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Abstract

We consider an SEIR epidemic model on a network also allowing random contacts,
where recovered individuals could either recover naturally or be diagnosed. Upon
diagnosis, manual contact tracing is triggered such that each infected network con-
tact is reported, tested and isolated with some probability and after a random delay.
Additionally, digital tracing (based on a tracing app) is triggered if the diagnosed in-
dividual is an app-user, and then all of its app-using infectees are immediately notified
and isolated. The early phase of the epidemic with manual and/or digital tracing is
approximated by different multi-type branching processes, and three respective repro-
duction numbers are derived. The effectiveness of both contact tracing mechanisms is
numerically quantified through the reduction of the reproduction number. This shows
that app-using fraction plays an essential role in the overall effectiveness of contact
tracing. The relative effectiveness of manual tracing compared to digital tracing in-
creases if: more of the transmission occurs on the network, when the tracing delay is
shortened, and when the network degree distribution is heavy-tailed. For realistic val-
ues, the combined tracing case can reduce R0 by 20-30%, so other preventive measures
are needed to reduce the reproduction number down to 1.2− 1.4 for contact tracing to
make it successful in avoiding big outbreaks.

1 Introduction

Contact tracing stands out as one of the effective measures for controlling a pandemic. Its
primary aim is to identify and interrupt the transmission chain by detecting who is spreading
the infection. In this paper, we consider two contact tracing strategies: manual and digital
contact tracing. The conventional (or so-called manual) contact tracing is usually performed
by public health agencies, or else by self-reporting. Confirmed cases will be interviewed
and asked to report potential infectious contacts, which will then be notified and tested.
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[10] recently argued that manual contact tracing alone might not have effectively controlled
the COVID-19 epidemic. Subsequently, contact tracing apps were introduced in certain
countries [9, 16, 22, 23]. This digital tracing approach enhances the speed of tracing by
swiftly identifying and notifying the infected contacts. Modelling studies in [15] showed
that, compared to conventional tracing approaches, digital contact tracing could have a
higher effectiveness due to its inherent speed. When an app-user is diagnosed, immediate
notifications are sent out to all of the app-users who have been recently in close contact with
the confirmed case, recommending them to isolate and test themselves. Notably, contacts
reached by manual tracing are mainly within the social circle, while digital tracing can also
identify more anonymous contacts, e.g. random contacts occurring on a bus or in a store.

There have been studies of modelling conventional contact tracing [5, 6, 17] and digital
tracing [10, 15]. This paper aims to investigate the effectiveness of combining both manual
and digital tracing and the situation when only one is in place. Besides random infectious
contacts focused in most papers, we also allow transmission to occur through a (social)
network. Modelling contact tracing is mathematically challenging (see, e.g., an overview in
[18]). This paper focuses on the initial phase of the epidemic in a large population. The
early phase of an epidemic can often be approximated by a branching process of independent
individuals [2]. However, the introduction of contact tracing unfortunately disrupts the
independence, necessitating other modelling approaches.

More specifically, we consider an SEIR epidemic spreading on a network also allowing
for random contacts [4, 12]; that is, individuals can be infected by their network neighbours
as well as by individuals randomly chosen from the whole population. We then assume
that manual tracing only happens for contacts on the network (random contacts are usually
unknown), whereas digital tracing is amongst both network and random contacts, but only
when both parts are app-users. Further, we introduce a tracing delay (between diagnosis and
contacts being traced) for manual tracing, of which the effect has been analysed in [15, 17];
digital contact tracing is, in contrast, triggered instantaneously.

For mathematical tractability, we assume the duration of the infectious period to be de-
terministic and limit both types of contact tracing to be forward and one-step only. That
is, it is only possible for infectors to name infectees (and not its infector which happened
earlier), and traced individuals who test positive are isolated but do not report their con-
tacts. The simplification is inspired by [6], wherein it was assumed in a uniformly mixing
population, and only manual tracing is considered. Moreover, for practical purposes, we
assume a configuration model for the contact network, although real-world social networks
often exhibit clustering.

The structure of this paper is as follows. Section 2 outlines the network SEIR epidemic
model and the models incorporating manual and/or digital contact tracing. In Section 3,
the early stage of the epidemic with manual and/or digital tracing is analysed via multi-
type branching process approximation, and the corresponding reproduction numbers are
derived. The effectiveness of combining manual and digital tracing as well as their individual
effectiveness is numerically investigated in Section 4. Conclusion and discussion are presented
in Section 5.
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2 Model Description

2.1 The SEIR network epidemic model with global contacts

We consider an SEIR (Susceptible → Exposed →Infectious→Recovered) epidemic model
within a population of fixed size n (assumed to be large), where infectious individuals estab-
lish local contacts with neighbours on a social network G, as well as random global contacts
with individuals throughout the entire population.

The contact network G is characterised by a configuration model ([7];[20] part III, chapter
12), which features an arbitrary degree distributionD ∼ {pk} (P(D = k) = pk, k = 0, 1, 2, ...)
with finite mean µ and variance σ2. Initially, one randomly selected index case is infectious,
while the remainder of the population is susceptible. An infectious individual makes local
contact with each of his/her neighbours in G randomly in time through independent Poisson
processes with rate βL. Moreover, this infective makes global contact with other individuals
(chosen randomly from the entire community) at a rate βG. If the contacted individual is
not susceptible, no action occurs. If susceptible, the contacted individual becomes exposed
(i.e., latent) and remains latent for a random duration TL, whose distribution is arbitrary
but specified. A latent individual becomes infectious at the end of TL. An infective remains
infectious for a constant period TI ≡ τI , then becomes diagnosed with probability pD; other-
wise, the infective is naturally recovered. Once diagnosed or recovered naturally, individuals
play no further role in the epidemic. All contact processes and the random variables describ-
ing TL and D are assumed to be mutually independent. The epidemic stops when no latent
or infectious individuals remain in the population.

2.2 Introducing manual and digital contact tracing in the model

In the following, we incorporate manual and digital contact tracing into the epidemic model
defined in Section 2.1. To initiate digital contact tracing, we assume a fraction πA of indi-
viduals use a contact tracing app and follow the recommendations to isolate themselves.

The non-app-users can only be involved in manual contact tracing, described as follows.
Once diagnosed, infected individuals are interviewed and report each of their infectee neigh-
bours independently with probability pM . Each reported neighbour is then tested after an
independent delay time having distribution TD having an arbitrary but specified distribution.
If testing positive the individual immediately isolate and stop spreading the infection.

App-users, on the other hand, can perform both digital and manual contact tracing. If an
app-user is diagnosed, all the app-using infectees are immediately notified, tested, and iso-
lated if infectious (stopping further transmission). Meanwhile, every non-app-using infectee
neighbour is reported and traced with probability pM independently with independent de-
lays TD, just like for non-app-users. For mathematical convenience, we assume that neither
manual nor digital contact tracing are iterated. That is, the traced and tested individuals
of a diagnosed individual will not be further contact traced. All contact processes, report-
ing processes, and the random variables describing TD and TL are assumed to be mutually
independent. Table 2.1 lists all the model parameters.

Setting πA = 0 gives the epidemic model with manual tracing only, which is similar to the
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one introduced in [6], but the epidemic there spreads in a homogeneous mixing population.
If we further set βL = 0, then manual tracing has no effect, which reduces to the usual SEIR
homogeneous mixing epidemic model. Setting pM = 0 yields the epidemic model with digital
tracing only.

Table 2.1 List of model parameters and random variables in the SEIR network epidemic model
with manual and digital contact tracing.

