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Abstract

Social contact studies, investigating social contact patterns in a population sam-
ple, have been an important contribution for epidemic models to better fit real life
epidemics. A contact matrix M , having the mean number of contacts between indi-
viduals of different age groups as its elements, is estimated and used in combination
with a multitype epidemic model to produce better data fitting and also giving more
appropriate expressions for R0 and other model outcomes. However, M does not
capture variation in contacts within each age group, which is often large in empirical
settings. Here such variation within age groups is included in a simple way by divid-
ing each age group into two halves: the socially active and the socially less active.
The extended contact matrix, and its associated epidemic model, empirically show
that acknowledging variation in social activity within age groups has a substantial
impact on modelling outcomes such as R0 and the final fraction τ getting infected.
In fact, the variation in social activity within age groups is often more important
for data fitting than the division into different age groups itself. However, a dif-
ficulty with heterogeneity in social activity is that social contact studies typically
lack information on if mixing with respect to social activity is assortative or not, i.e.
do socially active tend to mix more with other socially active or more with socially
less active? The analyses show that accounting for heterogeneity in social activity
improves the analyses irrespective of if such mixing is assortative or not, but the
different assumptions gives rather different output. Future social contact studies
should hence also try to infer the degree of assortativity of contacts with respect to
social activity.

Keywords: Social contact studies, multitype epidemic model, assortativity, basic repro-
duction number.
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Introduction

Epidemic models have a long history starting with assuming a completely homogeneous
community, followed by many steps towards more realism: introducing stochasticity, in-
corporating household structure, dividing the population into different types of individual,
modelling the effect of preventive measures and more, e.g. [5]. Such modelling extensions
only contribute to the analysis of real world epidemics if fitted to data. One such im-
portant contribution has been the use of social contact studies in order to incorporate
contact heterogeneities into the epidemic model. This began 15 years ago with the im-
portant POLYMOD study [9] in 8 European countries, and has continued with many
social contact studies in different countries and under different settings, see [10] where
many such data sources are stored. During the Covid-19 pandemic, social contact studies
were performed during several stages in the pandemic (including the CoMix project, see
[10]), thus also giving information on how contact patterns changed over the pandemic as
an effect of restrictions, voluntary changes and vaccination (e.g. [4], [8]).

Contact studies are typically based on random samples of individuals for which individual
covariates, such as age, gender, household information are collected. The individuals are
then asked to record each close contact (defined e.g. by being within arm-length to an
individual for at least one minute) during a 24 hour period, and also record their age,
whether a household member or not, and similar. Such a data set of e.g. 1000-2000
individuals hence consists of one row for each contact of each individual and several
columns with information about the contact. The most common way to improve the
epidemic model and its statistical analysis from contact studies has been to extract what
is known as the age-dependent mean contact matrix M = [αij]. For this the population is
first divided into different age groups, and element αij is then defined as the mean number
of contacts that an individual in age group i has with individuals of age group j (during
one day). Nearly all such contact studies show two important features: 1) that younger
age groups tend to have more contacts in total than older age groups, and 2) that all age
groups tend to have most contacts with individuals of the same (or at least similar) age
group, the latter is referred to assortative mixing with respect to age [6].

The matrixM is then incorporated into a multitype epidemic model, rather than assuming
homogeneous mixing (or some more arbitrary mixing assumption between age groups) and
it it has been shown to give a better statistical fit to incidence data (e.g. [12]).

The separation of the community into different age groups has the effect of making indi-
viduals of the same age group resemble each other more with respect to contact pattern.
However, there still remains heterogeneity also within each age group: not everyone in
age group i has αij contacts with individuals of age group j. The more heterogeneity that
remains within the age groups the cruder is the approximation of the multitype epidemic
which assumes that all individuals of the same age group mix in a similar way.

