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TRINARY DECISION TREES FOR HANDLING MISSING DATA

HENNING ZAKRISSON
DEPARTMENT OF MATHEMATICS, STOCKHOLM UNIVERSITY

Abstract. This paper introduces the Trinary decision tree, an algorithm designed to improve the handling of
missing data in decision tree regressors and classifiers. Unlike other approaches, the Trinary decision tree does
not assume that missing values contain any information about the response. Both theoretical calculations on

estimator bias and numerical illustrations using real data sets are presented to compare its performance with
established algorithms in different missing data scenarios (Missing Completely at Random (MCAR), and Informative
Missingness (IM)). Notably, the Trinary tree outperforms its peers in MCAR settings, especially when data is
only missing out-of-sample, while lacking behind in IM settings. A hybrid model, the TrinaryMIA tree, which
combines the Trinary tree and the Missing In Attributes (MIA) approach, shows robust performance in all types of
missingness. Despite the potential drawback of slower training speed, the Trinary tree offers a promising and more
accurate method of handling missing data in decision tree algorithms.
Keywords: Missing data, Decision trees, Regularization

1. Introduction

Missing values are prevalent in real data. As noted
by e.g. Nijman et al. (2022), this is often not han-
dled or mentioned in machine learning applications in
a satisfactory way. Classification and Regression Trees
(CART), as defined by Breiman et al. (1984) provide
numerous ways to handle missing values in covariates.
Since CARTs are the foundation of many increasingly
popular machine learning algorithms such as Gradient
Boosting Machines (GBMs) (Friedman 2001), Random
Forests (Ho 1995), and XGBoost (Chen et al. 2015),
they are still relevant today. But the proposed meth-
ods of handling missing data come with drawbacks.

The simplest way to handle missing values when train-
ing a tree is to simply ignore them by discarding data
points with any missing feature. This of course means
losing potentially useful information, and is not an op-
tion when predicting using data with missing values.
The perhaps second-simplest method is using the ma-

jority rule, where data points with missing values are
assigned to the category in a tree split with the largest
amount of data in training. Another method is presented
by Twala et al. (2008), the Missing In Attributes (MIA)
algorithm. MIA assigns data points with missing co-
variates to the category that minimizes the loss for the
training data. This is similar, but not identical, to as-
signing missing values an own category in a categorical
feature. Quinlan (1993) introduces the C4.5 algorithm
for decision trees, and with that a weighted probabilistic
strategy for missing value-handling, henceforth referred
to as Fractional Case - FC. In FC, a data point with a
missing value in a split is assigned a weight of member-
ship in both categories of a binary splot, with the weight
depending on the distribution of the observable data in
the node. For out-of-sample data, the weights for all ter-
minal nodes are calculated and the prediction is given as
a weighted average. Breiman et al. (1984) proposes using
so-called surrogate splits in order to find other covariates

on which the data points which lack the relevant obser-
vation can be split to form similar splits. This requires
that there are no missing values in the surrogate covari-
ate - or that a secondary surrogate variable is found in
its place.

Cons of these methods include losing potentially use-
ful information (discarding data, FC), assuming there
is always information in missingness (MIA), requiring
missing values in the training data to be able to handle
missing values in out-of-sample prediction (MIA, surro-
gate splits) or losing interpretability (FC).

The trinary decision tree for missing value handling
(henceforth Trinary tree) introduced in this paper has
four important attributes:

• It does not assume that missing data points con-
tain any information about the response

• It can handle missing values in predictions even
if it was trained on a data set with no missing
data

• It maintains the interpretability of a standard
decision tree

• It produces locally unbiased estimators of tree
node values - which the other algorithms do not
necessarily do

The first three are apparent from the algorithm, which
is presented in Section 2, whereas the fourth one is
proven in Section 3. In Section 4, the algorithm is tested
against its peers with real data sets.

2. The Trinary tree

Consider a loss function L((yi)i∈I , δ), where I is an
index set and δ is a parameter. For regression problems,
δ is a real number, and for classification problems, δ is
a probability vector. In this paper, two loss functions
will be considered: the sum of squared errors (SSE) for
regression and the point-wise cross-entropy for classifi-
cation. These are defined as

(1) LSSE((yi)i∈I , δ) =
∑

i∈I

(yi − δ)2,
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and

(2) LXE((yi)i∈I , δ) =
∑

i∈I

log(δyi
)

respectively. Let δI denote the minimizer of
L((yi)i∈I , δ), i.e.

