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Abstract

Random delays between the occurrence of accident events and the
corresponding reporting times of insurance claims is a standard feature of
insurance data. The time lag between the reporting and the processing
of a claim depends on whether the claim can be processed without delay
as it arrives or whether it remains unprocessed for some time because
of temporarily insufficient processing capacity that is shared between all
incoming claims. We aim to explain and analyze the nature of processing
delays and build-up of backlogs. We show how to select processing capac-
ity optimally in order to minimize claims costs, taking delay-adjusted costs
and fixed costs for claims settlement capacity into account. Theoretical
results are combined with a large-scale numerical study that demonstrates
practical usefulness of our proposal.

Keywords: claims processing, backlog, capacity constraints
JEL codes: G22; G31

1 Introduction
Accident events give insurance policyholders the right to financial compensation.
In most cases, the effective costs are not immediately known to the insurance
company. Reporting delay is a standard feature of insurance data, and once
a claim is reported, it is not necessarily settled quickly since claims may take
time to process. With an unlimited processing capacity, claims can be processed
fast(er), however, economic reasons allow insurance companies to only allocate a
limited capacity to the claims settlement unit (process). Naturally, this capacity
should be bigger than the average claims volume, otherwise there will be growing
an infinitely large backlog of unprocessed claims. This is a consideration on
average, which is essentially distorted by the fact that claims occurrence and
reporting can cluster, i.e., there may be peaks of claims reportings, but also
quiet periods where reportings are below average. The question we study is
how can the capacity be set optimally so that backlogs of processing are not too
large, and at the same time periods of low reportings do still not lead to very
quiet times in claims handling units. The latter implies high fixed costs, as an
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inactive claims handling unit still needs to be compensated. Generally too high
backlogs also lead to additional costs, it is verified that late claims settlements
typically increase the claims costs. Thus, there is a trade-off in costs between
low and high claims processing capacity, and our aim is to study an optimal
balance between the two.

The study of systems where constraints on processing capacity induces pro-
cessing delays and dependence is at the heart of queueing theory. If we would
be content with studying the system with incoming reported claims and outgo-
ing processed claims without labeling the incoming reported claims, then our
study could essentially be reduced to an application of standard queueing the-
ory. However, insurance applications require the input to be labeled in the sense
that incoming reported claims belong to different contract groups and we need
to keep track of the evolution of processed claims for each such group that shares
the processing capacity. This topic seems new to the actuarial literature because
we did not find any literature on this topic. It has come to our attention because
we have been approached by an insurer facing a backlog of unprocessed claims
that needed to be worked off in a cost efficient way. This question is related
to queueing theory from where we borrow some mathematical results. Never-
theless, many parts significantly differ from queueing theory, mathematically as
well as from an interpretation and terminology point of view.

Optimal capacity sizing for systems where users share the system’s capacity
has been studied in the operations research literature. Optimality may be con-
sidered in terms of stability of the system or in terms of maximization of profits
generated by the system. The study by Maglaras and Zeevi [13] provides one
example from this area of research.

In the actuarial literature there does not seem to exist works that study prob-
lems close to the one we consider. However, economic consequences of delays
in claims settlement has indeed been studied. Boogaert and Haezendonck [4]
consider claims arriving according to a homogeneous Poisson process. To the
sequence of claims an i.i.d. sequence of triplets (Xn, Hn, Vn) is added, where
Xn is the claim size, Hn the handling delay, and Vn the payment delay. By
considering an economic environment with time-varying inflation and interest
rate, the present value of insurance liabilities is affected by possible dependence
between the elements of the triplet (Xn, Hn, Vn), such as positive dependence
between claim size and handling delay. Huynh et al. [9] consider reported claims
according to a compound Poisson model where incoming claims are either pro-
cessed (and paid) immediately or investigated by the claim handler. Incoming
claims are handled independently with equal probability of being investigated.
An investigation causes a delay in the processing of the claim and also a claim
cost whose distribution differs from that of claims that do not undergo investi-
gation. The resulting surplus process can be seen as the output from a queueing
system. The effects on the ruin probability of investigating claims, through de-
layed processing and modified claim cost, are investigated. Related studies of
effects of delays in claims settling on ruin probabilities are Waters and Papa-
triandafylou [16] and Albrecher et al. [1]; see also references therein. Although
there are studies on effects of processing and payment delays on liability values
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or ruin probabilities, we have not found literature that analyzes effects of capac-
ity constraints on processing delays and delay-adjusted claims costs for contract
groups that share processing capacity.

The paper is organized as follows. Section 2 defines the key variables for
our study, motivates their relationships and explains the queueing system that
arises. Section 3 discusses costs for processing capacity, delay-adjusted claims
costs, and introduces joint models for combined delay-adjusted claims costs and
settlement costs that form the basis of the minimization problems we study.
Section 4 introduces the procedure for how claims are processed, taking into
account that at each time different contract groups share the current processing
capacity. Section 5 derives expressions for unconditional and conditional ex-
pectations of the number of claims in the backlog for different contract groups.
These expectations are key ingredients in the cost minimization problems. Sec-
tion 6 introduces the stochastic model that allows us to consider a realistic
large-scale application of the framework and results presented earlier. Section
7 explains in detail how we approximate terms appearing in the expressions for
the backlog expectations by recurrent neural networks. Section 8 solves the cost
minimization problems numerically. Finally, we summarize in Section 9.

2 Reported, processed, and backlog claims

2.1 Definitions and assumptions
We index the number of reported (R), processed (P), and backlog (B) claims by
occurrence period and development period. Let {i0, i0 + 1, . . . , 1, 2, . . . } be the
index set for occurrence periods and let {0, 1, . . . } be the index set for develop-
ment periods. Periods may refer to months, quarters, years, etc. The general
index sets allow us to define and study the numbers of reported, processed and
backlog claims as stochastic processes.

Occurrence period i starts at (calendar) time i−1 and ends at (calendar) time
i. Let Ri,j denote the number of reported claims due to accident events during
occurrence period i that are reported during development period j. Hence,
these reportings occur between time i − 1 + j and time i + j. We assume the
existence of a non-random integer J such that Ri,j = 0 for any j > J . Hence,
we assume a maximal reporting delay of J + 1. Let Pi,j denote the number of
processed claims due to events during occurrence period i that are processed
during development period j. A claim cannot be processed before it has been
reported. Ri,j and Pi,j are observable at time i+ j. Let Bi,j denote the number
of backlog claims due to events during occurrence period i that are already
reported but in the backlog and, therefore, have not yet been processed by
development period j. Set Bi,0 ≡ 0, meaning that each new occurrence period
starts without any backlog. Bi,j is observable at time i+j (and may be inferred
at time i+j−1 depending on what other variables are observed, see (3) below).
Let Ct > 0 denote the number of claims that the insurer has the capacity to
process during time period t, i.e., the time period between time t− 1 and t. In
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general, Ct is a random variable.
The total number of reported claims during time period t is

Rt :=

t∑
i=t−J

Ri,t−i =

J∑
j=0

Rt−j,j .

The total number of processed and backlog claims, respectively, during time
period t are

Pt :=

t∑
i=i0

Pi,t−i =

t−i0∑
j=0

Pt−j,j ,

Bt :=

t∑
i=i0

Bi,t−i =

t−i0∑
j=0

Bt−j,j .

There is sufficient capacity during time period t to process all not-yet-processed
claims reported during period t or earlier if the event SCt, given by

SCt :=
{
Bt +Rt ≤ Ct

}
,

is true. The inequality means that there is sufficient capacity to process both the
backlog Bt and the newly reported claims Rt. If there is not sufficient capacity,
SCc

t , some backlog is forwarded to the next time period.
We emphasize some general properties for reported, processed, and backlog

claims. Each reported claim will at some point be processed, possibly by tem-
porarily contributing to the backlog. A processed claim remains processed. A
claim in the backlog either remains temporarily in the backlog or transitions
into a processed claim (terminal state). In mathematical terms, any procedure
for processing claims should satisfy the following axioms (1)-(4):

Ri,j ≥ 0, Bi,j ≥ 0, Bi,0 = 0, Pi,j ≥ 0, for all i, j, (1)
∞∑
j=0

Ri,j =

∞∑
j=0

Pi,j , for all i, (2)

Bi,j+1 = Bi,j +Ri,j − Pi,j , for all i, j. (3)

An immediate consequence of (1) and (3) is

k∑
j=0

Ri,j = Bi,k+1 +

k∑
j=0

Pi,j , for all i, k.

The total number of processed claims during time period t is

Pt = min(Bt +Rt, Ct), (4)
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i.e., the sum of the numbers of backlog and reported claims if the sum does
not exceed the capacity Ct of period t, otherwise Ct. From (3) it follows that
Bt+1 = Bt +Rt − Pt which together with (4) give

Bt+1 = max
(
Bt +Rt − Ct, 0

)
. (5)

The recursion (5) for the total size of the backlog is an example of the Lindley
recursion that is well studied in queueing theory, see Example I.5.7 and Chapter
III.6 in [2]. If (Rt)

∞
t=0 and (Ct)

∞
t=0 are i.i.d. sequences, the Lindley process

(Bt)
∞
t=0 is a Markov process given by

B0 = b, Bt+1 = max
(
Bt +Rt − Ct, 0

)
, t ≥ 0,

which is the waiting time process for a GI/G/1 queue. If E[Rt] < E[Ct] and
E[(Rt −Ct)

2] < ∞, there is a stationary distribution with finite mean to which
Bt converges in distribution as t → ∞.

Assumption 2.1. The stochastic system {(Bi,j , Ri,j , Pi,j , Ci+j) : i ≥ i0, j ≥ 0}
satisfies (1), (2), (3) and (4).

