
Annihilating branching Brownian motion

Daniel Ahlberg∗ Omer Angel† Brett Kolesnik‡

Abstract

We study an interacting system of competing particles on the real
line. Two populations of positive and negative particles evolve according
to branching Brownian motion. When opposing particles meet, their
charges neutralize and the particles annihilate, as in an inert chemical
reaction. We show that, with positive probability, the two populations
coexist and that, on this event, the interface is asymptotically linear
with a random slope. A variety of generalizations and open problems
are discussed.

1 Introduction

Branching Brownian motion (BBM) is a classical model for population
growth with diffusion, see, e.g., [12, 15,22,25].

In this work, we study a generalization of BBM, consisting of an interacting
system of competing particles. As in standard BBM, independent Brownian
particles split dyadically at unit rate. Each particle is of one of two types (or
colors), which we refer to as positive and negative (or, at times, red and
blue). The key novelty is that opposing particles annihilate upon contact.
We call this process annihilating branching Brownian motion (ABBM).

With only one type (and hence no annihilation) ABBM reduces to classical
BBM. We also note that ABBM naturally generalizes to any number of types,
in which any two particles of different type annihilate upon contact. If there
are initially k types in total, we call it the k-type ABBM.

It is possible that one or more of the types are annihilated eventually. It
is less obvious whether there is a positive probability of coexistence, i.e.,
the event that all colors initially present remain present in the system at all
times. We answer this positively.
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Figure 1: ABBM started with particles at ±1. Each horizontal
slice is a configuration of particles at a moment in time.

Theorem 1. Let k ≥ 2. For a k-type ABBM started from a finite, non-trivial
initial configuration, there is a positive probability of coexistence.

The non-triviality assumption mentioned in the above theorem, which we
will use throughout, is very simple: A configuration of multi-colored particles
in R is called non-trivial if no two particles of distinct colors are at the same
location. Some form of non-triviality is obviously needed, since otherwise
annihilation occurs immediately and some (or even all) colors might then die
out deterministically at time 0. Also, naturally, a configuration is finite if it
consists of a finite number of particle.

Next, we consider ABBM with two types, and focus on the interface
separating the two types of particles on the event of coexistence. We shall
refer to a configuration of particles as ordered if for no two particles of the
same type there is a particle of a different type positioned between them.
(Equivalently, there is a partition of R into disjoint intervals so that each color
occupies only one interval, and different colors occupy different intervals.)
In the case of two types, a configuration of positive and negative particles
is ordered if the rightmost negative particle lies to the left of the leftmost
positive particle (or vice-versa, though by symmetry we may assume the
order is as described). The simplest example of an ordered configuration is
that of a single negative particle and a single positive particle to its right.

Note that, since the diffusion mechanism of the Brownian particles is a
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continuous motion, and since the branching mechanism produces particles at
the position of the parent, it follows that ABBM is order preserving. That
is, if ABBM is started from an ordered non-trivial initial configuration, then
the configuration of particles will remain ordered at all future times.

Consider a two-type ABBM started from a finite, non-trivial and ordered
configuration. Suppose, without loss of generality, that all negative particles
are positioned to the left of all positive particles. Then this property will
continue to hold at all future times. Let I−(t) denote the location of the
rightmost negative particle and I+(t) the location of the leftmost positive
particle at time t ≥ 0. (As usual, the supremum and infimum of the empty
set are −∞ and +∞, respectively.) Thus the interval (I−(t), I+(t)) is the
maximal empty interval separating the two types of particles at time t. We
define the interface between the two types as the midpoint

I(t) :=
I−(t) + I+(t)

2

between the opposing sets of particles. Note that we have I(t) = ±∞ for all
large t if one of the types dies out, and is undefined if both do. However,
our main interest is in the behavior of I(t) on the event of coexistence. Our
next result establishes the existence of an asymptotic limiting speed for the
interface on this event.

Theorem 2. Consider a two-type ABBM started from a finite, non-trivial
and ordered initial configuration. On the event of coexistence, the limit

λ∗ := lim
t→∞

I(t)

t

exists almost surely. Moreover, the law of the limiting speed λ∗, conditioned
on coexistence, has support [−

√
2,
√
2] and no atoms.

We remark that although we have defined the interface I(t) as the midpoint
of the interval (I−(t), I+(t)), this choice is irrelevant. It follows from the
proof that the two limits

lim
t→∞

I+(t)

t
= lim

t→∞

I−(t)

t
= λ∗

are equal almost surely.
Theorem 2 is perhaps somewhat surprising: It seems that if the interface

is far from 0, one type ought to dominate. One heuristic explanation for why
a linear interface with non-zero slope is plausible is as follows: Suppose the
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Figure 2: An ABBM interface.

interface follows some function I(t). If we observe only one type of particle,
say positive, then we see BBM with absorption whenever a particle hits I(t).
The connection between the types comes from the fact that the number of
particles hitting I(t) from the two sides up to any t must be equal. If we
take I(t) = at for an arbitrary slope a, it is easy to calculate the expected
rate for particles hitting the interface from either side: This rate is et (from
the branching) times is the probability that Brownian motion first hits I(t)
at time t. For any linear interface, these probabilities are the same from
either side. If a > 0, then the total number of particles to the right of I(t) is
much smaller, but most of them will hit the interface, whereas the number
of particles to the left of I(t) grows faster, but most of them are near 0
and stay quite far from the interface. If we replace at by a significantly
non-linear function, then the probability of first hitting the interface at time
t is significantly different from the two sides, making such interfaces highly
unlikely. This heuristic can be turned into a proof of a functional limit
theorem, though it does not seem to rule out that I(t) = t · a(t), with a that
changes very slowly over exponential time scales.
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1.1 Background

The study of diffusive annihilating particles, without branching, was proposed
in the physics literature [27,29] as a model for the inert chemical reaction A+
B → ∅. Such systems were analyzed rigorously by Bramson and Lebowitz [13,
14] in the early 1990s (cf. Cabezas, Rolla and Sidoravicius [16]). Diffusive
(multi-type) annihilating systems that incorporate branching were studied
more recently by Ahlberg, Griffiths, Janson and Morris [3, 4]. The current
article is in part inspired by these works.

The question of coexistence in models for competing growth dates back
to Häggström and Pemantle [18]. In this context, coexistence is closely linked
to the existence of geodesics in first-passage percolation, as made precise
by Hoffman [20] and Ahlberg [1], and to the growth of arms in diffusion-
limited aggregation (DLA), as established by Sidoravicius and Stauffer [28].
Determining more general conditions for coexistence has posed a significant
challenge, and remains elusive in several asymmetric spatial models for
competing growth, see, e.g., [11, 17,19].

A related direction is BBM with absorption. If we imagine the interface
to be given, then on either side of the interface we observe a simple BBM, and
particles that hit the interface are annihilated. The study of single-type BBM
with absorption was initiated by Kesten [21], and continued more recently by,
e.g., Berestycki, Berestycki and Schweinsberg [6–8] and others. Our results
complement these works.

We note that coexistence in two-type ABBM is consistent with [21],
which suggests that particles of one type may escape towards +∞ while
being chased and annihilated by particles of the other type. In contrast, in
the discrete version of ABBM, the annihilating branching random walk
(ABRW), studied on finite connected graphs in [3], coexistence of two types
is not possible. This indicates that it is the unbounded nature of the real
line that makes coexistence possible. We expect that, as in [3], coexistence is
not possible for ABBM on a circle or a bounded interval. In contrast, our
methods extend straightforwardly to show that ABRW on Z does in fact
have positive probability of coexistence, but we omit the details.

For three or more competing types the situation is more delicate. As
shown in [3], there are finite connected graphs for which coexistence in ABRW
is possible. On the other hand, Ahlberg and Fransson [2] have shown that
coexistence is not possible for any number of colors in ABRW on finite paths
or cycles.

In this paper, we focus solely on the 1-dimensional setting. In a higher-
dimensional setting one would need to define precisely under what conditions
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particles annihilate, since Brownian motions do not collide. We believe that
several reasonable models of annihilating Brownian motions in Rd do have a
positive probability of coexistence.

We also believe that the question of coexistence does not depend on the
precise branching mechanism. For the sake of conciseness and clarity, we
focus in this paper on the simple case of dyadic branching, where each particle
branches into a pair of particles at the same location. However, see Section 6
for a discussion of a more general context in which our methods should apply,
and for further directions of study and open problems.