(3) δI = argmin
δ

L((yi)i∈I , δ)

For both SSE and point-wise cross-entropy, δI has a
closed form solution, namely

(4) δSSEI =
1

|I|

∑

i∈I

yi

and

(5)
(
δXE
I

)
k
=

1

|I|

∑

i∈I

1{yi}=k, k = 1, . . . ,K

where K is the number of classes in the classification
problem. A binary decision tree is generally fitted greed-
ily by minimizing the loss function at each so called node

separately, starting with the root node containing all
data points. For data set (yi, xi)

n
i=1, where yi ∈ Y is

the response and xij ∈ Xj , j = 1, . . . , p, is a covariate,
this means finding a combination of a covariate j and
covariate subspaces X l

j ,X
r
j ⊂ Xj that minimize

(6) L((yi)i∈Ijl
, δIjl

) + L((yi)i∈Ijr
, δIjr

),

where
(7)

Ijl = {i ∈ I : xij ∈ X l
j}, Ijr = {i ∈ I : xij ∈ X r

j },

such that X l
j ∪ X r

j = Xj . In the case where X ∈ R, X l
j

and X r
j are constrained to be continuous intervals. After

finding the optimal split, the procedure is repeated for
the so called daughter nodes, i.e. the nodes that contain
the data points from the two sides of the split. The pro-
cedure is generally continued until reaching some stop-
ping criterion, such as a maximum tree depth. The nodes
that are not split are called terminal nodes.

Data points where the chosen splitting covariate is
missing can be handled in a number of ways. The MIA

strategy assigns them to the daughter node that pro-
vides the largest reduction in the loss function (see Al-
gorithm 2 in Appendix A). Themajority strategy assigns
them to the daughter node with the largest amount of
data (see Algorithm 3 in Appendix A). The FC strat-
egy assigns them to both daughter nodes with weights
depending on the distribution of the observable data in
the node (see Algorithm 4 in Appendix A).

In contrast, the Trinary strategy assigns them to a
third daughter node, which changes the function to min-
imize in (6) to
(8)
L((yi)i∈Ijl

, δIjl
) + L((yi)i∈Ijr

, δIjr
) + L((yi)i∈Ijm

, δI),

where Ijm = {i ∈ I : xij missing}. Note that δI in
the third term is the minimizer of the loss function over
the entire data set of the node. This means that the
third term evaluates the loss of the points that are not
assigned to the left or right nodes as if it retained the
parameter estimate of the mother node. After finding
a split, the procedure is repeated for all three daugh-
ter nodes. For the third node, the entire data set is used

for further splitting, but omitting the splitting covariate.
Thus, the third node will grow further by first splitting
on the second-best covariate, then continue to grow. The
third node is considered to be at the same depth level as
the mother node, since the data set has not been split.

The point of the third node is to avoid making as-
sumptions about the missing data. By not assigning the
missing data to either of the standard daughter nodes,
the Trinary tree does not contaminate the δ estimates
for the standard nodes with data points that do not be-
long there. Instead, the Trinary tree uses the entire data
set to estimate δ for the third node, as a way to regu-
larize predictions when in uncertainty about important
covariates.

The Trinary tree training algorithm is summarized
in Algorithm 1. A visualization of a Trinary tree with
depth 1 is shown in Figure 1.

Algorithm 1 Trinary tree training algorithm

Let

• (yi, xi)i∈I , where yi ∈ Y, xij ∈ Xj , j = 1, . . . , p,
be the training data

• L((yi)i∈I , δ) be the loss given parameter δ
• δI be the minimizing parameter of L((yi)i∈I , δ)
• Ijl = {i ∈ I : xij ∈ X l

j},
Ijr = {i ∈ I : xij ∈ X r

j }

• Ijm = {i : xij missing}
• dmax be the maximum depth
• n be the minimum number of samples per node

Define training function T ((yi, xi)i∈I , d) → h(x):
If d = dmax or |I| = n:

Output

h(x) = δI

Else:
Fit

Find j, X l
j , and X r

j that minimize

L
(
(yi)i∈Ijl

, δIjl

)
+L

(
(yi)i∈Ijr

, δIjr

)
+L

(
(yi)i∈Ijm

, δI
)

such that |Il| ≥ n, |Ir| ≥ n,
X l

j ∪ X r
j = Xj

Grow

hl(x) = T
(
(yi, xi)Il

, d+ 1
)

hr(x) = T
(
(yi, xi)Ir

, d+ 1
)

hm(x) = T ((yi, xi)I , d)

