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Abstract

The distribution-free chain ladder of Mack justified the use of the chain ladder
predictor and enabled Mack to derive an estimator of conditional mean squared error
of prediction for the chain ladder predictor. Classical insurance loss models, i.e. of
compound Poisson type, are not consistent with Mack’s distribution-free chain lad-
der. However, for a sequence of compound Poisson loss models indexed by exposure
(e.g. number of contracts), we show that the chain ladder predictor and Mack’s estima-
tor of conditional mean squared error of prediction can be derived by considering large
exposure asymptotics. Hence, quantifying chain ladder prediction uncertainty can be
done with Mack’s estimator without relying on the validity of the model assumptions
of the distribution-free chain ladder.

Keywords: claims reserving, chain ladder, large exposure asymptotics

1 Introduction

We consider the problem of predicting outstanding claims costs from insurance contracts
whose coverage periods have expired but for which not all claims are known to the insurer.
Such prediction tasks are referred to as claims reserving. The chain ladder method is
arguably the most widespread and well known technique for claims reserving based on
claims data organized in run-off triangles, with cells indexed by accident year and deve-
lopment year. The chain ladder method is a deterministic prediction method for predicting
the not yet known south-east corner (target triangle) based on the observed north-west
corner (historical triangle) of a square with cell values representing accumulated total claims
amounts. The square and historical triangle can easily be generalized to rectangle and
trapezoid, reflecting claims data for more historical accident years. However, we will here
consider the traditional setup in order to simplify comparison with influential papers. We
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refer to the text book [20] by Wüthrich and Merz for an overview of methods for claims
reserving.

Important contributions appeared in the 1990s presenting stochastic models and prop-
erties of parametric stochastic models that give rise to the chain ladder predictor. Mack
[9] presented three model properties, known as the distribution-free chain ladder model,
that together with weighted least squares estimation give rise to the chain ladder predictor.
Renshaw and Verrall [15] showed that independent Poisson distributed cell values for incre-
mental total claims amounts, together with Maximum Likelihood estimation of parameters
for row and column effects, give rise to the chain ladder predictor. The Poisson model is
inconsistent with the distribution-free chain ladder.

The most impressive contribution of Mack in [9] is the estimator of conditional mean
squared error of prediction. The key contribution is the estimator of the contribution of
parameter estimation error to conditional mean squared error of prediction. A number
of papers have derived the same estimator based on different approaches to statistical es-
timation in settings consistent with the distribution-free chain ladder, see e.g. Merz and
Wüthrich [13], Röhr [16], Diers et al. [2], Gisler [5], Lindholm et al. [8].

Different approaches to the estimation of, and estimators of, prediction error for the
chain ladder method sparked some scientific debate, both regarding which stochastic model
underlies the chain ladder methods, see e.g. the papers by Mack and Venter [11] and Verrall
and England [19], and regarding prediction error estimation for the chain ladder method,
see Buchwalder et al. [1], Gisler [4], Mack et al. [12] and Venter [18]. Gisler revisited, in [6],
different estimators for conditional mean squared error in the setting of the distribution-free
chain ladder. Ultimately, Mack’s estimator of conditional mean squared error of prediction
has stood the test of time.

The main contribution of the present paper is that we show that a simple but natural
compound Poisson model is fully compatible with both the chain ladder predictor and
Mack’s estimator of conditional mean squared error of prediction, although the model is
incompatible with Mack’s distribution-free chain ladder, as long as we consider an insurance
portfolio with sufficiently large exposure (e.g. accumulated total claims amounts based on
sufficiently many contracts). The Poisson model considered by Renshaw and Verrall in
[15] is a special case of the compound Poisson model we consider, and consequently also
their Poisson model gives rise to Mack’s estimator of conditional mean squared error of
prediction.

The rest of the paper is organized as follows. Section 2 presents the stochastic model
we consider, both a simple model called the special model and a more general model. The
special model is a classical insurance loss model (independent compound Poisson processes in
each cell of the run-off triangle of incremental total claim amounts). Section 3 recalls Mack’s
distribution-free chain ladder. Section 4 presents asymptotic results that demonstrates that
we can retrieve Mack’s classical estimators in model setting that are incompatible with the
distribution-free chain ladder. Section 5 presents a numerical example that illustrates the
theoretical results in Section 4. The proofs are found in Section 6.
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2 The model

We will focus on a simple yet general class of models for the number of reported claims
and the cost of these claims. In line with classical reserving methods based on claims
data organized in run-off triangles, we consider T accident years and T development years.
For i, t ∈ T = {1, . . . , T}, let Cα

i,t denote the accumulated total claims amount due to
accident events in accident year i that are paid up to and including development year t.
The parameter α is a measure of exposure, such as the number of contracts of not yet fully
developed accident years. We will analyze asymptotics as α → ∞ and use the findings
to motivate the use of well established predictors and estimators in settings that are not
consistent with model assumptions used to derive the classical results for the chain ladder
method. A given claims reserving situation of course corresponds to a single, typically
large, number α. As in any other situation where asymptotic arguments are the basis for
approximation, we embed the prediction problem in a sequence of prediction problems,
indexed by α.