Variable Description
D ∼ {pk} degree distribution of configuration-type network G
TI ≡ τI infectious period (assumed deterministic)
TL latent period
TD tracing delay
Parameter Description
n size of population (assumed large)
µ = E[D] mean degree
σ2 = Var[D] variance of degree distribution D
βL individual contact rate with each neighbour
βG rate of global contacts
pD probability that an individual who recovers is diagnosed
pM probability that a diagnosed individual reports a given neighbour
πA fraction of app-users

3 Early epidemic approximation in a large population

3.1 Approximation of the early epidemic without contact tracing

It has been rigorously proven in [4] that the process of infected individuals at the beginning of
a SIR network epidemic with global contacts can be approximated by a two-type branching
process with types L and G (type-L/G: infected by local/global contacts). This limiting
result can be extended to hold also when a latent period is included, i.e., the SEIR epidemic
model defined in Section 2.1.

Suppose the number of initial susceptibles (n − 1) is large and the initial infective is
infected from outside. During the early phase of an epidemic, the probability that an infective
makes contact with a neighbour who has been infected (except its infector) is very small; it
is also unlikely that an infective makes global contact with an already-infected individual.
This suggests that all the local and global contacts are first made with distinct susceptibles.
Consequently, the number of individuals locally (globally) infected by distinct infectives of
the same type (L or G) are independently and identically distributed. It follows that the
process of infectives in the early stage of an epidemic can be approximated by a two-type
branching process denoted by E(βL, βG, τI , TL, D) with type L and G described above.
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3.1.1 Basic reproduction number

Let M = (mij) be the mean-offspring matrix of E(βL, βG, τI , TL, D), mij denotes the mean
number of type-j individuals produced by a type-i individual in the branching process,
i, j = L,G. Any type of individual makes global contacts at rate βG during a constant
period τI . It follows that

mLG = mGG = βGτI .

The degree of a given type-G infective is distributed according to D, and the probability
that an individual infects a given neighbour is

pI = 1− e−βLτI . (1)

As a consequence, we get
mGL = µpI .

On the other hand, a type-L infective has the so-called size-biased degree distribution, de-
noted by D̃ with P (D̃ = k) = kpk/µ. More precisely, considering the infector of this type-L
infective, an individual with degree k is k times more likely to be his/her neighbour than
an individual with degree 1. Hence, a type-L infective has degree k with probability pro-
portional to kpk. At the beginning of the epidemic, a type-L infective has D̃− 1 susceptible
neighbours (all except the infector). This implies that

mLL = E[D̃ − 1]pI ,

where

E[D̃ − 1] =
∞∑
k=0

k2pk
µ

− 1 =
σ2 + µ2

µ
− 1 =

σ2

µ
+ µ− 1.

Let R0 denote the largest eigenvalue of M , then

R0 =
1

2

(
βGτI + E[D̃ − 1]pI +

√
(βGτI − E[D̃ − 1]pI)2 + 4βGτIµpI

)
. (2)

According to multi-type branching process theory [1, 11], a major outbreak can occur with
positive probability if and only if R0 > 1. We refer to R0 as the basic reproduction number.

In addition, if D follows a Poisson distribution, then E[D̃ − 1] = µ, and the basic
reproduction number is given by

R0 = βGτI + µpI (3)

with pI defined in Equation (1).

3.2 Approximation of the early epidemic with manual and digital
contact tracing

During the early phase of the epidemic, assuming large n, it is very unlikely that an infectious
individual will make contact with individuals who have already been infected by others
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(except for the infector on the network). The early epidemic with both types of contact
tracing can be approximated by a limiting process, as described below.

There are two types of individuals: app-users and non-app-users. While infectious, indi-
viduals have local infectious contacts with each susceptible neighbour at rate βL (and each
neighbour is an app-user with probability πA); have global infectious contacts with app-users
at rate βGπ and with non-app-users at rate βG(1 − π), respectively. An infected individ-
ual’s infectious period starts after a random latent period TL and ends after an additional
deterministic duration τI . At the end of the infectious period, an individual is diagnosed
with probability pD, or else the individual recovers naturally without being diagnosed. A
diagnosed non-app-user reports each of its network infectees independently with probability
pM , and each reported individual is traced after independent delays TD. If an app-user is
diagnosed, all of its app-using infectees are digitally traced immediately, and each of its lo-
cal non-app-using infectees is reported with probability pM and manually traced after i.i.d.
delays TD. Traced individuals are tested and immediately isolate themselves if latent or
infectious. Such traced individuals are however not contact traced further.

Below, we show that this limiting process can be characterized by a multi-type branching
process. If we consider a sequence of epidemics indexed by population size n, we can then use
a coupling argument (see [2] for details) to prove that the epidemic with manual and digital
contact tracing converges almost surely to the limiting branching process (to be described
below) on finite time intervals as n → ∞.

We now characterize the limiting process as a multi-type branching process. To determine
the different types, we start by considering four binary categories: app-user/non-app-user,
infected by local/global contacts, infected with/without a digital CT link, and infected
with/without a manual CT link. A manual CT link between an infectee and his/her infector
is only possible if the infector is diagnosed and the infectee is infected through the network.
Conditioning on that, a manual CT link exists with probability pM . By having a digital
CT link, we mean that both infector and infectee are app-users and that the infector was
diagnosed; so not having such digital CT link would correspond to that at least one of
infector and infectee is a non-app-user or both of them are app-users, but the infector
recovered naturally or was traced (implying that tracing will not happen).

In total, we would thus have 24 = 16 types of individuals depending on the four binary
categories. Among these 16 types, 7 are impossible: non-app-users having digital CT links
(infected by local/global contacts with/without manual CT links), non-app-users that are
infected by global contacts with no digital but manual CT links, app-users that are infected
by global contacts with manual CT link and with/without digital CT links. This is because
digital contact tracing can only occur between two app-users, and manual contact tracing
happens only among local transmissions. Further, we can merge two types: one is the app-
user infected on the network with both digital CT link and manual CT link; the other is the
same, but without the manual CT link. The reason is that if both types of contact tracing
events occur, digital contact tracing always happens first, so manual contact tracing can be
neglected. Hence, there are 16− 7− 1 = 8 types of individuals (see an illustration in Figure
3.1).

Based on our assumptions, diagnosed individuals are infectious for a fixed period τI ,
and contact tracing can only be triggered by diagnosed individuals. Following a similar
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Figure 3.1 Example of an infection tree containing the eight types of individuals in Table 3.1. The
circle nodes are app-users, and the squares are non-app-users. Nodes in black stand for ”diagnosed”;
in white filled with diagonal lines, for ”naturally recovered”; and in grey, for ”traced”. The arrows
with ”L” are local (network) infections, while those with ”G” are global infections.

argument in [6], as a consequence of the deterministic infectious period τI and constant
infection rates, the infection times of the infectees are independently uniformly distributed
over the infectious period. Consider a diagnosed individual with k infectees having CT links
(either manual or digital). Label the k infectees randomly and let Ui be the time between
infectee i was infected until the infector is diagnosed, then U1, ..., Uk are hence independently
and identically distributed as U ∼ U(0, τI). See Figure 3.2 for an illustration.

In summary, we can study the early stage of the SEIR network epidemic model with
manual and digital contact tracing using an eight-type branching process EMD with the
types listed in Table 3.1.