Output

h(x) =






hl(x), x·j ∈ X l
j

hr(x), x·j ∈ X r
j

hm(x), x·j missing

3. Tree-fitting estimate bias

In order to illustrate how the Trinary tree might be
preferable to the other methods, let us examine a simple
example where the non-trinary methods estimators are
locally biased. Consider the data set D = (Xi, Yi)

n
i=1,

whereXi ∈ X is the covariate and Yi ∈ R is the response.
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δ0

δ1

xi1 ∈ X l
1

δ2

xi1 ∈ X r
1

δ0

δ3

xi2 ∈ X l
2

δ4

xi2 ∈ X r
2

xi1 missing
δ0
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Figure 1. Visualization of a Trinary tree with depth 1 for a covariate with p = 2 dimensions.
Note that since the third node is considered to be at the same depth level as the root node, an
additional split is made. Since the best performing split covariate j = 1 is no longer available, the
second-best split covariate j = 2 is used for the second split. Since that covariate could also be
missing, the third node has its own third daughter node. Since there are no further covariates to
split on, that node is a terminal node.

Let the expected value of Y follow a tree structure, i.e.
let E[Y |X = x] = h(x) where

h(x) =

{
a, x ∈ X l

b, x ∈ X r

where X l ∪X r = X , a < b and P(X ∈ X r) = p, 0 < p <

1. Then, consider a censored dataset D̃ = (X̃i, Yi)
n
i=1

where

X̃i =

{
nan, with probability q

Xi, with probability 1− q

where nan corresponds to a missing value, q > 0. Now,
consider fitting trees to this for an SSE loss function, us-
ing the Majority, MIA and FC algorithms respectively,
and examine their estimates of a. For brevity, let Il and
Ir be defined as in (7) and introduce index sets

Io =
{
i : X̃i = Xi

}
, Im =

{
i : X̃i = nan

}
,

as well as the intersections

Io
l = Io ∩ Il, Io

r = Io ∩ Ir,

Im
l = Io ∩ Il, Im

r = Im ∩ Ir.

For the majority rule algorithm, the estimate of a is

âMaj =






1

|Io
l |

∑
i∈Io

l

Yi, if |Io
l | > |Io

r | ,

1

|Io
l |+|Im|

∑
i∈Io

l
∪Im

Yi, else.

First note that

E[âMaj| |I
o
l | ≤ |Io

r |] = a.

Also,

E [âMaj| |I
o
l | > |Io

r |]

= E



 1

|Io
l |+ |Im

l |+ |Im
r |




∑

i∈Io
l

Yi +
∑

i∈Im
l

Yi +
∑

i∈Im
r

Yi









= E

[
1

|Io
l |+ |Im

l |+ |Im
r |

(a |Io
l |+ a |Im

l |+ b |Im
r |)

]

≥
1

E [|Io
l |+ |Im

l |+ |Im
r |]

E [a |Io
l |+ a |Im

l |+ b |Im
r |]

= a+
pq

1− p+ pq
(b− a)

where the concavity of the function

g(x, y, z) =
x

x+ y + z

is used for the inequality. Then, introduce κ =
P (|Io

l | ≤ |Io
r |), and note that

E [âMaj] = κE[âMaj| |I
o
l | ≤ |Io

r |] + (1− κ)E[âMaj| |I
o
l | > |Io

r |]

≥ κa+ (1− κ)

(
a+

pq

1− p+ pq
(b− a)

)

= a+
(1− κ) pq

1− p+ pq
(b− a)

> a

The proof for the MIA strategy is identical with the only
change that κ then means the probability that the loss is
lower if the missing values are assigned to the left node.
For the Fractional Case strategy the estimate of param-
eter a has expected value

E [âFC] = E




1
n∑

i=1

wl
i

n∑

i=1

wl
iYi




≥
1

E

[
n∑

i=1

wl
i

]E
[

n∑

i=1

wl
iYi

]

= a+ pq (b− a)

> a.

where it can also be shown that in order for E[ŶFC] =

E[Y ] to hold it is required that E[b̂FC] < b. Finally, for
the Trinary tree, see that

E [âTri] = E


 1

|Io
l |

∑

i∈Io
l

Yi


 = a.