The special model is simply a set of independent Cramér-Lundberg (compound Pois-
son) models, indexed by accident year and development year, with a common claim size
distribution with finite variance and positive mean, where exposure parameter α plays the
role of time in the Cramér-Lundberg models. Consider incremental accumulated total claim
amounts Xα

i,t due to accident events in accident year i that are paid during development
year t: Xα

i,1 = Cα
i,1 and Xα

i,t = Cα
i,t−Cα

i,t−1 for t ≥ 2. Consider constants λ1, . . . , λT ∈ (0,∞)

and q1, . . . , qT ∈ (0, 1) with
∑T

t=1 qt = 1. For each i, t ∈ T , (Xα
i,t)α≥0 is a Cramér-Lundberg

model with representation

Xα
i,t =

Nα
i,t∑

k=1

Zi,t,k, α ≥ 0,

where (Nα
i,t)α≥0 is a homogeneous Poisson process with intensity λiqt ∈ (0,∞), independent

of the i.i.d. sequence (Zi,t,k)
∞
k=1. The claim size variables satisfy Zi,t,k

d
= Z for all i, t, k for

some Z with finite variance and positive mean. Moreover, the compound Poisson processes
(Xα

i,t)α≥0, (i, t) ∈ T × T , are independent.
We want to highlight the special case of the special model obtained by letting Z ≡ 1. In

this case the special model is simply a set of independent homogeneous Poisson processes,
indexed by accident year and development year, where exposure parameter α plays the role
of time. In particular, for a fixed α, we obtain the model considered by Renshaw and Verrall
in [15] as a model underlying the chain ladder method since it gives rise to the chain ladder
predictor (see Section 3) upon replacing unknown parameters by their Maximum Likelihood
estimates.
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2.1 The general model

Several of the statements in Section 4 below hold for a wider class of models than the special
model. The general model, (GM1)-(GM4) below, allows us to write

Cα
i,t =

Mα
i∑

k=1

Zi,kI{Di,k ≤ t},

where Mα
i denotes the number of accident events in accident year i, Zi,k denotes the size

of the kth such claim and Di,k denotes the corresponding development year, the indicator
I{Di,k ≤ t} equals 1 if Di,k ≤ t. The properties GM1-GM4 together constitute the general
model:

(GM1) (D1,k, Z1,k)
∞
k=1, . . . , (DT,k, ZT,k)

∞
k=1 are i.i.d. sequences. The common distribution of

the terms (Di,k, Zi,k) does not depend on the accident year i. With (D,Z) denoting
a generic such pair,

E[Z2] < ∞ and E[ZI{D = t}] > 0 for each t ∈ T .

(GM2) For each i, (Di,k, Zi,k)
∞
k=1 and Mα

i are independent.

(GM3) {Mα
1 , (D1,k, Z1,k)

∞
k=1}, . . . , {Mα

T , (DT,k, ZT,k)
∞
k=1} are independent.

(GM4) For each i there exists λi ∈ (0,∞) such that Mα
i /α

a.s.→ λi as α → ∞.

By (GM3), claims data variables are independent if they correspond to different accident
years. However, the components of (D,Z) are possibly dependent, allowing for the distri-
bution of claim size to depend on development year. Note that we allow for exposures to
vary between accident years, reflected in possibly different parameters λ1, . . . , λT . Note also
that the incremental accumulated claims amounts Xα

i,s and Xα
i,t, s ̸= t, are in general not

independent (unless Mα
i is Poisson distributed).

In order to derive Mack’s estimator in [9] of conditional mean squared error of prediction
for the chain ladder predictor we must consider a special case of the general model:

(SM1) (GM1)-(GM3) hold.

(SM2) D and Z are independent.

(SM3) For each i, (Mα
i )α≥0 is a homogeneous Poisson process with intensity λi ∈ (0,∞).

The properties (SM1)-(SM3) together form an alternative way of specifying the special
model. Since (SM3) implies (GM4), the special model is a special case of the general
model.
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3 Mack’s distribution-free chain ladder

The arguably most well-known method for claims reserving is the chain ladder method.
In the seminal paper [9], Thomas Mack presented properties, see (1) and (2) below, for
conditional distributions of accumulated total claims amounts that, together with (3) below,
make the chain ladder prediction method the optimal prediction method for predicting
outstanding claims amounts. Moreover, and this is the main contribution of [9], he showed
that these properties lead to an estimator of the conditional mean squared error of the chain
ladder predictor.

With Ci,t denoting the accumulated total claims amount up to and including develop-
ment year t for accidents during accident year i, Mack considered the following assumptions
for the data generating process: for t = 1, . . . , T − 1 there exist constants fMCLt > 0 and
σ2
MCLt ≥ 0 such that

E[Ci,t+1 | Ci,1, . . . , Ci,t] = fMCLtCi,t, t = 1, . . . , T − 1, (1)

var(Ci,t+1 | Ci,1, . . . , Ci,t) = σ2
MCLtCi,t, t = 1, . . . , T − 1, (2)

and

(C1,1, . . . , C1,T ), . . . , (CT,1, . . . , CT,T ) are independent. (3)

The conditions (1), (2) and (3) together are referred to as Mack’s distribution-free chain
ladder model. The parameters fMCLt and σ2

MCLt are estimated by

f̂t =

∑T−t
i=1 Ci,t+1∑T−t
i=1 Ci,t

and σ̂2
t =

1

T − t− 1

T−t∑
i=1

Ci,t

(
Ci,t+1

Ci,t
− f̂t

)2

,

respectively. We refer to [9] for properties of these parameter estimators.
The property (2) for the conditional variance is very difficult to assess from data in the

form of run-off triangles on which the chain ladder method is applied. We refer to [10]
for tests assessing the assumptions of Mack’s distribution-free chain ladder. Moreover, it
is notoriously difficult to find stochastic models that satisfy this property. Note that the
special model, see Section 2, does not satisfy Mack’s conditions: neither (1) nor (2) hold.
By Theorem 3.3.6. in [14], for the special model,

Mα
i∑

k=1

Zi,kI{Di,k ≤ t} and

Mα
i∑

k=1

Zi,kI{Di,k = t+ 1}

are independent. Consequently, for the special model,

E[Cα
i,t+1 | Cα

i,1, . . . , C
α
i,t] = Cα

i,t + E[Mα
i ] P(D = t+ 1)E[Z]

and

var(Cα
i,t+1 | Cα

i,1, . . . , C
α
i,t) = E[Mα

i ] P(D = t+ 1)E[Z2].
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It is shown in Theorem 1 below that large exposure limits, as α → ∞, do exist for
estimators f̂t and σ̂2

t . The constant (a.s. convergence) limit for the parameter estimator
f̂t has a meaningful interpretation in terms of the general model we consider, and the
parameter estimators f̂t can be transformed into estimators of parameters of our model,
see Remark 4. However, Mack’s parameter estimator σ̂2

t converges in distribution to a
nondegenerate random variable. Hence, although σ̂2

t will generate numerical values that may
seem reasonable, such values do not correspond to outcomes of random variables converging
to a parameter.