1.2 Outline

The main techniques used to derive the results of this paper are based
on martingales and coupling arguments. More precisely, we use additive
martingales associated to BBM as a measure of activity in a narrow region of
the real line. By comparing the additive martingales associated to particles
of different types, we show that some regions of R have more particles of one
type (and other regions have more of the other types) implying coexistence.

To deduce the existence of a limiting speed of the interface, a more refined
analysis is required in order to determine which regions of R have particles
of each type. A significant obstacle in this regard is to prove that certain
martingale limits are almost surely unequal. Our argument for this is based
on a more elaborate coupling, inspired by [3].

Interestingly, to establish the existence of a limiting speed, and to rule
out atoms of its distribution in (−

√
2,
√
2), the additive martingales will

suffice. However, at the critical speed ±
√
2 the additive martingales provide

no information, so in order to rule out a deadlock at the endpoints ±
√
2, we

will require the derivative martingales.
In Section 2 we recall the essentials of additive and derivative martingales

martingales associated to dyadic, single-type BBM, which play a key role in
our proofs. In Section 3 we construct a “conservative” coupling and prove
Theorem 1. In Section 4 we introduce a refined coupling, which we use to
obtain a more detailed description of the additive martingales associated
with ABBM. In Section 5 this is used used to prove Theorem 2. A number
of open problems are discussed in Section 6.

1.3 Acknowledgments

We thank Julien Berestycki for many useful discussions, and, in particular,
for directing us to the work of Madaule [24], which allowed us to complete
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2 BBM and associated martingales

2.1 BBM counting measures

At any given time, the state of BBM or ABBM is a finite configuration of
particles on R, formally a set {xj}j∈J with some unspecified index set J . More
formally, we may represent a configuration of particles as a counting measure
Ξ =

∑
j∈J δxj . A configuration consisting of positive particles at {xj}j∈J

and negative particles at {yj}j∈J ′ can similarly be represented by a pair of
counting measures (Ξ−,Ξ+), where Ξ− =

∑
j∈J ′ δyj and Ξ+ =

∑
j∈J δxj .

Since positive and negative particles never occupy the same location without
annihilating, we can also consider the signed measure Ξ+ −Ξ− as a complete
description of the state of an ABBM. This notation extends naturally to
configurations with more than two types, with a measure Ξc representing
particles of color c.

The notions of finite and non-trivial configurations defined above can more
formally be expressed in terms of the counting measures. A configuration of
(one or more types of) particles on R is said to be finite if the corresponding
counting measures are finite. A configuration of two (or more) types is said
to be non-trivial if particles of different types occupy distinct locations, i.e.,
if the counting measures have disjoint support.

2.2 BBM additive martingales

The additive martingales is one of the most fundamental objects associated
with BBM. Formally, let

{Xj(t) : j ∈ J(t), t ≥ 0}

denote a BBM, which is equivalently represented as a measure-valued process

Ξt :=
∑

j∈J(t)

δXj(t). (2.1)

The set J(t) denotes an arbitrary index set for particles in the configuration
at time t. We do not specify a canonical choice for labels. Since particles are
exchangeable, the specific choice of index set is irrelevant.
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Let
N(t) := |J(t)| (2.2)

denote the number of particles at time t. Then (N(t))t≥0 evolves as a (single-
type) continuous-time Markov branching process, in which individuals split
in two at rate 1. A straightforward calculation shows that (e−tN(t))t≥0 is a
non-negative martingale, so almost surely converges.

More generally, for λ ∈ R and t ≥ 0, we define

Yλ(t) :=
∑

j∈J(t)

eλXj(t) =

∫
eλx dΞt(x). (2.3)

By conditioning on the branching times, and recognizing E[eλXj(t)] as the
moment generating function of a centered Gaussian variable with variance t,
we find that

E[Yλ(t)] = E[N(t)]E[eλXj(t)] = eλ̂t,

where

λ̂ := 1 +
λ2

2
. (2.4)

Due to the Markov property of BBM, it follows that

Wλ(t) := e−λ̂t Yλ(t) (2.5)

is a non-negative martingale. Therefore, for any given λ ∈ R, the limit

Wλ := lim
t→∞

Wλ(t) (2.6)

almost surely exists. For λ ∈ R, the process (Wλ(t))t≥0 is referred to as the
additive martingale at λ associated with the BBM {Xj(t)}. We refer to a
BBM, its additive martingales, and the limit of its additive martingales as
standard if it is started with a single particle at the origin.

Certain changes to the configuration of a BBM have a simple effect on
its long-term behavior and the additive martingales. Specifically, translating
the initial set results in translation of the entire process. Taking a union of
several configurations yields the union of the resulting processes. For the
additive martingales this leads to the following.

Lemma 3. Let {X ′
j(t)} be a BBM started with particles initially at positions

a1, a2, . . . , am ∈ R, and let W ′
λ denotes the limit of the associated additive

martingale. Then

W ′
λ

d
=

m∑
k=1

eλak W
(k)
λ , (2.7)

where W
(1)
λ , . . . ,W

(m)
λ are IID standard additive martingale limits.
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By (2.2) and (2.3), we have that Wλ(t) = N(t) when λ = 0. It follows
from some versions of the Kesten–Stigum theorem that W0 > 0. For other λ,
positivity of the limit Wλ has been studied extensively. This originates with
the work of Biggins [9] (cf. [10, 23,26]).

Proposition 4. For |λ| <
√
2, the standard additive martingales converge in

L1, and P(Wλ > 0) = 1. For |λ| ≥
√
2, we have P(Wλ = 0) = 1.

In addition to the above, let us also mention that Wλ is known [10] to
be analytic in λ ∈ [

√
2,
√
2]. Proposition 4 can be used to establish a bound

on the maximal displacement of particles (which is usually proved by more
elementary methods). Let

M(t) := max{Xj(t) : j ∈ J(t)}

denote the location of the rightmost particle at time t. It is well known
that M(t) ∼

√
2t. The upper bound for this follows using (2.3)–(2.6) and

Proposition 4 applied to λ =
√
2, which implies that, almost surely,

e
√
2M(t)−2t ≤ W√

2(t) → 0, as t → ∞.

Consequently, almost surely, we have
√
2M(t)− 2t → −∞, and so

P(M(t) ≤
√
2t, for all large t) = 1. (2.8)

2.3 The BBM derivative martingale

For λ ∈ (−
√
2,
√
2) the additive martingale is non-zero, and will provide us

with information regarding the evolution of particles. However, for λ = ±
√
2

it is zero. For these values, finer information can be obtained from the
so-called derivative martingale.

Since for every λ we have a martingale Wλ(t), it follows that the derivative
d
dλWλ(t) is also a martingale, known as the derivative martingale at λ.
This has been used mainly with λ = ±

√
2 to study the extremal values of

BBM. More specifically, define

D(t) := − d

dλ
W√

2(t) = e−2t
∑

j∈J(t)

(
√
2t−Xj(t))e

√
2Xj(t).

Lalley and Sellke [22] proved that D∞ := limt→∞D(t) exists almost
surely and in L1, and that D∞ > 0 almost surely. While derivatives and
limits cannot in general be exchanged, the limit of the derivative martingale
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is related to the derivative of the limit Wλ. For |λ| <
√
2, the limit and

derivative can be exchanged since Wλ(t) converges as an analytic function [10].
At λ =

√
2 the limit is not analytic. Indeed the right derivative is 0 since

Wλ = 0 for λ >
√
2. However, the left derivative is related to the limit D∞,

as the following theorem of Madaule [24] shows.

Theorem 5 (Madaule [24, Theorem 1.1]). Almost surely we have

D∞ =
1

2
lim
λ↑

√
2

Wλ√
2−

√
λ
.

We remark that this result is stated in [24] for more general branching
random walks, and not specifically BBM. However, it can be applied to BBM
by considering BBM at integer times. Indeed, it is easy to verify that the
conditions in [24] hold. (Madaule also uses a normalization for which the
critical λ is 1, so one would need to rescale space or time for BBM by

√
2.)

We will also require a second fact, relating the derivative martingale to
the displacement of the maximal particle. There are several results along
these lines. The one which we will use is due to Arguin, Bovier and Kistler [5].
Let

Q(t) := M(t)−
√
2t+

3

2
√
2
log t,

and for x ∈ R let

FT (x) :=
1

T

∫ T

0
1{Q(t)≤x}dt.

be the empirical distribution function of Q(t) up to time T . The limit of FT

is the distribution function of a Gumbel random variable, shifted by logD∞.