Let M (MD) = (m
(MD)
ij ) be the mean-offspring matrix (8-by-8) of EMD, where the element

m
(MD)
ij represents the expected number of secondary infections of type j produced by a

single infected individual of type i, i, j = 1, . . . , 8. The expressions of m
(MD)
ij are given in

Section 3.2.1. Further, let RMD be the largest eigenvalue of M (MD), it follows by the results
from multi-type branching process theory [1, 11] that the branching process EMD dies out
with probability 1 if RMD ≤ 1 and if RMD > 1, EMD grows beyond all limits with positive
probability. As a consequence, the epidemic having RMD > 1 may result in a major outbreak,
while there will be a minor outbreak with probability 1 if RMD ≤ 1. We thus refer RMD to
as the effective reproduction number for the epidemic with manual and digital tracing.

3.2.1 Calculation of the mean-offspring matrix M (MD)

We now derive all elements of the 8-by-8 mean offspring matrix, where the types are labelled
as in Table 3.1. We start with offspring of types 1-3 being non-app-users. First, we note
that digital CT links are exclusively formed between app-users. Consequently, non-app-users,
categorized as types 1, 2, and 3, do not generate offspring with digital CT links, leading to
the following equations:

m
(MD)
16 = m

(MD)
18 = m

(MD)
26 = m

(MD)
28 = m

(MD)
36 = m

(MD)
38 = 0. (4)

First, we note that each infectious contact an individual (app-user or not) makes, on the
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Table 3.1 Description of the eight types in the limiting multi-type branching process EMD

type non-/app-user infected by digital CT link manual CT link
1

0 (non-app-user)
0 (local contacts)

0 (No)
0 (No)

2 0 (local contacts) 1 (Yes)
3 1 (global contacts) 0 (No)

4

1 (app-user)
0 (local contacts)

0 (No) 0 (No)
5 0 (No) 1 (Yes)
6 1 (Yes) 0/1
7

1 (global contacts)
0 (No)

0 (No)
8 1 (Yes)

network or globally, is with an app-user with probability πA and with a non-app-user with
probability (1 − πA). Secondly, we note that infected individuals who are not traced are
diagnosed with probability pD. If such a diagnosed individual is a non-app-user, its infectees
through the network each have a manual CT link independently with probability pM , and
all global infectees lack CT links. If the diagnosed individual is an app-user, then all its
app-using infectees have a digital CT link, its non-app-user network infectees have a manual
CT link independently with probability pM , and all its non-app-user global-infectees lack
CT-links.

Consider now an individual without any CT link (types 1,3,4,7), which hence will not be
traced. During the infectious period τI , this individual generates, on average, βGτI number
of global infections. The number of local (network) infections depends on whether the
individual was infected through the network or globally. If infected through the network,
the individual has on average E[D̃ − 1]pI local infections, and on average E[D]pI local
infections if infected globally, where pI is defined in Equation (1).

These observations imply that an individual i0 of type 1 (non-app-user infected locally
without any CT link) has the following mean number of offspring. All global offspring lack

CT links, yielding m
(MD)
13 = βGτI(1 − πA) and m

(MD)
17 = βGτIπA. If i0 is diagnosed, each

local offspring has a manual CT link with probability pM , resulting in m
(MD)
12 = E[D̃ −

1]pIpDpM(1 − πA) and m
(MD)
15 = E[D̃ − 1]pIpDpMπA. If not diagnosed, local offspring do

not have CT links, leading to m
(MD)
11 = E[D̃ − 1]pI(1 − pDpM)(1 − πA) and m

(MD)
14 =

E[D̃ − 1]pI(1− pDpM)πA.
The expressions for non-app-users without CT links but infected globally (type 3) mirror

those for type 1, but with E[D̃ − 1] replaced by E[D] in the local infections.
For app-users without CT links (types 4, 7) who will hence not be traced, global non-

app-using infections lack CT links, resulting in m
(MD)
43 = m

(MD)
73 = βGτI(1− πA). Diagnosed

app-users establish digital CT links with all app-using global offspring, leading to m
(MD)
48 =

m
(MD)
78 = βGτIpDπA and

m
(MD)
45 = m

(MD)
75 = 0. (5)

Undiagnosed app-users do not form CT links with their app-using global offspring, resulting
in m

(MD)
47 = m

(MD)
77 = βGτI(1− pD)πA. For app-users infected by local contacts (type 4) and
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diagnosed, each local offspring is either linked through manual CT link with probability pM
or through digital CT link if they are app-users, yielding m

(MD)
41 = m

(MD)
11 , m

(MD)
42 = m

(MD)
12

and m
(MD)
46 = E[D̃ − 1]pIpDπA. Without diagnosis, local app-using offspring lack CT links,

leading to m
(MD)
44 = E[D̃− 1]pI(1− pD)πA. The structure of m

(MD)
7j for app-users infected by

global contacts (type 7) mirrors that of m
(MD)
4j (j = 1, ..., 8), with E[D̃−1] replaced by E[D].

Next, we focus on individuals with manual CT links (type 2, 5). First, we let i0 be of
type 2, a non-app-user who has a manual CT link. The duration from i0’s infection to the
diagnosis of the infector follows a uniform distribution U ∼ U(0, τ). If U + TD ≤ TL, i0 is
latent at the time of being traced and thus has no offspring. With probability

p
(M)
R := P(τI ≤ U − TL + TD), (6)

i0 recovers naturally before the end of the tracing delay. In this case, i0 generates offspring
during τI and behaves like type-1 individuals (non-app-user without CT links). This implies

thatm
(MD)
22 = p

(M)
R m

(MD)
12 andm

(MD)
25 = p

(M)
R m

(MD)
15 . On the other hand, if 0 < U−TL+TD <

τI , i0 is infectious while being traced (see Figure 3.2 for an illustration showing the three
scenarios).

Figure 3.2 Example of the lifespans of three infectees (labelled in the order of time of infection)

having manual CT link with same infector, where Ui
iid∼ U [0, τI ], TLi

iid∼ TL and TDi

iid∼ TD, i = 1, 2, 3.
Infectee 1 is traced before the natural infectious period ends (0 < U + TD − TL < τI); infectee 2
is recovered before being traced (U + TD − TL > τI); infectee 3 is traced during the latent period
(U + TD − TL < 0).

The probability of i0 infecting a given neighbour and that i0 is successfully contact traced
is given by

p
(M)
I := E[(1− e−βL(U−TL+TD))1{0<U+TD−TL<τI}]. (7)

Consequently, such traced i0 is expected to have E[D̃ − 1]p
(M)
I number of local offspring,

and if i0 recovered before being traced, the average number of local offspring is E[D̃ −
1]pIp

(M)
R . Only in the latter case could the local offspring have manual CT links. This leads

to m
(MD)
21 = E[D̃ − 1]p

(M)
I (1 − πA) + m

(MD)
11 p

(M)
R , m

(MD)
24 = E[D̃ − 1]p

(M)
I πA + m

(MD)
14 p

(M)
R ;

m
(MD)
22 = m

(MD)
12 p

(M)
R and m

(MD)
25 = m

(MD)
15 p

(M)
R .
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For a traced i0 , the effective infectious period is max{0, U − TL + TD}, during which
the average number of global offspring is given by βGE[(U +TD −TL)10<U+TD−TL<τI ], where

all the offspring lack CT links. The resulting expressions are m
(MD)
23 = βGE[(U + TD −

TL)10<U+TD−TL<τI ](1−πA)+m
(MD)
13 p

(M)
R , andm

(MD)
27 = βGE[(U+TD−TL)10<U+TD−TL<τI ]πA+

m
(MD)
17 p

(M)
R , where

βGE[(U + TD − TL)1{0<U+TD−TL<τI}]

=
βG

2τI
E[(τI + TD − TL)

21{−τI<TD−TL<0}] +
βG

2τI
{τ 2IP(0 ≤ TD − TL < τI)

− E[(TD − TL)
21{0≤TD−TL<τI}]}

(8)

(the equality follows from calculation in [6] p.25).
We now assume i0 is an app-user with a manual but no digital CT link (type 5), then

all the app-using offspring would have digital CT links if i0 is diagnosed before traced (with

probability p
(M)
R pD), This leads to m

(MD)
56 = p

(M)
R m

(MD)
46 , m

(MD)
58 = p

(M)
R m

(MD)
48 , and

m
(MD)
55 = 0. (9)

Despite this, i0 generates the type-j offspring for j = 1, 2, 3, 4, 7 in the same way as for type
2 individuals, so m

(MD)
5j = m

(MD)
2j .