To understand the stochastic system, we specify σ-algebras that play a nat-
ural role in conditional probabilities and expectations that will appear. Let

Et := σ
(
Rs, Bs : s ≤ t

)
,

Ft := σ
(
Rs, Bs, Ps : s ≤ t

)
,

Gt := σ
(
Ri,j , Bi,j : i+ j ≤ t, j ≥ 0

)
,

Ht := σ
(
Ri,j , Bi,j , Pi,j : i+ j ≤ t, j ≥ 0

)
.

By construction, the σ-algebras obviously satisfy Et ⊂ Ft ⊂ Ht and Et ⊂ Gt ⊂
Ht. From (3), it follows that Ft ⊂ Et+1 ⊂ Ft+1 and Ht ⊂ Gt+1 ⊂ Ht+1. Note
that Bt+1 is Ft-measurable but in general not Et-measurable. Similarly, Bi,j+1

is Hi+j-measurable but in general not Gi+j-measurable. From (3) and (4), it
follows that SCt ∈ Ft. However, we emphasize that from Assumption 2.1 alone
it does not follow that Ct is measurable w.r.t. any of the σ-algebras Et,Ft,Gt,Ht.
This is not surprising: if we are not observing the capacity Ct but only its effect
on the number of backlog claims and processed claims, then the actual capacity
may be larger than the capacity used to the process claims. However, if Ct is
non-random, then (3) and (4) together imply that Bt+1 is Et-measurable.
Remark 2.2. In queueing theory, the Lindley recursion (5) describes the waiting
time Bt for the tth customer arriving to a single service station, with Rt the
service time for the tth customer and Ct the time between the arrival of the
tth customer and that of the (t + 1)th customer. If both (Rt) and (Ct) are
i.i.d. sequences, the queueing system is denoted GI/G/1. The special case when
both service times Rt and inter-arrival times Ct are exponentially distributed is
denoted M/M/1. The special case when Ct = c is constant is denoted D/G/1.
We emphasize that the interpretation of the variables Bt, Rt and Ct in our
setting is quite different although many results known for GI/G/1 queues are
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also useful to understand the dynamics of the total number of backlog claims.
The expectation E[B] of the stationary distribution of (Bt) can in general not
be obtained explicitly. However, it can be approximated numerically; see, e.g.,
[10] and [11] for the analysis of the D/G/1 queue.

2.2 Stationary behavior
The recursion (5) for the total size of the backlog is an example of the Lindley
recursion that is well studied in queueing theory, see Chapter III.6 [2]. As a
direct consequence of the recursion (5),

Bt+1 = max

(
B0 +

t∑
s=0

(Rs − Cs),

t∑
s=1

(Rs − Cs), . . . , Rt − Ct, 0

)
, t ≥ 0.

The asymptotic behavior of Bt+1 is well understood when (Rs − Cs)
∞
s=0 is an

i.i.d. sequence with E[Rs] < E[Cs]. If (Ct)
∞
t=0 is an i.i.d. sequence, if all Ri,j are

independent, and if Ri′,j
d
= Ri,j for all j, then (Rs−Cs)

∞
s=0 is an i.i.d. sequence

if i0 ≤ −J . We write E[R] for the common expected value for any element of the
i.i.d. sequence (Rs)

∞
s=0. Note that in this case, E[R] =

∑J
j=0 E[Ri,j ] is simply

the expected total number of reported claims for any occurrence period i. By
Corollary III.6.5 in [2], we have convergence in distribution

Bt
d→ max

0≤s<∞

(
0,

s∑
r=0

(Rr − Cr)

)
as t → ∞.

From
∑s

r=0(Rr−Cr) → −∞, a.s., as s → ∞, it follows that the limit variable is
well defined. Dropping the subscript, we denote by B a random variable whose
distribution is the stationary distribution of (Bt)

∞
t=0. By Proposition VIII.4.5

[2],

E[B] =

∞∑
k=1

1

k
E [max(Sk, 0)] , Sk :=

k−1∑
s=0

(Rs − Cs).

Unfortunately, it is rarely possible to compute E[B] explicitly and numerical
evaluation is non-trivial in general; see, e.g., [15] for an approach to computing
stationary probabilities for integer-valued B.

Upper bounds for E[B] are studied in [6] by considering a scaled version of
the Lindley recursion in the setting of GI/G/1 queues. Since (Rt) and (Ct)
are i.i.d. sequences in the GI/G/1 queueing setting, we write R and C for an
arbitrary element of these sequences. The recursion (5) can be written

B̃t+1 = max
(
B̃t + R̃t − C̃t, 0

)
,

where B̃t := Bt/E[C], and similarly for R̃t and C̃t. By construction E[C̃t] =

1, and E[B̃t] = E[B]/E[C] and E[R̃t] = E[R]/E[C] =: ρ. The parameter ρ
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is called the traffic intensity in queueing theory. The so-called heavy-traffic
approximation of E[B] (obtained by considering the behavior as ρ → 1) is

E[B]

E[C]
≈ ρ2

2(1− ρ)

(
Var[R]

E[R]2
+

Var[C]

E[C]2

)
, (6)

this is equivalent to expression (2.9) in [6]. In the D/G/1 setting Var[C] = 0,
since C = c is constant, and (6) takes the form

E[B] ≈ E[R]

c− E[R]

Var[R]

2E[R]
. (7)

It can be shown ((2.6) and (2.7) in [6]) that the right-hand side in (7) coincides
with the upper bounds for E[B] obtained by Kingman in [12] and by Daley in
[7]. In the M/G/1 setting, where C is exponentially distributed with mean c,
Var[C]/E[C]2 = 1 and the heavy-traffic approximation for E[B] in (6) equals

cρ2

2(1− ρ)

(
Var[R]

E[R]2
+ 1

)
=

E[R]

c− E[R]

E[R2]

2E[R]
,

which, in fact, is an exact expression for E[B] referred to as the Pollaczek-
Khintchine formula; see VIII.(5.6) in [2].

Remark 2.3. In the D/G/1 setting, an upper bound for E[B] is given by the
right-hand side in (7). If we write c = ηE[R] for some η > 1, then

E[B] ≤ 1

η − 1

Var[R]

2E[R]
.

If E[R] is fairly large (which is the case for realistic insurance applications),
then, unless η ≈ 1, Var(R) needs to be substantially larger than E[R] in order
for E[B] and E[R] to be of similar size. In particular, if R is Poisson distributed,
then Var[R] = E[R], and no substantial backlog will appear unless η ≈ 1,
corresponding to a close to non-stationary system. In our examples below, we
consider a negative binomial distribution for the number of reported claims R.

3 Cost implications of capacity constraints
Capacity constraints are mainly due to limited financial resources, and consider-
ations of how much of these financial resources should be allocated to the claims
settlement unit. Claims settlement costs are belonging to the unallocated loss
adjustment expenses (ULAE) meaning that these costs are not specific to an
individual claim, but they are rather overhead costs that are necessary to run
the claims handling unit. ULAE then need to be allocated to occurrence periods
(or individual insurance contracts) in order to be able to perform a profit anal-
ysis for occurrence periods (or individual insurance contracts); see Buchwalder
et al. [5] for a method supporting the chain-ladder claims reserving method. In
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most cases, the allocation is chosen to be proportional either to claims costs,
claims counts or a linear combination of the two.

We will perform an analysis of expected claims costs where we consider
unconditional expectations of the numbers of reported, processed, and backlog
claims. This means that we consider i.i.d. sequences (Rt)

∞
t=0 and (Ct)

∞
t=0 under

the stochastic system in Assumption 2.1 in its stationary state. In particular,
the backlog process (Bt)

∞
t=0 is given by (5) with initial state B0 drawn from

the stationary distribution, see Section 2.2. We write E[R] and E[B] for the
expected number of reported claims and size of the backlog, respectively, in any
given period for the stationary system. We write E[C] for the expected maximal
number of claims that can be processed in any given period. Recall that E[C] >
E[R] is assumed since we are considering the system in its stationary state. We
further assume that claims costs for individual claims form an i.i.d. sequence
independent of the stochastic system in Assumption 2.1.

Claims settlement costs. Making claims processing capacity available
generates ULAE and these expenses need to be allocated to occurrence periods
to have an integrated cost view. Suppose that any claims occurrence period
τ uses the processing capacity during periods τ, τ + 1, . . . , τ + JP − 1, where
JP ≥ 1. The cost allocated to occurrence period τ is the total expected cost
for these processing capacities multiplied by the fraction of expected number of
processed claims for occurrence period τ during these periods divided by the
expected number of processed claims for all occurrence periods that share the
capacity during these periods. Let us formalize this. The set of index pairs (i, j)
for the number of processed claims Pi,j during the periods τ, τ+1, . . . , τ+JP −1
is

I := {(i, j) : τ ≤ i+ j ≤ τ + JP − 1, 0 ≤ j ≤ JP − 1},

and due to stationarity of the numbers of processed claims (E[Pi,j ] = E[Pi′,j ])
we may sum over rows instead of over diagonals∑

(i,j)∈I

E
[
Pi,j

]
=

Jp−1∑
k=0

τ+k∑
i=τ+k−Jp+1

E
[
Pi,τ+k−i

]
=

τ+JP−1∑
i=τ

JP−1∑
j=0

E
[
Pi,j

]
= JP

JP−1∑
j=0

E
[
Pτ,j

]
.

We see that to any occurrence period τ we should allocate a fraction 1/JP of the
cost for processing capacity during JP periods. The integer JP cancels out when
multiplying the two numbers and we conclude that the capacity cost allocated
to any occurrence period equals the full cost for processing capacity during a
single period. We emphasize that this is the stationary case.