4. Numerical illustration

In order to illustrate the benefits of the Trinary tree,
data with increasing missingness is created for the data
sets in Table 4. All the data sets are available online.
The data sets have been chosen in order to provide a
wide array of applications, and varying characteristics
of the data. The performance of the individual data sets
will not be evaluated specifically in this paper, but rather
the performance of the algorithms on the data sets as a



4 HENNING ZAKRISSON

25% 50% 75%
0

0.5

1

1.5

2

E
x
ce
ss

lo
ss

MCAR

Majority
MIA
FC

Trinary
TrinaryMIA

25% 50% 75%
0

0.5

1

1.5

2

Missingness

MCARTest

25% 50% 75%
0

0.5

1

1.5

2

IM

Figure 2. Average excess loss per missingness ratio for the tree algorithms in different kinds of
missingness on all data sets

whole. The data sets have been minimally pre-processed,
e.g. by removing any potential missing values. This is
done in order to have full control over the missingness.
The tree depth is first tuned by performing 10-fold cross
validation on the full data set, with a maximum tree
depth set to 5. For the classification problems, the folds
are stratified so that the relative class frequency is equal
in every fold. The dataset is then censored, i.e. values
are replaced with missing values, (with missingness q%
ranging from 0% to 90%) in three different ways.

MCAR q% of the data is removed from all features in
the training and test set, completely at random.

MCARTest q% of the data is removed from all fea-
tures in the test set, completely at random. The
training set has no missing values.

IM q% of the data is removed from all features in the
training and test set. For numerical features,
the largest values are removed first. For cate-
gorical ones, they are removed on a category-by-
category basis.

Thereafter, the four different tree algorithms (Majority,
MIA, FC, and Trinary) are trained and evaluated on the
10 folds. Additionally, a fifth tree algorithm, denoted
TrinaryMIA is evaluated. This is an amalgamation of
Trinary and MIA that in every node evaluates whether
a MIA-style or Trinary Tree style split reduces the train-
ing loss the most and then picks the one that does.

Table 1. Data sets
type Name size features

regression

AutoMPG 392 8
Black Friday 550,068 6
Cement 1,030 9
Life Expectancy 138 17

classification

Titanic 712 7
Lymphography 142 19
Boston Housing 506 14
Wheat seeds 199 8

First the total loss is calculated for the entire data set
with no missing values. Then the total loss is calculated
for the data set with increasing missingness, and the ex-
cess loss (i.e. the loss divided by the loss in the case with
no missing values) is calculated. The average excess loss
over all data sets is presented in Figure 2. Since the MIA
and majority strategies are identical in cases where there

is no missing data in the training data, MIA is omitted
from the middle figure. The same applies to Trinary and
TrinaryMIA trees.

As can be seen, the TrinaryMIA tree is the best per-
former in the MCAR case, followed by the Trinary tree.
For higher levels of missingness all algorithms seem to
perform almost equally bad. In the MCARTest case,
the Trinary tree is the best performer, followed by the
FC tree. For the IM case, the TrinaryMIA and MIA
trees perform very similarly, and are the best perform-
ers. The performance of MIA in this setting is expected,
but it seems like the TrinaryMIA tree is able to find the
appropriate splits as well.

5. Concluding remarks

It is clear both from the bias calculations and the
numerical illustration that the Trinary tree has bene-
fits over its peers in MCAR settings. Especially, the
performance of the algorithm in the case where data is
only missing in the test set is noteworthy. It is how-
ever important to remember that assuming that missing-
ness contains no information is an assumption in itself -
seen by the less impressive performance in the IM test.
This drawback seems to be easily overcome by the Tri-
naryMIA tree, which maintains performance in all types
of missingness. Surprisingly, the TrinaryMIA tree also
outperforms the Trinary tree in the MCAR case, how-
ever not by a large margin.

The potential of using the Trinary tree algorithm as
a weak learner in more powerful machine learning algo-
rithms, such as a GBM, is an interesting topic, since the
reguralization and missing value-handling would then be
inherited by the ensemble model.

