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Abstract

We study the transition from stability to chaos in a dynamic last passage percolation
model on Zd with random weights at the vertices. Given an initial weight configuration at
time 0, we perturb the model over time in such a way that the weight configuration at time
t is obtained by resampling each weight independently with probability t. On the cube
r0, nsd, we study geodesics, that is, weight-maximizing up-right paths from p0, 0, . . . , 0q to
pn, n, . . . , nq, and their passage time T . Under mild conditions on the weight distribution,
we prove a phase transition between stability and chaos at t — 1

nVarpT q. Indeed, as
n grows large, for small values of t, the passage times at time 0 and time t are highly
correlated, while for large values of t, the geodesics become almost disjoint.
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1 Introduction

1.1 Motivation and background

In statistical mechanics, the energy landscapes of many disordered systems have a complex
geometry, where the configuration with the lowest energy – the ground state – corresponds to
the bottom of the deepest valley of the landscape. The phenomenon of ‘chaos’ is characterized
by energy landscapes with many valleys, and many roughly orthogonal near-ground states,
resulting in a system where a slight perturbation of the disorder will lead to a significant
change of the ground state.

The mathematical study of chaos in disordered systems was initiated by Chatterjee in two
preprints [7, 8], which were later combined into a book [9]. Chatterjee established a precise
relation between fluctuations of the ground state energy and the effect on the ground state of
a perturbation of the medium. This relation allowed him to deduce an equivalence between
‘superconcentration’, that is, sub-Gaussian fluctuations, and chaos for certain Gaussian disor-
dered systems. By establishing superconcentration for a Gaussian directed polymer, and the
top eigenvalue of a Gaussian matrix, he obtained the first evidence of a chaotic behaviour.
More recently, the precise location of the transition from stability to chaos has been estab-
lished for the top eigenvector of Wigner matrices by Bordenave-Lugosi-Zhivotovskiy [6] and
in the context of Brownian last-passage percolation by Ganguly-Hammond [10, 11].
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The analysis in [9] and [10, 11] is specific to the Gaussian context, and based on spectral
techniques. While the methods of [6] are not specific to the Gaussian setting, they are applied
to eigenvalues and the corresponding vectors of random matrices, which is a well-understood
topic. In a companion paper [1], our goal has been to show that the equivalence between
superconcentration and chaos is part of a more general principle, achieved by establishing
the connection in the context of first-passage percolation. In the current paper we proceed
in this vein, and determine the precise location of the transition from stability to chaos in
non-Gaussian and non-integrable models of last-passage percolation.

1.2 Model and results

Last-passage percolation is a model for spatial growth, defined on the integer lattice Zd. For
integers n ě 1, consider the cube V “ r0, nsd X Zd and let ω “ pωvqvPV be a collection of
i.i.d. weights drawn from some probability distribution F on r0,8q. Let T “ T pωq denote
the maximal weight-sum picked up along any directed (up-right) path from p0, 0, . . . , 0q to
pn, n, . . . , nq, i.e.,

T “ T pωq “ max
γPΓ

ÿ

vPγ

ωv, (1.1)

where Γ is the set of all nearest-neighbour paths from p0, 0, . . . , 0q to pn, n, . . . , nq whose steps
follows either of the d coordinate vectors p1, 0, . . . , 0q, p0, 1, 0, . . . , 0q, . . . , p0, . . . , 0, 1q. We will
refer to T as the passage time between p0, 0, . . . , 0q and pn, n, . . . , nq due to its interpretation
as the occupancy time in the related corner growth model. We refer to any weight-maximizing
path, i.e. any path π P Γ that attains the maximum in T , as a geodesic between the same
points. When F is continuous there is a unique such path.