Linearly delay-adjusted claims costs. The total expected ground-up
claims costs for any occurrence period i in stationarity is

κg

J∑
j=0

E[Ri,j ] = κg

J∑
j=0

E[Rt−j,j ] = κgE[R],
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where κg > 0 denotes the expected claims cost for an individual claim if paid
without any delay. We assume that delayed processing generally makes claims
more expensive. In the most simple linear model (ℓ) we assume an additional
constant κb > 0 that originates from late processing. The expected total claims
costs of occurrence period i are then in this linear cost model given by

κgE[R] +
∑
j≥0

κbE
[
Bi,j

]
= κgE[R] +

∑
j≥0

κbE
[
Bt−j,j

]
= κgE[R] + κbE[B],

where we used the assumption of the system in stationarity.
Non-linearly delay-adjusted claims costs. Alternatively, we could con-

sider a claims cost model where we rather have the view of an inflation-adjusted
cost (ι). In that case we consider an additional constant λb > 1 and set

κg

∑
j≥0

λj
b E

[
Pi,j

]
= κg

∑
j≥0

λj
b E

[
Bi,j +Ri,j −Bi,j+1

]
,

with Ri,j ≡ 0 for j > J . This model considers processed claims and inflates
ground-up costs κgλ

j
b by its processing delay from the end of the occurrence

period. Note that λj
b should be seen as a super-imposed delay inflation which is

different from economic inflation. In fact, by assuming constant ground-up costs
we implicitly assume that all costs have been adjusted for economic inflation so
that they live on the same scale, and additional backlog costs are then concerned
with super-imposed claims inflation and costs related to an increased expense
due to late processing and settlements.

Combining delay-adjusted claims costs and settlement costs. Mak-
ing claims processing capacity with expectation E[C] available generates ULAE.
We have explained above that the ULAE allocated to any given occurrence pe-
riod corresponds to the full single-period ULAE. For simplicity, we assume that
ULAE have a fixed component that corresponds to a minimal expected ca-
pacity E[R] ensuring a stationary system, and for the excess expected capacity
E[C]−E[R] we consider a proportional cost κc(E[C]−E[R]) with κc > 0. Adding
the expected costs for the excess capacity to the delay-adjusted expected claims
costs gives the following expected costs for any occurrence period i:

µ
(ℓ)
i := κg E[R] + κb E[B] + κc (E[C]− E[R]), (8)

for the linear cost model, and

µ
(ι)
i := κg

∑
j≥0

λj
b E

[
Bi,j +Ri,j −Bi,j+1

]
+ κc

(
E[C]− E[R]

)
, (9)

for the model with non-linear delay-inflated costs. We emphasize that µ
(ℓ)
i

for the linear cost model does not depend on how processing capacity is shared
between occurrence periods requiring processing capacity (the indexes i and j do
not show up in the expression (8)). However, µ(ι)

i for the non-linear cost model
does indeed depend on how processing capacity is shared. It is known that E[B]
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is a convex function of E[C], see, e.g., [8], and therefore µ
(ℓ)
i is a convex function

of E[C]. The main question then is what is the optimal expected capacity to
minimize the overall expected costs. In general, this expected cost minimization
has to be performed numerically, and we return to this in Section 8.1.

Example 3.1. As shown in Section 2.2, a heavy-traffic approximation for E[B]

may give an explicit expression for µ
(ℓ)
i of the form

κgE[R] + κbE[B] + κc(E[C]− E[R]) = κgE[R] + κb
αE[R]

c− E[R]
+ κc(c− E[R]),

which can be minimized explicitly with minimizer c = E[R] +
√

αE[R]κb/κc

and minimum κgE[R] + 2
√
ακbκcE[R]. The D/G/1 queueing model setting

corresponds to α = Var[R]/(2E[R]) which leads to the minimizer c = E[R] +√
Var[R]κb/(2κc) and minimum κgE[R] +

√
2κbκc Var[R].

4 Sharing processing capacity
Many procedures can be considered describing how claims are processed and how
the backlog for individual occurrence periods evolves over time. We focus on the
simple procedure where claims are processed by first processing the backlog and
then, if there is processing capacity left after the backlog has been processed,
the newly reported claims are processed. However, we do this without assuming
continuous-time monitoring of claim arrivals (reporting times). Let

SCBt :=
{
Bt ≤ Ct

}
,

denote the event that there is, at time t, sufficient capacity to process the
backlog. Note that

SCc
t ∩ SCBt =

{
Bt ≤ Ct < Bt +Rt

}
denotes the event that the capacity is insufficient to process all claims waiting
to be processed, but sufficient to process the backlog.

The number of processed claims is the sum of the number of processed
backlog claims and the number of processed newly reported claims

Pi,t−i = PB
i,t−i + PR

i,t−i. (10)

We assume that, given Ft ∨ Gt := σ{Ft,Gt}, claims in the backlog at the be-
ginning of period t will be processed during period t independently with (con-
ditional) probability

1SCBt +
Ct

Bt
1SCBc

t
. (11)

From (3) and (4) it follows that this expression for the conditional probability
is Ft-measurable. This is seen as follows. If Pt ≥ Bt, then 1SCBt

= 1 and
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Ct1SCBc
t
= 0. If Pt < Bt, then 1SCBt = 1 and Ct1SCBc

t
= Pt. Hence, the condi-

tional probability is fully determined by Pt and Bt being both Ft-measurable.
The interpretation of the conditional probability (11) is straightforward: If

there is sufficient capacity to process the backlog, then the probability is equal
to one. Otherwise the probability equals the proportion of the capacity to the
size of the backlog. Given Ft∨Gt, we know the number Bi,t−i of backlog claims
for occurrence period i. Hence, it follows from the assumption of independently
processing the backlog claims that the conditional distribution L(PB

i,t−i | Ft∨Gt)
is a binomial distribution. Therefore,

E
[
PB
i,t−i | Ft ∨ Gt

]
= Bi,t−i

(
1SCBt +

Ct

Bt
1SCBc

t

)
. (12)

We assume that, given Ft∨Gt, claims reported during period t will be processed
during period t independently with (conditional) probability

1SCt
+

Ct −Bt

Rt
1SCc

t ∩ SCBt
. (13)

From (3) and (4) it follows that this expression for the conditional probability
is Ft-measurable. That is, if Pt = Bt + Rt, then 1SCt = 1. Otherwise, if
Pt < Bt + Rt, then 1SCt

= 0. If Pt < Bt + Rt and Pt ≥ Bt, then Pt =
Ct1SCc

t ∩ SCBt
. Otherwise, if Pt = Bt + Rt or Pt < Bt, then 1SCc

t ∩ SCBt
= 0.

Hence, the conditional probability is fully determined by Pt, Bt and Rt which
are all Ft-measurable.

The interpretation of the conditional probability (13) is as follows: If there
is sufficient capacity to process first the backlog and then the newly reported
claims, then the probability is equal to one. Otherwise the probability equals
the proportion of the remaining capacity (after processing the backlog) to the
number of reported claims. Similarly to above for the backlog claims, the newly
reported claims are processed independently with the corresponding remaining
capacity, giving another binomial distribution. Thus, given Ft ∨ Gt, we know
the number Ri,t−i of reported claims for occurrence period i, the conditional
distribution L(PR

i,t−i | Ft ∨ Gt) is a binomial distribution and

E
[
PR
i,t−i | Ft ∨ Gt

]
= Ri,t−i

(
1SCt

+
Ct −Bt

Rt
1SCc

t ∩ SCBt

)
. (14)

Equations (10), (12) and (14) together define the procedure for processing
claims. By summing up the number of processed backlog claims and the num-
ber of processed newly reported claims we obtain the conditionally expected
number of processed claims

E
[
Pi,t−i | Ft ∨ Gt

]
= Bi,t−i

(
1SCBt +

Ct

Bt
1SCBc

t

)
+Ri,t−i

(
1SCt

+
Ct −Bt

Rt
1SCc

t ∩ SCBt

)
.

(15)
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Assumption 4.1. The stochastic system {(Bi,j , Ri,j , Pi,j , Ci+j) : i ≥ i0, j ≥ 0}
satisfies (15).

From (3) and (15) it follows immediately that

E
[
Bi,t−i+1 | Ft ∨ Gt

]
= Bi,t−i

(
1− Ct

Bt

)
1SCBc

t

+Ri,t−i

(
1SCBc

t
+

(
1− Ct −Bt

Rt

)
1SCc

t ∩ SCBt

)
.

(16)

Note that recursion (5) (which holds regardless of the choice of procedure for
processing claims) can be written

Bt+1 = Bt

(
1− Ct

Bt

)
1SCBc

t
+Rt

(
1SCBc

t
+

(
1− Ct −Bt

Rt

)
1SCc

t ∩ SCBt

)
.

Note also that by summing over occurrence periods we obtain the same recursion
from (16) since in stationarity∑

i

E
[
Bi,t−i+1 | Ft ∨ Gt

]
= E

[
Bt+1 | Ft ∨ Gt

]
= Bt+1.

Hence, whereas (5) explains the backlog dynamics on the aggregate level, (16)
adds information by explaining the backlog dynamics on an individual occur-
rence period level. We emphasize that (5) holds for any procedure for processing
claims, whereas (16) is a consequence of a particular choice of the claims process-
ing procedure. If, as an example, we would require that newly reported claims
should be processed before backlog claims, then (5) would still hold, whereas
(16) would result in another expression.

