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Abstract

A network epidemic model is studied. The underlying social network has two
different types of group structures, households and workplaces, such that each indi-
vidual belongs to exactly one household and one workplace. The random network
is constructed such that a parameter θ controls the degree of overlap between the
two group structures: θ = 0 corresponding to all household members belonging to
the same workplace and θ = 1 to all household members belonging to distinct work-
places. On the network a stochastic SIR epidemic is defined, having an arbitrary
but specified infectious period distribution, with global (community), household
and workplace infectious contacts. The stochastic epidemic model is analysed as
the population size n → ∞ with the (asymptotic) probability, and size, of a ma-
jor outbreak obtained. These results are proved in greater generality than existing
results in the literature by allowing for any fixed 0 ≤ θ ≤ 1, a non-constant infec-
tious period distribution, the presence or absence of global infection and potentially
(asymptotically) infinite local outbreaks.

MSC2020 subject classifications: Primary 92D30, 60K35; secondary 60J80, 05C80, 91D30.
Keywords: SIR epidemic, Final size, Branching process, Coupling, Structured population.

1 Introduction

Epidemic models (as well as epidemic outbreaks) are highly affected by heterogeneities in
the community in which the epidemic spreads. There has been considerable research into
incorporating population structure into epidemic models. One of the simplest and most
commonly studied population structures is where the population is partitioned into small
mixing groups, often referred to as households (Becker and Dietz [14]). Infectious individ-
uals make both local, within their household, and global, within the community at large,
infectious contacts. The probability an infective infects a given housemate is typically an
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order of magnitude higher than the probability they infect a randomly chosen member of
the population who resides in a different household. The (asymptotic) probability of a
major outbreak and the size of a major outbreak as the size of the population (number
of households) tends to infinity can be obtained, see Ball et al. [7].

The households model provides a starting point for incorporating realistic population
structure into epidemic models for human populations. Human populations contain more
intricate social structure which presents challenges in modelling (Ball et al. [4]). House-
holds have a geographical location and the spatial location or neighbourhood to which a
household belongs can be important in defining the mixing between individuals in differ-
ent households, and hence the spread of a disease. Increased realism can be obtained by
using a hierarchical, three-level-mixing model (Britton et al. [16]), in which the population
is partitioned into neighbourhoods, which are partitioned into households; with different
rates of transmission between an infective and those individuals they share a household
with, a neighbourhood with or are a general member of the population. The focus in
Britton et al. [16] is on inference; Ouboter et al. [21] analyse the asymptotic probability
and size of a major outbreak for such a three-level-mixing model, with neighbourhoods
corresponding to schools, when the infectious period is constant.

As well as close ties with people they live with, individuals have regular contact with
individuals through work or school, and hence, increased opportunities to spread a disease
with such people. This has led to models with multiple partitions of the population,
for example, Andersson [1] and Ball and Neal [8]. In the case of two partitions of the
population the model is often referred to as the households-workplaces model. A common
assumption, to aid mathematical analysis, is that the two partitions are constructed to
have no overlap (see, for example, Ball and Neal [8], Pellis et al. [23, 24], Kubasch [18]
and Bansaye et al. [13]). That is, no two individuals belong to the same household and
the same workplace. This contrasts with the hierarchical model where all individuals in
the same household belong to the same neighbourhood. Indeed, Ouboter et al. [21] prove
that if the sizes of households and workplaces are both constant, and the infectious period
is also constant, then the asymptotic probability and size of a major outbreak are both
greater in the model with no overlap than in the model with complete overlap.

We take workplace as a generic term to cover a mixing group structure outside the house-
hold, and to include schools and kindergartens. Therefore, the workplace will typically
be a larger unit than the household. There are clearly situations in which substantial
overlap occurs between the household and workplace. For example, it is often the case
that siblings go to the same kindergarden or school, thus creating overlap between the two
group structures. A second example, which is the main inspiration to the current work,
is in Patwardhan et al. [22] where university students from a group of (major) classes are
allocated into dorms. Here dorms play the role of household and classes correspond to
workplaces. Patwardhan et al. [22] numerically analyse a closely related model and one
of the questions they address is whether students should be allocated dorms according
to which class they follow (large overlap - in the limit the hierarchical model) or the
dorm allocation should be done more randomly (small overlap - in the limit the standard
households-workplaces model) in order to minimize effects of epidemic outbreaks. A key
finding is that allocation according to classes can not only significantly reduce the severity
of an epidemic but it also enhances the effectiveness of vaccinating individuals, chosen
uniformly at random, in reducing disease spread.

2



In the current paper we consider the households-workplaces model with a tunable param-
eter, θ. The model is constructed by first allocating households to workplaces, so that the
population structure resembles the neighbourhood model with neighbourhoods labelled
by workplace. Then each individual decides independently to be a mover with probability
θ. The movers change their workplace membership but not the household to which they
belong. The movers are then randomly allocated to workplace spaces vacated by movers.
The non-movers, who we term remainers, remain in the workplace and household to which
they were originally assigned. In this way the number of individuals in each workplace
does not change. A full description of the model is provided in Section 2 with an example
of a construction of a population structure given in Figure 4 in Section 5.3.1. The special
cases θ = 0 and θ = 1 yield complete overlap and no overlap, respectively.

We analyse the spread of an SIR (susceptible → infective → recovered) epidemic, having
an arbitrary but specified infectious period distribution, on a network of households and
workplaces constructed as above. We assume that the sizes of households and workplaces
are both constant and consider the asymptotic regime in which the total population size
n → ∞, keeping all other parameters fixed. We consider two scenarios: (a) in which
there is no global infection (i.e. with a randomly chosen member of the population),
so infection is spread entirely through household and workplace contacts; and (b) where
there is global infection, in addition to household and workplace contacts. The papers
cited above are concerned with scenario (b), though Andersson [1] also considers scenario
(a). We consider epidemics initiated by a single infective, chosen uniformly from the
population, and prove that under each scenario that, as n → ∞, the probability of a
major outbreak (i.e. one that infects at least log n individuals) converges to a constant ρ
and conditional upon the occurrence of a major outbreak, the fraction of the population
that gets infected converges in probability to a strictly positive constant z. For each
scenario, we provide recipes for calculating the constants ρ, z and a threshold parameter
that determines whether or not ρ > 0.