It follows from [18, Theorem 2.3] that ErT s grows at most linearly in n provided that
ş8

0 p1 ´ F pxqq1{ddx ă 8. In our arguments, we will need that the passage time grows at most
linearly for a configuration consisting of squared weights. We will hence throughout assume
that

ż 8

0
p1 ´ F p

?
xqq1{ddx ă 8, (1.2)

which is slightly stronger than finite 2d-moment.
In 1986, the work of Kardar-Parisi-Zhang [17] gave predictions for the asymptotic be-

haviour of a large class of planar spatial growth models. Via the analysis of a differential
equation, they were led to predict that the fluctuations of T around its mean are of the order
n1{3 and that the fluctuations of the/any geodesic associated with T are of the order n2{3.
Remarkable work of [14], inspired by [3], verified these predictions in last-passage percola-
tion with exponential or geometric weight distribution, which have come to be referred to
as the ‘integrable’ or ‘exactly solvable’ setting. Moreover, their work also determines that
T , when centered and appropriately normalized, converges to the Tracy-Widom distribution
(also known to be the asymptotic distribution of the largest eigenvalue of a GUE random ma-
trix). In particular, it follows from [4] that when d “ 2 and F is the exponential or geometric
distribution, then

VarpT q “ Θpn2{3q. (1.3)

This result will be relevant in combination with our main result below.
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In this paper we will consider a dynamic version of last-passage percolation, in order to
address how it is affected when exposed to perturbations of the weight configuration. Recall
that V “ r0, nsd X Zd, where n ě 1 is an integer, and let ω “ pωvqvPV and ω1 “ pω1

vqvPV be
independent weight configurations, that is, collections of independent variables distributed as
F . Let U “ pUvqvPV be a collection of independent random variables uniformly distributed
on r0, 1s, and independent of pω, ω1q. For each t P r0, 1s we obtain a weight configuration ωptq
according to

ωvptq :“

#

ωv, if Uv ą t,

ω1
v, if Uv ď t.

(1.4)

We will think of t P r0, 1s as ‘time’ (not to be confused with the passage time T ) and of
pωptqqtPr0,1s as a weight configuration evolving dynamically over time. For t ą 0 the con-
figuration ωptq corresponds to a perturbation of ωp0q, and t dictates the magnitude of the
perturbation. (The coordinate-wise correlation of the two configurations at time t equals
1´ t.) For the purposes of this paper, an alternative construction would be to update weights
according to independent Poisson clocks; our results below can be recast in this language via
a re-parametrization of time.

For t P r0, 1s, we denote by Tt the passage time with respect to the configuration ωptq, and
by πt the set of vertices contained in some geodesic for Tt. Recall that if F is continuous then
πt is the unique maximizer of Tt, while if F has atoms there may be multiple geodesics with
the same passage time and πt denotes their union. Our main result addresses the transition
from stability to chaos in the context of last-passage percolation. In the planar and integrable
setting (when F is exponential or geometric) our main result states that this transition occurs
at t — n´1{3 in the following sense:

Stability: For t ! n´1{3 we have CorrpT0, Ttq “ 1 ´ op1q.

Chaos: For t " n´1{3 we have Er|π0 X πt|s “ op1q.

In fact, our methods show that the analogous result holds in a more general context, and
not only in the exactly solvable setting. We shall first require that F satisfies (1.2). Second, we
shall make the assumption that weights conditioned on being ‘large’ have variance uniformly
bounded from below, that is,

D c ą 0 such that Varpωv |ωv ą kq ą c for all k ě 0 and v P V. (1.5)

We show in the appendix that this assumption is, for instance, met by weight distributions F
with 1 ´ F pxq “ Cx´γ for γ ą 2, or with 1 ´ F pxq “ C expp´β̄xβq for β P p0, 1s.

Our main result states that, under the above assumptions on the weight distribution, the
transition from stability to chaos occurs at t — 1

nVarpT q.

Theorem 1.1 (From stability to chaos). Consider last-passage percolation on Zd, for d ě 2,
with a weight distribution satisfying (1.2). There exists a constant C ă 8 such that for all
n ě 1 and 0 ă α ă n

VarpT q
the following two statements hold.