Theorem 6 (Arguin et al. [5, Theorem 1.1]). Let D∞ be the limit of the
derivative martingale and FT (·) be as above. Then almost surely

lim
T→∞

FT (x) = exp
(
−CD∞e−

√
2x
)
,

where C is some constant.

In particular, the fraction of time that

M(t) ≤
√
2t− 3

2
√
2
log t

converges to exp(−CD∞).

10



2.4 A witness of activity

A key observation that will be central in our arguments is that the main
contribution to Wλ(t) comes from particles located in a narrow interval
around λt. Although this is quite natural, it (to the best of our knowledge)
does not appear explicitly in the literature. There are analogues showing
that the dominant contribution to the derivative martingale D(t) come from
particles near the maximum

√
2, and Theorem 6 can be viewed as one such

result.
In order to make this precise, let ε > 0 be arbitrary but fixed, and consider

particles within distance αt = t1/2+ε of λt. Let

Sλ(t) := {x ∈ R : |x− λt| < αt}, (2.9)

and define (cf. (2.5))

W λ(t) := e−λ̂t
∑

Xj(t)∈Sλ(t)

eλXj(t). (2.10)

In other words, we obtain W λ(t) by including only particles within distance
αt of λt in the definition (2.3) of Yλ(t). We note that Wλ(t)−W λ(t) ≥ 0, and
that the process (W λ(t))t≥0 is not a martingale, since changes from particles
entering and exiting Sλ(t) have non-zero mean.

The remainder of this section is devoted to showing that the difference
between Wλ(t) and W λ(t) vanishes as t → ∞, so that their limits coincide.

Proposition 7. For every λ ∈ R, almost surely, we have Wλ(t)−W λ(t) → 0
as t → ∞. In particular, almost surely, the limits are equal (cf. (2.6)), i.e.,

W λ := lim
t→∞

W λ(t) (2.11)

exists, and Wλ = W λ.

Combining Propositions 4 and 7 we obtain that for λ ∈ (−
√
2,
√
2) the

limit limt→∞W λ(t) exists and is strictly positive with probability one. Since
W λ(t) only takes into account particles within distance αt of λt, this implies
the presence of particles within distance αt of λt, for all large t. More formally,
for every λ ∈ (−

√
2,
√
2), we have that

P
(
∃t0, ∀t ≥ t0, ∃j ∈ J(t), Xj(t) ∈ Sλ(t)

)
= 1. (2.12)
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This property will be our main application of the additive martingale. We
note that (2.12) together with (2.8) implies the matching (with (2.8) above)
lower bound for M(t), yielding that almost surely

lim
t→∞

M(t)

t
=

√
2. (2.13)

Although intuitive, we could not find a reference for Proposition 7 in the
literature. As such, we will give a detailed proof, based on large deviations
of Gaussian variables. Related results have previously been obtained by
Biggins [10, Corollary 4] by analytic methods. The idea of the proof is that
at any fixed time Wλ(t)−W λ(t) can be bounded by its expectation. This
will give convergence along some subsequence. To interpolate between these
times we use a bound on the maximal displacement of a particle during a
fixed length interval, implying that Wλ(t) −W λ(t) does not increase very
much during this interval.

Before stating the lemma, we recall that the tail of a standard Gaussian
satisfies

1− Φ(x) ∼ 1

x

1√
2π

e−x2/2, as x → ∞. (2.14)

In particular, 1− Φ(x) ≤ e−x2/2 for all large x > 0.

Lemma 8. A particle in BBM at time t′ is speedy in the time interval [t, t′]
if at some point during [t, t′] it reached distance 1 from its position at time t.
Then, for δ small enough, the probability that there are any speedy particles
in [t, t+ δ] is at most 5et−1/(2δ).

Proof. We estimate the expected number of speedy particles in [t, t+ δ]. The
expected number of particles existing at time t+ δ is et+δ. For each of these,
its trajectory over [t, t+ δ] is a simple Brownian motion with some starting
point. By the reflection principle, the probability that it reaches distance 1
from its starting point is at most 4(1− Φ(1/

√
δ)), which for δ small enough

is at most 4e−1/(2δ). Thus the probability that there exist speedy particles is
at most 4et+δ−1/(2δ), which implies the claim for δ small enough. ■

Proof of Proposition 7. Fix a sequence of times tn = n1/3 (the exponent 1/3
is somewhat arbitrary but should be less than 1/2). To keep calculations
clear, we define two processes: the process

Zt = Wλ(t)−W λ(t) =
∑
j

eλXj(t)1{|Xj(t)−λt|>αt}
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that we wish to show tends to 0, and a second process

Z ′
t = Wλ(t)−W λ(t) =

∑
j

eλXj(t)1{|Xj(t)−λt|>αt/2}

counting particles outside a smaller interval of radius αt/2.
First, we claim that

E[Z ′
t] = e−λ̂t E

[ ∑
j:|Xj(t)−λt|>αt/2

eλXj(t)

]

=

∫
{|x−λt|>αt/2}

1√
2πt

e−(x−λt)2/2t dx.

Indeed, this follows noting that the expected number of particles is et, that
each particle’s position is distributed as a N(0, t) random variable, and the
value of λ̂.

The integral corresponds to the probability that a N(λt, t) random variable
deviates by at least αt/2 from its mean. Hence

E[Z ′
t] = 2[1− Φ(αt/

√
t)] ≤ 2e−α2

t /2t

for large enough t. Therefore, with our choice of tn = n1/3 and αt = t1/2+ε,
we have that

E[Z ′
tn ] ≤ 2e−n2ε/3/2.

Fix any 0 < δ < 2ε/3. By Markov’s inequality and Borel–Cantelli, we almost
surely have Z ′

tn ≤ e−nδ for all large enough n.
Next, we wish to bound Zt for t ∈ [tn, tn+1] in terms of Z ′

tn . By Lemma 8
the probability that any particle moves more than distance 1 in [tn, tn+1] is
at most Cen

1/3−cn2/3 . By Borel–Cantelli, there are no such (speedy) particles
in [tn, tn+1] for all n large enough. We assume this is the case from here on.
Consider now any s ∈ [tn, tn+1] and particle Xj that contributes to Zs. This
particle is not speedy in [tn, tn+1]. Therefore, eλXj(s) ≤ e|λ|+λXj(tn), where
Xj(tn) is its location at time tn (or else of its ancestor at time tn, if it was
created after time tn). Moreover, since the particle is not speedy, it also
contributed to Z ′

tn . It follows that for n large enough we have Zs ≤ e|λ|Z ′
tn ,

and therefore Zs → 0 as s → ∞. ■

3 Coexistence

In this section we address the question of coexistence in ABBM, and prove
Theorem 1. For simplicity, we begin with the case of two types.
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Theorem 9. For a two-type ABBM started from a finite, non-trivial initial
configuration, there is a positive probability of coexistence.

A key ingredient of our argument is a “conservative” construction of the
two-type process, in which particles of different types “merge” instead of
annihilating. This coupling was introduced by Ahlberg, Griffiths, Janson
and Morris [3] in the context of annihilating branching random walks. One
distinction in our context is that in [3] the coupling was used to prove that
coexistence is not possible, whereas we use it to prove that coexistence is
possible. The different behavior stems from the difference in the ambient
space. In [3] the space is finite (a finite connected graph), whereas here it is
infinite (the real line).

3.1 A conservative coupling

The construction involves a new type of neutral particles, which are created
when positive and negative particles merge.

Consider a system of positive, negative and neutral particles in which
the particles perform independent BBMs (with children retaining their par-
ent’s type). Particles of equal types do not interact with each other when
intersecting paths, and neutral particles do not interact with particles of the
other types. When a positive and a negative particle collide (and annihilate),
a neutral particle is created at the point of annihilation. In other words,
a neutral particle is a pair of positive and negative particles which have
stuck together, and then continue to move and branch in unison thereafter,
independently of everything else.

