid curves are immunity waning functions
of type-1 and type-2 individuals respectively. The best informed vaccination strategy is to
vaccinate 1-individuals at time t1 (with the immunity level ι1) and 2-individuals at time
t2 (with the immunity level ι2). The best uninformed vaccination strategy is to vaccinate
everyone at time t, that is, 1-individuals and 2-individuals at the immunity levels ιu,1 and
ιu,2 respectively.
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5.2.2 Optimal vaccination scheme

Fig. 5 shows the minimum number of vaccine doses per person per year to achieve and
maintain herd immunity according to the heterogeneous SIR(∞)S model. It is evident from
the plots that the critical amount of vaccine supply in the continuous waning situation (for
fixed p) is increasing in the coefficient of variation of population heterogeneity σ. Moreover,
the bigger the fraction p (of immune-weak type 1 individuals), the bigger the critical amount
of vaccine supply. This indicates that heterogeneity in population immunity requires more
frequent vaccination. It is worth mentioning that the optimal vaccine supply is not always
increasing in heterogeneity when immunity wanes in one sudden leap as illustrated in Fig.
A.2 in the Appendix.

0.0

0.1

0.2

0.3

0.4

0.5

2.5 5.0 7.5 10.0
R0

σ

5

10

15

20

Ye
ar

ly
 #

 d
os

es
 p

er
 p

er
so

n

(a) p = 25%.
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Figure 5: Heatmaps of the critical vaccine supply for different values of p in the uninformed
scenario of the SIR(∞)S model. The value at the origin is 0 and the contour interval is 1
yearly dose per person.

Table 2 compares the critical vaccination frequency for different models when R0 = 5
(and σ = 0.5 for the heterogeneous models). While the simple SIRS model suggests to
vaccinate individuals every 15 months (0.81 doses per year) to maintain herd immunity, the
heterogeneous exponentially waning immunity model increases this vaccination frequency
to every ≈ 4.6 months in the informed situation (≈ 2.62 doses per person per year), and
to ≈ 4.4 months in the more realistic uninformed situation (≈ 2.76 doses per person per
year). Table 3 compares the value of Rv for a given vaccine supply per year and shows that
knowing individuals immunity status reduce the effective reproduction number compared to
the uninformed situation, the difference is however moderate.
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Table 2: Critical vaccination schemes for R0 = 5 for the different models. The heterogeneous
models are computed with σ = 0.5 and p = 50%.

Vaccination frequency (in months) Yearly #
doses per
person

Hom. SIRS 15 0.81

Het. SIRS: informed 12.8 (10 / 17.7) 1 0.94

Hom. exp. waning 5.5 2.15

Het. exp. waning: informed 4.6 (3.8 / 5.7) 2.62

Het. exp. waning: uninformed 4.4 2.76

112.8 (10 / 17.7) means that vaccines are given to type-1 individuals every 10 months and type-2

every 17.7 months, resulting in vaccinating everyone every 12.8 months on average.

Table 3: Reproduction number for different values of individual vaccine supply per year
given R0 = 5 and σ = 0.5 (p = 50%) under exponential waning of immunity.

Yearly # doses per person θ = 0 θ = 1/2 θ = 1 θ = 2 θ = 3

Informed 5 2.99 2.08 1.26 0.90

Uninformed 5 3.01 2.09 1.29 0.93

5.3 Optimal vaccination: Leaky vaccine

Table 4 compares the optimal vaccination frequency in case of a leaky vaccine for the con-
sidered models. It is clear from the table that the optimal vaccination frequency increases
as the protection e becomes smaller. While herd immunity could be achieved with imperfect
vaccines with relatively high efficacy when immunity wanes at once (e.g. by approximately
administrating 80%-effective vaccines every 8.9 months on average – Table 4), herd immu-
nity under continuous waning would require very high vaccine efficacy and that in both
homogeneous and heterogeneous situations.

5.4 Two extreme models comparison

In El Khalifi and Britton (2023), the standard SIRS model and the homogeneous SIR(∞)S
model were compared and found that the latter has the larger endemic level and the higher
critical vaccine supply. Fig. 6 added a comparison with the heterogeneous SIR(∞)S model,
with the critical vaccine supply plotted under the uninformed situation. It is clear that
the biggest effect comes from the continuous waning of immunity compared to the sudden
loss assumption. Still, heterogeneity makes the situation worse as it increases long-term
prevalence and the critical vaccine coverage, in particular when heterogeneity is substantial.
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Table 4: Critical vaccination frequency (in months) for the different models when R0 = 5
(σ = 0.5 and p = 50% in heterogeneous settings).