(i) Stability: For t ď α 1
nVarpT q, we have

CorrpT0, Ttq ě 1 ´ Cα. (1.6)
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(ii) Chaos: If, in addition, (1.5) holds and t ě α 1
nVarpT q, then

Er|π0 X πt|s ď C
n

α
. (1.7)

In the planar exactly solvable setting, we have that VarpT q “ Θpn2{3q and the transition
from stability to chaos hence occurs at t “ Θpn´1{3q. The same asymptotic behaviour is
predicted to prevail under mild conditions on the weight distribution. In higher dimensions
fluctuations are predicted to be smaller still. A sub-linear n{ log n-upper bound on VarpT q

was obtained in [9, 13] for a large class of weight distributions referred to as ‘nearly Gamma’.
This sub-linear upper bound is sufficient to establish that the transition from stability to chaos
occurs at t “ op1q. However, for many such distributions, condition (1.5) will not hold. It
would be interesting to extend Theorem 1.1 so that condition (1.5) is not required.

Theorem 1.1 is more precise than the corresponding results obtained for first-passage
percolation in the companion paper [1]. In [1] we establish chaos in first-passage percolation
for fixed t ą 0 for a large class of weight distributions (including continuous distribution with
finite 2` log moments). Although we expect that the transition from stability to chaos occurs
at t — 1

nVarpT q also there, we have not been able to prove that. The reason we succeed
in last-passage percolation, where we fail in first-passage percolation, is because the former
is a maximization problem and the latter a minimization problem. While in first-passage
percolation the weight distribution is bounded from below, in last-passage percolation it is
(possibly) unbounded, and condition (1.5) implies that even if a vertex is on the geodesic
because it is very heavy, it will still contribute to the influence.

1.3 Discussion

Let us emphasize that Theorem 1.1 establishes a transition from stability to chaos in a weaker
sense than in [6, 10], albeit by more flexible methods. Our theorem considers different quan-
tities in the stable and chaotic regimes (the distance function and the distance-maximizing
path, respectively), whereas the authors in [6, 10] consider stability and chaos of the same
object (the top eigenvector and distance-maximizing path, respectively). In [6] this is possible
due to the detailed understanding of eigenvectors of random matrices, and in [10] due to the
precise understanding of the geometry of near-ground states, obtained by the same authors
in [11].

Our proof of Theorem 1.1 relies on the other hand on a covariance formula derived in [1],
and requires no precise model-specific estimates, which we emphasize by working outside
of the exactly solvable setting. The covariance formula alluded to concerns the function
Qt :“ ErT0Tts defined for t P r0, 1s. Since the configurations at time 0 and at time 1 are
independent, we may express the variance of T as

VarpT q “ ErT 2
0 s ´ ErT0T1s “ Q0 ´ Q1 “ ´

ż 1

0

d

dt
Qt dt. (1.8)

The core of the argument will be to relate the contribution to the derivative of Qt that comes
from a vertex v to the probability that v belongs to both π0 and πt.

Looking beyond Theorem 1.1, we expect that in the stable regime also the expected overlap
between the two geodesics remains significant. Our belief is supported by the analogous
behaviour established for Brownian last-passage percolation in [10].
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Conjecture 1.2. If t ! 1
nVarpT q, then Er|π0 X πt|s “ Θpnq as n Ñ 8.

We further expect that in the chaotic regime also the passage times decorrelate. While we
are not aware of results of this kind for related models, heuristic reasoning involving the KPZ
scaling relations suggests this should be the case.

Conjecture 1.3. If t " 1
nVarpT q, then CorrpT0, Ttq “ op1q as n Ñ 8.