5 Computation of backlog expectations
The aim of this section is to provide explicit expressions for unconditional and
conditional expectations of the number of backlog claims Bi,j . Considering the
unconditional expectation E[Bi,j ] makes most sense if we consider the backlog
process in its stationary state. We will therefore (see Assumption 5.1) assume
that (Rt) and (Ct) are i.i.d. sequences with E[Rt] < E[Ct] which ensures a sta-
tionary distribution and that the Markov chain (Bt) approaches stationarity
from an arbitrary fixed initial state. When the initial state B0 of the backlog
process (Bt)

∞
t=0 is drawn from its stationary distribution, the distribution of

Bi,j does not depend on i. On the other hand, we will consider conditional
expectations E[Bτ−i,i+k+1 | Gτ ] for k ≥ 0. For such conditional expectations,
stationarity issues for (Bt) do not play a role, but the assumption of i.i.d. se-
quences (Rt) and (Ct) is imposed in order to obtain an explicit expression for
the conditional expectation. Conditioning on Gτ means that we consider a situ-
ation where Bi,j and Ri,j for i+ j ≤ τ are observable, e.g., this may address the
question of optimally planing capacities when currently facing a large backlog
Bτ . This corresponds to data likely available to an actuary.

12



Assumption 5.1. The stochastic system {(Bi,j , Ri,j , Pi,j , Ci+j) : i ≥ i0, j ≥ 0}
satisfies:

(i) (Rt) and (Ct) are i.i.d. sequences with 0 < E[Rt] < E[Ct] < ∞.

(ii) There exist constants µj > 0 such that E[Ri,j | Fi+j ] = E[Ri,j | Ri+j ] =

(µj/µ)Ri+j for all i, where µ =
∑JR

j=0 µj .

Assumption 5.1 (ii) holds for a wide family of stochastic models. On a
sufficiently rich probability space, the requirement is essentially that Ri,j and
Ri+j − Ri,j can be represented as independent increments of a non-negative
Lévy process. We refer to [14] for more on Lévy processes.

Theorem 5.2. Assume that Ri,j and Ri+j −Ri,j are independent non-negative
random variables with E[Ri+j ] = µ ∈ (0,∞) and E[Ri,j ] = µj ∈ (0, µ), and
assume that there exists a Lévy process (Xt)t≥0 such that X1 = Ri+j and
Xµj/µ = Ri,j. Then E[Ri,j | Ri+j ] = (µj/µ)Ri+j.

Proof of Theorem 5.2. First, note that for any i.i.d. random variables Z1, . . . , Zn

with sum Sn, by symmetry it holds that E[Z1 | Sn] = Sn/n. Consider a sequence
((mk, nk))k≥1, with (mk, nk) ∈ Z2, such that limk→∞ mk/nk = µj/µ. For each
k, let

Zk
v := Xv/nk

−X(v−1)/nk
, v = 1, . . . , nk, Sk

u :=

u∑
v=1

Zk
v .

Note that

E
[
Sk
mk

| Sk
nk

]
=

mk

nk
Sk
nk

=
mk

nk
X1,

and by the stochastic continuity property for Lévy processes

Sk
mk

P→ Xµj/µ as k → ∞.

Hence, there is a subsequence k′ → ∞ such that Sk′

mk′
a.s.→ Xµj/µ. By Theorem

34.2(v) in [3],

E
[
Sk′

mk′ | S
k′

nk′

] a.s.→ E
[
Xµj/µ | X1

]
,

from which the conclusion follows.

We now turn to the computation of backlog expectations. In order to avoid
unnecessarily lengthy expressions we introduce the notation

Ft := Rt

(
1{Bt>Ct} +

(
1− Ct −Bt

Rt

)
1{Bt≤Ct<Bt+Rt}

)
,

Gt :=

(
1− Ct

Bt

)
1{Bt>Ct},

13



and note that Ft and Gt are Ft-measurable, see Section 4.
In Theorems 5.3 and 5.6 below we derive expressions for unconditional and

conditional expectations of backlogs Bi,j . From these expressions we note that
the expectations are fully determined once the corresponding expectations for
quantities Fτ+1, FτGτ+1, FτGτ+1Gτ+2, etc., can be evaluated. We will consider
numerical computation of the latter expectations in Section 7. We use the
notation ∧ for the minimum x ∧ y = min(x, y).

Theorem 5.3. Assume that Assumptions 2.1, 4.1 and 5.1 hold. For j ≥ 0,

E
[
Bi,j

]
=

j∧(J+1)∑
k=1

µk−1

µ
E
[
Fi+k−1

j−1∏
l=k

Gi+l

]
,

where an empty sum is equal to 0 and an empty product is equal to 1.

The identity Bi,j+1 = Bi,j +Ri,j − Pi,j implies the following expression for
E[Pi,j ]:

Corollary 5.4. Assume that Assumptions 2.1, 4.1 and 5.1 hold. For j ≥ 0,

E
[
Pi,j

]
=

j∧(J+1)∑
k=1

µk−1

µ
E
[
Fi+k−1

( j−1∏
l=k

Gi+l

)(
1−Gi+j

)]
+ 1{0≤j≤J}

µj

µ

(
µ− E

[
Fi+j

])
,

where an empty sum is equal to 0 and an empty product is equal to 1.

In the proof of Theorem 5.3 we will use conditional independence properties
together with the fact that products of the kind Gt+1 · · ·Gt+h, h ≥ 1, are
σ{Bs, Rs, Cs : s > t}-measurable.

Lemma 5.5. Assume that Assumptions 2.1, 4.1 and 5.1 hold. Then Ht and
{Bs, Rs, Cs : s > t} are conditionally independent given Ft.

Proof of Lemma 5.5. Note that

σ{Bs, Rs, Cs : s > t} = σ(Bt+1) ∨ σ{Rs, Cs : s > t},

where σ(Bt+1) ⊂ Ft and σ{Rs, Cs : s > t} are independent, and σ{Rs, Cs : s >
t} and Ht are independent. Hence, Ht and {Bs, Rs, Cs : s > t} are dependent
only through Bt+1, and therefore conditionally independent given Ft.

Proof of Theorem 5.3. We prove the statement for j = 0, 1, 2, 3 in detail assum-
ing j ≤ J + 1. From this, it is obvious how to repeat the argument recursively
to prove the statement for larger values of j. Bi,0 = 0 by definition. For j = 1,

E
[
Bi,1

]
= E

[
E
[
Bi,1 | Fi ∨ Gi

]]
= E

[
Ri,0

Ri
Fi

]
= E

[
E
[
Ri,0

Ri
Fi

∣∣∣∣Fi

]]
= E

[
E[Ri,0 | Fi]

Ri
Fi

]
=

µ0

µ
E
[
Fi

]
.
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For j = 2,

E
[
Bi,2

]
= E

[
E
[
Bi,2 | Fi+1 ∨ Gi+1

]]
= E

[
Bi,1Gi+1

]
+ E

[
Ri,1

Ri+1
Fi+1

]
,

where for the newly reported claims

E
[
Ri,1

Ri+1
Fi+1

]
= E

[
E
[
Ri,1

Ri+1
Fi+1

∣∣∣∣Fi+1

]]
=

µ1

µ
E
[
Fi+1

]
,

and for the previous backlog

E
[
Bi,1Gi+1

]
= E

[
E
[
Bi,1Gi+1 | Fi

]]
= E

[
E
[
Bi,1 | Fi

]
E
[
Gi+1 | Fi

]]
= E

[
E
[
E
[
Bi,1 | Fi ∨ Gi

]
| Fi

]
E
[
Gi+1 | Fi

]]
= E

[
E
[
Ri,0

Ri
Fi

∣∣∣∣Fi

]
E
[
Gi+1

∣∣∣∣Fi

]]
= E

[
E
[
Ri,0

Ri

∣∣∣∣Fi

]
E
[
FiGi+1

∣∣∣∣Fi

]]
=

µ0

µ
E
[
FiGi+1

]
,

(17)

where we used Lemma 5.5 noting that Bi,1 is Hi-measurable. For j = 3,

E
[
Bi,3

]
= E

[
E
[
Bi,3 | Fi+2 ∨ Gi+2

]]
= E

[
Bi,2Gi+2

]
+ E

[
Ri,2

Ri+2
Fi+2

]
,

where

E
[
Ri,2

Ri+2
Fi+2

]
= E

[
E
[
Ri,2

Ri+2
Fi+2

∣∣∣∣Fi+2

]]
=

µ2

µ
E
[
Fi+2

]
,

and, similarly to (17),

E
[
Bi,2Gi+2

]
= E

[
E
[
E
[
Bi,2 | Fi+1 ∨ Gi+1

]
| Fi+1

]
E
[
Gi+2 | Fi+1

]]
= E

[
E
[
Bi,1Gi+1 +

Ri,1

Ri+1
Fi+1

∣∣∣∣Fi+1

]
E
[
Gi+2 | Fi+1

]]
= E

[
Bi,1Gi+1Gi+2

]
+ E

[
Ri,1

Ri+1
Fi+1Gi+2

]
,

where we used Lemma 5.5. The last two terms are simplified as follows

E
[
Ri,1

Ri+1
Fi+1Gi+2

]
= E

[
E
[
Ri,1

Ri+1
Fi+1Gi+2

∣∣∣∣Fi+1

]]
= E

[
E
[
Ri,1

Ri+1
Fi+1

∣∣∣∣Fi+1

]
E
[
Gi+2

∣∣∣∣Fi+1

]]
= E

[
E
[
Ri,1

Ri+1

∣∣∣∣Fi+1

]
E
[
Fi+1Gi+2

∣∣∣∣Fi+1

]]
=

µ1

µ
E
[
Fi+1Gi+2

]
,
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where we used Lemma 5.5. For the remaining term we recall that Bi,1 is Hi-
measurable and use Lemma 5.5 to receive

E
[
Bi,1Gi+1Gi+2

]
= E

[
E
[
Bi,1Gi+1Gi+2 | Fi

]]
= E

[
E
[
E
[
Bi,1 | Fi ∨ Gi

]
| Fi

]
E
[
Gi+1Gi+2 | Fi

]]
= E

[
E
[
Ri,0

Ri
Fi

∣∣∣∣Fi

]
E
[
Gi+1Gi+2 | Fi

]]
= E

[
E
[
Ri,0

Ri

∣∣∣∣Fi

]
E
[
FiGi+1Gi+2 | Fi

]]
=

µ0

µ
E
[
FiGi+1Gi+2

]
.