In the present paper we hence define a new multitype epidemic model which tries to
capture also this remaining heterogeneity, after separating individuals into different age
groups. We do this by dividing each age group in the original age-group division into
two halves: those with low socially activity and the other half being those with a higher
number of social contacts. Each age group i is hence divided into two groups, (i, L) and
(i,H), for Low and High individuals in age group i. For this new group classification
we know how many contacts on average an (i, L)-individual has with j-individuals (and
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similarly how many (i,H)-individuals have with j-individuals) but we do not know which
fraction of those contacts are with (j, L)-individuals and which fraction are with (j,H)-
individuals. For this reason we consider the two extreme situations: the fully assortative
case where (i,H)-individuals prioritize (j,H)-individuals (and (i, L)-individuals prioritize
(j, L)-individuals), and the fully disassortative case where (i,H)-individuals prioritize
(j, L)-individuals as much as possible (contacts are symmetric so the number of contacts
by (i,H)-individuals to (j, L)-individuals must equal the number of contacts by (j, L)-
individuals to (i,H)-individuals). Beside the two extreme situations of fully assortative
and fully disassortative, we consider an intermediate situation known as proportionate
mixing (with respect to social activity) in which contacts are selected in the same way for
socially active and socially less active individuals.

We also consider a simpler epidemic model in which we neglect age completely and instead
only divide the population according to how many contacts individuals have in total:
for example dividing the community into two halves, those having a high number of
social contacts and those having low social activity. For this stratification into different
types of individual reflecting social activity only, we derive a matrix of mean number of
contacts between different groups of individuals. However, also in this simpler model,
the data lack information on how the total number of contacts of an individual divide
into its contacts with high-active and low-active individuals. Also here we consider the
two extreme situations where socially active individuals only have contact with socially
active individuals (assortative mixing with respect to social activity) and the opposite
situation where socially active individuals tend to prioritize contacts with low-social-
activity individuals (denoted disassortative mixing with respect to social activity), and
the intermediate proportionate mixing case. Hence again we end up with three models to
analyse.

Data and epidemic models

As described above we make use of empirical data sets from contact surveys. More pre-
cisely we have chosen to analyse three contacts surveys for which the data is publicly
available at http://www.socialcontactdata.org/data/. We choose three data sets repre-
senting contacts in Belgium during 2010 [11], in France during 2012 [2] and in Vietnam
during 2007 [7], the latter being chosen to see differences between contacts in Western
societies and low-income countries. All data sets were intentionally chosen from before
the Covid-19 pandemic, since studies from the pandemic often focused on changes over
time as an effect of preventions, something which is not considered here.

For each of the three studied contact data sets, we analyse properties of the Homogeneous
epidemic model with no heterogeneous structure (Hom), the multitype epidemic model
with heterogeneity with respect to age only (A), the multitype epidemic model with
heterogeneity with respect to social activity only (S), and the multitype epidemic model
with heterogeneity with respect to both age and social activity within age groups (AS).
For the models with heterogeneity with respect to social activity (S and AS), we consider
both the fully assortative case (socially active only have contact with other socially active),
the intermediate case referred to as proportionate mixing and the fully disassortative case
(socially active mainly have contact with socially less active). The ages are divided into 7

3

http://www.socialcontactdata.org/data/


0 10 20 30 40 50 60 70 80 90 100

Age

0

50

100

150

N
u

m
b

e
r 

o
f 

c
o

n
ta

c
ts

Belgium

0 - 5 6 - 12 13 - 18 19 - 24 25 - 44 45 - 64 65+

Contactor

65+

45 - 64

25 - 44

19 - 24

13 - 18

6 - 12

0 - 5

C
o

n
ta

c
te

e

Belgium contact matrix

3.975

5.68

4.37

4.47

6.33

5.33

5.995 6.705

6.595

0.56

1.68

0.345

0.21

1.335

0.665

2.1

0.63

0.885

10.48

1.025

0.67

2.46

2.91

1.49

10.36

1.615

0.255

0.565

1.715

1.02

0.41

1.625

9.18

1.905

1.94

1.515

1

1.845

1.505

1.47

0.835

0.59

2.83

2.36

2.565

0.46

0.3

0.235

0.17 1

2

3

4

5

6

7

8

9

10

Figure 1: Belgian data [11]. Scatter plot of the total number of contacts of individuals
as a function of age and 4-year moving average as red curve; 8 observations with larger
values are truncated and set to 150 (left panel). Heatmap representing the contact matrix
M between different age groups (right panel).

different age groups: 0-5, 6-12, 13-18, 19-24, 25-44, 45-64 and 65+. Social activity on the
other hand, is divided into only two classes: the 50% least socially active and the 50%
most socially active individuals, in the entire population for the S-model and within each
age group for the AS-model. For the assortative models we in fact have a tiny fraction ϵ
of mixing between the high and low social activity groups in order not to make the two
groups completely isolated from each other (see Supp. Mat., Section 4.1).