The study of decorrelation as an effect of small perturbations was initiated by Benjamini-
Kalai-Schramm [5] in the context of Boolean functions, and referred to as noise sensitivity.
A substantial framework for the study of noise sensitivity has since been developed, but has
remained largely restricted to the Boolean setting. The notion of chaos is strongly related to
the notion of noise sensitivity introduced in [5], according to which an event is noise sensitive
if, with high probability, an arbitrary small random perturbation of the configuration gives
almost no prediction of whether the event occurs. In general, while chaos refers to the energy-
minimizing object (in our case the geodesics), noise sensitivity refers to the decorrelation of
the energy of that object over time (the passage time). In this regard, we conjecture that the
location for the transition from stability to chaos is also the right location for the transition
from stability to noise sensitivity. In other words, for values of t smaller than the threshold, the
overlap between geodesics is still of order n, while for values of t larger than the threshold, the
passage times become decorrelated, hence they are noise sensitive. We expect both conjectures
to be challenging to prove, possibly requiring different techniques.

Outline of the paper. The remainder of the paper is organized as follows. In Section 2
we describe a covariance formula from our companion paper [1]. In Section 3 we derive lower
and upper bounds on the influence of a vertex in terms of the probability that the vertex
belongs to the geodesic both at time 0 and at time t. These bounds are then combined with
the covariance formula in the proof of Theorem 1.1 in Section 4.

2 The covariance formula

The proof of Theorem 1.1 relies on a covariance formula derived in [1], which we describe next.
For v P V and x P r0,8q, let σx

v : r0,8qV Ñ r0,8qV be the operator that replaces the
weight ωv at v by x. Write T vÑx :“ T ˝ σx

v and let

Dx
vT :“ T vÑx ´

ż

T vÑy dF pyq. (2.1)

That is, Dx
vT compares the travel time when the weight at v is fixed to x and when averaged

over all possible values. We define the co-influence of a vertex v P V at times 0 and t as

Infvptq :“

ż

E
“

Dx
vT0D

x
vTt

‰

dF pxq. (2.2)

A standard coupling argument (see [1, Lemma 5], but we believe that similar constructions
have been used previously by other authors) shows that, for any function f : r0,8qV Ñ R,
the outcomes fpωp0qq and fpωptqq are positively correlated, that is,

E
“

fpωp0qqfpωptqq
‰

´ Erf s2 ě 0, (2.3)
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and the correlation is non-increasing in t. In particular, as a consequence, the co-influences
are non-negative and non-increasing in t. For the same reason, the probability Ppv P π0 X πtq
is non-increasing as a function of t.

The co-influences was in [1] related to Qt through the formula

´
d

dt
Qt “

ÿ

vPV

Infvptq. (2.4)

This quantity is thus non-negative, so that Qt is non-increasing in t. Combining (1.8) and (2.4)
gives the formula

VarpT q “

ż 1

0

ÿ

vPV

Infvptq dt. (2.5)

Since co-influences are non-increasing, the sum of influences
ř

vPV Infvp0q gives an upper bound
on the variance, reminiscent of an Efron-Stein or Poincaré inequality.

3 Bounding the influence

The proof of the main result of the paper will go via the covariance formula (2.5). The key step
in the proof will be to show that the influence of a vertex v is proportional to the probability
that it is part of the geodesic. That is the goal of this section, which will start with some
additional notation.

For v P V and t P r0, 1s fixed, we let kvptq denote the smallest non-negative value that the
weight at v can take on for v to be on some geodesic for Tt. Since Tt is the maximal weight
sum on directed paths from p0, 0, . . . , 0q to pn, n, . . . , nq, it follows that kvptq is almost surely
finite for all v. By definition, the weight kvptq is determined by pωuptqqu‰v and

tv P πtu “ tωvptq ě kvptqu. (3.1)

Moreover, the vertex v is on all geodesics of Tt if ωvptq ą kvptq.
Let Fv be the σ-algebra generated by the weights at vertices other than v, that is,

Fv “ σ
`␣

ωuptq : u P V, u ‰ v, t P r0, 1s
(˘

,

and note that both kvp0q and kvptq are determined by Fv. In particular, ωvptq and kvptq are
independent, so if ω̃ denotes a generic random variable with distribution F , and independent
of everything else, then we have from (3.1) that