For j > 3 the statement follows by reusing the above arguments.

Theorem 5.3 considered unconditional backlog expectations. Below follows
the corresponding result for conditional expectations.

Theorem 5.6. Assume that Assumptions 2.1, 4.1 and 5.1 hold. For k ≥ 0
such that τ − i+ k ≥ 0,

E
[
Bi,τ−i+k+1 | Gτ

]
=

k∑
m=1

1{i≤τ+m≤i+J}
µτ−i+m

µ
E
[
Fτ+m

k∏
l=m+1

Gτ+l

∣∣∣∣ Eτ] (18)

+ 1{i≤τ≤i+J}
Ri,τ−i

Rτ
E
[
Fτ | Eτ

]
E
[ k∏
l=1

Gτ+l

∣∣∣∣ Eτ] (19)

+ 1{i≤τ}Bi,τ−iE
[
Gτ | Eτ

]
E
[ k∏
l=1

Gτ+l

∣∣∣∣ Eτ], (20)

where an empty sum is equal to 0 and an empty product is equal to 1. We can
equally replace all conditions Eτ by Gτ .

Proof of Theorem 5.6. The statement is proved by the same arguments as in
the proof of Theorem 5.3.

Remark 5.7. For past occurrence periods, i ≤ τ , all three terms (18), (19),
(20) contribute to the conditional backlog expectation. For future occurrence
periods, i > τ , the terms (19) and (20) vanish.

Remark 5.8. If Ct = c is constant, then Ft and Gt are fully determined by Bt

and Rt. Hence, E
[
Fτ | Eτ

]
= Fτ and E

[
Gτ | Eτ

]
= Gτ . Moreover, since (Rt)

is an i.i.d. sequence, if Ct = c is constant, then Bt+1 is fully determined by Bt
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and Rt, and

E
[
Fτ+m

k∏
l=m+1

Gτ+l

∣∣∣∣ Eτ] = E
[
Fτ+m

k∏
l=m+1

Gτ+l

∣∣∣∣Bτ+1

]
,

E
[ k∏
l=1

Gτ+l

∣∣∣∣ Eτ] = E
[ k∏
l=1

Gτ+l

∣∣∣∣Bτ+1

]
.

Remark 5.8 implies the following corollary to Theorem 5.6.

Corollary 5.9. Assume that Assumptions 2.1, 4.1 and 5.1 hold. Assume that
there exists a non-random c > 0 such that Ct = c for all t. For k ≥ 0 such that
τ − i+ k ≥ 0,

E
[
Bi,τ−i+k+1 | Gτ

]
=

k∑
m=1

1{i≤τ+m≤i+J}
µτ−i+m

µ
E
[
Fτ+m

k∏
l=m+1

Gτ+l

∣∣∣∣Bτ+1

]

+ 1{i≤τ≤i+J}
Ri,τ−i

Rτ
FτE

[ k∏
l=1

Gτ+l

∣∣∣∣Bτ+1

]

+ 1{i≤τ}Bi,τ−iGτE
[ k∏
l=1

Gτ+l

∣∣∣∣Bτ+1

]
,

where an empty sum is equal to 0 and an empty product is equal to 1.

6 The negative binomial model
It may seem natural to consider a Poisson model for the number of reported
claims, where all Ri,j are independent and Ri,j ∼ Pois(µj). Such a model
is consistent with Assumption 5.1. However, as explained in Remark 2.3, for
constant capacity Ct = c and µ < c reasonably large, say 1000, the expected
total size of the backlog will be close to 0 unless c ≈ µ. The event {Bt > c},
which appears in expected backlog calculations in Section 5, is a very unlikely
event for the Poisson model. Markov’s inequality together with Remark 2.3 give

P[Bt > c] ≤ 1

c/µ− 1

1

2c
≈ 0.

Thus, long-term backlogs are not an issue in Poisson settings. We need a model
for the numbers of reported claims with considerable over-dispersion compared
to the Poisson model to have an interesting backlog behavior.

We start with a generic negative binomial random variable R. Assume
that R is conditionally Poisson distributed with conditional mean Λ, and Λ ∼
Γ(α, β). It follows that R has an unconditional negative binomial distribution
NegBin(α, β) with moment generating function

E[exp{xR}] = E
[
exp

{
Λ(ex − 1)

}]
=

(
β

β − (ex − 1)

)α

, for x < log(β + 1).
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From this it follows that we can aggregate independent negative binomial ran-
dom variables Ri,0, . . . , Ri,J (or Rt,0, Rt−1,1, . . . , Rt−J,J) as long as they share
the same scale parameter β, and we remain in the family of negative binomial
random variables

E
[
exp

{
x

J∑
j=0

Ri,j

}]
=

J∏
j=0

E[exp{xRi,j}] =
(

β

β − (ex − 1)

)∑J
j=0 αj

.

We consider the following model for the number of reported claims: all Ri,j are
independent with Ri,j ∼ NegBin(αj , β). Hence,

Rt :=

J∑
j=0

Rt−j,j
d
=

J∑
j=0

Ri,j ∼ NegBin(α, β), α :=

J∑
j=0

αj ,

with means and variances

E[Rt] = α/β and Var[Rt] = α/β + α/β2 = E[Rt]
(
1 + 1/β

)
.

The over-dispersion term 1/β distinguishes the negative binomial model from
the Poisson model. In practical applications, it is often reasonable to assume
that the model has a coefficient of variation roughly on the unit scale, typically, it
is bigger for claim size modeling than for claim counts modeling. The coefficient
of variation is in this negative binomial model given by√

Var[Rt]

E[Rt]
=

√
β

α
+

1

α
=

√
1

E[Rt]
+

1/β

E[Rt]
.

This requires that β > 0 lives on the same scale as 1/E[Rt]. We select α = 2 and
β = 2/1000, this gives an expected value of µ = E[Rt] = 1000 and a coefficient
of variation ≈ 0.7. We select J = 3, and we split the expected numbers of
reported claims according to

(E[Rt,0],E[Rt,1],E[Rt,2],E[Rt,3]) = (α0, α1, α2, α3)/β (21)
= (500, 300, 150, 50).

We select a constant period capacity Ct = c with c = ηµ, where the capacity
ratio η is chosen as η = 1.2.

The following figures show the results from this negative binomially gener-
ated claims reportings data Rt, 1 ≤ t ≤ T , over the T = 120 (monthly) time
periods. We start the process with a zero backlog B1 = 0.

Figure 1 (lhs) shows the probabilities of a non-zero backlog when starting
with a zero backlog, P[Bt > 0 | B1 = 0], for different time periods 1 ≤ t ≤ T , and
the corresponding conditionally expected backlog sizes E[Bt | Bt > 0, B1 = 0]
for a capacity ratio of η = 1.2 in this negative binomial model. The conditionally
expected long-term backlog limt→∞ E[Bt | Bt > 0, B1 = 0] is of magnitude 1600,
see Figure 1 (rhs). This implies that we have an expected long-term backlog of
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Figure 1: Negative binomial model with capacity ratio η = 1.2: (lhs) prob-
abilities of a non-zero backlog P[Bt > 0 | B1 = 0] for different time periods
1 ≤ t ≤ T ; (rhs) conditionally expected backlog sizes E[Bt | Bt > 0, B1 = 0].
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Figure 2: Relative expected backlogs E[Bt | B1 = 0]/E[Rt] for capacity ratios
η ∈ {1.05, 1.10, . . . , 1.50} if one starts with a zero backlog.

limt→∞ E[Bt | B1 = 0] ≈ 1000, which is just slightly below the selected capacity
c = ηµ = 1200. This results in frequent carry forward of old backlogs.

Figure 2 shows the relative expected backlogs E[Bt | B1 = 0]/E[Rt] if we
start the process with a zero backlog B1 = 0. The different colors correspond
to capacity ratios η ∈ {1.05, 1.10, . . . , 1.50}. For a capacity ratio η = 1.1 the
average backlog is roughly twice the expected number of reported claims, and
for η = 1.2 we have a factor of roughly 1.

Figure 3 (lhs) gives the empirical conditional densities of the backlog Bt,
conditioned on {Bt > 0, B1 = 0}, for 2 ≤ t ≤ T . The light-blue density with
the highest maximum corresponds to t = 2, and with increasing time t we follow
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Figure 3: Negative binomial model: (lhs) empirical densities of the backlogs,
conditioned on {Bt > 0, B1 = 0} for different time periods 2 ≤ t ≤ T ; (rhs)
auto-correlation diagram of backlogs B2 and B2+s for time lags s ≥ 1 when
starting with a zero backlog B1 = 0.

the rainbow colors (from light-blue to red). We observe that this conditional
backlog size has still a significant positive probability that exceeds twice the
capacity 2c in the stationary limit (vertical red dotted line). This indicates
that we likely have carry forwards of backlogs over multiple periods. Figure
3 (rhs) shows the auto-correlation diagram of backlogs B2 and B2+s for time
lags s ≥ 1 when starting with a zero backlog B1 = 0. This auto-correlation
Corr(B2, B2+s | B1 = 0) has vanished after 40 periods.