A drawback for the Trinary tree, is that for large data
sets (especially covariate data sets with many features
and categorical features with high cardinality) or deep
trees, the training speed can suffer. For shallow trees and
data sets with a limited number of covariates, the speed
is however on par with the other methods. It should also
be noted that a large part of the tree training can be
parallelized, since nodes can be trained independently of
each other when using standard greedy splitting. Also,
TrinaryMIA training is often faster since it, if there is in-
formation in missingness in the training data, will grow
fewer nodes than a standard Trinary tree.
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Appendix A. Tree algorithms

Algorithm 2 Missing In Attributes training algorithm

Let

• (yi, xi)i∈I , where yi ∈ Y, xij ∈ Xj , j = 1, . . . , p,
be the training data

• L((yi)i∈I , δ) be the loss given parameter δ
• δI be the minimizing parameter of L((yi)i∈I , δ)
• Ijl = {i ∈ I : xij ∈ X l

j},

Ijr = {i ∈ I : xij ∈ X r
j }

• dmax be the maximum depth
• n be the minimum number of samples per node

Define training function T ((yi, xi)i∈I , d) → h(x):
If d = dmax or |I| = n:

Output

h(x) = δI

Else:
Fit

Find j, X l
j , and X r

j that minimize

L
(
(yi)i∈Ijl

, δIjl

)
+ L

(
(yi)i∈Ijr

, δIjr

)

such that |Ijl| ≥ n, |Ijr | ≥ n,
X l

j ∪ X r
j = Xj ∪ {nan}

Grow

hl(x) = T
(
(yi, xi)Ijl

, d+ 1
)

hr(x) = T
(
(yi, xi)Ijr

, d+ 1
)

Output

h(x) =

{
hl(x), x·j ∈ X l

j

hr(x), x·j ∈ X r
j

https://github.com/henningzakrisson/trinary-tree
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Algorithm 3 Majority Rule training algorithm

Let

• (yi, xi)i∈I , where yi ∈ Y, xij ∈ Xj , j = 1, . . . , p,
be the training data

• L((yi)i∈I , δ) be the loss given parameter δ
• δI be the minimizing parameter of L((yi)i∈I , δ)
• Ijl = {i ∈ I : xij ∈ X l

j},
Ijr = {i ∈ I : xij ∈ X r

j }, and

Ijm = {i : xij missing}
• dmax be the maximum depth
• n be the minimum number of samples per node

Define training function T ((yi, xi)i∈I , d) → h(x):
If d = dmax or |I| = n:

Output

h(x) = δI

Else:
Fit

Find j, X l
j , and X r

j that minimize

L
(
(yi)i∈Ijl

, δĨl

)
+ L

(
(yi)i∈Ijr

, δĨr

)

where

Ĩl =

{
Ijl, |Ijl| ≤ |Ijr |

Ijl ∪ Ijm, |Ijl| > |Ijr |

and vice versa for Ĩr, such that∣∣∣Ĩl
∣∣∣ ≥ n,

∣∣∣Ĩr
∣∣∣ ≥ n, X l

j ∪ X r
j = Xj

Grow

hl(x) = T
(
(yi, xi)Ĩl

, d+ 1
)

hr(x) = T
(
(yi, xi)Ĩr

, d+ 1
)

Output

h(x) =

{
hl(x), x·j ∈ X l

j or x·j missing and |Ijl| ≥ |Ijr|

hr(x), x·j ∈ X r
j or x·j missing and |Ijl| < |Ijr |

Algorithm 4 Fractional Case training algorithm

Let

• (yi, xi, wi)i∈I , where yi ∈ Y, xij ∈ Xj ,
j = 1, . . . , p, wi ∈ [0, 1] be the training data

• L((yi, wi)i∈I , δ) be the loss given parameter δ
• δI be the minimizing parameter of L((yi)i∈I , δ)
• Ijm = {i ∈ I : xij missing},
Ijl = {i ∈ I : xij ∈ X l

j} ∪ Ijm,

Ijr = {i : xij ∈ X r
j } ∪ Ijm

• dmax be the maximum depth
• n be the minimum total sample weight per node

Define training function T ((yi, xi)i∈I , d) → h(x):
If d = dmax or |I| ≤ n:

Output

h(x) = δI

Else:
Fit

Find j, X l
j , and X r

j that minimize

L
(
(yi, w

l
i)i∈Ijl

, δIjl

)
+ L

(
(yi, w

r
i )i∈Ijr

, δIjr

)

where

wl
i =

{
wi, xij ∈ X l

j

wi
|Ijl\Ijm|
|I\Ijm| , xij ∈ {nan}

such that
∑

i∈Ijl

wl
i ≥ n, and vice

versa for r, and X l
j ∪ X r

j = Xj

Grow

hl(x) = T
((

yi, xi, w
l
i

)
Ijl

, d+ 1
)

hr(x) = T
(
(yi, xi, w

r
i )Ijr

, d+ 1
)

Output

h(x) =






hl(x), x·j ∈ X l
j

hr(x), x·j ∈ X r
j

wlhl(x) + wrhr(x), x·j missing
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