Consider the above system started from a finite, non-trivial configuration
of positive and negative particles, and no neutral particles. Let {X+

j (t)},
{X−

j (t)} and {X◦
j (t)} denote the sets of positive, negative and neutral parti-

cles at time t ≥ 0. Likewise, let Ξ+
t , Ξ−

t and Ξ◦
t denote the corresponding

counting measures (as in (2.1)). A fundamental observation from [3] is that,
by construction, the processes (Ξ+

t +Ξ◦
t )t≥0 and (Ξ−

t +Ξ◦
t )t≥0 are single-type

(non-annihilating) BBMs.
Let (W+

λ (t))t≥0 and (W−
λ (t))t≥0 denote the additive martingales associ-

ated to (Ξ+
t +Ξ◦

t )t≥0 and (Ξ−
t +Ξ◦

t )t≥0. Since these are additive martingales
of single-type BBMs, by Proposition 4, the limits

W±
λ := lim

t→∞
W±

λ (t) (3.1)

almost surely exist, and are positive on (−
√
2,
√
2).
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From a comparison of the two martingales we will be able to demonstrate
the existence of positive and negative particles in different regions of the real
line. Of course, the two processes, and hence the associated martingales, are
closely dependent through the mutual inclusion of the neutral particles. This
poses little difficulty in establishing coexistence, but will have to be treated
more carefully when analyzing the limit speed of the interface in Sections 4
and 5 below.

3.2 Two-type coexistence

We now show, using the martingales W±
λ (t), that in a two-type ABBM there

is positive probability that the two types coexist forever.

Proof of Theorem 9. From any non-trivial finite initial condition there is a
positive probability that at some later time there is a single pair of particles
of opposite types at a given distance apart. Hence, by the Markov property, it
suffices to establish a positive probability of coexistence from such an initial
configuration. Moreover, there is positive probability that these particles
get arbitrarily far apart before any further branching occurs. Therefore,
by symmetry and translation invariance, we may assume, without loss of
generality, that the initial configuration consists of a single negative particle
at −a and a single positive particle at +a, for some arbitrarily large a.

Fix some λ ∈ (0,
√
2). By Lemma 3 the martingale limits W±

λ in (3.1)
satisfy

W±
λ

d
= e±λaWλ,

where Wλ is a standard martingale limit. By Proposition 4, the limit Wλ is
almost surely positive. It follows that, for any large a > a0, we have that

P(W−
λ < 1 < W+

λ ) ≥ 3/4.

Moreover, on this event, for all large t, we have that

W+
λ (t)−W−

λ (t) = e−λ̂t

(∑
i

eλX
+
i (t) −

∑
j

eλX
−
j (t)

)
> 0.

However, this can only happen if positive particles are present in the system for
all large t, that is, if the positive particles survive. (In fact, by Proposition 7,
this more specifically demonstrates the existence of positive particles in the
vicinity of λt, which will be useful later on, for the interface speed.)

By symmetry, we also have

P(W−
−λ > 1 > W+

−λ) ≥ 3/4.
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On this event, the negative particles survive (in the vicinity of −λt). Conse-
quently, for large a, the probability of coexistence is at least 1/2. ■

3.3 Multi-type coexistence

Next, we generalize to the case of a k-type ABBM.

Proof of Theorem 1. Consider ABBM with an initial (finite and non-trivial)
configuration of k ≥ 2 types. Either k = 2ℓ or k = 2ℓ + 1, for some ℓ ≥ 1.
For convenience, we label the k types using the index set

Ik =

{
{±1, . . . ,±ℓ} k = 2ℓ

{0,±1, . . . ,±ℓ} k = 2ℓ+ 1.

Let Ξi(t) be the counting measures for particles of type i at time t.
We describe an extended coupling similar to the one used in the proof of
Theorem 9 above. Instead of a single type of neutral particle, as before, we
now have

(
k
2

)
types of neutral particles, which we denote by the sets {i, j}

with i ̸= j ∈ Ik. When particles of types i ̸= j collide, instead of annihilating
as usual, they combine to form a neutral particle of type {i, j}. These new
particles are neutral in the sense that they do not interact with any other
particles, however, they do continue to perform BBM, with neutral offspring
of the same type {i, j}.

Let Ξ
{i,j}
t be the counting measures for neutral particles of type {i, j} at

time t ≥ 0. Observe that, for any i ∈ Ik,

Ξ̃i
t := Ξi

t +
∑
j:j ̸=i

Ξ
{i,j}
t (3.2)

is the counting measure of a single-type BBM. Let

W i
λ(t) := e−λ̂t

∫
eλxdΞ̃i

t(x)

denote the corresponding additive martingale, and W̃ i
λ its almost sure limit.

We will use these martingales to prove that coexistence occurs with positive
probability, from a carefully constructed, “bell-shaped” initial configuration,
as in Figure 3. The key observation is that, by (3.2), we have for t ≥ 0 that

Ξi
t ≥ Ξ̃i

t −
∑
j:j ̸=i

Ξ̃j
t ,
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since clearly each Ξ
{i,j}
t ≤ Ξ̃j

t . Therefore, on the event that for every i there
is some λi so that

W i
λi

>
∑
j:j ̸=i

W j
λi
, (3.3)

it follows that all types survive.

Figure 3: The number of particles ni at positions ai are chosen
along a bell-shaped curve in such a way that, with positive
probability, each type i survives in the vicinity of λit. In this
figure, k = 7 and δ = 1.

We will now describe an initial configuration for which this holds with
positive probability for the choice

λi =

√
2i

ℓ+ 1
.

Fix a small ε > 0 and a large δ ≫ 1. Note that, permuting labels if necessary,
there is a positive probability that the system will at some point transition
to a configuration consisting of a total of n =

∑k
i=1 ni particles, with

ni = exp

(
δ(ℓ2 − i2)

ℓ+ 1

)
particles of type i, all within distance ε of the point

ai =
√
2iδ.

We may assume that δ = (ℓ+ 1) logm for some positive integer m so that
the ni are integers.
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These parameters have been chosen so that, for all i ̸= j ∈ Ik,

log
nie

λiai

njeλiaj
=

δ(i− j)2

ℓ+ 1
≥ δ

ℓ+ 1
.

Hence, for any i ∈ Ik, as δ → ∞,

nie
λiai ≫

∑
j:j ̸=i

nje
λiaj . (3.4)

By Lemma 3, each martingale limit W i
λ is equal in distribution to the

sum of ni independent standard martingale limits, distributed as eλxWλ,
where x with |x− ai| < ε is the position of each respective particle. These
differ by at most a bounded factor of e(ai±ε)λ from Wλ. Therefore, by the
law of large numbers for IID copies of Wλj

, we may find c > 0 such that, for
each pair of i, j ∈ Ik and all large δ, we have

P
(
cnie

λjai ≤ W i
λj

≤ 1

c
nie

λjai
)
> 1− 1

2k2
.

Therefore, for a fixed i ∈ Ik, we obtain together with (3.4) that

P
(
W i

λi
>

∑
j:j ̸=i

W j
λi

)
≥ 1− 1

2k
,

for all large δ. Consequently, for all large δ, this holds simultaneously for
all i ∈ Ik with probability at least 1/2. On this event, by (3.3), each type i
survives in the vicinity of λit. ■

4 Non-equality of martingale limits

Having established the possibility of coexistence, our next goal is to examine
the asymptotic behavior of the interface in a two-type ABBM. In proving
Theorem 2, in Section 5 below, our main tool once again will be the additive
martingales used in the conservative coupling in Section 3. However, in order
to obtain such a result, the conservative coupling will need to be refined, and
this is the topic of the current section.

Note that, by Proposition 7, an inequality of martingale limits W+
λ > W−

λ

implies existence of positive particles with asymptotic speed λ (while the
opposite inequality implies existence of negative particles with asymptotic
speed λ). As such, an important step towards Theorem 2 will be to prove
that, for almost every value of λ, the martingale limits are unequal. While

18



the martingale limits are known to be continuous, the limits W+
λ and W−

λ

are not independent, so this inequality requires justification.
An analogous statement holds also for the derivative martingales. Let

D+
∞ and D−

∞ denote the limits of the derivative martingales associated to
the BBMs (Ξ+

t + Ξ◦
t )t≥0 and (Ξ−

t + Ξ◦
t )t≥0. To state the result, let S denote

the event of survival, i.e., that for all large times there are either positive or
negative particles present in the system. Note that C ⊆ S, since coexistence
C requires the survival of both types of particles.

Proposition 10. Consider the conservative coupling of ABBM with a finite,
nontrivial initial configuration of particles. For every λ ∈ (−

√
2,
√
2),

P
(
{W+

λ = W−
λ } ∩ S

)
= 0.