Finally, we assume i0 is an app-user with a digital CT link (type 6, 8). Due to the
instantaneous nature of digital tracing, i0 is immediately traced upon the diagnosis of the
infector. It implies that the probability of i0 recovering before being traced is given by

P(τI ≤ U − TL) = 0.

Consequently, i0 could only generate offspring without CT links, implying that

m
(MD)
62 = m

(MD)
65 = m

(MD)
66 = m

(MD)
68 = m

(MD)
82 = m

(MD)
85 = m

(MD)
86 = m

(MD)
88 = 0.

Hence, with probability 1, i0 is traced and infectious of duration max{0, U − TL} (see il-
lustration in Figure 3.3). The probability of i0 infecting a given neighbor is thus given
by

p
(D)
I := E[(1− e−βL(U−TL))1{U−TL≥0}], (10)

which implies that i0 has, on average, E[D̃ − 1]p
(D)
I number of local offspring if infected

through the network. This results in m
(MD)
61 = E[D̃ − 1]p

(D)
I (1 − πA) and m

(MD)
64 = E[D̃ −

1]p
(D)
I πA. The elements m

(MD)
81 and m

(MD)
84 have the respective same structure as m

(MD)
61 and

m
(MD)
64 , but with E[D̃ − 1] replaced by E[D].
While infectious, i0 also produces βGE[(U − TL)1{U−TL≥0}] average number of global

offspring, which yields m
(MD)
63 = m

(MD)
83 = βGE[(U − TL)1{U−TL≥0}](1 − πA) and m

(MD)
67 =

m
(MD)
87 = βGE[(U − TL)1{U−TL≥0}]πA, where

βGE[(U − TL)1{U−TL≥0}] =
βG

2τI
E[(τI − TL)

21{TL<τI}],

which is derived by setting TD ≡ 0 in Equation (8).

To summarize, the non-zero elements m
(MD)
ij for i, j = 1, . . . , 8, are as follows.
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Figure 3.3 Example of the lifespans of two infectees (labelled in the order of time of infection)

having digital CT link with same infector, where U1, U2
iid∼ U [0, τI ] and TL1 , TL2

iid∼ TL. Infectee 1
is traced before the natural infectious period ends (0 < U − TL < τI); infectee 2 is traced during
the latent period (U − TL < 0).

m
(MD)
11 = E[D̃ − 1]pI(1− pDpM )(1− πA) (11)

m
(MD)
12 = E[D̃ − 1]pIpDpM (1− πA) (12)

m
(MD)
13 = βGτI(1− πA) (13)

m
(MD)
14 = E[D̃ − 1]pI(1− pDpM )πA (14)

m
(MD)
15 = E[D̃ − 1]pIpDpMπA (15)

m
(MD)
17 = βGτIπA (16)

m
(MD)
21 = E[D̃ − 1](pIp

(M)
R (1− pDpM )

+ p
(M)
I )(1− πA) (17)

m
(MD)
22 = E[D̃ − 1]pIp

(M)
R pDpM (1− πA) (18)

m
(MD)
23 = βG{E[(U + TD − TL)10<U+TD−TL<τI ]

+ τIp
(M)
R }(1− πA) (19)

m
(MD)
24 = E[D̃ − 1](pIp

(M)
R (1− pDpM )

+ p
(M)
I )πA (20)

m
(MD)
25 = E[D̃ − 1]pIp

(M)
R pDpMπA (21)

m
(MD)
27 = βG{E[(U + TD − TL)10<U+TD−TL<τI ]

+ τIp
(M)
R }πA (22)

m
(MD)
31 = E[D]pI(1− pDpM )(1− πA) (23)

m
(MD)
32 = E[D]pIpDpM (1− πA) (24)

m
(MD)
33 = βGτI(1− πA) (25)

m
(MD)
34 = E[D]pI(1− pDpM )πA (26)

m
(MD)
35 = E[D]pIpDpMπA (27)

m
(MD)
37 = βGτIπA (28)

m
(MD)
41 = E[D̃ − 1]pI(1− pDpM )(1− πA) (29)

m
(MD)
42 = E[D̃ − 1]pIpDpM (1− πA) (30)

m
(MD)
43 = βGτI(1− πA) (31)

m
(MD)
44 = E[D̃ − 1]pI(1− pD)πA (32)

m
(MD)
46 = E[D̃ − 1]pIpDπA (33)

m
(MD)
47 = βGτI(1− pD)πA (34)

m
(MD)
48 = βGτIpDπA (35)

m
(MD)
51 = E[D̃ − 1](pIp

(M)
R (1− pDpM )

+ p
(M)
I )(1− πA) (36)

m
(MD)
52 = E[D̃ − 1]pIp

(M)
R pDpM (1− πA) (37)

m
(MD)
53 = βG{E[(U + TD − TL)10<U+TD−TL<τI ]

+ τIp
(M)
R }(1− πA) (38)

m
(MD)
54 = E[D̃ − 1](pIp

(M)
R (1− pDpM )

+ p
(M)
I )πA (39)

m
(MD)
56 = E[D̃ − 1]pIp

(M)
R pDπA (40)

m
(MD)
57 = βG{E[(U + TD − TL)10<U+TD−TL<τI ]

+ τIp
(M)
R }πA (41)

m
(MD)
58 = βGτIp

(M)
R pDπA (42)

m
(MD)
61 = E[D̃ − 1]p

(D)
I (1− πA) (43)

m
(MD)
63 = βGE[(U − TL)1{U−TL≥0}](1− πA) (44)

m
(MD)
64 = E[D̃ − 1]p

(D)
I πA (45)

m
(MD)
67 = βGE[(U − TL)1{U−TL≥0}]πA (46)

m
(MD)
71 = E[D]pI(1− pDpM )(1− πA) (47)

m
(MD)
72 = E[D]pIpDpM (1− πA) (48)
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m
(MD)
73 = βGτI(1− πA) (49)

m
(MD)
74 = E[D]pI(1− pD)πA (50)

m
(MD)
76 = E[D]pIpDπA (51)

m
(MD)
77 = βGτI(1− pD)πA (52)

m
(MD)
78 = βGτIpDπA (53)

m
(MD)
81 = E[D]p

(D)
I (1− πA) (54)

m
(MD)
83 = βGE[(U − TL)1{U−TL≥0}](1− πA) (55)

m
(MD)
84 = E[D]p

(D)
I πA (56)

m
(MD)
87 = βGE[(U − TL)1{U−TL≥0}]πA (57)

where pI is given by Equation (1), p
(M)
R in Equation (6), p

(M)
I in Equation (7) and p

(D)
I in

Equation (10).

3.3 Approximation of the early epidemic with manual contact
tracing only

In the previous section, we analyzed the initial stage of the epidemic with both manual and
digital tracing and derived a reproduction number RMD, determining whether there may be
a major outbreak. In this section, our interest lies in the epidemic with manual tracing only.
One straightforward approach would be to set πA = 0 in the elements of M (MD) and deriving
its largest eigenvalue RM := RMD(πA = 0) which inherits the epidemic threshold property
from RMD. Hence, we refer RM as the effective reproduction number for the epidemic with
manual tracing only.