Vaccine efficacy e = 100% (perfect) e = 95% e = 90% e = 80%

SIRS 15 14 13.2 11.8

Het. SIRS: in-
formed

12.8 (10 / 17.7) 1 11.7 (8.7 / 17.7) 10.7 (7.7 / 17.7) 8.9 (6 / 17.7)

Hom. exp. waning 5.5 4.5 3.3 –

Het. exp. waning:
informed

4.6 (3.8 / 5.7) 3.7 (2.7 / 4.8) 2.6 (1.8 / 3.4) –

Het. exp. waning:
uninformed

4.4 3.5 2.5 –

112.8 (10 / 17.7) means that vaccines are given to type-1 individuals every 10 months and type-2

every 17.7 months, resulting in vaccinating individuals every 12.8 months on average.
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Figure 6: Comparison of the standard SIRS model, the homogeneous SIR(∞)S model, and
the heterogeneous SIR(∞)S model with σ = 0.5 (p = 50%). (a) endemic levels and (b) the
yearly number of vaccine doses per person required for herd immunity.

6 Discussion

In the current paper we have shown that if immunity wanes gradually but at different
rates for different individuals, the effect of such heterogeneity is that endemic prevalence
becomes higher, and when introducing vaccinations, more vaccines are required to reach
and sustain herd immunity. This effect is shown to be substantial even when heterogeneity
of immunity waning is moderate (e.g. coefficient of variation 0.5). An additional feature
treated in our analysis is to distinguish between the informed situation where the waning
heterogeneity is known and taken into account when designing vaccination policies, and the
more likely uninformed scenario where such heterogeneities are unobserved. It is shown
that the informed and uniformed situations differ in vaccination policies, but the required
amount of vaccines for maintaining herd immunity is only moderately higher for the more
likely uninformed situation.

This comparison between the homogeneous and heterogeneous situations, calibrated by
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assuming the same population average of cumulative immunity, hence has the heterogeneous
situation as the worse case. As a consequence, models neglecting waning heterogeneities can
estimate too low vaccination rates. This result is in contrast with many other comparisons in
epidemic models in which the homogeneous situation is often the worst case scenario. Two
such examples are Ball (1985) who considers variable susceptibility to the homogeneous
situation where all individuals have the same susceptibility (see also Elbasha and Gumel
(2021)), and the second example is epidemics on networks where the final size is maximized
when all individuals have equal degree (if the transmission rate is large enough) Britton and
Trapman (2012).

Our new epidemic model with gradual waning rate with individual heterogeneity ne-
glects many other factors affecting diseases dynamics. Such factors may for example include
demographic structure, behaviour change of the population, elements of chance, individual
heterogeneity also with respect to infectivity and susceptibility, social population structures,
and so on. Here we neglect such aspects and focus on heterogeneity of immunity waning.
It would be of interest to study the effect of waning heterogeneity also when including
other realistic model features. It is our belief that the same qualitative observation remains:
heterogeneity in immunity waning makes the situation worse, but clearly this needs to be
shown.
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A Appendix

A.1 Proof

A.1.1 Proposition 2.1

First, it is easy to see that only the disease free equilibrium exists when R0 < 1. Next, we
assume that R0 > 1 and let î = î1 + î2 to denote the endemic level. By equating the right
hand side equations of (1) to 0 and after some simplifications, we get into

î =
pR0(µ+ γ)(µ+ ω1)̂i(

R0(µ+ γ)̂i+ µ
)
(µ+ γ + ω1) + ω1γ

+
(1− p)R0(µ+ γ)(µ+ ω2)̂i(

R0(µ+ γ)̂i+ µ
)
(µ+ γ + ω2) + ω2γ

, (9)

where we replaced β by R0(µ+ γ). That is, î is the (positive) fixed point of the function ψ
defined by

ψ(x) =
pR0(µ+ γ)(µ+ ω1)x

(R0(µ+ γ)x+ µ) (µ+ γ + ω1) + ω1γ
+

(1− p)R0(µ+ γ)(µ+ ω2)x

(R0(µ+ γ)x+ µ) (µ+ γ + ω2) + ω2γ
,

which is increasing on the positive real half line and verifies lim
x→∞

ψ(x) < 1. Moreover, it can

be shown that its derivative at x = 0 satisfies ψ′(0) > 1 as long as R0 > 1 (and equals to
1 when R0 = 1). Hence, ψ has a unique positive fixed point î, the endemic level, provided
that R0 > 1. Consequently, the equation (1) has a unique endemic equilibrium if and only
if R0 > 1.