Ppv P πt |Fvq “ Ppωvptq ě kvptq |Fvq “ Ppω̃ ě kvptq |Fvq. (3.2)

By similar reasoning, we also have that

Ppv P π0 X πt |Fvq “ Ppωvp0q ě kvp0q, ωvptq ě kvptq |Fvq ď Ppω̃ ě maxtkvp0q, kvptqu |Fvq.
(3.3)

Also note that, by the definition of kvptq as the smallest value for the weight at v that
causes the geodesic to go through v, we have for x ě 0 that

T vÑx
t “ T

vÑkvptq
t ` px ´ kvptqq`,
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where p ¨ q` denotes the positive part of the expression within brackets. Hence

Dx
vTt “ T vÑx

t ´

ż

T vÑy
t dF pyq “ px ´ kvptqq` ´

ż

py ´ kvptqq` dF pyq. (3.4)

This will be the basis for the following characterization of the co-influence.

Lemma 3.1. Suppose that F satisfies (1.2), and let ω̃ denote a generic random variable
distributed as F . Then the co-influence of v at time t can be written as

Infvptq “ E
”

Cov
`

pω̃ ´ kvp0qq`, pω̃ ´ kvptqq`

ˇ

ˇFv

˘

ı

. (3.5)

Proof. Since ω̃ is F -distributed, we have that

ż

py ´ kvptqq` dF pyq “ E
“

pω̃ ´ kvptqq`

ˇ

ˇFv

‰

.

Together with (3.4), this shows that

ż

Dx
vT0D

x
vTt dF pxq “ Cov

`

pω̃ ´ kvp0qq`, pω̃ ´ kvptqq`

ˇ

ˇFv

˘

.

The result follows by taking expectation.

Next we derive an upper bound on the influence of v for t “ 0 in terms of the geodesic.

Lemma 3.2 (Upper bound). Suppose that F satisfies (1.2). Then

Infvp0q ď E
“

ωvp0q2 1tvPπ0u

‰

. (3.6)

Proof. When t “ 0, from Lemma 3.1, we have that

Infvp0q “ E
“

Var
`

pω̃ ´ kvp0qq`

ˇ

ˇFv

˘‰

ď E
“

E
“

pω̃ ´ kvp0qq21tω̃ěkvp0qu

ˇ

ˇFv

‰‰

.

Consequently, by independence of ωvp0q and kvp0q, we obtain from (3.1) that

Infvp0q ď E
“

pωvp0q ´ kvp0qq21tωvp0qěkvp0qu

‰

ď E
“

ωvp0q2 1tvPπ0u

‰

,

as required.

Lemma 3.3 (Lower bound). Suppose that F satisfies (1.2) and that (1.5) holds. Then there
exists c ą 0 such that for all v P V and t P r0, 1s we have

Infvptq ě cPpv P π0 X πtq. (3.7)

Proof. Let ω̃ be a generic F -distributed random variable independent of everything else. Then
by Lemma 3.1 we have

Infvptq “ E
”

Cov
`

pω̃ ´ kvp0qq`, pω̃ ´ kvptqq`

ˇ

ˇFv

˘

ı

. (3.8)
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Let A0 “ tω̃ ě kvp0qu, At “ tω̃ ě kvptqu and set A “ A0 X At “ tω̃ ě maxtkvp0q, kvptquu.
Then pω̃ ´ kvptqq` “ pω̃ ´ kvptqq1At , and the conditional covariance in the right-hand side
of (3.8) can be rewritten as

E
“

pω̃ ´ kvp0qqpω̃ ´ kvptqq1A
ˇ

ˇFv

‰

´ E
“

pω̃ ´ kvp0qq1A0

ˇ

ˇFv

‰

E
“

pω̃ ´ kvptqq1At

ˇ

ˇFv

‰

“E
“

pω̃ ´ kvp0qqpω̃ ´ kvptqq
ˇ

ˇA,Fv

‰

PpA |Fvq

´ E
“

ω̃ ´ kvp0q
ˇ

ˇA0,Fv

‰

PpA0 |FvqE
“

ω̃ ´ kvptq
ˇ

ˇAt,Fv

‰

PpAt |Fvq.