Another way is that still assuming a large n, we could approximate the early phase of
the epidemic with manual tracing by a simpler three-type branching process, denoted by
EM , with three types described in Table 3.2. Instead of considering four binary categories in
Section 2.2, since digital tracing is not implemented (no app and digital CT links), we have
only two binary categories: infected through the network or by global contacts, with manual
CT link or not. Due to our assumption about manual tracing, those infected globally will
never be reported (so no CT link). As previously discussed in Section 3.2, the infection times
of infectees with manual CT links are distributed uniformly and independently on (0, τI).

Table 3.2 The three types of limiting branching process EM

type infected by manual CT link
1 0 (local contacts) 0 (No)
2 0 (local contacts) 1 (Yes)
3 1 (global contacts) 0 (No)

Let M (M) = (m
(M)
ij ) be the mean-offspring matrix (3-by-3) of EM , the expressions of

m
(M)
ij are presented as follows. The calculations are analogous to Section 3.2.1.

m
(M)
11 = E[D̃ − 1]pI(1− pDpM ) (58)

m
(M)
12 = E[D̃ − 1]pIpDpM (59)

m
(M)
13 = βGτI (60)

m
(M)
21 = E[D̃ − 1](p

(M)
I + pIp

(M)
R (1− pDpM )) (61)

m
(M)
22 = E[D̃ − 1]pIp

(M)
R pDpM (62)

m
(M)
23 = βG{E[(U + TD − TL)1{0<U+TD−TL<τI}]

+ τIp
(M)
R } (63)

m
(M)
31 = E[D]pI(1− pDpM ) (64)
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m
(M)
32 = E[D]pIpDpM (65) m

(M)
33 = βGτI , (66)

with pI in Equation (1), p
(M)
R in Equation (6) and p

(M)
I in Equation (7).

We now show that the dominant eigenvalue of M (M) is identical to the one of M (MD)

with πA = 0. It implies that the two approaches produce the same reproduction number RM

for the epidemic with manual tracing.
Setting πA = 0 in Equations (11)-(57) gives that

M (MD)(πA = 0) =



m
(M)
11 m

(M)
12 m

(M)
13 0 0 0 0 0

m
(M)
21 m

(M)
22 m

(M)
23 0 0 0 0 0

m
(M)
31 m

(M)
32 m

(M)
33 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

A 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


with some 5-by-3 matrix A. Let Ik be a k-by-k identity matrix. Then the eigenvalues of
M (MD) with πA = 0 solve the equation det(M (MD)(πA = 0) − λI8) = 0. Nevertheless,
M (MD)(πA = 0) − λI8 is a block-lower-triangle matrix (with 0’s in the upper right corner).
As a consequence, we have

det(M (MD)(πA = 0)− λI8) = det(M (M) − λI3)det(−λI5) = (−λ)5det(M (M) − λI3),

implying that the non-zero roots of det(M (MD)(πA = 0) − λI8) = 0 coincide with those of
det(M (M) − λI3) = 0. The largest eigenvalue of M (MD) with πA = 0 is hence identical with
the largest eigenvalue of M (M).

3.4 Approximation of the early epidemic with digital contact trac-
ing only

Similarly, if our focus is epidemic with digital tracing only, we could analyze the threshold
behaviour via setting pM = 0 in M (MD). The largest eigenvalue of M (MD)(pM = 0), denoted
by RD, is called the effective reproduction number for the epidemic with digital tracing only.

On the other hand, we can approximate the early phase of this special case by a six-type
branching process ED with types shown in Table 3.3, assuming a large population. Clearly,
we do not have the binary category of having a manual CT link or not. The remaining binary
categories are non-app-user/app-user, infected locally/globally, with digital CT link or not.
Then we would have the 23 = 8 types. However, since non-app-users will never be traced in
this model, the two types where non-app-users have digital CT links are not possible. Hence
we get 8− 2 = 6 types (see Table 3.3).

Let M (D) = (m
(D)
ij ) be the mean-offspring matrix (6-by-6) of ED, the elements m

(D)
ij are

given as follows.
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Table 3.3 The six types in the limiting branching process ED

type non-/app-user infected by digital CT link
1 0 (non-app-user) 0 (local contacts) 0 (No)
2 0 (non-app-user) 1 (global contacts) 0 (No)
3 1 (app-user) 0 (local contacts) 0 (No)
4 1 (app-user) 0 (local contacts) 1 (Yes)
5 1 (app-user) 1 (global contacts) 0 (No)
6 1 (app-user) 1 (global contacts) 1 (Yes)

m
(D)
11 = E[D̃ − 1]pI(1− πA) (67)

m
(D)
12 = βGτI(1− πA) (68)

m
(D)
13 = E[D̃ − 1]pIπA (69)

m
(D)
14 = 0 (70)

m
(D)
15 = βGτIπA (71)

m
(D)
16 = 0 (72)

m
(D)
21 = E[D]pI(1− πA) (73)

m
(D)
22 = βGτI(1− πA) (74)

m
(D)
23 = E[D]pIπA (75)

m
(D)
24 = 0 (76)

m
(D)
25 = βGτIπA (77)

m
(D)
26 = 0 (78)

m
(D)
31 = E[D̃ − 1]pI(1− πA) (79)

m
(D)
32 = βGτI(1− πA) (80)

m
(D)
33 = E[D̃ − 1]pIπA(1− pD) (81)

m
(D)
34 = E[D̃ − 1]pIπApD (82)

m
(D)
35 = βGτIπA(1− pD) (83)

m
(D)
36 = βGτIπApD (84)

m
(D)
41 = E[D̃ − 1]p

(D)
I (1− πA) (85)

m
(D)
42 = βGE[(U − TL)1{U−TL≥0}](1− πA) (86)

m
(D)
43 = E[D̃ − 1]p

(D)
I πA (87)

m
(D)
44 = 0 (88)

m
(D)
45 = βGE[(U − TL)1{U−TL≥0}]πA (89)

m
(D)
46 = 0 (90)

m
(D)
51 = E[D]pI(1− πA) (91)

m
(D)
52 = βGτI(1− πA) (92)

m
(D)
53 = E[D]pIπA(1− pD) (93)

m
(D)
54 = E[D]pIπApD (94)

m
(D)
55 = βGτIπA(1− pD) (95)

m
(D)
56 = βGτIπApD (96)

m
(D)
61 = E[D]p

(D)
I (1− πA) (97)

m
(D)
62 = βGE[(U − TL)1{U−TL≥0}](1− πA) (98)

m
(D)
63 = E[D]p

(D)
I πA (99)

m
(D)
64 = 0 (100)

m
(D)
65 = βGE[(U − TL)1{U−TL≥0}]πA (101)

m
(D)
66 = 0 (102)

with pI in Equation (1) and p
(D)
I in Equation (10).