Whilst the special cases θ = 0 and θ = 1 have been considered in the literature, there has
been no general analysis of the case 0 < θ < 1, where there is partial overlap between
the two group structures. Moreover, even for the cases θ = 0 and θ = 1, the only
rigorous proofs of a law of large numbers for the size of a major outbreak assume that
the infectious period is constant, making the numbers of global, household and workplace
infectious contacts made by an infective independent thus simplifying the analysis. The
fact that households and workplaces (may) overlap disallows analysing small independent
components, so instead we study local susceptibility sets and local infectious clumps in
the spirit of Ball and Neal [8]. In Ball and Neal [8] it was noted that the local infectious
clumps (ignoring global infectious contacts) for the households-workplaces model, with
θ = 1, can be infinite, but attention was focussed on the simpler case where the local
infectious clumps are almost surely finite. The infectious clumps have certain complexes
as there base unit, where a complex is defined as individuals related to a given workplace:
the remainers in the original construction, the movers in the original construction (who
hence now belong to a different workplace) and the movers joining the workplace (and
hence had a different workplace at the start). For both scenarios (a) and (b), the proof
of the limiting major outbreak probability uses branching process approximations. For
scenario (a), the proof of the law of large numbers for the size of a major outbreak adapts
ideas from the proof of a corresponding result for epidemics on random intersection graphs
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in Ball et al. [12], while for scenario (b) it uses an extension of the embedding technique
of Scalia-Tomba [26, 27]. In both cases, the above-mentioned complexes are fundamental
to the extensions, which are far from straightforward.

Beside different notation, our model is similar to the model in Patwardhan et al. [22],
although global infectious contacts in the latter are achieved via a stochastic block model.
In Patwardhan et al. [22] the list of individuals is gone through sequentially, each time
the individual decides to be a mover with probability r and if so switches workplace with
a randomly selected other individual. As a consequence, a given individual remains in
their original household if it is not a mover and it is not selected to switch workplace
with another mover, an event which has asymptotic probability (1 − r)e−r as n → ∞,
whereas individuals remain in their original workplace with asymptotic probability 1−θ in
our model. (In Patwardhan et al. [22], a given individual may return to their workplace
after making one or more switches but that happens with probability zero under the
above asymptotic regime.) Patwardhan et al. [22] consider the effect of r on the time
course and final size of the epidemic with particular focus on the cases r = 0 (θ = 0)
and r = 1 (θ = 1). Two mean-field approximations for the epidemic are provided in
the supplementary material of Patwardhan et al. [22]. However, both approximations
perform rather poorly both for the disease dynamics and the final size, unless r = 1
and the epidemic is highly infectious, see Patwardhan et al. [22] supplementary material,
Figures S8 and S9. Moreover, Patwardhan et al. [22] note that a very important remark is
that their findings indicated above concerning allocation of students to dorms are apparent
only from their numerical simulations and do not emerge from numerical integration of
their mean-field approximations. By contrast using the framework of Ball and Neal [8]
and dealing with the additional mathematical technicalities of allowing (asympotically)
infinite local infectious clumps and overlapping groups, we are able to obtain exact results
for the (asympotic) final size and outbreak probability, which demonstrate clearly (see
Figure 3 in Section 4) that disease spread can be increasing in θ, i.e. decreasing in overlap.

The remainder of the paper is structured as follows. In the first two short sections (2
and 3) we define the model and state our main results. In Section 4 we illustrate our
results and investigate them numerically. In Sections 5 and 6 we prove the main results
for scenarios (b), global infection present, and (a), no global infection, respectively. We
end with a short discussion in Section 7.

2 The epidemic model with two group structures and

tunable overlap

2.1 The network model

Consider a population of size n (assumed to be large) having a network structure in
which each individual belongs to exactly one household and exactly one workplace. To
simplify things we assume all households have size h ≥ 2 and all workplaces have size
w, where we make the additional assumption that w = dh for some integer d ≥ 1 (so
workplaces are at least as large as and a multiple the size of households). For convenience
we consider a population partitioned into households and also into workplaces but the
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two groups structures could be other possible partitions, such as households and schools,
as in Ouboter et al. [21], or dorms and classes, as in Patwardhan et al. [22].

The parameter θ determining the amount of overlap (or rather the lack of overlap) is
defined as follows. First we let each workplace consist of d households, so all individuals
of the same household are also in the same workplace implying a complete overlap. Then
each individual independently decides whether to be a mover with probability θ or a
remainer with the remaining probability 1− θ. The workplace spots of movers are made
vacant, and all movers are distributed uniformly at random among the vacant spots in the
different workplaces, thus creating new workplace constellations but all workplaces still
have size w = dh. As a consequence, the larger θ, the fewer pairs of household members
who are also work colleagues.

In summary, the parameters of the network (beside the overall population size n which
must be a multiple of w) are: h, the household size, w = dh, the workplace size, and θ
the probability of being a mover (the tunable overlap can hence be defined as 1− θ).

2.2 The epidemic model on the network

The epidemic is a stochastic continuous-time SIR model in which each infected individual
is infectious for an independent random duration I: the length of the infectious period
(possibly preceded by a latent period having an arbitrary distribution). During the infec-
tious period an individual makes three types of infectious contacts at times of independent
Poisson processes: at rate βH the individuals make infectious contact with other members
of their household, each time choosing which individual independently and uniformly at
random, implying the rate to a specific individual equals βH/(h − 1). Additionally, the
infectious individual makes contact with workplace individuals at rate βW , each time with
an independent, uniformly selected individual of the same workplace. Finally, the infec-
tious individual makes global contacts at rate βG, each time with an individual chosen
independently and uniformly from the entire population. An infectious contact with a
susceptible individual results in the latter getting infected (such individuals starting their
infectious contact processes), whereas contacts with already infected people have no ef-
fect. After their infectious period is over, the individual recovers and becomes immune
thus playing no further role in the epidemic.

The epidemic is initiated by one randomly selected individual being externally infected
and the remaining individuals being susceptible. The epidemic runs its course until there
are no infectious individuals present in the community when it stops. Each individual is
then either recovered or susceptible, and the random distribution of how the recovered
and susceptibles are distributed in the community defines the final outcome. The final
number infected is denoted Z and referred to as the final size.

For ease of analysis, we assume that each global contact is with an individual chosen
uniformly from the entire population, including also the infector itself. Thus a global
contact may be with an individual in the infector’s own household or workplace. This
assumption represents no loss of generality and has no impact on our asymptotic results.
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2.3 Parametrization

Without loss of generality we assume E[I] = 1 (meaning that time is measured in units
of the mean infectious period). Our focus lies on h and w being fixed and letting n → ∞.
If w also becomes large with n we essentially have a households epidemic model, and if
both h and w grow with n, the model is very close to being homogeneously mixing.

The epidemic parameters are the three infectious contact rates βH , βW and βG, and the
infectious period distribution I (assumed to have mean E[I] = 1). Later we reparameterize
the three infection rates to β = βH + βW + βG, πG = βG/(βH + βW + βG) and πH|Gc =
βH/(βH+βW ), thus being the overall contact rate, what fraction of the overall contacts rate
are global contacts, and what fraction of the remaining (local) contacts are in households,
respectively.