A.1.2 Proposition 2.2

Now, we recall that ω1 = ω/
(
1− σ

√
(1− p)/p

)
and ω2 = ω/

(
1 + σ

√
p/(1− p)

)
with 0 ≤

σ <
√
p/(1− p). To prove that the endemic level is increasing in σ, it is enough to show

that the right hand side Eq. (9) is increasing in σ. This function could be defined by

f(σ) =
p(µ+ ω)− σµ

√
p(1− p)

(βi+ µ) (µ+ γ) + ω (βi+ µ+ γ)− σ
√
(1− p)/p (βi+ µ) (µ+ γ)

+
(1− p)(µ+ ω) + σµ

√
p(1− p)

(βi+ µ) (µ+ γ) + ω (βi+ µ+ γ) + σ
√
p/(1− p) (βi+ µ) (µ+ γ)

,

Then, by differentiating, we obtain that the sign of f ′(σ) is the same as the sign of

2 ((βi+ µ) (µ+ γ) + ω (βi+ µ+ γ)) + σ (βi+ µ) (µ+ γ)

(√
p

1− p
−
√
1− p

p

)
,

which is positive provided that p ≥ 1/2. Hence, f is increasing in σ, and so is the endemic
level.

A.1.3 Proposition 2.3

From the infective equations in Eq. (2), and using the fact that

s1(t) + s2(t) +
∫ t

0
r1(τ) dτ +

∫ t

0
r2(τ) dτ = 1− (i1(t) + i2(t)),
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the differential equation of the total infective fraction i = i1 + i2 verifies

i′(t) ≤ βi(t) (−i(t) + 1− 1/R0) . (10)

For any positive initial point z0, the solution to the ODE z′(t) = βz(t) (−z(t) + 1− 1/R0)
converges to 0 when R0 ≤ 1. Then from the Ineq. (10), we obtain that i(t) → 0 as t → ∞
when R0 ≤ 1. Hence, the infective and recovered fractions vanish. Moreover, the total
susceptible fraction s1+ s2 converges to 1. This proves the first assertion of the Proposition
2.3.

Now, we proceed to prove the second assertion of Proposition 2.3. Solving the endemic
equilibrium of system (2) allows to write

µ

2
− βsl(i1 + i2)− µsl = 0, (11)

∂rl(a)

∂a
= −β

(
1− e−ωla

)
rl(a)(i1 + i2)− µrl(a), rl(0) = γil, (12)

for l ∈ {1, 2}, coupled with

i1 = p− s1 −
∫ ∞

0
r1(τ) dτ, and i2 = 1− p− s2 −

∫ ∞

0
r2(τ) dτ. (13)

It is easy to see that an endemic equilibrium verifies both i1 ̸= 0 and i2 ̸= 0. Set i = i1 + i2,
then solving the ordinary differential equation for the recovered equations, we obtain

rl(τ) = γil ϕl(i), l ∈ {1, 2}, (14)

where ϕl, l = 1, 2, are the functions defined by

ϕl(x) =
∫ ∞

0
exp

(
−µτ − βx

∫ τ

0

(
1− e−ωla

)
da
)
dτ. (15)

Then, we arrived to

i1 = p

(
1− µ

βi+ µ
− γi1 ϕ1(i)

)
,

i2 = (1− p)

(
1− µ

βi+ µ
− γi2 ϕ2(i)

)
. (16)

Re-arranging both equations allows to write i1 and i2 in terms of i as

i1 =
βi

βi+ µ

p

1 + γϕ1(i)
,

i2 =
βi

βi+ µ

1− p

1 + γϕ2(i)
. (17)

Taking the sum, it yields that

i =
βi

βi+ µ

(
p

1 + γϕ1(i)
+

1− p

1 + γϕ2(i)

)
. (18)

As i ̸= 0, we cancel one i and get to the following equation

i =

(
p

1 + γϕ1(i)
+

1− p

1 + γϕ2(i)

)
− µ

β
. (19)

The right-hand side of (19) is increasing in i and smaller than 1 − µ/β. Moreover, it
converges to µ(R0 − 1)/β as i→ 0. On the other hand, as ϕl, l = 1, 2, are convex functions,
the right-hand side of (19) is a concave down function. That is, Eq. (19) has a unique
positive solution when R0 > 1 and no positive solution when R0 ≤ 1. Since the right-hand
side functions of (17) are increasing in i, the steady points i1 and i2 are defined from i
uniquely. This completes the proof.
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A.2 Formulation of the SIR(k)S model with heterogeneity

Here we present the details of the determination of the immunity levels {1−fl,j}k−1
j=1 and the

immunity jumps rates {cl,j}kj=1 in the model (3) in the main text for fixed l ∈ {1, 2}. Let

{fl,j}k−1
j=1 be an increasing sequence of elements of (0, 1). An l-individual recently recovered

stays perfectly immune for an exponentially time with mean duration 1/cl,1, after that
immunity drops to 1 − fl,1. Each 1 − fl,j immunity level lasts for an exponentially time
with mean 1/cl,j+1 for j = 1, · · · , k − 1. The susceptibility levels and the rates are chosen
to fit the exponential waning with rate wl and to satisfy the constant average cumulative
immunity equation