Moreover, the same holds for the derivative martingales:

P
(
{D+

∞ = D−
∞} ∩ S

)
= 0.

The key additional ingredient in the proof of this proposition is a second,
“enhanced” coupling, inspired by [3]. In this coupling, there are two closely
related copies of ABBM, constructed in such a way that {W+

λ = W−
λ } ∩ S

cannot occur in both instances. This allows us to bound the probability of
this event away from 1, and then the result follows by Lévy’s 0–1 law.

4.1 An enhanced coupling

As discussed above, we will require a refinement of the conservative coupling
introduced in Section 3. The key idea is to consider two copies of ABBM,
which are initially identical and evolve together. However, once the first
branching event occurs, it is suppressed in one process, and allowed in the
other. This creates a discrepancy between the two systems, which we track
by marking certain particles. Instead of working with two ABBMs, the
coupling uses a single ABBM, with the addition of marked particles denoting
the difference between the two processes. We proceed with formalizing this
construction below.

The enhanced coupling is realized by a system of positive, negative and
neutral particles, where each particle is also either marked or unmarked.
(Marked/unmarked particles give birth to marked/unmarked particles.) By
the construction below, all marked particle will be either positive or negative;
which of the two is determined by chance. Moreover, marked particles survive
forever, and evolve as a single-type BBM (without annihilation).
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As before, all particles perform BBM, with unmarked particles interacting
as usual, with positive and negative particles forming neutral particles upon
meeting. (In fact, unmarked neutral particles can at this point be ignored,
but marked neutral particles will matter.) Marked particles do not interact
with each other, since marked particles of both signs will never be present
at the same time. On the other hand, the way in which marked particles
interact with unmarked particles will depend on whether the first marked
particle that appears in the system is positive or negative.

Case 1 (positive marked particles). Suppose that marked positive and
neutral, but no marked negative, particles are present in the system at some
point. The marked particles interact with other particles as follows.

(i) Marked positive particles do not interact with unmarked positive/neutral
particles. A marked positive particle and an unmarked negative particle
form a marked neutral particle.

(ii) Marked neutral particles do not interact with unmarked negative/neutral
particles. A marked neutral particle and an unmarked positive particle
form an unmarked neutral particle and a marked positive particle.

The last interaction can be thought of as the mark being transferred
from the neutral to the unmarked positive particle. Alternatively, if we think
of a marked neutral particle as a marked positive and unmarked negative
pair stuck together, then the last interaction may be seen as the unmarked
positive particle taking the place of the marked positive in the pair, and the
marked positive is set free.

Case 2 (negative marked particles). Suppose instead that marked nega-
tive and neutral, but no marked positive, particles appear at some point in
the system. The interactions between marked and unmarked particles are
the same as Case 1, with positive/negative switching roles.

As we shall no longer care about unmarked neutral particles, any such
particles that appear as a result of the above interactions can thereafter be
ignored in both cases.

As noted, this construction can be seen as two coupled ABBMs. One is
obtained by simply ignoring all marks, and the other by deleting all marked
positive (assuming Case 1, as Case 2 is symmetric) particles, thereby also
converting marked neutral particles into negative particles. It is easy to verify
that each of these two projections map the refined dynamics described above
to the usual ABBM dynamics.

As before we shall denote the counting measures associated to the con-
figurations of unmarked positive and unmarked negative particles present
at time t by Ξ+

t and Ξ−
t , respectively. (Unmarked neutral particles can be

ignored.) In addition, we denote the counting measures associated with the
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configurations of marked positive, negative and neutral particles present at
time t by Ξ̂+

t , Ξ̂−
t and Ξ̂◦

t , respectively. The construction will be such that
only one of marked positive or marked negative will ever occur, so that one
of Ξ̂+

t and Ξ̂−
t (possibly both) will be zero for all t ≥ 0.

In order to use the refined coupling, we need to also create a first marked
particle, which will be the ancestor of all subsequent marked particles. To
this end, we will modify the behavior of the process at a random time τ1, as
described below. We proceed and construct a system of marked and unmarked
particles evolving from a finite initial configuration, by describing its evolution
for a random amount of time, after which we let the system evolve on its own
as described above. Let (Ξ+

0 ,Ξ
−
0 ) denote any finite, non-trivial configuration

of positive and negative particles. All particles are initially unmarked, and
then (if ever) marked particles will appear in the system after a certain
random time. We will refer to particles that are either unmarked positive,
unmarked negative or marked neutral as active. For t ≥ 0, let µ(t) denote
the number of active particles present at time t.

As time starts, let the particles present evolve according to independent
Brownian motion, without branching but with annihilation (of unmarked
positive and negative particles). Let τ1 denote the first arrival time in an
inhomogeneous Poisson process on [0,∞) with intensity measure µ(t). Note
that µ(t) can decrease through annihilation, but cannot yet increase. Note
also that τ1 has the law of the time of the first branching event. At time τ1,
choose an active particle uniformly at random and position a marked particle
of the same sign at the same location. (Before time τ1 there are no marked
particles present, so the particle chosen is unmarked.) Note that τ1 = ∞ in
the case that all particles die out before τ1. In this case the system is empty
apart from unmarked neutral particles, and so the construction effectively
terminates. Note also that if we ignore the marks, the resulting system is
the same as the regular ABBM up until time τ1. After time τ1, the system
evolves according to the dynamics of the refined coupling described above.

4.2 Properties of the enhanced coupling

The key claim stated below is that the coupling above is a coupling of two
versions of the ABBM, where one has its first branching event suppressed. In
addition to this, we are also interested in the evolution of marked particles,
as these particles are the difference between the two versions.

Let A+ (resp. A−) denote the event that τ1 is finite and that the particle
chosen at time τ1 is positive (resp. negative). The processes we shall consider
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are the following:

Ξ′ :=
(
Ξ+
t + Ξ̂+

t ,Ξ
−
t + Ξ̂−

t

)
t≥0

,

Ξ′′ :=
(
Ξ+
t + Ξ̂◦

t · 1A− ,Ξ−
t + Ξ̂◦

t · 1A+

)
t≥0

,

Ξ̂ :=
(
Ξ̂+
t + Ξ̂−

t + Ξ̂◦
t

)
t≥0

.

Their distributional properties are summarized in the following lemma, and
follow immediately from the construction.

Lemma 11. Consider the enhanced coupling started from a non-trivial, finite
configuration.

(a) The law of Ξ′ equals that of an ABBM started from (Ξ−
0 ,Ξ

+
0 ).

(b) The law of Ξ′′ equals that of an ABBM started from (Ξ−
0 ,Ξ

+
0 ), which

has its first branching event, at time τ1, suppressed.
(c) Conditioned on τ1 < ∞, the law of the restriction of Ξ̂ from time τ1

onwards equals that of a BBM started from Ξ̂+
τ1 + Ξ̂−

τ1 .

From Lemma 11, we see that the laws of Ξ′ and Ξ′′ are not equal. However,
they do not differ by much, since it is only a single branching event suppressed
at a random time τ1 in Ξ′′ that causes the difference. This observation is key
to the following lemma.

Lemma 12. For any initial configuration of particles, the total variation
distance between the laws of Ξ′ and Ξ′′ is bounded by e−1.

Proof. By Lemma 11, the laws of the two processes Ξ′ and Ξ′′ correspond
to those of ABBMs in which the first branching event is allowed in Ξ′ and
suppressed in Ξ′′. The time of the first branching event in the first system is
τ1. Recall that µ(t) is the number of active (unmarked positive or negative,
and marked neutral) particles. Thus µ(t) equals the total branching rate in
the second system. Let τ2 be the next arrival time, after τ1, in a Poisson
process with intensity µ(t). Then the first branching time in the suppressed
process is given by τ2.

It follows that the total variation distance between the laws of the processes
Ξ′ and Ξ′′ is bounded by the total variation distance between the laws of τ1
and τ2. Formally, we may construct (yet another) coupling (Ξ̄′, Ξ̄′′) of the
two processes Ξ′ and Ξ′′ as follows: Let δ denote the total variation distance
between the random variables τ1 and τ2, and let (τ̄1, τ̄2) be a coupling of τ1
and τ2 such that τ̄1 = τ̄2 with probability 1− δ. Let Ξ̄′ evolve so that its first
branching event occurs at time τ̄1. On the event that τ̄1 = τ̄2 set Ξ̄′′ = Ξ̄′,
and on the event that τ̄1 ≠ τ̄2 let Ξ̄′′ evolve independently of Ξ̄′ with its first
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branching event occurring at time τ̄2. Then on the event that τ̄1 = τ̄2 we
have Ξ̄′ = Ξ̄′′ at all time. Note that it is possible that either τ1, τ2 or both
are ∞, but this does not pose a problem.