As in the manual-only case, it holds that the two matrices, M (D) andM (MD) with pM = 0,
have the same largest eigenvalue RD which we now show.
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Setting pM = 0 in Equations (11)-(57) gives that

M (MD)(pM = 0) =



m
(D)
11 0 m

(D)
12 m

(D)
13 0 m

(D)
14 m

(D)
15 m

(D)
16

∗ 0 ∗ ∗ 0 0 ∗ 0

m
(D)
21 0 m

(D)
22 m

(D)
23 0 m

(D)
24 m

(D)
25 m

(D)
26

m
(D)
31 0 m

(D)
32 m

(D)
33 0 m

(D)
34 m

(D)
35 m

(D)
36

∗ 0 ∗ ∗ 0 0 ∗ 0

m
(D)
41 0 m

(D)
42 m

(D)
43 0 m

(D)
44 m

(D)
45 m

(D)
46

m
(D)
51 0 m

(D)
52 m

(D)
53 0 m

(D)
54 m

(D)
55 m

(D)
56

m
(D)
61 0 m

(D)
62 m

(D)
63 0 m

(D)
64 m

(D)
65 m

(D)
66


,

where ∗ are some constants. Let Ik be a k-by-k identity matrix, the eigenvalues ofM (MD)(pM =
0) solves det(M (MD)(pM = 0) − λI8) = 0. By reordering the second and fifth rows to be-
come the last two rows and similarly moving the second and fifth columns to the end, we
transform the matrix M (MD)(pM = 0) − λI8 into a block-lower-triangular form. Moreover,
interchanging two rows leaves the value of the determinant unchanged, while swapping two
columns only reverses the sign of the determinant. Consequently, we obtain

0 = det(M (MD)(pM = 0)− λI8) = det

(
M (D) − λI6 0

B −λI2

)
= λ2det(M (D) − λI6),

where B is some 2-by-6 matrix, and the last equality is due to the determinant properties
of a block-lower-triangular matrix and det(−λI2) = λ2. As a result, the non-zero roots of
det(M (MD)(pM = 0) − λI8) = 0 align with those of det(M (D) − λI6) = 0, implying that
M (MD)(pM = 0) and M (D) share the same largest eigenvalue.

In the next section, we illustrate our findings to better understand the effect of manual
and digital contact tracing on the reproduction numbers.

4 Numerical Illustrations

4.1 Parameter setting

In our numerical illustration, we focus on varying the parameters associated with contact
tracing while keeping the other parameters fixed as follows. We assume the mean degree of
the (social) network to equal µ = 5, loosely motivated by the average household size in the
EU being 2.3, and each person is assumed to meet on average 3 additional people regularly
[21]. Further, we assume the deterministic infectious period to have duration τI = 5 (days)
[14], and we also assume that the latency period is deterministic with duration TL ≡ 4 (days)
[8,14] having COVID-19 in mind. We assume the basic reproduction number equals R0 = 3,
but we also consider R0 = 1.5, which could reflect a situation with physical distancing
(contact rates are reduced accordingly).

In Section 4.5, we see how the degree distribution D influences the effectiveness of contact
tracing by fixing the mean degree µ but varying its variance σ2. In the other sections, we
assume that D ∼ Poi(µ), so µ = σ2. Based on the expression of R0 = βGτI+µpI in Equation
(3), βGτI can be viewed as the average number of global infections by a typical infective, and
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µpI as the average number of local infections. We then define α = µpI/R0 as the fraction
of network transmission. Due to that manual tracing is targeted only at infections on the
network, α could have a non-negligible impact on the effectiveness of manual tracing. For
this reason, at a given R0, we choose contact rates βL and βG so that α = 50% (global and
local infections have “equal weights” [3,19]) and α = 75% (more local than global infections)
for comparison. Parameter values are summarized in Table 4.1.

The code used to generate the figures presented in this section is publicly available at
[24].

Table 4.1 List of parameter values used in Section 4

Parameter Values
Mean degree µ = 5 [21]
Latent period TL ≡ 4 days (3.7 days in [8], 4.6 days in[14])
Infectious period τI = 5 days [14]
fraction of network transmission α = 50% or 75%
Basic reproduction number R0 = 3 or 1.5

4.2 The effectiveness of manual and digital contact tracing

We start with investigating the effect of the manual reporting probability pM and the app-
using fraction πA on RMD while keeping the probability of being diagnosed pD = 0.8 (same
as used in [6, 15]) and the tracing delay TD ≡ 3 [15] fixed. As shown in Figure 4.1, RMD

is monotonically decreasing in both pM and πA as expected, and the app-using fraction πA

seems to be more influential in reducing RMD than pM . However, when R0 = 3, it is not
possible to reduce RMD below 1 for realistic values on pM and πA, meaning that contact
tracing alone cannot prevent an outbreak. Even if R0 = 1.5, a high fraction of app-users is
needed to prevent an outbreak, or when most infections happen on the network (α = 75%),
effective manual contact tracing will also do the job with a moderate app-using fraction.

To illustrate the interplay between manual and digital tracing, we introduce rM , rD and
rMD as the relative reductions in R0 attributed to manual, digital and both types of contact
tracing, respectively:

RM = R0(1− rM), RD = R0(1− rD), RMD = R0(1− rMD).

If manual and digital contact tracing would have acted independently, then the reproduction
number for the combined model would have been R0(1− rM)(1− rD). This raises a question:
How does (1− rDM) compare to the product (1− rM)(1− rD)?

In Figure 4.2a, we plot the critical combinations of (pM , πA) where RDM = R0(1 −
rMD) = 1 against the scenarios where R0(1 − rM)(1 − rD) = 1. It shows that the true
effect of combining manual and digital tracing is smaller than the product of their separate
effect! One reason could be that the timing of an infection within the infectious period
simultaneously influences the efficacy of both manual and digital contact tracing: an infection
at the beginning of the infectious period would make both digital and manual contact tracing
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Figure 4.1 Heatmaps of effective reproduction number RMD varying with pM ∈ [0, 1] and πA ∈
[0, 1] with fixed pD = 0.8, TD ≡ 3, the contact rates βL, βG are chosen so that there are 50%
(top) and 75% (bottom) network transmission given that R0 = 3 (left panel) and 1.5 (right panel)
The black solid lines indicate where RMD = 1; the black dashed lines in the left panel are for
RMD = 1.5, 2, 2.5 and in the right panel are for RMD = 1.1, 1.2, 1.3, 1.4.

have hardly any effect, and vice versa if the infection happens just before being diagnosed.
In the latter case, one of the two types of contact tracing would be sufficient, and in the
former, adding an additional type of contact tracing hardly helps. This argument suggests
that the combined effect is smaller than had they acted independently, as observed in Figure
4.2a.

We then analyze the role of the network transmission fraction α on the efficiency of
contact tracing (Figure 4.2b). Assuming that pM = πA = 0.5, the effect of manual tracing
rM increases with more network transmissions (as expected: manual contact tracing only
happens among network transmissions), while the there is hardly any effect of digital tracing,
in fact, rD actually decreases very slightly with α. And the effectiveness of the combined
tracing increases with α because manual contact tracing is more effective.

4.3 The effectiveness of manual contact tracing

Next, we evaluate how the tracing delay TD, the reporting probability pM , and the diag-
nosis coverage pD influence the effectiveness of the manual contact tracing by means of the
reproduction number RM . Figure 4.3 shows that shortening the tracing delay, increasing
the manual tracing probability pM , and increasing the diagnosis probability pD all reduce
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(a) (b)

Figure 4.2 a): Plot of critical combination (pM , πA) such that RMD = 1 (solid curves) and
R0(1 − rM )(1 − rD) = 1 (dashed curves), where pD = 0.8 and TD ≡ 3 are fixed; and the contact
rates βL, βG are chosen for α = 50%, 75%; R0 = 3 and 1.5. b): Plot of the reductions rM , rD and
rMD of R0 against the fraction α of network transmission ∈ [0.01, 1], where R0 = 3, pD = 0.8,
TD ≡ 3 and pM = πA = 0.5.

the reproduction number RM as expected. Yet, we see from Figure 4.3a that even perfect
manual tracing (performed immediately and all contacts being reported) cannot reduce the
reproduction number RM from an initial value of R0 = 3 to below 1, primarily due to global
transmissions not being traced. The extent of local transmission plays an important role in
determining RM , with more local transmission leading to lower RM under the same (pD, pM)
or (TD, pM) configurations.