For each of the three social contact studies and each epidemic model, we consider the
corresponding stochastic multitype epidemic model (see methods and e.g. [1], Chapter 6)
and consider a population size tending to infinity. For each model we compute the basic
reproduction number R0, the limiting probability of a major outbreak ρ, and the limiting
final fraction getting infected in case of a major outbreak τ , as a function of the overall
transmissibility (measured by the transmission probability p).

Results

We start by analysing the Belgian social contact study [11] consisting of 1744 individuals.
In Figure 1 we plot the total number of contacts (8 observations are truncated at 150 for
better visibility) for all individuals as a function of age, and also a heatmap of the contact
matrix M where individuals are grouped into 7 different age-cohorts.

From the scatter plot it is seen that there is big variation in the number of contacts,
but also that there is an age effect with highest overall number of contacts in the age
group 20-30 year old. In the heatmap matrix it is seen which age groups individuals have
most contacts with, and there is quite strong assortativity (with respect to age) in that
individuals mix the most with individuals of similar age (please note that the age-ranges
varies between groups somewhat blurring the diagonal (assortative) mixing proporty).

We next analyse several different epidemic models using the Belgian data, fixing all pa-
rameters except the overall transmissibility p, and compute R0 and the final outcome size
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Figure 2: Plot of the basic reproduction number R0, as a function of the per contact
transmission probability p, for the Belgian contact study [11], analysed using epidemic
models acknowledging no heterogeneity (Hom), heterogeneity with respect to age only
(A), heterogeneity with respect to social activity only (S), and heterogeneity with respect
to both age and social activity (AS), and considering mixing with respect to social ac-
tivity to be fully assortative (left panel), proportionate mixing (center panel) and fully
disassortative right (panel).

τ of a major outbreak under different model assumptions concerning social contact.

In Figure 2 we plot R0 for the different models: Hom, A, S and AS. The right panel
shows R0 assuming complete assortativity with respect to mixing between social activity
groups, the middle panel assumes proportionate mixing with respect to social activity, and
the right panel assumes maximal disassortativity with respect to mixing between social
activity groups. Note that the Hom- and the A-models do not contain social activity
groups and hence only have one version, as opposed to the S- and AS-models which have
three versions: assortative, proportionate mixing and disassortative. It is seen in the
figure that for all models R0 is linear in the overall transmissibility. In each panel, (i) the
AS-model gives the highest R0 and the Hom-model gives lowest R0 and (ii) the S-model
is closest to the AS-model and the A-model is closest to the Hom-model. Further, it is
seen that assuming assortative mixing with respect to social activity (left panel) gives the
highest R0 and the disassortative assumption (right panel) gives the lowest R0.

Next, in Figure 3 we plot the final size τ for the different models: Hom, A, S and
AS. Similar to above, the right panel assumes complete assortativity, the middle panel
proportionate mixing, and the right panel disassortativity (with respect to social activity).
It is seen in each panel, that the A-model (taking age into account) resembles the Hom-
model (assuming no heterogeneities), whereas the S-model (acknowledging heterogeneity
with regards to social activity but not age) is fairly similar to the full AS-model allowing
heterogeneities both with respect to age and social activity. None of the four models is
of course “true”, but it is reasonable to believe that the AS-model lies closest to reality
in that it allows for heterogeneities with respect to both age and social activity. As a
consequence, including heterogeneity owing to social activity (S) is more important than
acknowledging heterogeneity with respect to age (A).

Another observation is that, in each panel, theHom- and A-models give smaller outbreaks
(compared with the S and AS-models) for low overall transmissibility p whereas the
opposite holds true when p is large. An intuitive explanation to this is that strong
heterogeneity (S and AS) “helps” an epidemic to take off when p is small, but that
strong heterogeneity also “helps” some individuals to escape infection when p is large.
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Figure 3: Plot of the final size τ , as a function of the per contact transmission probability
p, for the Belgian contact study [11], analysed using epidemic models acknowledging
no heterogeneity (Hom), heterogeneity with respect to age only (A), heterogeneity with
respect to social activity only (S), and heterogeneity with respect to both age and social
activity (AS), and considering mixing with respect to social activity to be fully assortative
(left panel), proportionate mixing (center panel) and fully disassortative right (panel).