Therefore, it remains to show that

dTV(τ1, τ2) ≤ e−1. (4.1)

The random variables τ1 and τ2 are the first and second arrival times of an
inhomogeneous Poisson process on [0,∞) with (random) intensity measure
µ(t). Let (N(t))t≥0 denote the corresponding Poisson process. We show
that (4.1) is true uniformly when conditioning on µ(t), so also on average.

Given µ(t) we have that N(t) is a time change of a homogeneous Pois-
son process, possibly stopped at some finite time. Specifically, let ϕ(t) =∫ t
0 µ(s) ds. Then N(ϕ−1(t)) is a standard Poisson process, with intensity 1

on [0, ϕ(∞)). Thus it suffices to consider a homogeneous Poisson process
on [0, a) with a possibly ∞, and bound the total variation distance between
the first and second arrivals, again denoted τ1, τ2. If a = ∞, then τ1 has
density e−x and τ2 has density xe−x on R+. If a < ∞, then the same laws
are truncated at a with the remaining probability being an atom at ∞. The
ratio between the conditional densities of τ1 and τ2, given (µ(s))s≥0, is a
decreasing function, so the set A maximizing P(τ2 ∈ A)− P(τ1 ∈ A) is of the
form [c,∞], for some c. We have

P(τ1 ≥ t) = P(N(t) = 0) = e−t

P(τ2 ≥ t) = P(N(t) ≤ 1) = (1 + t)e−t.

It follows that the total variation distance δ between τ1 and τ2 can be
expressed as

sup
t≥0

(
P(τ2 ≥ t)− P(τ1 ≥ t)

)
= sup

t≥0
te−t = e−1,

as required. (If part of the measure is transferred to ∞, the total variation
distance can only become smaller.) ■

4.3 Proof of Proposition 10

Note that Proposition 10 contains a statement regarding the martingale
differences (W+

λ (t)−W−
λ (t))t≥0 of the conservative coupling from Section 3.1.

However, in order to prove this statement we shall work with the enhanced
coupling construction of Section 4.1. As such, the first step is to identify the
analogue of the martingale differences in this enhanced construction.
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Fix λ ∈ (−
√
2,
√
2). Let χ be the random variable that indicates the sign

of the active particle drawn at time τ1. That is, χ = +1 if this particle is
positive, χ = −1 if negative, and if τ1 = ∞ (in which case, no such particle
is ever drawn) then set χ = 0. For t ≥ 0, let

Z ′
λ(t) := e−λ̂t

∫
eλx d

[
Ξ+
t + Ξ̂+

t − Ξ−
t − Ξ̂−

t

]
(x),

Z ′′
λ(t) := e−λ̂t

∫
eλx d

[
Ξ+
t − Ξ−

t − χ · Ξ̂◦
t

]
(x).

By Lemma 11, it follows that (Z ′
λ(t))t≥0 and (W+

λ (t)−W−
λ (t))t≥0 are equal

in distribution, and hence by (3.1) that the limit Z ′
λ := limt→∞ Z ′

λ(t) exists
almost surely. In particular,

Z ′
λ

d
= W+

λ −W−
λ . (4.2)

Again, by Lemma 11, either τ1 = ∞ and Z ′′
λ(t) = 0 for all large t, or Z ′′

λ(t)
evolves from time τ1 onwards again according to the martingale differences
of a version of ABBM. In particular, the limit Z ′′

λ := limt→∞ Z ′′
λ(t) exists

almost surely, although its not distributed as W+
λ −W−

λ .
Next, we introduce notation for the additive martingale associated with

the marked particles. For t ≥ 0, we let

Ŵλ(t) := e−λ̂t

∫
eλx d

[
Ξ̂+
t + Ξ̂−

t + Ξ̂◦
t

]
(x).

By Lemma 11, on the event that τ1 < ∞, this is the additive martingale
for a BBM. Since, by Proposition 4, the latter almost surely converges to a
positive value, it follows that

Ŵλ := lim
t→∞

Ŵλ(t)

exists almost surely, and that

P
(
Ŵλ = 0, τ1 < ∞

)
= 0. (4.3)

Recall that one of Ξ̂+
t and Ξ̂−

t (possibly both) will be zero for all t. By
the definitions, for all t ≥ 0 we have

Z ′
λ(t) = Z ′′

λ(t) + χ · Ŵλ(t). (4.4)

Combining (4.3) and (4.4) it follows that

P
(
Z ′
λ = Z ′′

λ = 0, τ1 < ∞
)
= 0.
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Let B′
λ be the event that Ξ′ survives and Z ′

λ = 0, and similarly B′′
λ for

Ξ′′ and Z ′′
λ . Since either process surviving implies τ1 < ∞, it follows that

P(B′
λ) + P(B′′

λ) ≤ 1. (4.5)

Moreover, by Lemma 12, we have that

|P(B′
λ)− P(B′′

λ)| ≤ e−1. (4.6)

Combining (4.5) and (4.6) with (4.2), we conclude that for any non-trivial
initial configuration (Ξ+

0 ,Ξ
−
0 ), we have

P
(
{W+

λ = W−
λ } ∩ S

)
= P

(
B′

λ

)
≤ 1 + e−1

2
. (4.7)

Finally, to conclude the proof, let (Ft)t≥0 denote the filtration in which
Ft is the σ-algebra generated by {(Ξ−

s ,Ξ
+
s ) : 0 ≤ s ≤ t}. By Lévy’s 0–1 law

we have, almost surely, that

lim
t→∞

P
(
{W+

λ = W−
λ } ∩ S

∣∣Ft

)
= 1{W+

λ =W−
λ }∩S .

Moreover, by the Markov property of the process, it follows from (4.7) that,
almost surely,

P
(
{W+

λ = W−
λ } ∩ S

∣∣Ft

)
= P

(
{W+

λ = W−
λ } ∩ S

∣∣(Ξ−
t ,Ξ

+
t )

)
≤ 1 + e−1

2
.

Therefore {W+
λ = W−

λ } ∩ S can only occur on an event of measure zero,
which completes the proof of Proposition 10 for the additiv martingales.

For the derivative martingales, the exact same argument works, except
that we replace the differences Z ′

λ and Z ′′
λ for the derivative martingales:

Z ′(t) := e−2t

∫
(
√
2t− x)e

√
2x d

[
Ξ+
t + Ξ̂+

t − Ξ−
t − Ξ̂−

t

]
(x),

Z ′′(t) := e−2t

∫
(
√
2t− x)e

√
2x d

[
Ξ+
t − Ξ−

t − χ · Ξ̂◦
t

]
(x).

As before, on the event τ1 < ∞ we cannot have that Z ′ and Z ′′ both tend to
0. However, the total variation distance between them is bounded away from
1, and on the event that D+

∞ = D−
∞, the probability that Z → 0 tends to 1

by Levy’s 0–1 law. ■
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Remark. The bound of (1 + e−1)/2 in (4.7) is weaker (but sufficient) than
the bound of 1/2 obtained in [3]. In the context of [3] the two events have
the same probability. It is possible to improve our bound as follows: instead
of suppressing the first branching event, we could randomly suppress one of
the first k events. The total variation distance between the Poisson process
and the slightly thinned Poisson process obtained in this way is O(k−1/2).

Remark. Although the quantities W+
λ (resp. W−

λ ) capture the number of
positive and neutral (resp. negative and neutral) particles with asymptotic
speed λ, it follows from Proposition 10 that, when W+

λ > W−
λ , there are

positive particles with asymptotic speed λ, and these particles comprise a
positive fraction of all particles with asymptotic speed λ, in the sense that
their contribution to W+

λ (t), for all large t, is bounded away from zero.

5 Limiting speed of the interface

In this section, we analyze the ABBM interface. We first establish the
existence of the limiting speed (Proposition 13). We then examine properties
of its law (Propositions 14 and 16). Together these results imply our main
result, Theorem 2 above.

5.1 Existence of the limiting speed

Proposition 13. Consider the ABBM started from a finite, non-trivial and
ordered initial configuration. On the event of coexistence, the limit

λ∗ := lim
t→∞

I(t)

t

exists almost surely.