Figures 4.3b reveals that for a baseline reproduction number of R0 = 1.5, achieving
RM = 1 is feasible with pM ≈ 0.8 and no tracing delay, provided that α = 50%. If the
network transmission increases to 75%, the tracing delay must be confined to a maximum
of two days, or pM must be elevated to at least 0.6 to reach RM = 1.

To conclude, manual contact tracing is only effective if a large fraction of contacts are
traced and the tracing delay is short, but it cannot alone reduce RM below 1 if R0 is larger
than 2 say.

4.4 The effectiveness of digital contact tracing

We then quantify the effect of the fraction of diagnosis pD and the fraction of app-users πA

on the effectiveness of digital tracing (Figure 4.4). It is observed that RD is monotonically
decreasing with both pD and πA as expected. In particular, the app-using fraction πA affects
RD more than pD, the fraction of cases being diagnosed (by testing). With perfect testing
(pD = 1), meaning that every infected individual is diagnosed, we need πA ≥ 0.6 for RD ≤ 1.

We now numerically compare the effect of digital vs. manual contact tracing. For this
comparison, we arbitrarily fix the delay in manual contact tracing to equal TD ≡ 3 (deter-
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(a) (b)

Figure 4.3 Heatmaps of effective reproduction number RM varying with pM and pD in the upper
panel when tracing delay TD ≡ 3 days; the lower panel shows the heatmaps of RM varying with
pM and deterministic tracing delay TD ∈ [0, 6] while keeping pD = 0.8. Contact rates βL, βG are
chosen so that there are α = 50% and 75% transmissions on the network when a): R0 = 3; b):
R0 = 1.5.

Figure 4.4 Heatmaps of effective reproduction number RD varying with pD and πA when contact
rates βL, βG are chosen so that there are 50% transmission on network when R0 = 3 and 1.5.

ministic) and the diagnosis probability to equal pD = 0.8. In Figure 4.5, we compare rM and
rD (the reduction in the reproduction numbers) when varying the app-using fraction πA and
manual reporting probability pM . In the figure, we plot the reduction of both reproduction
numbers assuming pM = πA. It is seen that digital contact tracing outperforms manual
contact tracing except when pM = πA are small. The explanation is that manual tracing
has a fairly long delay (3 days) for contact tracing to happen - the main advantage of digital
tracing is that delays are dramatically shortened. Another disadvantage of manual tracing
is that it only happens on contacts occurring on the social network (rarely can one name
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people on the bus or similar), whereas digital contact tracing happens on all close contacts
between app-users. There is, of course, no reason to assume these pM and πA to equal each
other, so a better comparison would be to compare the two curves at realistic values of pM
and πA, respectively.

A disadvantage with digital contact tracing is that it only happens for contacts where
both the infector and infectee are app-users, something which happens with probability π2

A.
This is why manual tracing is more effective for small values of pM = πA, and in most
Western countries, the app-using fraction never became very big. In the figure, we also plot
the reduction rD as a function of π2

A, which is seen to outperform manual tracing for all
values of π2

A = pM .

Figure 4.5 Plot of reduction rM and rD with pM , πA, and π2
A, where βL, βG are chosen so that

there are 50% transmission on network when R0 = 3, pD = 0.8 and TD ≡ 3.

4.5 The effect of degree distribution

We now examine the impact of the variance σ2 of the degree distribution D on the efficiency
of contact tracing. As illustrated in Figure 4.6, all four reproduction numbers R0, RM , RD

and RMD are monotonically increasing with σ2. Notably, the pairs R0 and RD as well as RM

and RMD seem to increase similarly with respect to σ2, while the rate of increase for RM is
comparatively slower than that for RD.

This could be explained as follows: Irrespective of σ2, the degree distribution of individu-
als identified via digital CT links is the same as that of the general infected individuals (both
have the mixed degree distribution P(local infection)D̃ + P(global infection)D). However,
individuals discovered through manual tracing tend to have a larger number of network con-
tacts because they were infected through the network, so they have the size-biased degree
distribution D̃, which is affected more by an increase in σ2 compared to D.

4.6 Comparison with related results

Finally, we compare the effectiveness of contact tracing as modelled herein with the contact
tracing in our prior work [25]. The model [25] assumed both manual and digital tracing to be
forward, backward, and iterative without delay; in the current work, we only consider forward
contact tracing and non-iterative, and that manual contact tracing is equipped with a delay.
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(a) (b)

Figure 4.6 a): Plot of the reproduction numbers R0, RM , RD and RMD against σ2 ∈ [0, 100].
b): Plot of the corresponding reduction rM , rD and rMD with σ2 ∈ [0, 100]. In both plots, we
fix contact rates µβL = βG so that R0(σ = 0) = 3, as well as pM = 0.5, pD = 0.8, TD ≡ 3 and
πA ≈ 0.41 so that RD and RM (rD and rM ) start from the same value when σ = 0.

The prior model hence represents a highly optimistic scenario, whereas the current model
adopts a more conservative set of assumptions. Another difference is that the prior model
also assumed a stochastic SIR epidemic in a homogeneously mixing population, whereas the
current model allows for a latency period (SEIR model) and transmissions happening on a
network as well as through homogeneous mixing.

Figure 4.7 illustrates the critical combination of parameters (pD, pM), (pD, πA) and (pM , πA)
such that the reproduction numbers RM , RD and RMD equal 1 for both prior model in [25]
and current model. In the situations with manual/digital tracing only, for the prior model
[25], we fix the rate of natural recovery γ = 1/5 and the contact rate β = 3/5 (so the
basic reproduction number β/γ in [25] is 3). Further, we vary the fraction δ/(δ + γ) (δ is
the rate of diagnosis in [25]), which aligns with our pD in the current model. Considering
the average infectious period in the prior model [25] is 1/(δ + γ), we set τI in the present
model to be (1 − pD/γ). This ensures that both models share the same average infectious
period. Moreover, we calibrate the contact rates βL and βG in the present model so that
two critical curves for the manual-only and digital-only model (in the left and middle plots)
start from the same point, which is done as follows. We first fix µ = 5, α = 50% and in the
manual-only model TD ≡ 3. By obtaining the critical pD = 2/3 at which RM(pM = 0) in
the previous model equals 1, we get a corresponding critical τI = 5/3. We then choose βL

and βG such that RM(pM = 0) in the present model equals to 1. In the combined case, for
the present model, we fix pD = 0.8 and contact rates βL, βG are chosen such that R0 = 3
with µ = 5, α = 50%, while in the prior model [25], we set δ = pD/τI = 0.8/5 = 4/25 and
γ = 1/5− δ = 1/25 (so the mean infectious period 1/(δ + γ) = τI = 5), and β = 3/5.

It is not surprising that the overall effectiveness of the combined manual and digital
tracing in the current study is lower, attributed to its conservative assumptions, including
one-step, forward-only tracing, and delays in manual tracing. In particular, the efficacy of
manual contact tracing is markedly smaller under these constraints. Conversely, for digital
tracing, the critical curves of both models are similar until the app-using fraction exceeds
50%.
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Figure 4.7 Plots of two critical curves such that the reproduction number derived in [25] and
in this paper for the epidemic with manual-only (left), digital-only (middle) and combined model
(right), equals 1, given that TD ≡ 3 and in the combined model pD = 0.8.