If instead we compare the different panels in Figure 3 we note that the final sizes for
the S- and AS-models are different in the three panels (the Hom- and A-models are
identical in the three panels since they do not include social activity considerations). In
particular the left assortative panel is different from the others: the final size is smaller
when p is large, and the S-model has a type of “bump” at around p = 0.015 which is an
artefact from having two social activity groups. It is not obvious which of the three panels,
assortative, proportionate mixing or disassortative, is the most reasonable but empirical
studies, e.g. [13], tend to indicate that mixing with respect to social activity is assortative,
albeit not completely, suggesting that somewhere between left and centre panel is closest
to reality. However, for all three panels, and hence most likely also for intermediate
situations, the S-model is much closer to the full (=best) AS-model. Similar conclusions
to those from Figure 3 for the final size τ apply also for the major outbreak probability ρ
(see Supp. Mat.). As a numerical example we assume p = 0.1 and full assortativity. Then
most modellers would have used the A-model and conclude that R0 = 2.00 and that the
epidemic would result in an outbreak infecting the fraction τ = 72.71%, whereas if the
better AS model would have been used the conclusion would instead have been R0 = 3.14
and τ = 53.06% (so a higher R0 but smaller final size). The S-model comes much closer
to the AS-model: R0 = 3.03 and τ = 47.13%.

Note that the S-model lies closer to the AS-model than the A-model even though we have
7 age-groups and only two social activity groups, thus allowing for more heterogeneity for
age. In Sup. Mat. we show similar plots when dividing also social activity into 7 different
levels, and then differences between Hom and A on the one side and S and AS on the
other are even more pronounced.

We have also done similar comparative analyses for two other social contact studies, from
France [2] and Vietnam [7], which are described more briefly. The conclusions from the
French social contact study are very similar to those from the Belgian analysis, as can be
seen in Figure 4 where we plot the final fraction τ getting infected as a function of the
overall transmissibility p for the different model assumptions Hom, A, S and AS, under
different assumptions on assortativity with respect to social activity.

The Vietnamese data on the other hand show some differences. The main difference of
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Figure 4: Plot of the final size τ , as a function of the per contact transmission probability
p, for the French contact study [2]. Same panels and assumptions as in Figure 3.
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Figure 5: Vietnamese data [7]. Scatter plot of the total number of contacts of individuals
as a function of age, red curve showing the moving average (left panel) and heatmap
representing the contact matrix M between different age groups (right panel).

the Vietnamese social contact study is that the number of contacts varies much less, both
within and between age groups, compared to the Belgian and French data. In Figure 5 a
scatter plot of the number of contacts is shown as well as a heatmap of the contact matrix
with respect to age. It is seen that the variation in number of contacts is much smaller
than in the Belgian data (Figure 1), and that there is still some assortativity for mixing
with respect to age with high values on the diagonal.

When comparing the potential of outbreaks for different models the pattern is different
from the Belgian and French social contact studies, see Figure 6. The only model that
sticks out now is the S-model. Since there is very little variation between age groups and
also within age groups the homogeneous model (Hom) might suffice. The reason why the
S-model sticks out is probably because it has only two groups of individuals, and even if
the variation in number of contacts, the mean in the high and low social activity groups
differ to some extent (mean about 10 compared to mean of about 5).

Discussion

The two main insights from our analyses are that 1) heterogeneity in social activity is
more important than that owing to age when determining what will happen if an epidemic
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Figure 6: Plot of the final size τ , as a function of the per contact transmission probability
p, for the Vietnamese contact study [7] . Same panels and assumptions as in Figure 3.

outbreak takes place in a community, and 2) whether or not mixing is assortative with
respect to social activity is also an important factor for determining epidemic features
such as R0 and the final size τ , but current social contact studies lack information on the
degree of such assortativity. The first insight implies that epidemic models using social
contact studies should include also heterogeneity in social activity within age groups in
the epidemic model to improve analyses. The second insight calls for attention in future
social contact studies to investigate also to what degree social mixing is assortative with
respect to social activity.