The main contribution of Mack’s paper [9] is the derivation of an estimator of the
conditional mean squared error of prediction

E
[
(Ci,T − Ĉi,T )

2 | D
]
,

where D is the σ-algebra generated by the data observed at the time of prediction: {Cj,t :

j, t ∈ T , j+t ≤ T+1}. The D-measurable estimator derived by Mack of E[(Ci,T−Ĉi,T )
2 | D]

is

(Ĉi,T )
2

T−1∑
t=T−i+1

σ̂2
t

f̂2
t

(
1

Ĉi,t

+
1∑T−t

j=1 Cj,t

)
, (4)

where Ĉi,T−i+1 = Ci,T−i+1 and Ĉi,t = Ci,T−i+1
∏t−1

s=T−i+1 f̂s for t > T − i + 1. We will
show that when considering the special model (SM1)-(SM3), large exposure asymptotics
naturally lead to Mack’s estimator of conditional mean squared error of prediction despite
the fact that the special model is inconsistent with Mack’s distribution-free chain ladder.
Hence, the chain ladder predictor Ĉi,T = Ci,T−i+1

∏T−1
s=T−i+1 f̂s may be used together with

an assessment of its accuracy by (4) without having to rely on the validity of (1) and (2)
of Mack’s distribution-free chain ladder.

4 Large exposure asymptotics

We will next present the main results, motivating the use of the chain ladder method and
Mack’s estimator of conditional mean squared error of prediction, in the setting of the

general or special model. Recall that, for i, t ∈ T , Cα
i,t =

∑Mα
i

k=1 Zi,kI{Di,k ≤ t}. Let χ2
ν

denote a random variable with a chi squared distribution with ν degrees of freedom. Let
NT (µ,Σ) denote the T -dimensional normal distribution with mean µ and covariance matrix
Σ. In what follows, convergence of random variables should be understood as convergence
as α → ∞.

Theorem 1. Consider the general model (GM1)-(GM4). For each t ∈ T with t ≤ T − 1,

f̂t =

∑T−t
i=1 Cα

i,t+1∑T−t
i=1 Cα

i,t

a.s.→ E[ZI{D ≤ t+ 1}]
E[ZI{D ≤ t}]

= ft. (5)
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For each i ∈ T with i ≥ 2,

Cα
i,T−i+1

∏T−1
t=T−i+1 f̂t

Cα
i,T

a.s.→ 1. (6)

For each t ∈ T with t ≤ T − 2,

σ̂2
t =

1

T − t− 1

T−t∑
i=1

Cα
i,t

(
Cα
i,t+1

Cα
i,t

− f̂t

)2
d→ σ2

t

χ2
T−t−1

T − t− 1
, (7)

where

σ2
t = (ft − 1)

(
E[Z2I{D = t+ 1}]
E[ZI{D = t+ 1}]

+ (ft − 1)
E[Z2I{D ≤ t}]
E[ZI{D ≤ t}]

)
.

Remark 1. We do not index f̂t and σ̂2
t by the exposure parameter α. It should be clear

from the context whether f̂t should be seen as an element in a convergent sequence or simply
as a function of the given data. Similarly for σ̂2

t .

Remark 2. For the convergence in (5) and (6) it is not necessary to assume that Mα
1 , . . . ,M

α
T

are independent. If Z and D are independent, then the limit expressions in (5) and (7)
simplify:

ft =

∑t+1
s=1 qs∑t
s=1 qs

, σ2
t = (ft − 1)ft

E[Z2]

E[Z]
=

qt+1
∑t+1

s=1 qs

(
∑t

s=1 qs)
2

E[Z2]

E[Z]
,

where qt = P(D = t).

Remark 3. The convergence (6) supports the use of the chain ladder predictor

Ĉi,T = Ci,T−i+1f̂T−i+1 . . . f̂T−1

whose prediction error is studied in [9] and [10]. However, (7) says that from numerical esti-
mates σ̂2

t we may not conclude that there is empirical evidence in support of the assumption
(2) of Mack’s distribution-free chain ladder.

Remark 4. It follows from (5) that if we either replace the claims amounts by the number
of claims (corresponding to Z ≡ 1) in the estimator f̂t, or assume that the variables D
and Z are independent, then the estimators f̂1, . . . , f̂T−1 can be transformed into consistent
estimators q̂1, . . . , q̂T , where qt = P(D = t). More generally,(

1∏T−1
s=1 f̂s

,
f̂1 − 1∏T−1
s=1 f̂s

,
(f̂2 − 1)f̂1∏T−1

s=1 f̂s
, . . . ,

(f̂T−1 − 1)
∏T−2

s=1 f̂s∏T−1
s=1 f̂s

)
converges a.s. to (q̃1, . . . , q̃T ), where q̃t = P̃(D = t) = E[Z]−1 E[ZI{D = t}]. In particular,
if the generic pair (D,Z) has independent components or if Z ≡ 1, then (q̃1, . . . , q̃T ) =
(q1, . . . , qT ).
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4.1 Conditional mean squared error of prediction

The natural measure of prediction error is

E
[
(Cα

i,T − Ĉα
i,T )