2.4 Notation

We use
D−→ and

p−→ to denote convergence in distribution and convergence in probability,

respectively, and
D
= to denote equal in distribution. For a random variable, X say, taking

values in the positive integers, fX denotes its probability-generating function (PGF),
i.e. fX(s) = E[sX ] (0 ≤ s ≤ 1). For any real-valued random variable Y , µY denotes its
mean and φY denotes its Laplace transform, so φY (ν) = E[exp(−νY )] (ν ≥ 0). For a
positive integer n and p ∈ [0, 1], Bin(n, p) denotes a binomial random variable with n trials
and success probability p. For λ > 0, Exp(λ) denotes an exponential random variable
with rate λ and hence mean λ−1. For x ∈ R, ⌊x⌋ denotes the usual floor function, so ⌊x⌋
is the greatest integer ≤ x. For a non-negative random variable X , we write Y ∼ Po(X)
when Y has a Mixed-Poisson distribution with parameter distributed as X , i.e. when
P(Y = k) = E[Xke−X/k!] for k = 0, 1, 2, . . . .

3 Main Results

Let Z(n) denote the final size of the epidemic in a community of size n, i.e. the total
number getting infected throughout the course of the epidemic. Our first result concerns
the probability of a major outbreak. Here we define a major outbreak as Z(n) > log n,
but any sequence hn such that hn → ∞ and hn/n → 0 would do equally well. We also
define reproduction numbers R∗ and RL, which determine if the asymptotic probability
of a major outbreak is strictly positive for the cases πG > 0 and πG = 0, respectively.

Theorem 3.1. For the epidemic model with two group structures and tunable overlap
defined in Section 2,

P(Z(n) > log n) → ρ as n → ∞. (1)

When πG > 0, the constant ρ (the major outbreak probability) is given by ρ = 1−ξ, where
ξ is the smallest solution in [0, 1] of φA(βG(1 − s)) = s and the Laplace transform φA(ν)
is given by (15) in Section 5.3.3. The major outbreak probability ρ is strictly positive if
and only if R∗ > 1, where R∗ is given by (21) in Section 5.3.4.
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When πG = 0, the major outbreak probability ρ is given by (57) in Section 6.4 and ρ is
strictly positive if and only if RL > 1, where RL is given by (20) in Section 5.3.4.

Our next result concerns the limiting final size in case there is a major outbreak.

Theorem 3.2. Consider the epidemic model with two group structures and tunable over-
lap defined in Section 2. Suppose that RL > 1 if πG = 0, and that R∗ > 1 and var(I) < ∞
if πG > 0. We then have

Z(n)

n
|Z(n) > log n

p−→ z as n → ∞, (2)

where the constant z (the limiting final size) is strictly positive.

If πG > 0, the limiting final size z is given by the unique strictly positive root of the
equation (7) in Section 5.2, with fS(s) being given by (18) in Section 5.3.4.

If πG = 0, the limiting final size z is given by (44) in Section 6.2.

Remark 3.3. It is worth noting that if the infectious period is constant, i.e. I ≡ 1, then
the major outbreak probability ρ in (1) is identical to the final size quantity z in (2), but
this does not hold when the infectious period is random.

In Section 4 we compute z (and hence also ρ if I ≡ 1) numerically for various parameter
settings and study how it depends on the different model parameters.

4 Numerical illustrations

In this section we present numerical results which show the usefulness of the asymptotic
results in Theorems 3.1 and 3.2 for finite population size n, and illustrate the dependence
of the limiting final size z on the probability an individual is a mover, θ, the number
of households that initially comprise a workplace, d = w/h, and the distribution of the
infectious period, I.

In Figure 1, histograms are shown of the fraction of the population infected by epidemics
with d = 1, h = w = 4, β = 3, πG = 0.025, πH|Gc = 0.5 and I ≡ 1. Each plot is based
on 100,000 simulations of epidemics with one initial infective chosen uniformly at random
from the population, with the remainder of the population being susceptible. In the top-
left plot, θ = 0.075 (large overlap) and n = 1,000, so the population is partitioned into
250 households of size 4, and also into 250 workplaces of size 4. With these parameter
values, R∗ = 0.6541, so the epidemic is subcritical as is clear from the shape of the
histogram. In the other three plots, θ = 0.4 (smaller overlap), for which R∗ = ∞ as
the corresponding epidemic with only local infection (i.e. βG = 0 and βH and βW are
unchanged) is supercritical. In each of these plots the final size distribution is bimodal,
reflecting minor and major outbreaks. When n = 1,000, there is a sharp distinction
between minor and major epidemics, with none of the 100,000 simulated epidemics having
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Figure 1: Histograms of simulated fraction of the population infected for epidemics with
d = 1, h = w = 4, β = 3, πG = 0.025, πH|Gc = 0.5 and I ≡ 1. Each plot is based on
100,000 simulations. See text for further details.
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a final size in (172, 358). The distinction is less clear when n = 600 and when n = 200
the cut-off between minor and major epidemics is far from clear.

In Figure 2, we explore the accuracy of the limiting (as n → ∞) final size z and probability
of a major outbreak ρ for finite population sizes. We assume θ = 0.4, h = 4, β = 3,
πG = 0.025, πH|Gc = 0.5 and I ≡ 1, and consider epidemics with d = 1, 2 or 3 (so w = 4, 8
or 12) for various population sizes n. For d = 1 or 2, we consider epidemics in populations
of size n = 120, 240, 480, 960, 1,440, 1,920, 2,560, 3,200 and 3,840. The population size
n needs to be a multiple of w = hd, so when d = 3, we replaced 2,560 and 3,200 by
2,556 and 3,204, respectively. The cut-offs for distinguishing between minor and major
epidemics were determined by inspection of histograms of simulated final sizes. In all
cases with n > 480 a cut-off of 200 was used. For d = 1, the cut-offs for n = 120, 240, 480
were 36, 75, 150; for d = 2, they were 50, 100, 150; and for d = 3, they were 25, 50, 100.
For each fixed (n, d), nsim = 10, 000 epidemics were simulated and an estimate ρ̂ of the
probability of a major outbreak obtained by the fraction of simulations whose final size
was ≥ the cut-off, together with an approximate 95% confidence interval for ρ given by
ρ̂±1.96

√

ρ̂(1− ρ̂)/nsim. Independently, 10,000 major outbreaks were simulated, using the
given cut-off. Let ẑ and σ̂2 be respectively the sample mean and variance of the fraction
of the population infected in these simulated epidemics. Then z is estimated by ẑ, with
an approximate 95% confidence interval given by ẑ± 1.96σ̂/

√
nsim. Note that ρ = z since

the infectious period I is non-random.