The conclusions are based on three social contact studies from Belgium, France and
Vietnam, and the significance of modelling heterogeneity in social activity within age
groups was smallest in the Vietnamese study where variation in number of contacts was the
smallest. To allow for heterogeneity within age groups is most important when variation
in contacts is large also within age groups. But the paradigm in social mixing seems to be
that social activity is highly heterogeneous (super-spreaders, scale-free social networks,
...), so we believe it is rather the rule than the exception that social activity is highly
variable both within and between age groups in communities.

Earlier modelling using social contact studies made use of the contact matrix M having
the mean number of contacts between different age-cohorts as its element. But even if
there were no systematic differences between individuals of the same age group a social
contact study would of course not have all individual contacts of a certain age group
being identical – there would clearly be some variation also then. A relevant question is
therefore if the observed variation within age groups is systematic or more noise-related.
We have two strong empirical indicators that variation in contacts is systematic. The
first is that the number of contacts is strongly over-dispersed also within age groups. The
variance of the number of contacts divided by the mean number of contacts within each
age group vary between 11.4 and 54.3 for the Belgian data and between 13.6 and 26.6 for
the French data (but only between 3.7 and 6.8 for the Vietnamese data). If there were
no systematic differences between individuals a Poisson distribution seems plausible and
then the ratio would lie around 1. The second strong indicator that there are systematic
differences in number of contacts also within age groups comes from the French data
where 278 individuals in the study were measured on four different days. (The data
comprise two waves, with each wave consisting of two successive days.) By analysing
these 278 individuals it was found that the correlation between the numbers of contacts
on the different days was estimated to lie in the range r = 0.30− 0.52, a strong positive
correlation, whereas if the variation was just noise one would expect no correlation. Hence,
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there are very strong indications of systematic variation in number of contacts within age
groups, and this should be included in the modelling to improve analyses. It is however
possible that the (systematic) heterogeneity within age groups is over-estimated in our
analysis, since the separation of age groups into two halves, based on observed numbers
of contacts, is affected by both systematic heterogeneities and noise. An important open
question is hence how to disentangle these different sources of variation to improve the
estimated systematic differences within age groups.

As mentioned earlier, social contact studies performed during the Covid-19 pandemic, in-
cluding the CoMix initiative ([10]), studied changes in social activity during the pandemic.
Also there the focus was often on changes in the mean number of contacts between dif-
ferent age groups, but it would be interesting to investigate if reduction in contacts come
mainly from socially active individuals reducing their contacts (decreasing dispersion)
or mainly from socially less active individuals reducing their contacts even further thus
increasing dispersion, or a mixture of both. These scenarios would clearly impact the
potential for disease spreading differently.

Our modelling focuses on the use of social contact studies and hence lacks several other
relevant features in epidemic modelling, for example, seasonality, the effect of local struc-
tures such as households and workplaces, and immunity waning. Clearly such features
are important for modelling conclusions to be more accurate. However, we believe that
our qualitative conclusions remain valid also in such more realistic models: when using
social contact studies variation within age groups should preferably also be included in
the modelling.

Methods

In the Supp. Mat. we give an in-depth description of how the contact survey data are used,
and how they are incorporated into the multitype epidemic model and properties of a multitype
epidemic model – here we give only a brief outline.

Contact survey data

Each of the three social contact surveys ([11], [2] and [7]) contains information about the sampled
individuals and about the contacts they have during a given day. The data contains more
information, but in the present analyses we only use the age of the sampled individuals and
their contacts during the day in question: how many and the ages of each contact. For a given
age group i, the contact matrix element αij is given by the mean number of contacts that i-
individuals have with individuals in age group j. This defines the contact matrix M = (αij)
used in the multitype epidemic model taking heterogeneity with respect to age into account
(A-model).