2 | Dα
]
, (8)

where Dα is the σ-algebra generated by {Cα
j,t : j, t ∈ T , j + t ≤ T + 1}, the run-off triangle

that is fully observed at the time of prediction. Since we are considering large exposure
limits, the conditional expectation (8) diverges as α → ∞ and is hence not meaningful.
However, we show (Theorems 2, 3 and 4 together with Remark 10) that there exists a
random variable L such that the standardized mean squared error of prediction converges
in distribution,

E

[
(Cα

i,T − Ĉα
i,T )

2

Cα
i,T−i+1

| Dα

]
d→ L, (9)

and that the limit L has a natural Dα-measurable estimator L̂α (Remarks 5, 6 and 8).
Consequently, the natural estimator of the prediction error (8) is Cα

i,T−i+1L̂
α:

E
[
(Cα

i,T − Ĉα
i,T )

2 | Dα
]
= Cα

i,T−i+1 E

[
(Cα

i,T − Ĉα
i,T )

2

Cα
i,T−i+1

| Dα

]
≈ Cα

i,T−i+1L̂
α.

Our aim is to arrive at an estimator of conditional mean squared error of prediction that
coincides with Mack’s estimator (4), and this is not in general true in the setting of the
general model. Therefore, we need to consider the special model (SM1)-(SM3).

Combining Theorems 2, 3, 4 and Remarks 5, 6, 8 below we show that

Cα
i,T−i+1L̂

α = (Ĉα
i,T−i+1)

2
T−1∑

t=T−i+1

σ̂2
t

f̂2
t

(
1

Ĉα
i,t

+
1∑T−t

j=1 C
α
j,t

)
(10)

which coincides with the estimator of conditional mean squared error of prediction obtained
by Mack in [9]. Note that in (10) we use the notation

Ĉα
i,T−i+1 = Cα

i,T−i+1, Ĉα
i,t = Cα

i,T−i+1

t−1∏
s=T−i+1

f̂s, t > T − i+ 1.

Note that Cα
i,T−i+1 is independent of f̂T−i+1, . . . , f̂T−1 since the latter estimators are func-

tions of only data from accident years ≤ i − 1. Hence, Ĉα
i,T = Cα

i,T−i+1

∏T−1
s=T−i+1 f̂s is a

product of two independent factors. In order to verify the convergence in (9), note that the
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left-hand side in (9) can be expressed as

E

[
(Cα

i,T − Cα
i,T−i+1

∏T−1
s=T−i+1 fs)

2

Cα
i,T−i+1

| Dα

]
(11)

+ Cα
i,T−i+1

( T−1∏
s=T−i+1

fs −
T−1∏

s=T−i+1

f̂s

)2

(12)

+ 2E

[
Cα
i,T − Cα

i,T−i+1

T−1∏
s=T−i+1

fs | Dα

]( T−1∏
s=T−i+1

fs −
T−1∏

s=T−i+1

f̂s

)
. (13)

In the literature, the first term (11) (upon multiplication by Cα
i,T−i+1) is referred to as

process variance, and the second term (12) (upon multiplication by Cα
i,T−i+1) is referred to

as estimation error. In the setting of the distribution-free chain ladder, (11) is a conditional
variance. However, in our setting (the general or special model, see Section 2) this term is
not a conditional variance. Hence, we will not use the terminology “process variance”. Note
that the two factors in (13) are independent because of independent accident years. This
fact will enable us to study the asymptotic behavior of (13), convergence in distribution,
and verify that the limit distribution has zero mean.

Theorem 2 below shows that the second term (12) converges in distribution in the
setting of the general model. Theorem 3 below shows that the first term (11) converges
in distribution in the setting of the special model. In fact, the Poisson assumption for the
counting variables is not not needed for convergence in distribution. However, we need it in
order to obtain an estimator of conditional mean squared error of prediction that coincides
with the estimator derived by Mack in [9]. Theorem 4 below shows that the third term (13)
converges in distribution in the setting of the special model. Remark 10 below clarifies that
the sum of the terms converges in distribution in the setting of the special model.

Theorem 2. Consider the general model (GM1)-(GM4). For each i ∈ T with i ≥ 2, there
exists γi ∈ (0,∞) such that

Cα
i,T−i+1

( T−1∏
s=T−i+1

fs −
T−1∏

s=T−i+1

f̂s

)2
d→ γ2i χ

2
1.

If Z and D are independent, then

γ2i = λi E[ZI{D ≤ T − i+ 1}]
T−1∏

s=T−i+1

f2
s

T−1∑
t=T−i+1

σ2
t /f

2
t∑T−t

j=1 λj E[ZI{D ≤ t}]
.

Remark 5. Motivated by (5) and (7) we estimate ft by f̂t and σ2
t by σ̂2

t . Since α−1Cα
j,t

a.s.→
λj E[ZI{D ≤ t}] we estimate λj E[ZI{D ≤ t}] by α−1Cα

j,t. Hence, the estimator of γ2i is

γ̂2i = Cα
i,T−i+1

T−1∏
s=T−i+1

f̂2
s

T−1∑
t=T−i+1

σ̂2
t /f̂

2
t∑T−t

j=1 C
α
j,t

.

9



Consequently, the estimator of

(
Cα
i,T−i+1

)2( T−1∏
s=T−i+1

fs −
T−1∏

s=T−i+1

f̂s

)2

is Cα
i,T−i+1γ̂

2
i which equals

(Cα
i,T−i+1)

2
T−1∏

s=T−i+1

f̂2
s

T−1∑
t=T−i+1

σ̂2
t /f̂

2
t∑T−t

j=1 C
α
j,t

.

and coincides with Mack’s estimator (see [9], p. 219).