Proof. Consider a finite, non-trivial and ordered initial configuration of
particles, in which the rightmost negative particle is (strictly) to the left of
the leftmost positive particle. Let C denote the event of coexistence, i.e., that
there are both positive and negative particles present at all times. According
to Theorem 9, C occurs with positive probability.

Let G1 denote the event that for all large t, all particles present in the
system are located in the interval [−

√
2t,

√
2t]. The argument leading to (2.8)

shows that P(G1) = 1. On the event C ∩ G1 the interface is well-defined and
finite at all times, and satisfies, for all large enough t,

−
√
2t ≤ I(t) ≤

√
2t. (5.1)
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Let G2 denote the event that W+
λ ̸= W−

λ for all rational λ ∈ (−
√
2,
√
2).

Proposition 10 and countable additivity shows that P(G2) = 1. Define the
sets

E+ :=
{
λ ∈ Q : W+

λ > W−
λ

}
, (5.2)

E− :=
{
λ ∈ Q : W+

λ < W−
λ

}
. (5.3)

Then on G2, we have E+ ∪ E− = Q ∩ (−
√
2,
√
2).

Recall that for any ε > 0, we defined αt = t1/2+ε and Sλ(t) = [t−αt, t+αt].
Proposition 7 shows that for λ ∈ E+ (resp. in E−) there are eventually positive
(resp. negative) particles in Sλ(t). The fact that the configuration remains
ordered implies that there cannot be any λ ∈ E+ and λ′ ∈ E− with λ < λ′.
Thus on C ∩ G1 ∩ G2 there is some µ ∈ [−

√
2,
√
2] so that

E− = Q ∩ (−
√
2, µ) E+ = Q ∩ (µ,

√
2).

Recall that I+(t) is the position of the leftmost positive particle. If
|µ| <

√
2, then taking a rational λ > µ arbitrarily close to µ we find that

there are eventually positive particles in Sλ(t), and so lim sup I+(t)/t ≤ µ.
Similarly, lim inf I+(t)/t ≤ µ. Since I−(t) ≤ I+(t) this implies the claim.

If µ =
√
2, then the bound on I−(t) is the same, and we use the bound

I+(t) ≤
√
2t which holds on G1. The case µ = −

√
2 is symmetric. ■

5.2 Properties of the limiting speed

Next, we show that the law of the limiting speed has no atoms. We will first
show that there are no atoms in the interval (−

√
2,
√
2). This follows by

Proposition 10 and the almost sure continuity of the martingale limit Wλ in
λ, which is due to Biggins [10]. Afterwards, we shall rule out atoms at ±

√
2,

using the derivative martingale and its relation to the edge-behavior of BBM,
as discussed in Section 2.3.

Proposition 14. Consider ABBM started from a finite, non-trivial and
ordered initial configuration. The law of the limiting speed

λ∗ = lim
t→∞

I(t)

t

of the interface has no atoms in (−
√
2,
√
2).

Proof. Fix µ ∈ (−
√
2,
√
2), and let C denote the event of coexistence. Towards

a contradiction, suppose that P({λ∗ = µ} ∩ C) > 0. Define the sets E± as in

27



(5.2) and (5.3). Then, on the event λ∗ = µ, we have that E− = Q∩ (−
√
2, µ)

and E+ = Q ∩ (µ,
√
2). Since the difference W+

λ − W−
λ is almost surely

continuous in λ (its analytic; see [10]), we would have W+
µ = W−

µ . However,
by Proposition 10, this has probability 0. ■

This approach fails when µ = ±
√
2, since W±

±
√
2
= 0. The following

proposition completes the proof that λ∗ has no atoms.

Proposition 15. Consider ABBM started from a finite, non-trivial and
ordered initial configuration. Then the probability of coexistence with limiting
speed λ∗ = ±

√
2 is 0.

Proof. We focus on the event of coexistence with limiting speed λ∗ =
√
2,

showing it has probability 0. The case of −
√
2 follows by symmetry.

By Proposition 10, almost surely, for every λn =
√
2 − n−1 we have

W+
λn

̸= W−
λn

, and additionally D+
∞ ̸= D−

∞. If, for some λn <
√
2, we have

W+
λn

> W−
λn

then the limit speed satisfies λ∗ ≤ λn. Thus λ∗ =
√
2 implies

W+
λn

< W−
λn

for all the above λn.
This implies that, on the event λ∗ =

√
2, we have d

dλW
+
λ ≤ d

dλW
−
λ . By

Theorem 5 it follows that D+
∞ ≤ D−

∞, and since the two are unequal, this is
strengthened to D+

∞ < D−
∞.

Next, we apply Theorem 6 to the positive and negative particles with
x = 0. Let M±(t) denote the location of the rightmost positive/negative
particle (possibly the same if they form a neutral particle). Put

m(t) =
√
2t− 3

2
√
2
log t.

By Theorem 6, the fraction of times in [0, T ] for which M±(t) ≤ m(t)
converges to exp(−CD±

∞). Since D+
∞ < D−

∞, there is a positive asymptotic
density of times at which M−(t) > m(t) and M+(t) ≤ m(t). However, even
if there is one such time, then the rightmost negative particle has overtaken
the rightmost positive particle, thereby ruling out coexistence (since ABBM
is order preserving). ■

Finally, we show that the limiting speed is fully supported on [−
√
2,
√
2].

To show this, we construct a specific configuration for which λ∗ is highly
likely to be in the vicinity of a specific λ ∈ (−

√
2,
√
2). This is similar to the

proof of Theorem 1 in Section 3.3 above, where we construct a configuration
where each type is likely to survive near some λit.
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Proposition 16. Consider ABBM started from a finite, non-trivial and
ordered initial configuration. The law of the limiting speed

λ∗ = lim
t→∞

I(t)

t

of the interface is fully supported on (−
√
2,
√
2).

Proof. Let λ ∈ (−
√
2,
√
2) and ε > 0 be given. By symmetry, let us assume

that λ > 0. Put
λ−
ε =

λ− ε

1 + ε
, λ+

ε =
λ+ ε

1− ε
.

Without loss of generality, we may assume that ε > 0 is small enough so that
0 < λ−

ε < λ+
ε <

√
2. We will show that

P
(
λ−
ε ≤ λ∗ ≤ λ+

ε

)
> 0. (5.4)

First, we describe specific initial configurations for which (5.4) holds. Fix
integers a, b ≥ 1 such that ∣∣∣1

2
log

(a
b

)
− λ

∣∣∣ < ε. (5.5)

Let B denote the set of configurations consisting of an negative particles
positioned within distance ε/2 of −1 and bn positive particles positioned
within distance ε/2 of +1. For starting configurations in B, we may interpret
the martingale limit W+

λ as the sum of bn independent martingale limits, each
of which by Lemma 3 is distributed as eλxj Wλ, where xj ∈ (1− ε/2, 1 + ε/2)
is the position of the jth positive particle.

By the law of large numbers that, for all large n, it follows that

1

n
W+

λ+
ε
≥ beλ

+
ε (1−ε) E[Wλ+

ε
] = beλ+ε E[Wλ+

ε
],

1

n
W+

λ−
ε
≤ beλ

−
ε (1+ε) E[Wλ−

ε
] = beλ−ε E[Wλ−

ε
],

with probability at least 3/4. Likewise, for any configuration in B, we may
interpret W−

λ as the sum of an independent martingale limits of the form
eλxj Wλ, for some xj ∈ (−1− ε/2,−1 + ε/2). Hence, for all large n,

1

n
W−

λ−
ε
≥ ae−(λ−ε) E[Wλ−

ε
],

1

n
W−

λ+
ε
≤ ae−(λ+ε) E[Wλ+

ε
],
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with probability at least 3/4. Therefore, for any initial configuration in B,
we have, for all large n, with probability at least 1/2, that

1

n

[
W+

λ+
ε
−W−

λ+
ε

]
≥

(
1− a

b
e−2(λ+ε)

)
beλ+εE[Wλ+

ε
] > 0,

1

n

[
W+

λ−
ε
−W−

λ−
ε

]
≤

(
1− a

b
e−2(λ−ε)

)
beλ−εE[Wλ−

ε
] < 0,

where the final inequalities follow by the choice of a, b in (5.5). Hence, for
every initial configuration in B, with probability at least 1/2, the limiting
speed of the interface is contained in the interval [λ−

ε , λ
+
ε ].