It is clear from Figure 2 that the limiting ρ and z provide good approximations even for
moderately sized n. The approximation for the final size z is better than that for the
major outbreak probability ρ (note the different scales on the y-axes). In all cases, the
limiting z overestimates the final size for finite n. That is not the case for major outbreak
probability ρ but note the wider confidence intervals.

In Figure 3, we investigate the dependence of the dependence of the limiting final size, z,
on the probability an individual is a mover, θ, the workplace to household size ratio, d,
and whether the infectious period is non-random or exponential. We assume h = 3, β = 3,
πG = 0.025 and πH|Gc = 0.5. In the left panel I ≡ 1 and in the right panel I ∼ Exp(1).
First note that z is increasing in both θ and d. Secondly, for fixed d, z is fairly constant
with θ when θ is close to one. This is particularly the case when the infectious period I
is non-random and d ≥ 2, when z is close to being constant for θ ∈ [0.5, 1]. Recall that
θ = 1 yields the standard households-workplaces model analysed for example in Ball and
Neal [8] and Pellis et al. [23], in which the population is partitioned independently into
households and into workplaces. Thus, under these circumstances, the standard model in
which there is no overlap between the two structures provides a good approximation to
the more realistic model having overlap. Thirdly, note that for the parameter values in
Figure 3, z = 0 when θ = 0. If θ = 0, every workplace consists of d complete households, so
it is not possible for the disease to spread outside the workplace of the initial case via local
infection. As θ increases from 0, with all other parameters held constant, there is a critical
value of θ, θ̂d say, when R∗ = 1 and the epidemic is critical. Observe that θ̂d decreases
with d and in an obvious notation, z′(θ̂d) is large unless d is small. Fourthly, given a fixed
mean, the choice of the infectious period distribution can have an appreciable impact on
epidemic properties. Note that z is greater when I ≡ 1 than in the corresponding model
with I ∼ Exp(1). More strikingly, θ̂d can be a lot smaller for the model with I ≡ 1, the
difference being particularly noticeable when d = 1.

9



d = 1 d = 1

0 1000 2000 3000 4000

Population size n

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0 1000 2000 3000 4000

Population size n

0.69

0.695

0.7

0.705

0.71

0.715

z

d = 2 d = 2

0 1000 2000 3000 4000

Population size n

0.85

0.86

0.87

0.88

0.89

0 1000 2000 3000 4000

Population size n

0.87

0.872

0.874

0.876

0.878

0.88

0.882

z

d = 3 d = 3

0 1000 2000 3000 4000

Population size n

0.895

0.9

0.905

0.91

0.915

0.92

0 1000 2000 3000 4000

Population size n

0.907

0.908

0.909

0.91

0.911

0.912

0.913

z

Figure 2: Comparison of limiting and simulated estimates of the probability of a major
outbreak ρ (left column) and the fraction of the population infected by a major outbreak
z (right column) based on 10,000 simulations for each choice of (n, d). The blue dashed
horizontal lines depict the asymptotic values. The black crosses show the estimated
values based on simulations, with the red vertical lines giving approximate 95% confidence
intervals. See text for further details.
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Figure 3: Dependence of the limiting final size, z, on the probability an individual is a
mover, θ, for fixed d = 1, 2, 3, 4 when h = 3, β = 3, πG = 0.025 and πH|Gc = 0.5; in the
left panel I ≡ 1 and in the right panel I ∼ Exp(1).

5 Derivations and proofs when πG > 0

5.1 Introduction

Let E(n) denote the epidemic model defined in Section 2. When πG > 0, the epidemic
model E(n) is a special case of the general framework of Ball and Neal [8] for SIR epidemics
in populations with two levels of mixing. We first outline that general framework in
Section 5.2, introducing key concepts of local infectious clumps, local susceptibility sets and
the severity of a local infectious clump, and explain heuristically how the limiting severity
of a local infectious clump as n → ∞ is related to the event of a major outbreak and the
limiting size of a local susceptibility set is related to the final outcome of a major outbreak.
In the present model, the structure of local infectious clumps and local susceptibility
sets is far more complicated than in the examples considered in Ball and Neal [8], and
consequently proofs and calculations of limiting major outbreak probability and final
size are considerably more difficult. Local infectious clumps and local susceptibility sets
for E(n) are analysed in Section 5.3. Crucial to this analysis are complexes, defined in
Section 5.3.1, which are associated with workplaces but contain also households of movers
who moved out of that workplace. The analysis of the limiting local infectious clump
as n → ∞ is simpler when I ≡ 1. This is treated in Section 5.3.2, with the extension
to the case of general I and calculation of the limiting major outbreak probability ρ
being given in Section 5.3.3. Local susceptibility sets are analysed in Section 5.3.4, where
calculations of the threshold parameter R∗ and the limiting final size of a major outbreak
z are described. Numerical implementation of the calculation of R∗, z and ρ is considered
briefly in Section 5.4. Finally, proofs of Theorems 3.1 and 3.2 for πG > 0 are given in
Sections 5.5 and 5.6, respectively.

5.2 General framework

We derive the properties of the model by using the general framework of Ball and Neal [8]
for SIR epidemics in populations with two levels of mixing. We first outline the key
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points of that framework in the current setting. Label the individuals in the population
1, 2, . . . , n and let N = {1, 2, . . . , n}. (The precise labelling is not important at present.)
We construct on N a random directed graph G(n) of potential local (i.e. household or
workplace) infectious contacts as follows. For each (i, j) ∈ N2, with i 6= j, there is a
directed edge from i to j in G(n) if and only if i, if infected, makes infectious contact with
j. More precisely, let Ii denote the length of i’s infectious period. Then, given Ii, there is
a directed edge from i to each individual in i’s household independently with probability
1− exp(−β ′

HIi), where β
′
H = βH/(h− 1), and a directed edge from i to each individual in

i’s workplace independently with probability 1 − exp(−β ′
W Ii), where β ′

W = βW/(w − 1).
If an individual belongs to both i’s household and workplace, then the directed edge is
present with probability 1− exp(−(β ′

H + β ′
W )Ii).

We use G(n) to define for each i ∈ N their local infectious clump and local susceptibility
set as follows. For (i, j) ∈ N2, write i ❀ j if and only if there is a chain of directed edges

from i to j, with the convention that i ❀ i. For i ∈ N, let C
(n)
i = {j ∈ N : i ❀ j}

and S
(n)
i = {j ∈ N : j ❀ i} be i’s local infectious clump and local susceptibility set,

respectively. Let E(n) denote the epidemic model described in Section 2.2. A realisation
of the final outcome of E(n) can be constructed using I1, I2, . . . , In and G(n) by attaching
to each i ∈ N an independent Poisson process having rate βG giving the times individuals
make global contacts if they are infectious. (As in Section 2.2, each global contact is
with an individual chosen independently and uniformly from N.) Observe that if i is

infected by a global contact in E(n), then each member of C
(n)
i is necessarily infected in

E(n). Similarly, if i is an initial susceptible in E(n), then i is infected in E(n) if and only if
a member of S

(n)
i is infected by a global contact or S

(n)
i contains the initial infective.