Theorem 3. Consider the special model (SM1)-(SM3). For each i ∈ T with i ≥ 2,

E

[
(Cα

i,T − Cα
i,T−i+1

∏T−1
s=T−i+1 fs)

2

Cα
T−i+1

| Dα

]

=
α

Cα
T−i+1

(
E[Mα

i ]

α
E[Z2] P(D > T − i+ 1) + (Hα)2

( T−1∏
s=T−i+1

fs − 1

)2)
d→ E[Z2]

E[Z]

(( T−1∏
s=T−i+1

fs − 1

)
+

( T−1∏
s=T−i+1

fs − 1

)2

χ2
1

)
, (14)

where

(Hα)2 =
(Cα

i,T−i+1 − E[Cα
i,T−i+1])

2

α

d→ λi E[Z
2] P(D ≤ T − i+ 1)χ2

1 = H2.

In particular, the expectation of the limit variable in (14) is

λi E[Z
2] P(D > T − i+ 1) + E[H2](

∏T−1
s=T−i+1 fs − 1)2

λi E[Z] P(D ≤ T − i+ 1)

=
T−1∑

t=T−i+1

fT−i+1 . . . ft−1σ
2
t f

2
t+1 . . . f

2
T−1. (15)

Remark 6. Since (15) equals

Cα
i.T−i+1

T−1∏
s=T−i+1

f2
s

T−1∑
t=T−i+1

σ2
t /f

2
t

Cα
i,T−i+1

∏t−1
s=T−i+1 fs

,

estimating ft by f̂t and σ2
t by σ̂2

t gives the estimator of (15) given by

Cα
i.T−i+1

T−1∏
s=T−i+1

f̂2
s

T−1∑
t=T−i+1

σ̂2
t /f̂

2
t

Ĉα
i,t

.
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Consequently, we estimate

Cα
i,T−i+1 E

[
(Cα

i,T − Cα
i,T−i+1

∏T−1
s=T−i+1 fs)

2

Cα
T−i+1

| Dα

]
by

(Cα
i.T−i+1)

2
T−1∏

s=T−i+1

f̂2
s

T−1∑
t=T−i+1

σ̂2
t /f̂

2
t

Ĉα
i,t

which coincides with Mack’s estimator (see [9], p. 218).

Remark 7. Convergence of the conditional expectations considered in Theorem 3 does not
require the Poisson assumption for the counting variables. However, we have used the fact
that E[Mα

i ] = var(Mα
i ) to derive the limit in (14). If E[Mα

i ] and var(Mα
i ) would increase

with α at rates that differ asymptotically, then a limit corresponding to (14) would look
differently and consequently we would arrive at an estimator of conditional mean squared
error of prediction that would differ from the one obtained by Mack in [9].

Theorem 4. Consider the special model (SM1)-(SM3). Let

Aα
1 = α−1/2 E

[
Cα
i,T − Cα

i,T−i+1

T−1∏
s=T−i+1

fs | Dα

]
,

Aα
2 = α1/2

( T−1∏
s=T−i+1

fs −
T−1∏

s=T−i+1

f̂s

)
.

Then (Aα
1 )α≥0 and (Aα

2 )α≥0 are independent and both converges in distribution to normally
distributed random variables with zero means. In particular, (Aα

1A
α
2 )α≥0 converges in dis-

tribution to a random variable with zero mean.

Remark 8. By Theorem 4 the third term (13) in the expression for the standardized mean
squared error of prediction converges in distribution to a random variable with zero mean.
Consequently, we estimate (13) by 0.

Theorem 5. Suppose that for each accident year j, (Mα
j )α≥0 is a renewal counting process

given by Mα
j = sup{m ≥ 1 : Tj,m ≤ α}, where the steps Yj,k of the random walk Tj,m =∑m

k=1 Yj,k satisfies E[Yj,k] = 1/λj and var(Yj,k) < ∞. Then

Sα
j =

Mα
j∑

k=1

Zj,k

(
I{Dj,k = 1}, . . . , I{Dj,k = T}

)
satisfies α−1/2(Sα

j − E[Sα
j ])

d→ NT (0,Σ), where

Σs,t = λj E[Z
2I{D = s}I{D = t}]

+ λj(λ
2
j var(Y )− 1)E[ZI{D = s}] E[ZI{D = t}].

11



Corollary 1. Consider the setting of Theorem 5. Let

Hα = α−1/2
(
Cα
i,T−i+1 − E[Cα

i,T−i+1]
)
,

Fα = α−1/2
(
Cα
i,T − Cα

i,T−i+1 − E[Cα
i,T − Cα

i,T−i+1]
)
.

Then (Hα, Fα)
d→ (H,F ), where (H,F ) is jointly normally distributed with

var(H) = λj E[Z
2I{D ≤ t}] + λj(λ

2
j var(Y )− 1)E[ZI{D ≤ t}]2,

var(F ) = λj E[Z
2I{D > t}] + λj(λ

2
j var(Y )− 1)E[ZI{D > t}]2,

cov(H,F ) = λj(λ
2
j var(Y )− 1)E[ZI{D ≤ t}] E[ZI{D > t}].

Remark 9. If (Mα
j )α≥0 is a homogeneous Poisson process, then var(Y ) = λ−2

j , the random
vectors Sα

j in Theorem 5 have independent components, and Hα and Fα in Corollary 1 are
independent.

Remark 10. Theorems 2, 3 and 4 show convergence in distribution separately for the three
terms (11), (12) and (13) of conditional mean squared error of prediction. We treat them
separately since we want to emphasize that convergence to the appropriate limits occurs
under different assumptions; only for two of the terms we use the compound Poisson as-
sumption of the special model. However, the sum of the terms converges in distribution
under the assumptions made in Theorem 3. This convergence of the sum is a consequence
of the convergence in distribution of the random vectors α−1/2(Sα

j − E[Sα
j ]) in Theorem 5.