To conclude, we note that, from any finite, non-trivial and ordered initial
configuration, with all negative particles to the left of all positive particles,
there is a positive probability that the configuration at time t = 1 is in the
set B. Therefore, since ABBM is Markovian, (5.4) follows, as claimed. ■

6 Generalizations and extensions

In this paper, we have studied ABBM on the real line. There are various
generalizations where similar questions could be studied. Several problems
which arise naturally from this work are discussed below.

6.1 Other annihilating spatial branching processes

One could consider a whole range of different branching and diffusion mecha-
nisms, beyond the dyadic branching and diffusive continuous motion of BBM.
Aspects that can be generalized include:
Branching Instead of dyadic splitting we could replace each particle, after

an exponentially distributed lifetime, by a random number of particles
positioned randomly on R according to some reproduction law µ (shifted
so that the configuration is centered around the position of the particle
at the time of the branching event). The simplest of these is branching
into two particles without displacement, but the number of children
could be random, and some or all of them could be created at some
displaced location.

Movement Similarly, the movement of the particles in between branching
events could more generally be modeled by some Lévy process, which
could include both discrete and continuous motion. This includes the
discrete random walk on Z, where jumps are ±1.

Time We can also consider processes in discrete time, where particles branch
at each time step, with some displacement for the offspring.
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Space Finally, we can also consider the process on other spaces, such as,
Zd,Rd, or on other graphs or manifolds. Note that in higher dimension,
Brownian motions do not collide almost surely, and the rule for annihi-
lation might require adaptation. In discrete spaces, however, no such
change is required.

We refer to a process of this more general class as an annihilating
branching random walk (ABRW).

In many aspects, we expect that many ABRW, under mild assumptions,
will behave similarly to ABBM. However, the methods of this paper are not
necessarily sufficient even in one dimension. We focus in what follows in the
one-dimensional case.

To apply our proof and address the question of coexistence for ABRW,
the first step is to extend the theory for additive martingales. Under suitable
tail assumptions on the branching and movement, it is still the case that
for some λ̂ (which may no longer be 1 + λ2/2) we have additive martingales
Wλ(t). It is also expected that these converge to a continuous function in
λ on some interval I ∈ R. This is known for some settings, such as simple
branching random walk on Z, but seems not to be proved in full generality.

Question 17. For which ABRWs does coexistence occur with positive proba-
bility?

Having established coexistence, the question of a limit speed for the
interface separating positive and negative particles may be more delicate.
For instance, for an ABRW which is not order preserving, the number of
interfaces is no longer decreasing as a function of time, which complicates
the analysis. One example of such a model is any process where the particles
jump discontinuously in space. Another is the model with “soft” annihilating,
where a pair of particles do not annihilate immediately upon collision, but at
some exponential rate in terms of the intersection local time of the pair.

Question 18. If an ABRW is not order preserving, is the number of interfaces
almost surely finite? Or can there be infinitely many segments of each type?

We say that an ABRW is dominating if after a branching event the
number of particles at each location is at least the number before the branching
event. For instance, this is the case if branching does not cause displacement,
or if some children are displaced but at least one stays at the parent’s location.
The enhanced coupling construction, used to prove the existence of a limit
speed for the interface, relies on this domination assumption in a central
way. Specifically, after the first branching event, the system contains an
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extra particle (which is marked) but no particles are missing. In our proof,
domination is used to establish that the limit of the additive martingales are
almost surely distinct.

Question 19. If an ABRW is not dominating, does the limit speed still exist?

We list here some conditions under which our proofs and results hold
with no essential modifications. These include, for example, simple random
walk on Z in continuous time with dyadic branching.

• The additive martingales Wλ(t) = e−λ̂t
∑

eλXj(t) must converge in
(almost surely and in L1) to a non-zero limit on some interval I ⊂ R
and to 0 outside I.

• The location of a typical particle at time t (previously N(0, t)) needs
to satisfy a large deviation principle P(X ≈ at) = e−I(a)t+o(t).

• The dominant contribution to Wλ(t) comes from particles near x(λ)t,
where x(λ) is the Legendre transform of I, namely x(λ) maximizes
λx− I(x). This is needed for the proofs that as x(λ) maps I bijectively
to the full range of speeds that exist in the (single-type) branching
random walk.

• For the enhanced coupling, it is necessary that the branching is domi-
nating.

• For uniqueness of the interface, and existence of its limit speed, it is
needed that the motion is order-preserving.

• We used the continuity of the martingale limit Wλ in order to show
that the distribution of the random slope λ∗ is continuous.

6.2 Existence of a limiting speed for multiple types

Our methods do not quite suffice to establish the existence of a limiting
speed in settings with more than one interface. To see what can go wrong,
consider ABBM with negative particles initially positioned at ±1 and a
positive particle at the origin. By Theorem 1 there is positive probability
that descendants of all three particles initially present survive at all times.
On this event, there are two interfaces between positive and negative particles
present at all times. Our proof of Theorem 2 was based on being able to
relate the limiting speed to a root of the equation W+

λ −W−
λ = 0. However,

in the setting described above, our methods do not alone show that, on the
event of coexistence, the equation has a solution in (−

√
2,
√
2).

Next, we formalize the above to the multi-type setting. Consider an
arbitrary initial configuration consisting of a finite number of particles of
m ≥ 2 different types, positioned so that no two particles of different type
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occupy the same location. At each time t ≥ 0 the configuration of particles
gives rise to some (random) number K(t) of interfaces, which (as in the
two-type case) are defined as the midpoints of maximal vacant open intervals
of the real line, with endpoints occupied by particles of different types. On
the other hand, we refer to maximal segments of particles of the same type
as blocks. Due to the annihilating feature and the order preserving property,
the number of interfaces (and blocks) can only decrease as time evolves, and
so K(t) approaches a limit K as t → ∞. Let Ck denote the event that the
limiting number of interfaces K = k.

The evolution from a m-type configuration can be coupled with the
evolution from a two-type configuration, by renaming the blocks of the
configuration positive/negative in an alternating fashion. Note that these two
processes evolve identically, until the number of interfaces decrease. At that
point, we must restart the coupling (renaming the blocks once again). In this
way, we repeat this procedure at each time the number of interfaces decrease,
which can happen at most a finite number of times. As a consequence, the
martingale difference W+

λ (t)−W−
λ (t) associated with this coupled process has

an almost sure limit, and Proposition 10 shows that for fixed λ the difference
is almost surely nonzero.

Question 20. Is it true, on the event Ck, that each of the k + 1 surviving
blocks occupy a linear segment of the real line? That is, does each give rise to
a “positive martingale difference” in an interval of λ values?

If the above holds, then existence of k (distinct) limit speeds would follow
from Proposition 10, and the limiting speeds would be distinct.

6.3 The higher-dimensional setting

Similar questions to those examined in this work can also be asked in higher
dimensions. However, already in two dimensions, some care is needed in
defining the process, as particles with zero radius no longer collide. One way
around this problem is to work with an ABRW on a lattice.

Consider, for instance, an ABRW performing simple random walk on Z2

in continuous time. By projecting the particles onto the first coordinate axis,
we can think of the process as a ABRW on Z, given by the first coordinate,
where each particle also remembers its second coordinate. Particles only
annihilate if they meet and their second coordinates also agree. The various
conditions needed to establish coexistence hold in this case, implying positive
probability of coexistence in this model. However, this projection is not
order-preserving, and so understanding the interface is more delicate. Indeed,
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Figure 4: Simulations of annihilating branching random walk
on Z2, started with up 2 or 4 particles of each type. The top
two are the same process at times 50 and 256. The bottom
two are distinct runs at time 256.

it is not clear even how to define the interface, and whether this interface
will have an asymptotic limit.

Question 21. In two (and higher) dimensions, does the interface separating
the two types have an asymptotic limit shape? If so, what can be said about
the class of shapes to which that limit belongs?

In analogy with other models for competing growth, we expect that a
typical description in two (or more) dimensions is that of the two types
roughly occupying complementing regions of some scaled deterministic limit
shape U ⊂ Rd. (The set is the sub-level set of the large deviation rate
function for the random walks.) Indeed, applying our arguments using the
higher dimensional additive martingales suggests that for almost every u ∈ U ,
the particles near tu are eventually of a fixed type. Moreover, it seems
possible that one of the two types of particles is able to survive despite being
eventually “surrounded” by particles of the other type, in sharp contrast with
other spatial models for competing growth [18].
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