Figure 4 (lhs) shows the empirical density of Ft and the conditional empirical
density of Ft, given Bt = 0. The latter is directly simulated, given Bt =
0, using the aggregate negative binomial model assumption for Rt. For the
former, we select Bt from the stationary limit distribution of Figure 3 (lhs), and
then simulate Ft conditional on this value. The vertical dotted lines show the
(conditionally) expected values E[Ft] and E[Ft | Bt = 0] in red and blue.

This carries over to Figure 4 (rhs) which shows the (conditional) expectations
gj and gj(0) of Ft

∏t+j
l=t+1 Gl, where

gj := E

[
Ft

t+j∏
l=t+1

Gl

]
and gj(b) := E

[
Ft

t+j∏
l=t+1

Gl

∣∣∣∣Bt = b

]
. (22)

We obtain expected values that are significantly bigger than zero for small j’s,
and this precisely differentiates the backlog behavior in the negative binomial
model from the Poisson case.
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Figure 4: Negative binomial model: (lhs) (conditionally) densities and expected
values E[Ft] and E[Ft | Bt = 0]; (rhs) (conditional) expectations given in equa-
tion (22) for 0 ≤ j ≤ 9, where j = 0 corresponds to the empty product only
considering Ft; red refers to the unconditional case averaging over the station-
ary distribution for the initial value Bt, and blue corresponds to starting the
process in a zero backlog Bt = 0.

7 Neural network approximation
To take into account backlog costs in cost optimization problems, we need to be
able to study the sensitivities of the functions (gj(·))j≥0 defined in (22) in the
capacity ratio parameter η > 1. We therefore slightly modify the corresponding
notation by adding upper indices (η) to the variables that directly depend on the
selected capacity ratio η > 1. In particular, we consider the following quantity
for backlog computations

gj(b; η) = E
[
F

(η)
1

j+1∏
l=2

G
(η)
l

∣∣∣∣B(η)
1 = b

]
, (23)

for j ≥ 0, with an empty product being set to one.
Since the quantities (23) cannot be computed explicitly, as a function of η,

we fit a recurrent neural network (RNN) zRNN
θ : R2 → RT that takes the inputs

(b, η) to approximate the function (b, η) 7→ (gj(b; η))
T−1
j=0 ∈ RT , for a fixed large

T . The fitted RNN zRNN
θ̂

is obtained by minimizing the square loss in network
parameter θ

θ̂ ∈ argmin
θ

1

n

n∑
k=1

T−1∑
j=0

(
F k
1

j+1∏
l=2

Gk
l − zRNN

θ (Bk
1 , η

k)j

)2

, (24)

where the observations (F k
1 , G

k
2 , . . . , G

k
T−1), 1 ≤ k ≤ n, are simulated by using

i.i.d. randomized uniform capacity ratios ηk ∈ (1.05, 1.50), randomized initial
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backlogs Bk
1 (from the stationary limit distribution corresponding to the sim-

ulated ηk), simulated reporting processes (Rk
t )

T
t=1, and the resulting backlog

processes (Bk
t )

T
t=1 for the simulated capacity ratios ηk. From this we compute

the observations (F k
1 , G

k
2 , . . . , G

k
T−1), which then enter the square loss (24).
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Figure 5: (Conditional) expectations E[gj(B(η)
1 ; η)] and gj(0; η), 0 ≤ j ≤ 9, for

capacity ratio η = 1.2: (lhs) empirical means taken from Figure 4 (rhs), and
(rhs) RNN approximations zRNN

θ̂
.

Figure 5 (rhs) shows the results of the fitted RNN zRNN
θ̂

approximation,
and they are compared to the empirical means on the left-hand side in this
figure; these are taken from Figure 4 (rhs), and both figures have the same y-
scale and the same selected capacity ratio η = 1.2. For the conditional version
we start with a zero backlog B

(η)
1 = 0, thus, we consider zRNN

θ̂
(0, η), and for

the unconditional version E[zRNN
θ̂

(B
(η)
1 , η)] we average over the stationary limit

distribution for B
(η)
1 that corresponds to the capacity ratio η = 1.2; note that

this averaging is done purely empirically by selecting stationary samples from
the backlogs. From this figure we conclude that the RNN approximations are
very close to the empirical means. Thus, overall the RNN approximations zRNN

θ̂
seem very accurate.

Figure 6 shows the RNN approximations for different choices of the capacity
ratio η ∈ {1.05, 1.10, . . . , 1.50} and for different starting backlogs B(η)

1 . All these
plots are obtained from the (single) fitted RNN (b, η) 7→ zRNN

θ̂
(b, η), i.e., we can

now simultaneously evaluate gj(b, η) for any initial backlog b ∈ {0, . . . , 40, 000}
and any capacity ratio η ∈ [1.05, 1.50], this is the input domain on which the
network zRNN

θ̂
has been trained on.

Figure 6 (top-left) gives the unconditional versions E[zRNN
θ̂

(B
(η)
1 ; η)], where

we average over the stationary limit distribution of the backlogs under the given
capacity ratio η; note that this averaging is again done purely empirically by
selecting stationary samples from the backlogs. Figure 6 (top-right) shows the
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Figure 6: RNN approximations of the means E[gj(B(η)
1 ; η)] and conditional

means gj(B
(η)
1 ; η) for capacity ratios η ∈ {1.05, 1.10, . . . , 1.50}: (top-left) un-

conditional version averaged over the stationary limit distribution of B
(η)
1 ;

remaining versions are the conditional means for starting backlogs B
(η)
1 ∈

{0, 1000, 5000}.

conditional versions zRNN
θ̂

(0; η) starting in a zero backlog. The remaining plots

show the conditional versions for starting backlogs B
(η)
1 ∈ {1000, 5000}; these

additional plots have all identical y-scales and the horizontal dotted lines is at
the expected number of reported claims level µ = E[R1] = 1000. Recall the
random variable

F
(η)
1 = R1

(
1{B(η)

1 >c(η)} +

(
1− c(η) −B

(η)
1

R1

)
1{B(η)

1 ≤c(η)<B
(η)
1 +R1}

)
.

Clearly, the first indicator is zero for B(η)
1 = 1000 and c(η) = ηµ = η1000 > 1000.

Thus, only the second indicator contributes to g0(b, η) for b < ηµ. On the other
hand, for any starting backlog B

(η)
1 ≥ ηµ we have a non-vanishing first indicator,

saying that g0(b, η) ≥ µ = E[R1] for b ≥ ηµ. This is how the initial values g0(b, η)
of Figure 6 (bottom) are interpreted, and this is highlighted by the horizontal
darkgray dotted line. For j ≥ 1, we can then (simply) verify that it takes more

23



time to run off the initial backlog B
(η)
1 for smaller capacity ratios η > 1.

Fitting the RNN zRNN
θ becomes increasingly difficult the closer the capacity

ratio η > 1 approaches its limit 1 of a non-explosive model which requires
c(η) > µ = E[R1]. The unconditional version Figure 6 (top-left) is more sensitive
in η than its conditional counterparts g0(b, η), because for the former we average
the initial backlog B

(η)
1 over its stationary limit distribution, and the additional

variability enters through the increasing volatility of this limiting distribution for
decreasing η, i.e., we have slower convergence to the stationary limit distribution
of the backlog process the closer η > 1 is to the critical value of one.

7.1 Approximation of unconditional backlog expectations
In view of the unconditional cost allocation problem, see Section 3, the condi-
tional version gj(b; η), given in (23), is not fully suitable because it still needs
averaging over the stationary limit distribution of the backlog, which can only
be done numerically; this is exactly how Figure 6 (top-left) has been obtained.
Here we would rather like to have a function

η 7→ gj(η) = E
[
gj(B

(η)
1 ; η)

]
= E

[
F

(η)
1

j+1∏
l=2

G
(η)
l

]
for j ≥ 0. (25)

We fit a different second RNN to directly approximate η 7→ (gj(η))
T−1
j=0 rather

than (b, η) 7→ (gj(b, η))
T−1
j=0 . For receiving a suitable RNN approximation we

need to ensure that the initial backlog B
(η)
1 is sampled from the stationary

limit distribution. For this we start a process that has some burn-in until it
generates stationary samples. We first study empirically the convergence rate
to the stationary phase. Figure 7 shows the results for two different capacity
ratios η = 1.05, 1.10 starting from a zero backlog. From these plots we conclude
that we need to simulate roughly 1200 iteration steps to arrive at an empirical
approximation to the stationary limit distribution. All following results are
obtained by using this burn-in of 1200 iterations, and the subsequent samples are
then taken as an empirical approximation to the stationary limit distribution.

Based on this sampling and fitting strategy we fit a single input RRN to
the function in (25). Figure 8 (rhs) shows the results of this direct fitting of
a RNN to the unconditional means gj(η) using stationary backlog time series
for different capacity ratios η ∈ [1.05, 1.50]. This is compared to the empirical
average over the conditional means gj(B

(η)
1 ; η) taken from Figure 6 (top-left).

We see an excellent alignment of the results, telling that both networks have
learned the same structure. The only (smaller) differences are visible for the
smallest capacity ratio η = 1.05. The issue here clearly is slow convergence to
the stationary limiting distribution, which is also verified from Figure 7. For
the unconditional cost optimization problem we use the unconditional network
approximation to (gj(η))j≥0.
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Figure 7: Negative binomial model with capacity ratios η = 1.05, 1.10: analysis
of burn-in to reach the stationary limit distribution for an initial backlog of zero.
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Figure 8: RNN approximations of the means (gj(η))j≥0 for capacity ratios η ∈
{1.05, 1.10, . . . , 1.50}: (lhs) this is identical to Figure 6 (top-left) received by
empirically averaging over the conditional networks, and (rhs) direct fit of the
unconditional mean using a single input network.