That the convergence in distribution in Theorems 2, 3 and 4 can be extended to joint conver-
gence in distribution can then be verified by combining the convergence of α−1/2(Sα

j −E[Sα
j ])

in Theorem 5 with an application of the continuous mapping theorem for weak convergence
together with Slutsky’s theorem. Such an argument verifies that

E

[
(Cα

i,T − Cα
i,T−i+1

∏T−1
s=T−i+1 f̂s)

2

Cα
T−i+1

| Dα

]
d→ L = L(1) + L(2) + L(3),

where L(1), L(2) and L(3) correspond to the limits in Theorems 2, 3 and 4.

5 Numerical illustration

In the setting of the special model, we may simulate a run-off triangle {Cα
j,t : j, t ∈ T , j+t ≤

T+1} and explicitly compute the standardized conditional mean squared error of prediction
(standardized means division by Cα

T−i+1) in (9) as a known function of the simulated run-
off triangle. For the same run-off triangle, we may compute the standardized estimator of
mean squared error by Mack,

L̂α =
(Ĉα

i,T )
2

Cα
i,T−i+1

T−1∑
t=T−i+1

σ̂2
t

f̂2
t

(
1

Ĉα
i,t

+
1∑T−t

j=1 C
α
j,t

)
, (16)

12



and then compare the two random variables, or their distributions.
We first show how to explicitly compute the standardized conditional mean squared

error of prediction. Since Cα
i,T = Cα

i,T−i+1 +
∑Nα

k=1 Zk with Nα ∼ Pois(αλi
∑T

t=T−i+2 qt)
independent of the i.i.d. sequence (Zk), and

E

[ Nα∑
k=1

Zk

]
= E[Nα] E[Z],

E

[( Nα∑
k=1

Zk

)2]
= E[Nα] var(Z) + E[Nα] E[Z]2 + E[Nα]2 E[Z]2,

we may use the independence between
∑Nα

k=1 Zk and Dα to get

Lα = E

[
(Cα

i,T − Cα
i,T−i+1

∏T−1
s=T−i+1 f̂s)

2

Cα
T−i+1

| Dα

]
(17)

= (Cα
T−i+1)

−1 E

[( Nα∑
k=1

Zk

)2]
− 2

( T−1∏
s=T−i+1

f̂s − 1

)
E

[ Nα∑
k=1

Zk

]

+ Cα
i,T−i+1

( T−1∏
s=T−i+1

f̂s − 1

)2

.

From Theorems 2, 3 and 4 together with Remark 10 we know that Lα d→ L and we
may compute E[L] explicitly. We have not shown convergence in distribution for L̂α but
it follows from Theorem 1 and Slutsky’s theorem that each term in the expression for L̂α

converges in distribution, and the corresponding expectations of the limits add up to E[L].
Hence, if we draw many realizations of run-off triangles based on the special model, and
convert these into a random sample from the distribution of Lα − L̂α, then we expect the
empirical mean to be approximately zero.

For the numerical illustration, we take the claims data from Table 1 in Mack [9], origi-
nally presented by Taylor and Ashe [17], in order to choose values for the model parameters
of exposure and distribution of delay. Applying the formula from Remark 4, we can trans-
form the development factors f̂t corresponding to Table 1 in [9] into

(q̂t)
T
t=1 = (0.069, 0.172, 0.180, 0.194, 0.107, 0.075, 0.069, 0.047, 0.070, 0.018).

For the exposures, we simply use the first column of the run-off triangle in Mack (1993)
and normalize it by dividing by its first entry (this procedure suffices for illustration, more
sophisticated estimation could be considered). This yields

(λ̂i)
T
i=1 = (1.000, 0.984, 0.812, 0.868, 1.239, 1.107, 1.230, 1.005, 1.053, 0.961)

across accident years. For simplicity, we choose Z ≡ 1 and α = 4, 000, 000, which roughly
corresponds to the order of magnitude as can be found in [9]. We generate 100, 000 realiza-
tions of run-off triangles and for each one compute both the true standardized conditional

13



mean squared error (17), as well as the standardized version of Mack’s estimator of condi-
tional mean squared error (16) for accident years i = 3, 5 and 8. The results can be seen in
Figure 1. The results are not sensitive to the value chosen for α, the histograms in Figure
1 are essentially indistinguishable from those with α = 10, 000.

Figure 1: Blue histograms: standardized Mack’s estimator (16) of conditional mean squared
error. Orange histograms: true standardized conditional mean squared error (17). The three
plots shown correspond to accident years i = 3, 5, 8 from left to right.

6 proofs

Before the proof of Theorem 1 we state a result, on stochastic representations of norms of
multivariate normal random vectors, that will be used in the proof of Theorem 1.

Lemma 1. If W ∼ Nn(0,Σ), then WTW
d
=
∑n

i=1 µiQ
2
i , where Q1, . . . , Qn are independent

and standard normal and µ1, . . . , µn are the eigenvalues of Σ.

Proof of Lemma 1. Write Σ = LLT and note that W
d
= LQ with Q ∼ Nn(0, I). Hence,

WTW
d
= QTLTLQ. The matrix LTL is orthogonally diagonizable and has the same eigen-

values as Σ = LLT. Write LTL = OTDO, where O is orthogonal and D = diag(µ1, . . . , µn).
Hence,

WTW
d
= QTLTLQ

d
= QTOTDOQ

d
= QTDQ

since OQ
d
= Q.

Proof of Theorem 1. We first prove (5). Note that, for 1 ≤ i0 < i1 ≤ T , using Theorem 2.1
in [7],

1

α

i1∑
i=i0

Cα
i,t+1 =

i1∑
i=i0

Mα
i

α

1

Mα
i

Mα
i∑

k=1

Zi,kI{Di,k ≤ t+ 1}

a.s.→ E[ZI{D ≤ t+ 1}]
i1∑

i=i0

λi.

14



Consequently, ∑i1
i=i0

Cα
i,t+1∑i1

i=i0
Cα
i,t

a.s.→ E[ZI{D ≤ t+ 1}]
E[ZI{D ≤ t}]

.