1

cl,1
+

k−1∑
j=1

(1− fl,j)
1

cl,j+1

=
1

ωl

. (20)

We mention that there is no unique way to define the immunity jumps and the rates above,
yet their choice would not affect the results for typically large k as long as all jumps become
small and rates large. In the informed situation, we choose fl,j = j/k so the immunity jumps
by 1/k each step. We then define the rates by

1

cl,1
= − 1

wl

log

(
k − 1

k
+
x

k

)
, (21)

1

cl,j
=

1

wl

(
− log

(
k − j

k
+
x

k

)
+ log

(
k − j + 1

k
+
x

k

))
, j = 2, · · · , k, (22)

where x ∈ (0, 1) solves the cumulative immunity equation (20), that is, the equation

− log

(
k − 1

k
+
x

k

)
+

k−1∑
j=1

k − j

k

(
− log

(
k − j

k
+
x

k

)
+ log

(
k − j + 1

k
+
x

k

))
= 1. (23)

In the uninformed situation we assume fixed (in l) immunity jump rates, that is c1,j = c2,j =
cj and set cj = k − j + 1. We define the susceptibility levels by

fl,j = 1− exp

−ωl(1 + xl)
j∑

n=1

1

cj

 , (24)

with xl ∈ (0, 1) is the solution to the the cumulative immunity equation (20), that is, the
equation

k−1∑
j=0

1

k − j
exp

−ωl(1 + xl)
j∑

n=1

1

cj

 =
1

ωl

. (25)

A.3 Disease-free equilibria

Informed situation: The disease-free equilibriumEinf
0 = (ŝ1, ŝ2, r̂1,0, r̂2,0, · · · , r̂1,k−1, r̂2,k−1)

of the models (5) is given by

ŝl =
plµ

µ+ η1,k
(
1− ckl,kA

l
kB

l
k−1

) , l = 1, 2, (26)

r̂l,j = ηl,kA
l
kB

l
j ŝl, j = 1, · · · , k − 1, l = 1, 2, (27)

r̂l,0 =
1

2
− ŝl −

k−1∑
j=1

r̂l,j, l = 1, 2, (28)

18



where Al
k =

(
µ+ cl,1 −

k−1∑
j=1

ηl,jB
l
j

)−1

and Bl
j =

j∏
n=1

cl,n
µ+cl,n+1+ηl,n

, for j = 1, · · · , k − 1 and

l = 1, 2.
Uninformed situation: The disease-free equilibriumEuni

0 = (ŝ1, ŝ2, r̂1,0, r̂2,0, · · · , r̂1,k−1, r̂2,k−1)
of the models (6) is given by

ŝl =
plµ

µ+ ηk
(
1− ckkAkBk−1

) , l = 1, 2, (29)

r̂l,j = ηkAkBj ŝl, j = 1, · · · , k − 1, l = 1, 2, (30)

r̂l,0 =
1

2
− ŝl −

k−1∑
j=1

r̂l,j, l = 1, 2, (31)

where Ak =

(
µ+ c1 −

k−1∑
j=1

ηjBj

)−1

and Bj =
j∏

n=1

cn
µ+cn+1+ηn

, for j = 1, · · · , k − 1.

A.4 Endemic level: varying p

Fig. A.1 shows how the endemic level varies with R0 and σ for different values of p for the
heterogeneous SIRS model (sudden loss of immunity) and the heterogeneous SIR(∞)S model
(continuous waning).

A.5 Critical vaccine supply when immunity wanes in one sudden
leap

Fig. A.2 plots the critical vaccine supply for different values of p for the informed case of
the heterogeneous SIRS model with sudden loss of immunity.
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(d) p = 25%.

0.0

0.5

1.0

1.5

2.5 5.0 7.5 10.0
R0

σ

0.1

0.2

E
nd

em
ic

 le
ve

l 

(e) p = 75%.
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(f) p = 75%.
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(g) p = 95%.
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(h) p = 95%.

Figure A.1: Heatmaps of the endemic level for different values of R0 and σ. Left hand panel:
Heterogeneous SIRS model. Right hand panel: Heterogeneous SIR(∞)S model. The value
at the origin is 0 and the contour interval is 2% of the population.
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(b) p = 25%.
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(c) p = 50%.
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(d) p = 75%.
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(e) p = 95%.

Figure A.2: Heatmaps of the critical vaccine supply for different values of p in the informed
SIRS model with sudden loss of immunity. The value at the origin is 0 and the contour
interval is 1 yearly dose per person.
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