7.2 Approximation of conditional backlog expectations
In order to numerically approximate the conditional backlog expectations in
Corollary 5.9 we observe that we need to have time-delayed versions of the
quantities gj(b; η) introduced in (23). We need to compute hj(b,m; η), where,
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for j ≥ 0,

hj(b, 0; η) := E
[ j∏
l=1

G
(η)
l

∣∣∣∣B(η)
1 = b

]
, (26)

hj(b,m; η) := E
[
F (η)
m

m+j∏
l=m+1

G
(η)
l

∣∣∣∣B(η)
1 = b

]
, m ≥ 1. (27)

The functions hj(b, 0; η) are time-advanced versions of gj(b; η) by dropping F
(η)
1 ,

the functions hj(b,m; η), m ≥ 1, are time-delayed versions of gj(b; η). Using
these we rewrite the expression for the conditional expectation in Corollary 5.9
as follows. For k ≥ 0 such that τ − i+ k ≥ 0,

E
[
B

(η)
i,τ−i+k+1 | G(η)

τ

]
=

k∑
m=1

1{i≤τ+m≤i+J}
µτ−i+m

µ
hk−m

(
B

(η)
τ+1,m; η

)
(28)

+ 1{i≤τ≤i+J}
Ri,τ−i

Rτ
F (η)
τ hk

(
B

(η)
τ+1, 0; η

)
(29)

+ 1{i≤τ} B
(η)
i,τ−i G

(η)
τ hk

(
B

(η)
τ+1, 0; η

)
. (30)

Since hj(b,m; η) lives on different scales for m = 0, formula (26), and m ≥ 1,
formula (27), we fit two different networks to these two cases. This is easier in
training. The case m = 0 is then completely analogous to gj(b; η), see (24), and
the fitting results are given in Figure 12 in the appendix.

Fitting hj(b,m; η), m ≥ 1, is slightly more tricky because the first term F
(η)
1

lives on a different scale compared to G
(η)
l , l ≥ m+1. This is similar to gj(b; η).

Note that we can rewrite (27) as follows

hj(b,m; η) = E
[
F (η)
m

m+j∏
l=m+1

G
(η)
l

∣∣∣∣B(η)
1 = b

]

= E
[
E
[
F (η)
m

m+j∏
l=m+1

G
(η)
l

∣∣∣∣B(η)
m , B

(η)
1 = b

] ∣∣∣∣B(η)
1 = b

]
= E

[
gj

(
B(η)

m ; η
) ∣∣∣∣B(η)

1 = b

]
.

This shows that we can employ a similar approximation and fitting strategy as
in (24) but we need to time-delay by m− 1 periods. This requires an additional
input m to the RNN zRNN

θ , and then we can fit

θ̂ ∈ argmin
θ

1

n

n∑
k=1

T−1∑
j=0

(
F k,m
1

j+1∏
l=2

Gk,m
l − zRNN

θ (Bk
1 , η

k,m)j

)2

, (31)

where the observations (F k,m
1 , Gk,m

2 , . . . , Gk,m
T−1), 1 ≤ k ≤ n, are received by

first simulating the m− 1 periods delayed starting point Bk
m from Bk

1 , set new
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starting value Bk,m
1 := Bk

m, and then proceed as in (24). This provides us with
a fitted neural network (b, η,m) 7→ zRNN

θ̂
(b, η,m) that approximates hj(b,m; η),

m ≥ 1, j ≥ 0, b ≥ 0 and η ∈ (1.05, 1.50). The results are shown in Figures 13-15
in the appendix for the three different starting values b ∈ {0, 1000, 5000}.

8 Cost optimization
We now have prepared all the necessary numerical tools to study the optimal
capacity ratio η > 1 for obtaining minimal costs. We distinguish the uncondi-
tional and the conditional cases. The latter considers a situation where we want
to optimally plan the capacity under a given starting backlog B

(η)
1 , and the for-

mer unconditional case is a global consideration of long-term optimal planing
to receive minimal costs. In the long run, the conditional version will converge
to the unconditional one, regardless of the specific initial backlog B

(η)
1 .

8.1 Unconditional cost optimization
Recall the expressions (8) and (9) for expected combined delay-adjusted claim
costs and capacity costs. Here we study these expected costs as functions of the
capacity ratio η. We write

µ
(ℓ)
i (η) := κg µ+ κb E[B(η)] + κc (c

(η) − µ) (32)

for the linear cost model, and

µ
(ι)
i (η) := κg

∑
j≥0

λj
b E

[
B

(η)
i,j +Ri,j −B

(η)
i,j+1

]
+ κc

(
c(η) − µ

)
(33)

for the model with non-linear delay-inflated costs. We study these total costs
as a function of the capacity ratio η > 1 providing c(η) = ηµ and impacting the
backlog via recursion (5). Using the network approximation to (gj(η))j≥0 we
can explicitly compute these costs using relation (see Theorem 5.3)

E
[
B

(η)
i,j

]
=

j∧(J+1)∑
k=1

µk−1

µ
E
[
F

(η)
i+k−1

j−1∏
l=k

G
(η)
i+l

]
=

j∧(J+1)∑
k=1

µk−1

µ
gj−k(η), (34)

where an empty sum is equal to 0 and an empty product is equal to 1.
Figure 9 (lhs) shows the optimal capacity ratio in the linear capacity cost

case (32) with κg = 1, which gives ground-up costs of κgµ = 1000. To this we
add backlog costs with κb = 0.075 and excess capacity costs with κc = 0.5. The
plot shows the linear cost case η 7→ µ

(ℓ)
i (η) as a function of the capacity ratio

η > 1. In this model (and parametrization) the optimal (total cost minimizing)
ratio is η∗ = 1.203. Thus, in this case we have ground-up costs of 1000, and
the optimal capacity ratio η∗ = 1.203 adds another 175 which is related to
backlog costs. This results in the upper horizontal darkgray dotted line at 1175
describing the total expected costs µ

(ℓ)
i (η∗) allocated to occurrence period i.
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Figure 9: Optimal capacity ratio: (lhs) linear backlog costs case (32) and (rhs)
inflating backlog costs case (33); the vertical orange line shows the optimal
capacity ratios η∗ and the lower horizontal dotted darkgray line the ground-up
costs κgµ.

Figure 9 (rhs) shows the inflating backlog costs case (33), η 7→ µ
(ι)
i (η), where

we inflate claims costs by an inflation rate of 5% resulting in λb = 1.05, and the
remaining parameters are selected as above. In that case the optimal capacity
ratio under our parametrization is η∗ = 1.190.
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Figure 10: Expected proportion of processed claims for a fixed occurrence period
for different capacity ratios η ∈ {1.05, . . . , 1.50}.

The explicit formula (34) for the expected backlogs E[B(η)
i,j ] for a fixed occur-

rence period i for different delays j allows us to compute the expected processing
pattern j 7→ E[P (η)

i,j ] of a fixed occurrence period, see also Corollary 5.4. Figure
10 shows the cumulative proportion of expected processed claims for different
capacity ratios η ∈ {1.05, . . . , 1.50}. For the higher capacity ratios all claims
are likely processed within 5 periods, whereas for lower capacity ratios it may
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take up to 24 periods on average. This precisely explains the cost differences
implied by the inflation part in the delay-inflated cost case (33).

8.2 Conditional cost optimization
Cost optimization in the conditional case is more involved because we cannot
use convenient consequences of stationarity. Here we assume that customers
pay a fixed premium and the cost optimization aims to maximize the profit on
the business. We consider a going-concern view, assuming that the business
continues as planned during a given planning horizon with a constant capacity
that we aim to select optimally. We consider all costs in the time window
(τ, τ + T ] without running off the open claims at the end of this time window.
For T → ∞, the results converge to the unconditional case because the impact
of the starting configuration at time τ vanishes asymptotically as T → ∞.

The optimization problem requires us to study E[B(η)
i,τ−i+k+1 | G(η)

τ ], where

G(η)
τ = σ

(
Ri,j , B

(η)
i,j : i+ j ≤ τ, j ≥ 0

)
.

Hence, we know all ingoing backlogs (B
(η)
i,j )i+j≤τ into period τ and all reported

claims (Ri,j)i+j≤τ in period τ . Having a constant capacity Ct = c(η), we there-
fore also know the aggregated ingoing backlog B

(η)
τ+1 one period later. However,

if B(η)
τ+1 > 0, then information G(η)

τ does not provide its partition to B
(η)
i,τ−i+1,

i.e., the individual origin periods. However, we will see that if we aggregate over
the occurrence periods i, this split is not necessary.

We consider the cases of linear backlog costs (32). For the moment we drop
the costs for the excess capacity κc(c

(η) − µ), since we do not allocate these
costs to individual occurrence periods in the going-concern view, we can just
add these costs at the end for every period up to the planning horizon T . In
the linear cost case we need to study

κg

∑
k

E
[
Ri,τ−i+k+1 | G(η)

τ

]
+ κb

∑
k

E
[
B

(η)
i,τ−i+k+1 | G(η)

τ

]
, (35)

the summation index k is going to be discussed below.
For the subsequent considerations one should have the following matrix in

mind. The rows in this matrix reflect the different occurrence periods from τ−J
(first row) to τ+T in (last row). These are all occurrence periods that contribute
to payments in the time window (τ, τ +T ]. Thus, we have T +J +1 occurrence
periods in this matrix. The columns in this matrix correspond to calendar
periods. The first column reflects the reported claims in calendar period τ , the
second column the expected number of reported claims in calendar period τ+1,
and the last column the expected number of reported claims in calendar period
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τ + T . Thus, this matrix has T + 1 columns.