In order to prove (6), Note that, similarly to the above,

Cα
i,T

Cα
i,t

a.s.→ E[ZI{D ≤ T}]
E[ZI{D ≤ t}]

and

T−1∏
s=t

f̂s
a.s.→ E[ZI{D ≤ T}]

E[ZI{D ≤ t}]
.

We proceed to the more involved task of proving (7). For j = i0, . . . , i1, let

Wα
j =

α−1/2
(
(Cα

j,t+1 − Cα
j,t)−

∑i1
i=i0

(Cα
i,t+1−Cα

i,t)∑i1
i=i0

Cα
i,t

Cα
j,t

)
(α−1Cα

j,t)
1/2

.

Some algebra shows that

(
Wα

j

)2
= Cα

i,t

(
Cα
i,t+1

Cα
i,t

− f̂t

)2

i.e. the jth term in the sum in the expression for σ̂2
t . The numerator of Wα

j can be written
as(

1−
Cα
j,t∑i1

i=i0
Cα
i,t

)
α−1/2

Mα
j∑

k=1

Zj,k

(
I{Dj,k = t+ 1} − E[ZI{D = t+ 1}]

E[ZI{D ≤ t}]
I{Dj,k ≤ t}

)

−
Cα
j,t∑i1

i=i0
Cα
i,t

α−1/2
i1∑

i=i0,i ̸=j

Mα
i∑

k=1

Zi,k

(
I{Di,k = t+ 1} − E[ZI{D = t+ 1}]

E[ZI{D ≤ t}]
I{Di,k ≤ t}

)
.

We can now write Wα = BαUα, where

Uα
j = α−1/2

Mα
j∑

k=1

Zk,j

(
I{Dj,k = t+ 1} − E[ZI{D = t+ 1}]

E[ZI{D ≤ t}]
I{Dj,k ≤ t}

)
and Bα is a square matrix with entries

Bα
j,l =


(
α−1Cα

j,t

)−1/2
(
1− Cα

j,t∑i1
i=i0

Cα
i,t

)
, j = l(

α−1Cα
j,t

)−1/2
(
− Cα

j,t∑i1
i=i0

Cα
i,t

)
, j ̸= l.
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The multivariate Central Limit Theorem together with Theorem 1.1 in [7] yield Uα d→ U ,
where U ∼ Ni1−i0+1(0, c

2
t diag(λi0 , . . . , λi1)) with

c2t = var

(
Z

(
I{D = t+ 1} − E[ZI{D = t+ 1}]

E[ZI{D ≤ t}]
I{D ≤ t}

))
= E[Z2I{D = t+ 1}] +

(
E[ZI{D = t+ 1}]
E[ZI{D ≤ t}]

)2

E[Z2I{D ≤ t}].

By the strong law of large numbers, Bα a.s.→ B, where

Bj,l =E[ZI{D ≤ t}]−1/2 ·


λ
−1/2
j

(
1− λj∑i1

i=i0
λi

)
, j = l

λ
−1/2
j

(
− λj∑i1

i=i0
λi

)
, j ̸= l.

Hence, by Slutsky’s theorem (multivariate version), Wα = BαUα d→ BU = W , where
W ∼ Ni1−i0+1(0,Σ) with

Σ = B cov(U)BT =
c2t

E[ZI{D ≤ t}]
Σ̃ = σ2

t Σ̃

The eigenvalues of Σ̃ are µ1 = 1, µ2 = 0 with corresponding eigenspaces

Eig1 = span





λ
1/2
i0+1

−λ
1/2
i0
0
0
...
0


,



λ
1/2
i0+2

0

−λ
1/2
i0
0
...
0


, . . . ,



λ
1/2
i1
0
0
...
0

−λ
1/2
i0




, Eig0 = span



λ
1/2
i0
...

λ
1/2
i1




and hence geometric multiplicities i1 − i0 and 1, respectively. By Lemma 1,

i1∑
i=i0

W 2
i

d
= σ2

t

i1−1∑
i=i0

Q2
i ,

where Qi0 , . . . , Qi1−1 are independent and standard normal. Altogether, we have shown
that

σ̂2
t

d
=

1

i1 − i0

i1∑
i=i0

(
Wα

i

)2 d→ σ2
t

χ2
i1−i0

i1 − i0
.
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Proof of Theorem 2. Write St = f̂T−i+1 . . . f̂t−1(ft − f̂t)ft+1 . . . fT−1 and note, as noted in
[9], that fT−i+1 . . . fT−1 − f̂T−i+1 . . . f̂T−1 =

∑T−1
t=T−i+1 St. Hence, the statement of the

theorem follows if we show the appropriate convergence in distribution of

α−1/2Cα
i,T−i+1

(α−1Cα
i,T−i+1)

1/2

T−1∑
t=T−i+1

St. (18)

Write

St =

( t−1∏
s=T−i+1

f̂s

)( T−1∏
s=t+1

fs

)(
E[ZI{D ≤ t+ 1}]
E[ZI{D ≤ t}]

−
∑T−t

j=1 C
α
j,t+1∑T−t

j=1 C
α
j,t

)

=
(
∏t−1

s=T−i+1 f̂s)(
∏T−1

s=t+1 fs)∑T−t
j=1 C

α
j,t

α1/2
T−t∑
j=1

(
Mα

j

α

)1/2

Uα
j,t,

where

Uα
j,t = (Mα

j )
−1/2

Mα
j∑

k=1

Zj,k

(
E[ZI{D = t+ 1}]
E[ZI{D ≤ t}]

I{Dj,k ≤ t} − I{Dj,k = t+ 1}
)
.

Therefore, we may write (18) as

T−1∑
t=T−i+1

Bα
t

T−t∑
j=1

(
Mα

j

α

)1/2

Uα
j,t =

i−1∑
j=1

(
Mα

j

α

)1/2 T−j∑
t=T−i+1

Bα
t U

α
j,t,

where

Bα
t =

(α−1Cα
i,T−i+1)

1/2

α−1
∑T−t

j=1 C
α
j,t

( t−1∏
s=T−i+1

f̂s

)( T−1∏
s=t+1

fs

)
.