For i ∈ N, let C
(n)
i = |C(n)

i | and S
(n)
i = |S(n)

i | be the sizes of i’s local infectious clump

and local susceptibility set, respectively, and let A
(n)
i =

∑

j∈C
(n)
i

Ij be the severity of

i’s local infectious clump. Note that C
(n)
1 , C

(n)
2 , . . . C

(n)
n are identically distributed, with

distribution that depends on n (unless θ = 0), but they are not independent. A similar

comment holds for S
(n)
1 , S

(n)
2 , . . . , S

(n)
n and A

(n)
1 , A

(n)
2 , . . . , A

(n)
n . Let C(n), S(n) and A(n) be

random variables distributed as C
(n)
1 , S

(n)
1 and A

(n)
1 , respectively. We show below that

there exists random variables C, S and A such that

C(n) D−→ C, S(n) D−→ S and A(n) D−→ A as n → ∞. (3)

The distributions of C, S and A are defective, with a mass at infinity, if the epidemic E(n)

in the absence of global infection (i.e. with βG = 0) is supercritical in the limit n → ∞.

Suppose that P(C < ∞) = 1 and recall that the epidemic E(n) is initiated by a single
individual being externally infected. Then, for large n, the early stages of E(n) can be
approximated by a branching process of local infectious clumps, since the probability that
clumps arising from distinct global contacts have a non-empty intersection is small. Let
R(n) be the number of global contacts that emanate from a typical local infectious clump.
Then R(n) ∼ Po(βGA

(n)), i.e. R(n) is distributed as a mixed Poisson distribution with
random mean βGA

(n). Thus, E[R(n)] = βGE[A
(n)]. Moreover, since Ij is independent of

the event {j ∈ C
(n)
i } and E[Ij ] = 1,

E[A
(n)
i ] = E

[

n
∑

j=1

Ij1{j∈C(n)
i }

]

=

n
∑

i=1

E[Ij ]P(j ∈ C
(n)
i ) =

n
∑

j=1

E
[

1
{j∈C

(n)
i }

]

= E[C
(n)
i ].

12



Hence, E[R(n)] = βGE[C
(n)]. Now R(n) D−→ R as n → ∞, where R ∼ Po(βGA), so

the process of local infectious clumps in E(n) can be approximated by a Galton-Watson
branching process B, having a single ancestor and offspring distribution R.

Let ξ be the extinction probability of B. Then ξ is given by the smallest solution in [0, 1]
of fR(s) = s. Conditioning on A,

fR(s) = E[E[sR|A]] = E[exp(−βGA(1− s))] = φA(βG(1− s)). (4)

Further, ξ < 1 if and only if R∗ > 1, where

R∗ = E[R] = βGE[A] = βGE[C]. (5)

Thus, R∗ serves as a threshold parameter for the epidemic E(n), in that as n → ∞ a
major outbreak occurs with non-zero probability if and only if R∗ > 1. Note that ρ in
Theorem 3.1 is given by 1− ξ.

The above assumes that P(C < ∞) = 1. If P(C < ∞) < 1, then the branching process B
is defined as above but now R∗ = ∞ and an individual may have infinitely many offspring.
The branching process B can still be used to approximate the early stages of E(n) for large
n, since an individual having infinitely many offspring in B necessarily corresponds to a
major outbreak in E(n). The above heuristic argument is made rigorous in the proof of
Theorem 3.1 in Section 5.5.

Suppose that n is large and a major outbreak occurs. Let z be the fraction of the popula-
tion that are infected. Since E[I] = 1, the total severity of the epidemic is approximately
nz, so the probability a given individual avoids global contact throughout the epidemic
is approximately

π = exp

(

−βG

n
nz

)

= exp(−βGz). (6)

The probability an individual chosen uniformly at random from the population is infected
by the epidemic is given by z. Recall that such an individual, if initially susceptible, avoids
infection from the epidemic if and only if (i) all members of its susceptibility set avoid
global infection and (ii) its susceptibility set does not contain the initial infective. The
former event has asymptotic probability 0 if S = ∞ and the latter event has asymptotic
probability 1 if S < ∞. For large n, individuals avoid global infection approximately in-
dependently, so 1−z ≈ fS(π) = E[πS]. In Section 5.6, we show that these approximations
are exact in the limit as n → ∞ so, using (6), z satisfies

1− z = fS(e
−βGz). (7)

Note that s = 1−z satisfies the equation governing the extinction probability of a Galton-
Watson process having offspring distribution Po(βGS). Further, by exchangeability

E[C(n)] =
1

n
E

[

n
∑

i=1

n
∑

j=1

1{i❀j}

]

=
1

n
E

[

n
∑

j=1

n
∑

i=1

1{j❀i}

]

= E[S(n)], (8)

so letting n → ∞ yields βGE[S] = βGE[C] = R∗. It follows from standard branching
process theory that if R∗ ≤ 1, then z = 0 is the only solution of (7), while if R∗ > 1,
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there is a unique second solution in (0, 1]. When R∗ > 1, this second solution gives the
fraction of the population that is infected by a major outbreak in the limit n → ∞.

In Section 5.3.4, we show that S, the size of a typical local susceptibility set in the limit
n → ∞, is distributed as the total progeny of a 3-type branching process. The PGF of
S is given in (18) and R∗ is given in (21). When I ≡ 1, the possible directed edges in
G(n) are present independently, with probability 1 − exp(−β ′

H) if the two individuals are
in the same household but not the same workplace, 1− exp(−β ′

W ) if they are in the same
workplace but not the same household, and 1− exp(−(β ′

H + β ′
W ) if they are in both the

same household and the same workplace. It follows that C(n) D
= S(n), so C

D
= S. Note that

in this case A(n) = C(n), whence A
D
= C

D
= S, and (4) and (7) imply that ρ = z. When

I is non-constant, C is distributed as the total progeny of a 3(h+w − 2)-type branching
process and A as the sum of the lifetimes of all individuals in that branching process. The
derivation of the Laplace transform φA(ν) in that case is outlined in Section 5.3.3.

Although this section is concerned with the case πG > 0, we note here that when πG = 0,
we have ρ = P(C = ∞) and z = P(S = ∞).