(3.9)

We claim that
E
“

ω̃ ´ kvptq
ˇ

ˇAt,Fv

‰

ď E
“

ω̃ ´ kvptq
ˇ

ˇA,Fv

‰

. (3.10)

On the event that kvp0q ď kvptq, this is a trivial statement. On the event that kvp0q ą kvptq,
the claim follows immediately from the two observations:

(i) given a random variable X, if x ą k, then

PpX ą x |X ą kq “
PpX ą xq

PpX ą kq
ě PpX ą xq;

(ii) given two probability distributions F and rF , if F pxq ě rF pxq for all x P R and g : R Ñ R
is an increasing function, then

ż

g dF ď

ż

g d rF .

Next, we note that if kvp0q ď kvptq, then At Ď A0 which implies that A “ A0 X At “ At.
If, on the other hand, kvp0q ą kvptq, then A0 Ď At and hence A “ A0 X At “ A0. In either
case, since kvp0q and kvptq are Fv-measurable, we obtain that

PpA0|FvqPpAt|Fvq ď PpA|Fvq. (3.11)

Combining (3.10) and (3.11) we obtain the following lower bound on (3.9)

E
“

pω̃ ´ kvp0qqpω̃ ´ kvptqq
ˇ

ˇA,Fv

‰

PpA |Fvq

´ E
“

ω̃ ´ kvp0q
ˇ

ˇA,Fv

‰

E
“

ω̃ ´ kvptq
ˇ

ˇA,Fv

‰

PpA |Fvq,
(3.12)

which hence gives

Infvptq ě E
”

Cov
`

ω̃ ´ kvp0q, ω̃ ´ kvptq
ˇ

ˇA,Fv

˘

PpA|Fvq

ı

. (3.13)

Since kvp0q and kvptq are Fv-measureable, we have

Cov
`

ω̃ ´ kvp0q, ω̃ ´ kvptq
ˇ

ˇA,Fv

˘

“ Cov
`

ω̃, ω̃
ˇ

ˇA,Fv

˘

“ Varpω̃ |A,Fvq. (3.14)

By assumption (1.5), the above expression is uniformly bounded from below by a strictly
positive constant c ą 0. Consequently, equations (3.13) and (3.14) together give that

Infvptq ě E
“

Var pω̃ |A,FvqPpA |Fvq
‰

ě cE
“

PpA |Fvq
‰

.

Finally, from (3.3), we obtain Infvptq ě cPpv P π0 X πtq, as required.
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4 From stability to chaos

Equipped with the covariance formula (2.5), and the connections between co-influences and
geodesics derived in Section 3, we are now in a position to prove Theorem 1.1.

4.1 Proof of Theorem 1.1, part (i)

The L2-distance between T0 and Tt can be re-written into an expression similar to (2.5)

E
“

pT0 ´ Ttq
2
‰

“ 2ErT 2
0 s ´ 2ErT0Tts “ ´2

ż t

0

d

ds
Qs ds “ 2

ż t

0

ÿ

vPV

Infvpsq ds. (4.1)

Since the co-influences are non-negative and non-increasing, (4.1) and Lemma 3.2 give that

E
“

pT0 ´ Ttq
2
‰

ď 2t
ÿ

vPV

Infvp0q ď 2t
ÿ

vPV

E
“

ωvp0q2 1tvPπ0u

‰

ď 2tE
„

ÿ

vPπ0

ωvp0q2
ȷ

. (4.2)

The expectation in the right-hand side of (4.2) is bounded by the expected passage time for
the last-passage problem where the weights have been replaced by the weights squared. As
pointed out in Section 1.2, the condition (1.2) guarantees that the expected passage time in
this setting grows linearly in n. Hence there exists C ă 8 such that

E
“

pT0 ´ Ttq
2
‰

ď 2Ctn for all n ě 1. (4.3)

By expanding the square, we also note that

E
“

pT0 ´ Ttq
2
‰

“ ErT 2
0 s ` ErT 2

t s ´ 2ErT0Tts “ VarpT0q ` VarpTtq ´ 2CovpT0, Ttq.