We will use the facts that (Uα
1,t)

T−1
t=T−i+1, (U

α
2,t)

T−2
t=T−i+1, . . . , U

α
i−1,T−i+1 are independent and

that each one converges in distribution to a centered normally distributed random vec-
tor/variable, and that each Bα

t converges a.s. as α → ∞. A multivariate version of Slutsky’s
theorem (essentially the continuous mapping theorem for weak convergence) then implies
convergence in distribution of (18) to a centered normally distributed random variable.

Note that

Bα
t

a.s.→ Bt =
(λi E[ZI{D ≤ T − i+ 1}])1/2

∏T−1
s=T−i+1 fs∑T−t

j=1 λj E[ZI{D ≤ t}]ft
.

Note that, for each j, as α → ∞, (Uα
j,t)

T−1
t=T−i+1 converges in distribution to a centered

normal random vector with covariance matrix Σ with

Σt,t = (ft − 1)2 E[Z2I{D ≤ t}] + E[Z2I{D = t+ 1}]
= σ2

t E[ZI{D ≤ t}],
Σt,t+h = (ft+h − 1)

(
(ft − 1)E[Z2I{D ≤ t}]− E[Z2I{D = t+ 1}]

)
, h > 0.
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If Z and D are independent, then it is seen from the above expression that Σ is diagonal.
In this case,

T−j∑
t=T−i+1

Bα
t U

α
j,t

d→ N1

(
0,

T−j∑
t=T−i+1

(Bt)
2Σt,t

)
and consequently (18) converges in distribution to a centered normally distributed random
variable with variance

i−1∑
j=1

λj

T−j∑
t=T−i+1

(Bt)
2Σt,t =

T−1∑
t=T−i+1

(Bt)
2Σt,t

T−t∑
j=1

λj

= λi E[ZI{D ≤ T − i+ 1}]
T−1∏

s=T−i+1

f2
s

T−1∑
t=T−i+1

σ2
t /f

2
t∑T−t

j=1 λj E[ZI{D ≤ t}]
.

Proof of Theorem 3. By Corollary 1, (Hα, Fα)
d→ (H,F ), where H and F are independent

and normally distributed with zero means and variances var(H) = λi E[Z
2] P(D ≤ T−i+1)

and var(F ) = λi E[Z
2] P(D > T − i + 1). Write gT−i+1 = E[ZI{D≤T}]

E[ZI{D≤T−i+1}] =
∏T−1

s=T−i+1 fs
and Note that

E

[
(Cα

i,T − Cα
i,T−i+1gT−i+1)

2

Cα
T−i+1

| Dα

]
=

α

Cα
T−i+1

E
[(
Fα −Hα(gT−i+1 − 1)

)2 | Hα
]

=
α

Cα
T−i+1

(
E[(Fα)2] + (Hα)2(gT−i+1 − 1)2

)
=

α

Cα
T−i+1

(E[Mα
i ]

α
E[Z2] P(D > T − i+ 1) + (Hα)2(gT−i+1 − 1)2

)
Since Cα

i,T−i+1/α
a.s.→ λi E[Z] P(D ≤ T − i + 1) and (Hα)2

d→ λi E[Z
2] P(D ≤ T − i + 1)χ2

1,
the conclusion follows from Slutsky’s theorem.

Proof of Theorem 4. Aα
2 can be expressed as

Aα
2 = α1/2

T−1∑
t=T−i+1

St

with St as in the proof of Theorem 2. Hence, the arguments in the proof of 2 shows
that (Aα

2 )α≥0 converges in distribution to a normally distributed random variable with zero
mean. Aα

1 can be expressed as

Aα
1 = −P(D > T − i+ 1)

P(D ≤ T − i+ 1)
α−1/2

(
Cα
i,T−i+1 − E[Cα

i,T−i+1]
)
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from which convergence in distribution to a normally distributed random variable with
zero mean follows immediately from Corollary 1. Since (Aα

1 )α≥0 and (Aα
2 )α≥0 are inde-

pendent, individual convergence in distribution implies joint convergence in distribution.
Consequently, mapping theorem for weak convergence implies that the product converges
in distribution.

Proof of Theorem 5. In order to ease the notation we drop the index j and write Sα =∑Mα

k=1Xk. From the renewal process representation of Mα, there exists an i.i.d. sequence
(Yk) independent of (Xk) such that the sequence (Tm) given by Tm =

∑m
k=1 Yk satisfies

Mα = sup{m ≥ 1 : Tm ≤ α}. Therefore, λ = 1/E[Y ] and

α−1/2(Sα − E[Sα]) = α−1/2(Sα − E[X]Mα + E[X](Mα − λα)) + oP(1)

using that α−1/2(λα−E[Mα]) = oP(1), i.e. convergence in probability to zero. Using (2.41)
in [3], α−1/2(Mα − λα) = α−1/2(Mα − λTMα) + oP(1). Hence,

α−1/2(Sα − E[Sα]) = α−1/2
(
Sα − λE[X]TMα

)
+ oP(1)

= α−1/2
Mα∑
k=1

(Xk − λE[X]Yk) + oP(1)

=

(
Mα

α

)1/2

(Mα)−1/2
Mα∑
k=1

(Xk − λE[X]Yk) + oP(1).

Consequently,

α−1/2(Sα − E[Sα])
d→ NT (0,Σ),

where

Σ = λ cov(X − λE[X]Y ) = λ cov(X) + λ3 var(Y ) E[X] E[X]T.

If Mα is Poisson distributed, then var(Y ) = 1/λ2 and hence Σ = λE[XXT] is diagonal
with Σt,t = λE[Z2I{D = t}].
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