5.3 Local infectious clumps and susceptibility sets

5.3.1 Complexes

In order to apply the theory outlined in Section 5.2, we need to obtain the distribution
of the random variables C,A and S, describing the size and severity of a typical local
infectious clump and the size of a typical local susceptibility set, respectively, in the
limit as n → ∞. For this purpose, we first define a complex. There are m = n/w
complexes in the network, where m is the number of workplaces. Each complex is derived
from a workplace containing d households with individuals belonging to 1 or 2 complexes
depending on whether they are a remainer (belong to a single complex) or a mover (belongs
to two complexes). We label the workplaces 1, 2, . . . , m and associate the ith complex with
the ith workplace. There are 3 types of individuals in the ith complex:

• Movers who start in workplace i (their household belongs to workplace i) but move
to a different workplace.

• Remainers who start in the workplace i (their household belongs to workplace i)
and remain in that workplace.

• Movers who start in a different workplace (their household is part of a different
workplace) and move into workplace i.

We consider complex i. We label the households in complex i, (i, 1), (i, 2), . . . , (i, d). Then
complex i is comprised of 2d+ 1 groups of individuals. These are:

• Group 2j − 1 (j = 1, 2, . . . , d). These are the individuals in household (i, j) who
remain in workplace i.

• Group 2j (j = 1, 2, . . . , d). These are the individuals in household (i, j) who move
to a different workplace.
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• Group 2d+ 1. The individuals who move into workplace i.

Therefore in complex i, household-based infections take place in household (i, j) amongst
the individuals in groups 2j − 1 and 2j and workplace-based infections involve groups
j = 1, 3, . . . , 2d+1 (the odd numbered groups). We note that group 2j−1 (j = 1, 2, . . . , d)
can be empty if all members of household (i, j) move to different workplaces. We still
associate the household (i, j) with workplace i.

In Figure 4 we illustrate how complexes and the population are constructed using an
example where h = d = 2 and m = 4 giving w = 4 and n = 16.

When θ = 0, everyone is a remainer, the complexes do not intersect and each complex
consists of a workplace that is partitioned into d households. The distributions of C(n), A(n)

and S(n) are each independent of n, so C(n) D
= C,A(n) D

= A and S(n) D
= S for all n. The

threshold parameter R∗ and the Laplace transform φA(ν) can be computed, at least in
principle, using exact results for the final outcome of stochastic multitype SIR epidemics
given in Ball [2], Section 3, or Picard and Lefèvre [25], Section 4. The probability mass
function of S can be computed in principle using Ball [3], Lemma 4.1. In practice, these
computations are possible only for suitably small d. In the following, we assume that
θ > 0.

5.3.2 Local infectious clumps

Suppose first that the infectious period I is non-random, so P(I = 1) = 1. We construct
the local infectious clump of a typical individual, i∗ say, on a generation basis by consid-
ering local epidemic spread within successive complexes. Note that apart from the initial
generation, a local epidemic enters a complex through one of two ways: either a mover
in one of groups 2, 4, . . . , 2d is infected in their workplace or a mover in group 2d + 1 is
infected in their household. The initial individual i∗ can be any member of a complex.

We observe that the groups 1, 3, . . . , 2d−1 are exchangeable, as are the groups 2, 4, . . . , 2d.
Therefore we only need to consider the behaviour of the local spread in a complex in the
cases where the initial infective in a complex is in group 1, 2 or 2d+1. Let R denote that
the initial infective is in group 1 (or 3, 5, . . . , 2d− 1), that is, the individual is a remainer.
Let H denote that the initial infective is in group 2 (or 4, 6, . . . , 2d), the individual belongs
to complex i through their household. Let W denote that the initial infective is in group
2d+ 1, the individual belongs to complex i through the workplace.

The initial infective in a complex being of type X is informative about the structure of
the complex. For example, if X = W , then we know that there is at least one mover in
the workplace of the complex. Without loss of generality, if the initial individual is of
type R or H we assign them to group 1 or 2, respectively. Let M1 ∼ Bin(n − 1, θ) and
for j = 2, 3, . . . , d, let Mj ∼ Bin(n, θ). The number of individuals in groups 2j − 1 and
2j (j = 2, 3, . . . , d) are n −Mj and Mj , respectively, regardless of the type of the initial
infective. If X = R, then the number of individuals in groups 1, 2 and 2d+1 are n−M1,
M1 and

∑d

l=1Ml, respectively, otherwise there are n− 1 −M1, 1 +M1 and 1 +
∑d

l=1Ml

individuals in groups 1, 2 and 2d+ 1, respectively.

If n is large, the probability that, in the early stages of the construction of an infectious
clump, there is a complex that contains movers who either moved into the complex from
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Figure 4: Illustration of the construction of a population of n = 16 individuals divided into 4
workplaces, labelled A, B, C, D, of size 4(= w) with each workplace consisting of 2(= d) house-
holds of size 2(= h). Red squares denote workplaces and green ellipses denote households.
(a) The initial workplaces with solid circles representing remainers and open circles rep-
resenting movers with movers numbered. There are 8 movers and 8 remainers.
(b) The construction of complexes. Open squares represent the places created in a workplace by movers
and the number in the square denotes the mover who fills the place. Note that in complexes A and D
there are households consisting completely of movers with the household residing outside the workplace.
(c) The final population structure created from the complexes.
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the same workplace or moved out of their original workplace to the same workplace is
small. Thus, we approximate the size C(n) of the clump by assuming that for each complex,
all the members from groups 2, 4, . . . , 2d are in different workplaces and all members of
group 2d + 1 are in different households. Further, we assume that apart from the initial
infective in a complex, all movers in a complex have not been involved previously in the
construction of the clump. Under these assumptions, C(n) is approximated by the total
progeny of a 3-type branching process, denoted by BC , which we now describe.

Consider the spread of a local epidemic within a typical complex defined as above. For
X, Y = R,H,W , let ZXY be defined as follows. Let ZXR denote the number of remainer
individuals (excluding the initial infective if X = R) infected in a complex when there
is a single initial infective in group type X . Let ZXH denote the number of individuals
in group 2d + 1 (excluding the initial infective if X = W ) infected in the complex when
there is a single infective in group type X . Individuals infected in group 2d + 1 will
be infected in the workplace and will start an epidemic in a new complex through their
household. In other words, in that other complex they will belong to group 2, 4, . . . , 2d.
Similarly, let ZXW denote the number of individuals in groups 2, 4, . . . , 2d (excluding the
initial infective if X = H) infected in the complex when there is a single infective in group
type X . Individuals infected in group 2, 4, . . . , 2d will be infected in the household and
will start an epidemic in a new complex through their workplace. In other words, in that
other complex they will belong to group 2d+ 1.