Rearranging the terms of the above expression yields

CovpT0, Ttq “ VarpT0q ´
1

2
E
“

pT0 ´ Ttq
2
‰

. (4.4)

Combining (4.3) and (4.4) gives

CovpT0, Ttq ě VarpT0q ´ Ctn.

In particular, for 0 ă α ă n
VarpT q

and t ď αVarpT q

n , we conclude that

CorrpT0, Ttq “
CovpT0, Ttq

VarpT0q
ě 1 ´ Cα,

as required.

4.2 Proof of Theorem 1.1, part (ii)

The covariance formula (2.5) together with Lemma 3.3 gives the existence of a constant c ą 0
such that

VarpT q ě

ż t

0

ÿ

vPV

Infvpsq ds ě c

ż t

0

ÿ

vPV

Ppv P π0 X πsq ds “ c

ż t

0
Er|π0 X πs|s ds. (4.5)
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Since Ppv P π0 Xπsq is non-increasing as a function of s (recall the discussion related to (2.3)),
the same holds for Er|π0 X πs|s. Consequently, VarpT q ě ctEr|π0 X πt|s. Hence, for 0 ă α ă

n
VarpT q

and t ě αVarpT q

n , we conclude that

Er|π0 X πt|s ď
1

ct
VarpT q ď

n

cα
.

This completes the proof of Theorem 1.1.

A Appendix: Distributions satisfying (1.5)

Here we demonstrate that power law distributions with finite variance and distributions with
a (stretched) exponential tail decay satisfy the conditional variance assumption (1.5).

First consider a distribution with PpX ą xq “ Cx´γ for γ ą 2 and x P r1,8q, and note
that

PpX ą x |X ą kq “
PpX ą xq

PpX ą kq
“

´x

k

¯´γ
“ C PpkX ą xq for x ą k.

Hence VarpX|X ą kq “ VarpkXq “ k2VarpXq, from which (1.5) follows (in fact VarpX|X ą

kq Ñ 8 with k).

Next consider a distribution with PpX ą xq “ Ce´β̄xβ
for β P r0, 1s and x P r0,8q. To

quantify ErX|X ą ks, note that

ErX|X ą ks „

8
ÿ

n“0

PpX ą n|X ą kq “ k ` eβ̄k
β
ÿ

n“k

e´β̄nβ

„ k ` Ceβ̄k
β

ż 8

β̄kβ
y

1
β

´1
e´ydy,

where the last equivalence follows from an integral approximation and the variable change y “

β̄xβ. Recalling the definition of the upper incomplete gamma function Γps, xq “
ş8

x ys´1e´ydy
and the fact that Γps, xq „ xs´1e´x, we conclude that ErX|X ą ks “ k`bk, where bk „ k1´β.
Next note that it follows from Chebyshev’s inequality that

VarpX|X ą kq ě PpX ď k ` bk{2|X ą kq

ˆ

bk
2

˙2

.

We have that
PpX ď k ` bk{2|X ą kq “ 1 ´ e´β̄rpk`bk{2qβ´kβs,

and hence

VarpX|X ą kq ě

´

1 ´ e´β̄rpk`bk{2qβ´kβs
¯

ˆ

bk
2

˙2

,

which proves the claim. Indeed, we get a lower bound of constant order for β “ 1, while
VarpX|X ą kq Ñ 8 as k Ñ 8 for β ă 1.
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