For the epidemic model taking social activity into account but not age (S-model), we divide the
sampled individuals into two halves: the 50% fraction having most overall number of contacts
and the remaining 50% have fewer overall number of contacts. The mean mH among the
group with High social activity is then computed and similarly mL is computed for the group
having Low social activity. As discussed earlier, the contact studies lack information about
if the contacted individuals have High social activity or not, so this we have to hypothesize
about. If we assume full assortativity with respect to social activity, then High individuals only
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have contact with other High individuals, and Low individuals only with other Low individuals.
The contact matrix under this assumption hence has elements αHH = mH , αLL = mL and
αHL = αLH = 0.

The fully disassortative model assumes that all contacts from Low individuals are with High
individuals, but it is not possibly for all contacts of High individuals to be with Low individuals
– there are simply not enough contacts made by Low individuals, so the remaining contacts have
to be within the High group. Consequently, the disassortative model has the following elements
in its contact matrix: αHH = mH −mL, αHL = αLH = mL and αLL = 0.

Finally, in the proportionate mixing assumption (of the S-model), each contact, irrespective of
whether it comes from a High or Low individual, has the probability pH = mH/(mH + mL)
to be with a High individual, and the remaining probability pL = mL/(mH + mL) to be with
a Low individual. Hence, the contact matrix M assuming proportionate mixing has elements
αHH = mHpH , αHL = mHpL, αLH = mLpH and αLL = mHpH . We have thus defined
the 2*2 contact matrices M in the S model under the three different mixing assumptions:
assortative, disassortative and proportionate mixing. These are used in the multitype epidemic
model described in the next subsection.

In the model taking heterogeneity with respect to both age and social activity into account (AS-
model), we divide individuals of each age group i into two: (i,H) and (i, L) being the 50% with
highest overall social activity and the 50% with lowest overall social activity. It is known how
many contacts (i,H)-individuals have with individuals in age group j on average (and similarly
for (i, L)-individuals), but just like in the S model it is not known if these contacts are pri-
marily with (j,H)- or (j, L)-individuals. Hence, also here we make three different assumptions:
assortative mixing, proportionate mixing and disassortative mixing, all with respect to social
activity. The details are given in Supp. Mat., Section 2, but each gives a contact matrix M of
dimension (2 ∗ 7) ∗ (2 ∗ 7) = 14 ∗ 14 if there are 7 different age groups.

Multitype epidemic model

In the previous subsection we outlined how the social contact study is used to produce a contact
matrix M under different assumptions. In the S-model M is 2*2, in the A-model (explained
earlier) the contact matrix has dimension 7*7 when there are 7 different age groups, and finally
the AS-model has a contact matrix M of dimension 14*14.

Whichever model is assumed we hence have some fixed number k of types and it is known how
many contacts with j-individuals of type i have on average in a typical day: αij . It is also
assumed that we know the community fraction of the different types π1, . . . πk and the overall
community size n. In our application these are easy to find from National statistical bureaus:
what is the country population and what fraction have age in given age cohorts.

A multitype SEIR epidemic model is defined for this setting as follows (see Supp. Mat., Section 4,
or [1], Chapter 6, for details). Individuals are at first susceptible, and someone who gets infected
then has infectious contacts randomly in time (possibly after a latent period) and after some
(random) time in the infectious state they recover and become fully immune for the duration of
the study period. During the infectious period i-individuals have on average αij contacts with
j-individuals per day, where M = [αij ] is the contact matrix described above and inferred from
the social contact study. Let µI denote the mean duration of the infectious period and let p
denote the probability that an infectious contact results in infection, called the transmissibility
of the disease in question. The mean number of infectious contacts (i.e. resulting in infection if
the contacted person is susceptible) an i-individual has with j-individuals hence equals αijµIp.
Without loss of generality we assume that µI = 1 (if not we can redefine the contact matrix M
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in units of µI rather than per day, by multiplying all elements by µI). This multitype epidemic
model has been analysed extensively in the literature, see e.g. references in Supp. Mat. or [1],
Chapter 6. It is known that the basic reproduction number R0 is given by the largest eigenvalue
of pM . Further, if the epidemic takes off (which may happen only if R0 > 1) then the (random)
final fractions getting infected of the different types converge to a deterministic limit as the
population size n tends to infinity. These limiting fractions τ1, . . . , τk are given as the unique
strictly positive solution to the k equations

1− τj = e−p
∑k

i πiτiαij/πj , j = 1, . . . , k.
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