M :=



Rτ−J,J 0 0 0 · · · 0 0
Rτ−J+1,J−1 µJ 0 0 · · · 0 0
Rτ−J+2,J−2 µJ−1 µJ 0 · · · 0 0

...
...

...
...

. . .
...

...
Rτ,0 µ1 µ2 µ3 · · · 0 0
0 µ0 µ1 µ2 · · · 0 0
0 0 µ0 µ1 · · · 0 0
0 0 0 µ0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · µ0 µ1

0 0 0 0 · · · 0 µ0



(36)

One should notice that calendar period τ corresponding to the first column
aggregates to the total number of reported claims Rτ in calendar period τ , all
other columns aggregate to µ being the expected number of claims of futures
periods in this stationary model.

The reported claims terms in (35) are comparably simple because future
reportings are independent of G(η)

τ . With finite planning horizon we have a
total number of expected reported claims, this is the sum over columns 2 to
T + 1 in matrix (36),

T−1∑
k=0

τ+k+1∑
i=τ+k+1−J

E
[
Ri,τ−i+k+1 | G(η)

τ

]
=

T+1∑
c=2

c+J∑
r=c

Mr,c = Tµ.

Note that occurrence periods i ≤ τ − J are fully reported at time τ , therefore,
they do not contribute to the above sum. We add the planning horizon T and
we discard all costs after this time window.

Next we focus on the backlogs in (35). For this we come back to the three
terms (28)-(30) which need to be summed over k for a fixed occurrence period
i. We start with the term (30). This requires i ≤ τ , otherwise this occurrence
period cannot have any ingoing backlog. Their total contribution across all
occurrence periods i is then

∑
i≤τ

B
(η)
i,τ−i

T−1∑
k=0

G(η)
τ hk

(
B

(η)
τ+1, 0; η

)
= B(η)

τ

T−1∑
k=0

G(η)
τ hk

(
B

(η)
τ+1, 0; η

)
,

we add the planning horizon T and we discard all costs after this time window.
Next, we focus on the term (29) newly reported claims in period τ . This

requires occurrence periods i ≤ τ ≤ i+J , thus, we have total expected backlogs
from newly reported claims, this is the sum over the first column in matrix (36),

τ∑
i=τ−J

Ri,τ−i

Rτ

T−1∑
k=0

F (η)
τ hk

(
B

(η)
τ+1, 0; η

)
=

T−1∑
k=0

F (η)
τ hk

(
B

(η)
τ+1, 0; η

)
,
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this is again truncated at the planning horizon T .
Finally, we focus on the term (28) for future reportings for occurrence periods

i > τ − J . To verify the following computation one should again note that we
aggregate over the columns 2 to T +1 in matrix (36), and each of these columns
belongs to a different delay m ∈ {1, . . . , T},

τ+T∑
i=τ−J+1

T∑
k=1

k∑
m=1

1{i≤τ+m≤i+J}
µτ−i+m

µ
hk−m

(
B

(η)
τ+1,m; η

)

=

T∑
m=1

τ+T∑
i=τ−J+1

1{τ−J+m≤i≤τ+m}
µτ+m−i

µ

T∑
k=m

hk−m

(
B

(η)
τ+1,m; η

)

=

T∑
m=1

T∑
k=m

hk−m

(
B

(η)
τ+1,m; η

)
=

T∑
m=1

T−m∑
k=0

hk

(
B

(η)
τ+1,m; η

)
.

Collecting all terms and aggregating over all occurrence periods i ∈ {τ −
J, . . . , T} that contribute to the costs in the time window (τ, τ + T ], see (36),
the linear costs case (35) requires studying the aggregate costs

Tµ(ℓ)(η, T,G(η)
τ ) := κg T µ+ κb B

(η)
τ

T−1∑
k=0

G(η)
τ hk

(
B

(η)
τ+1, 0; η

)
(37)

+ κb

T−1∑
k=0

F (η)
τ hk

(
B

(η)
τ+1, 0; η

)
+ κb

T∑
m=1

T−m∑
k=0

hk

(
B

(η)
τ+1,m; η

)
+ κc T

(
c(η) − µ

)
.

Thus, we have a fixed past history G(η)
τ , we have a fixed planing horizon T ≥ 1,

and we try to minimize to costs in time window (τ, τ + T ] in the cost capacity
ratio η, for given cost parameters κg, κb, κc > 0. To keep things simple, we
assume that we start from a zero backlog B

(η)
τ = 0 at time τ . This allows us to

drop the backlog term in (37), and we receive a next backlog at time τ + 1

B
(η)
τ+1 = max(Rτ − C(η), 0) = max

(∑
i≤τ

Ri,τ−i − C(η), 0

)
. (38)

Thus, the zero initial backlog case B
(η)
τ = 0 results in studying

Tµ(ℓ)(η, T,G(η)
τ ) = T

(
κc (c

(η) − µ) + κg µ
)
+ κb

T−1∑
k=0

F (η)
τ hk

(
B

(η)
τ+1, 0; η

)
+ κb

T∑
m=1

T−m∑
k=0

hk

(
B

(η)
τ+1,m; η

)
.
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This is fairly simple now. It requires that starting from a zero backlog B
(η)
τ = 0

at time τ , we need to simulate the number of reported claims Rτ in period τ ,
from which we can compute the new backlog B

(η)
τ+1 at time τ +1 as well as F (η)

τ .
In the following analysis we have Rτ = 1310 from which we can compute the
next backlog (38) for the different capacity ratios η > 1.
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Figure 11: Optimal capacity ratios in the linear backlog costs case, conditional
version, with a zero starting backlog B

(η)
τ = 0 at time τ showing: (lhs) plan-

ning horizon T = 60, (rhs) unconditional case taken from Figure 9 (lhs), this
corresponds to T = ∞.

Figure 11 shows the resulting optimal capacity ratios in the conditional case
if we start with a zero backlog B

(η)
τ = 0 at time τ for planning horizon T = 60,

and it is compared to the unconditional case given in Figure 9 (lhs) using the
same cost parameters κg, κb and κc; note that the unconditional case corre-
sponds to the infinite planning horizon.

planning horizon T optimal η∗ costs µ(ℓ)(η∗, T,G(η∗)
τ )

36 1.068 1152
60 1.149 1164
120 1.176 1172
∞ 1.203 1175

Table 1: Optimal capacity ratios η∗ for different planning horizons T and result
total costs linear backlog cost case.

Table 1 gives the numbers for planning horizons including those in Figure 11.
With a planning horizon of 120 (monthly) periods (or 10 years) we are rather
close to the unconditional case, having average optimal costs per period of 1172.
For shorter planning horizons these costs are lower, this is because we start
with a zero backlog B

(η)
τ = 0 at time τ , thus, this is a more favorable starting

position than the average over the stationary limit distribution (unconditional
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case). This results for a planning horizon of T = 36 (montly) periods (or 3
years) to optimal average costs of 1152.

Similar results with decreasing instead of increasing average costs are ob-
tained if we start from a large initial backlog B

(η)
τ at time τ . This can be

interpreted as a situation where the backlog has gone out of control, e.g., due
to a catastrophic claims event, and the management is concerned about clear-
ing the backlog at minimal mid-term costs. We refrain from giving an explicit
numerical example.

9 Summary
We formalized the question of choosing optimal processing capacities for claims
handling. On the one hand, the claims handling capacity needs to be limited
because any insurance company has only finite financial resources available. On
the other hand, the capacity should be sufficiently large because long processing
delays (and large backlogs) also generate various costs. We studied this trade-
off aiming at minimizing claims and claims processing costs. This problem
has several features from queueing theory, but there are also some significant
differences because claims are labeled by occurrence periods and arising expenses
need to be allocated to occurrence periods to have a consistent and appropriate
cost analysis of an insurance portfolio.

We formalized these questions and we solved a variant of this optimal cost
and capacity problem. This variant describes a specific mechanism to work off
a backlog, and it considers a specific super-imposed cost inflation factor for late
claims processing. In this regard, there are many alternative ways to model
these backlog cost items. Our choice is a realistic one that is still fairly well
tractable, and the final intractable step was solved by a recurrent neural network
approximation. This paper appears to be the first that considers this claims
processing costs problem. Alternative ways to model delay-adjusted costs and
other consequences of backlogs due to capacity constraints with shared capacity
could be fruitful to explore. We invite interested scholars to contribute to this
interesting problem.
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A Figures for neural network approximations
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Figure 12: RNN approximations of the conditional means hj(b, 0; η), j ≥
1, for capacity ratios η ∈ {1.05, 1.10, . . . , 1.50} (in different colors), b ∈
{0, 1000, 2000, 5000} (different plots) and m = 0.
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Figure 13: RNN approximations of the conditional means hj(b,m; η), j ≥ 0,
for capacity ratios η ∈ {1.05, 1.10, . . . , 1.50} (in different colors), b = 0 and
m ∈ {1, . . . , 5} (different plots), top-left is taken from Figure 6.
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Figure 14: RNN approximations of the conditional means hj(b,m; η), j ≥ 0,
for capacity ratios η ∈ {1.05, 1.10, . . . , 1.50} (in different colors), b = 1000 and
m ∈ {1, . . . , 5} (different plots), top-left is taken from Figure 6.
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Figure 15: RNN approximations of the conditional means hj(b,m; η), j ≥ 0,
for capacity ratios η ∈ {1.05, 1.10, . . . , 1.50} (in different colors), b = 5000 and
m ∈ {1, . . . , 5} (different plots), top-left is taken from Figure 6.
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