If i∗, the initial member of the local infectious clump is a remainer, then the initial individ-
ual in BC has type R and its offspring is distributed as (ZRR, ZRH , ZRW ). If i∗ is a mover,
then i∗ belongs to two complexes and its offspring is distributed as (ZHR, ZHH , ZHW ) +
(ZWR, ZWH, ZWW ), where the two random vectors are independent since I is non-random.
All subsequent individuals in the branching process will be of type H or W , and their off-
spring are distributed as (ZHR, ZHH , ZHW ) or (ZWR, ZWH , ZWW ), respectively. Note that
individuals in the branching process BC correspond to complexes in the local infectious
clump.

Consider the branching process B̂C , in which there is a single ancestor, who is either
of type H or W , and the offspring distributions of type-H and type-W individuals are
(ZHR, ZHH , ZHW ) and (ZWR, ZWH, ZWW ), respectively. Thus, type-R individuals may

exist in B̂C but they have no offspring. Let ẐH be the total progeny of B̂C (i.e the total
number of individuals infected and not the total number of complexes infected), counting
all types and including the ancestor, given that the ancestor is of type H , and define ẐW

similarly. Also, for X = R,H,W and 0 ≤ s1, s2, s3 ≤ 1, let

gX(s1, s2, s3) = E
[

sZXR

1 sZXH

2 sZXH

3

]

.

By taking expectations with respect to the offspring of the ancestor,

fẐH
(s) = sgH(s, fẐH

(s), fẐW
(s)) and fẐW

(s) = sgW (s, fẐH
(s), fẐW

(s)). (9)

For each s ∈ [0, 1], the equations (9) determine fẐH
(s) and fẐW

(s).

Let C be the total progeny of BC , counting all types and including the ancestor, given that
the ancestor is a mover with probability θ, otherwise it is a remainer. Then, conditioning
on the type of the ancestor and the spread within its complex(es),

fC(s) = (1− θ)sgR(s, fẐH
(s), fẐW

(s)) + θgH(s, fẐH
(s), fẐW

(s))fẐW
(s). (10)
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(Note, using (9), that for s > 0, the second term on the right-hand side of (10) may be
expressed as θs−1fẐH

(s)fẐW
(s); we use the form in (10) as it is also valid when s = 0.)

Lemma 5.1. For the model with a constant infectious period,

C(n) D−→ C as n → ∞.

Proof. We prove the lemma by coupling realisations of the local infectious clump C
(n)
i∗ of

an individual i∗ in E(n) and the branching process BC , both of which are constructed on a
generation basis, taking complexes in the same order. We start with a realisation of C

(n)
i∗

and use the local spread within its complexes to give a realisation of BC until in C
(n)
i∗ we

encounter a complex which contains a mover whose original workplace is the same as that
of another mover used previously in the construction of C

(n)
i∗ . Let D(n) be the number of

complexes used in C
(n)
i∗ before we encounter such a complex, where D(n) = ∞ if no such

complex is encountered. As soon as such a complex is encountered, the offsprings of all
subsequent individuals in BC are sampled independently of C

(n)
i∗ from their appropriate

distributions.

Note that for k = 1, 2, . . . , if C
(n)
i∗ = k and D(n) > k + 1, then C

(n)
i∗ = C, since in the

construction of C
(n)
i∗ , each new complex necessarily contains at least one new individual.

Hence, for k = 1, 2, . . . ,

P(C(n) ≤ k) = P(C(n) ≤ k,D(n) > k + 1) + P(C(n) ≤ k,D(n) ≤ k + 1)

= P(C ≤ k,D(n) > k + 1) + P(C(n) ≤ k,D(n) ≤ k + 1).

Also,
P(C ≤ k) = P(C ≤ k,D(n) > k + 1) + P(C ≤ k,D(n) ≤ k + 1),

It follows that
|P(C(n) ≤ k)− P(C ≤ k)| ≤ P(D(n) ≤ k + 1). (11)

Recall that θ > 0. Let T (n) be the total number of movers in E(n). A simple application
of Chebyshev’s inequality yields P(T (n) < θn/2) → 0 as n → ∞. The maximum size of
a complex is 2w = 2hd, so the number of movers in the first k + 1 complexes is at most
2w(k + 1). Given, T (n) ≥ θn/2 the probability that any two given distinct movers come
from the same original workplace is bounded above by (w − 1)/(1

2
θn− 1). Thus,

P(D(n) ≤ k+1) ≤ P(T (n) < θn/2)+

(

2w(k + 1)

2

)

w − 1
1
2
θn− 1

P(T (n) > θn/2) → 0 as n → ∞.

Hence, for k = 1, 2, . . . ,
lim
n→∞

P(C(n) ≤ k) = P(C ≤ k),

and the lemma follows.

When the infectious period I is random, the local infectious clump C
(n)
i∗ can still be con-

structed on a generation basis and coupled to a limiting process as in Lemma 5.1. However,
the limiting process is not a branching process, since the infectious periods of movers in-
fected in a within-complex epidemic (i.e. individuals who subsequently start epidemics in
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new complexes) are not independent of the size of that within-complex epidemic. The
limiting process can be made a branching process by further typing, for example, by also
typing infected movers by the number they infect in their household/workplace in the
next complex, as we describe in Section 5.3.3.

5.3.3 Major outbreak probability

Recall from Section 5.2 that the major outbreak probability ρ = 1 − ξ, where ξ is the
smallest root in [0, 1] of fR(s) = s, with fR(s) being given by (4). Suppose first that

I ≡ 1. Then, as noted in Section 5.2, we have that A
D
= C and ρ = z. We describe the

computation of z (for the case of general I) in Section 5.3.4 below, thus enabling ρ to be

calculated. Alternatively, substituting A
D
= C into (4) yields fR(s) = fC(e

−βG(1−s)), so
fR(s) can be obtained using (10). We outline below how the distribution of the limiting
severity A can be obtained for general I in a constructive manner, from which ρ can
be obtained using (4). The key building block is the epidemic within a complex and in
particular the joint distribution of the severity of the within-complex epidemic and the
number of infectious contacts outside the complex made by movers infected within the
complex.

For X = W,H and l = 1, 2, . . . , w− 1, let AX,l be the severity, excluding the initial infec-
tive, in a complex, where the initial infective in the complex is a mover who belongs to the
complex only through its workplace if X = W (household if X = H) and the initial infec-
tive infects l individuals within the complex (either in the workplace or household depend-
ing on whetherX = W orX = H). Note that if we know the number of infectious contacts
the initial infective makes within a complex then the size of the epidemic in the complex
is conditionally independent of the initial infective’s infectious period. In addition, for
Y = W,H and k = 1, 2, . . . , w − 1, let ZX,l

Y,k denote the number of type (Y, k) movers
infected in the complex with an initial infective of type-(X, l). A type-(Y, k) individual is
a mover who belongs to another complex through their workplace if Y = W (household
if Y = H) and infects k individuals within their other complex. We are interested in
the joint distribution of (AX,l, ZX,l), where ZX,l = (ZX,l

H,1, . . . Z
X,l
H,h−1, Z

X,l
W,1, . . . Z

X,l
W,w−1) is a

random vector of length w + h− 2.