5 Discussion

This paper was concerned with an SEIR epidemic spreading on a (social) network as well
as through random contacts, incorporating manual and digital contact tracing. The early
stage of the epidemic, when combining manual and digital contact tracing, was shown to
converge to an eight-type branching process as the population size n → ∞. The reproduction
number RMD was derived as the largest eigenvalue of the mean offspring matrix of the eight-
type branching process. For scenarios limited to a single tracing strategy, the respective
reproduction numbers RD and RM were obtained by setting the manual reporting probability
pM or the app-using fraction πA to 0 in RMD. Alternatively, the initial phase of the epidemic
was approximated by a three-type branching process for manual tracing and a six-type
branching process for digital tracing.

Our numerical analysis shed light on the impact of various model parameters on the
reproduction numbers. An increase in the app-using fraction πA enhances digital tracing
effectiveness, while manual tracing can be improved by either increasing reporting probability
pM or reducing the tracing delays TD. It was shown that πA plays a more significant role
in controlling the epidemic than the manual reporting probability pM . Another observation
was that the relative efficacy of manual tracing vs digital contact tracing was amplified
with increased network transmissions as well as when the variance of the network degree
distribution is large since manual tracing only takes place for network contacts, and such
contacts typically have a larger degree than globally infected individuals.

Despite these insights, several challenges remain to be solved for future work. A lim-
itation of our model is that we restricted the infectious period to be deterministic so we
could have a branching process approximation for the early epidemic, which seems harder
in general. Further, we have only assumed one step instead of iterative tracing, while in
most empirical cases, traced individuals that are infectious would be further questioned,
thus possibly triggering manual and/or digital tracing, and so on. Moreover, we have not
considered that app-using might have assortative nature, i.e., app-users’ friends are more
likely to use the app as well. It would be interesting to see how that influences the overall
effectiveness of digital contact tracing. We also ignored the presence of clustering in the
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social networks, which would have consequences for the impact of both disease spreading
and contact tracing [12, 13]. An interesting problem not considered in the present paper is
fatigue against contact tracing. An empirically observed problem with contact apps was that
when incidence grew large, app-users would receive warnings very frequently, thus leading
to fewer people following the instructions to self-isolate and test each time. It would be an
interesting study to investigate how many tests individuals would be required to do for both
types of contact tracing. We emphasize however that the current analysis focuses on the
beginning of an epidemic outbreak, and then incidence is low, implying that not many tests
will be performed.

Contrasting our model’s pessimistic assumptions with the over-optimistic scenarios of
full, iterative and instantaneous contact tracing studied in [25] indicates that real-world
outcomes may lie somewhere in between. Moreover, our findings suggest that the actual
combined effect of both manual and digital tracing is, unfortunately, smaller than the product
of their separate effects. In conclusion, this paper contributes valuable perspectives on the
interplay between manual and digital contact tracing in epidemic control and their respective
contributions.
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Impact of lockdown on covid-19 epidemic in ı̂le-de-france and possible exit strategies, BMC medicine 18
(2020), no. 1, 1–13.

[9] Ahmed Elmokashfi, Joakim Sundnes, Amund Kvalbein, Valeriya Naumova, Sven-Arne Reinemo,
Per Magne Florvaag, H̊akon Kvale Stensland, and Olav Lysne, Nationwide rollout reveals efficacy of
epidemic control through digital contact tracing, Nature communications 12 (2021), no. 1, 5918.

[10] Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dörner, Michael
Parker, David Bonsall, and Christophe Fraser, Quantifying SARS-CoV-2 transmission suggests epidemic
control with digital contact tracing, Science 368 (2020), no. 6491, eabb6936.

[11] Patsy Haccou, Peter Jagers, and Vladimir A Vatutin, Branching processes: variation, growth, and ex-
tinction of populations, Cambridge university press, 2005.

[12] Matt J Keeling and Ken T.D Eames, Networks and epidemic models, Journal of The Royal Society
Interface 2 (2005), no. 4, 295–307.

[13] Istvan Z Kiss, Darren M Green, and Rowland R Kao, Disease contact tracing in random and clustered
networks, Proceedings of the Royal Society B: Biological Sciences 272 (2005), no. 1570, 1407–1414.

[14] Stephen M Kissler, Christine Tedijanto, Edward Goldstein, Yonatan H Grad, and Marc Lipsitch, Pro-
jecting the transmission dynamics of sars-cov-2 through the postpandemic period, Science 368 (2020),
no. 6493, 860–868.

[15] Mirjam E Kretzschmar, Ganna Rozhnova, Martin CJ Bootsma, Michiel van Boven, Janneke HHM
van de Wijgert, and Marc JM Bonten, Impact of delays on effectiveness of contact tracing strategies for
covid-19: a modelling study, The Lancet Public Health 5 (2020), no. 8, e452–e459.

[16] Ka Yin Leung, Esther Metting, Wolfgang Ebbers, Irene Veldhuijzen, Stijn P Andeweg, Guus Luijben,
Marijn de Bruin, Jacco Wallinga, and Don Klinkenberg, Effectiveness of a covid-19 contact tracing app
in a simulation model with indirect and informal contact tracing, Epidemics 46 (2024), 100735.

[17] Johannes Müller and Bendix Koopmann, The effect of delay on contact tracing, Mathematical bio-
sciences 282 (2016), 204–214.

[18] Johannes Müller and Mirjam Kretzschmar, Contact tracing–old models and new challenges, Infectious
Disease Modelling 6 (2021), 222–231.

[19] Anjalika Nande, Ben Adlam, Justin Sheen, Michael Z Levy, and Alison L Hill, Dynamics of covid-19
under social distancing measures are driven by transmission network structure, PLoS computational
biology 17 (2021), no. 2, e1008684.

[20] Mark Newman, Networks, Oxford university press, 2018.

[21] Stefan Thurner, Peter Klimek, and Rudolf Hanel, A network-based explanation of why most covid-19
infection curves are linear, Proceedings of the National Academy of Sciences 117 (2020), no. 37, 22684–
22689.

[22] Florian Vogt, Bridget Haire, Linda Selvey, Anthea L Katelaris, and John Kaldor, Effectiveness evaluation
of digital contact tracing for covid-19 in new south wales, australia, The Lancet Public Health 7 (2022),
no. 3, e250–e258.

[23] Chris Wymant, Luca Ferretti, Daphne Tsallis, Marcos Charalambides, Lucie Abeler-Dörner, David
Bonsall, Robert Hinch, Michelle Kendall, Luke Milsom, and Matthew Ayres et al., The epidemiological
impact of the nhs covid-19 app, Nature 594 (2021), no. 7863, 408–412.

24



[24] Dongni Zhang, https: // github. com/ dongnizhang/ network_ epidemic_ contact_ tracing ,
GitHub repository (2024).

[25] Dongni Zhang and Tom Britton, Epidemic models with digital and manual contact tracing, arXiv preprint
arXiv:2211.12869 (2023).

25

https://github.com/dongnizhang/network_epidemic_contact_tracing

	Introduction
	Model Description
	The SEIR network epidemic model with global contacts
	Introducing manual and digital contact tracing in the model

	Early epidemic approximation in a large population
	Approximation of the early epidemic without contact tracing
	Basic reproduction number

	Approximation of the early epidemic with manual and digital contact tracing
	Calculation of the mean-offspring matrix 

	Approximation of the early epidemic with manual contact tracing only
	Approximation of the early epidemic with digital contact tracing only

	Numerical Illustrations
	Parameter setting
	The effectiveness of manual and digital contact tracing
	The effectiveness of manual contact tracing
	The effectiveness of digital contact tracing
	The effect of degree distribution
	Comparison with related results

	Discussion