For X = W,H and l = 1, 2, . . . , w−1, let ÂX,l be the severity (sum of infectious periods),
excluding the initial infective, in a branch of the infectious clump, where the initial infec-
tive in a branch is a mover who belongs to the initial complex in a branch only through its
workplace if X = W (household if X = H) and the initial infective infects l individuals
within the complex (either in the workplace or household depending on whether X = W
or X = H). A branch of an infectious clump starts with a mover individual who begins a
complex epidemic and consists of all subsequent complex epidemics emanating from the
initial infectious complex in the branch. By the (asymptotic) branching process of the
growth of an infectious clump it follows that

ÂX,l D
= AX,l +

∑

(Y,k)

Z
X,l

Y,k
∑

i=1

ÂY,k,i, (12)

where ÂY,k,1, ÂY,k,2, . . . are independent and identically distributed copies of ÂY,k and sums
are equal to 0 if vacuous.

19



For a given complex structure, i.e. sizes of groups 1, 2, . . . , 2d + 1, ZX,l is a vector of
final state random variables defined on a multitype SIR epidemic and the joint Laplace
transform generating function of (AX,l,ZX,l) can be computed using Ball and O’Neill [9],
Theorem 5.1, or Ball [3], Theorem 4.2. The unconditional joint Laplace transform gener-
ating function of (AX,l,ZX,l) can then be obtained by taking expectations with respect to
the complex structure. For fixed ν ≥ 0, a set of w+ h− 2 non-linear equations which de-
termine (φÂH,1(ν), . . . , φÂH,h−1(ν), φÂW,1(ν), . . . , φÂW,w−1(ν)) can then be derived using (12)
enabling, at least in principle, the φÂX,l(ν) to be computed.

Consider the initial individual in the infectious clump. Let I denote its infectious period,
and QH and QW denote the number of individuals the initial infective infects within their
household and workplace, respectively. Then QH |I ∼ Bin(h − 1, 1 − exp(−βHI)) and
QW |I ∼ Bin(w − 1, 1 − exp(−βW I)), where QH and QW are conditionally independent
given I. Let ÃM denote the severity of an infectious clump where the initial infective is
a mover. Conditional on the triple (I, QH , QW ),

ÃM
D
= I + ÂH,QH + ÂW,QW , (13)

with I, ÂH,QH and ÂW,QW conditionally independent given QH and QW . (The initial
infective is responsible for instigating two branches, originating from each of the complexes
to which it belongs.) By conditioning first on I and then on (QH , QW ), the Laplace
transform φÃM

(ν) can be computed using (13).

Consider now the case when the initial infective in an infectious clump is a remainer.
Then the initial infective belongs to only one complex; in all subsequent complexes in the
clump, the initial infective in the complex is a mover, but in this first complex they are
a remainer. Let AR,(j,l) denote the severity, excluding the initial infective, in a complex,
where the initial infective in the complex is a remainer who makes contact with j of its
housemates and l of its workplace colleagues. Note that some individuals can belong
to both the same household and workplace as the initial infective so that the number
of individuals infected by the initial infective can be less than j + l. For Y = W,H
and k = 1, 2, . . . , w − 1, let Z

R,(j,l)
Y,k denote the number of type (Y, k) movers infected

in the complex with an initial infective of type (R, j, l). Let ÃR denote the severity of
an infectious clump where the initial infective is a remainer. Conditional on the triple
(I, QH , QW ),

ÃR
D
= I + AR,(QH ,QW ) +

∑

(Y,k)

Z
R,(QH,QW )

Y,k
∑

i=1

ÂY,k,i, (14)

where ÂY,k,1, ÂY,k,2, . . . are independent and identically distributed copies of ÂY,k and
are independent of (I, AR,(QH ,QW )) given ZR,(QH ,QW ). For each (j, l), the joint Laplace
transform generating function of (AR,(j,l),ZR,(j,l)) can be computed similarly to that of
(AX,l,ZX,l) above, whence φÃR

(ν) can be computed using (14).

Finally we note that A is a mixture of ÃM and ÃR with mixing probabilities θ and 1− θ,
so

φA(ν) = θφÃM
(ν) + (1− θ)φÃR

(ν), (15)

and using (4), ρ = 1− ξ, where ξ is the smallest root of φA(βG(1− s)) = s in [0, 1].
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5.3.4 Local susceptibility sets

The local susceptibility set S
(n)
i∗ of an individual i∗ in E(n) can be constructed on a gen-

eration basis in an analogous fashion to the construction of C
(n)
i∗ in Section 5.3.2. We

first construct the susceptibility set of i∗ within the one or two complexes to which i∗

belongs. We then construct the susceptibility sets of all movers (apart from i∗ if it is a
mover) in that susceptibility set in their other complex, and so on. An equivalent result to
Lemma 5.1 holds. Moreover, the limiting process is necessarily a branching process, even
if I is random, since when considering the susceptibility SC,j∗ say, of a single individual
j∗ within a complex C, the distribution of SC,j∗ does not depend on Ij∗ .

A similar argument to the proof of Lemma 5.1 shows that S(n) D−→ S as n → ∞, where
S is the total progeny of a 3-type branching process, denoted by BS, which is defined
analogously to BC in Section 5.3.2. For X, Y = R,H,W , let ZS

XY be defined similarly to
ZXY in Section 5.3.2 but for the susceptibility set of an individual within a typical complex.
Thus, in the above notation, ZS

XY is the number of type-Y individuals in SC,j∗ \{j∗}, given
j∗ is of type X . For X = H,W , let ẐS

X be the total number of individuals, including the

ancestor, in the branching process B̂S that is defined analogously to B̂C in the obvious
fashion. For X = R,H,W and 0 ≤ s1, s2, s3 ≤ 1, let

gSX(s1, s2, s3) = E
[

s
ZS
XR

1 s
ZS
XH

2 s
ZS
XW

3

]

. (16)

Then, cf. (9), for each s ∈ [0, 1], the PGFs fẐS
H
(s) and fẐS

W
(s) of ẐS

H and ẐS
W , respectively,

are determined by

fẐS
H
(s) = sgSH(s, fẐS

H
(s), fẐS

W
(s)) and fẐS

W
(s) = sgSW (s, fẐS

H
(s), fẐS

W
(s)). (17)

Let S be the total progeny of BS. Then, cf. (10),

fS(s) = (1− θ)sgSR(s, fẐS
H
(s), fẐS

W
(s)) + θgSH(s, fẐS

H
(s), fẐS

W
(s))fẐS

W
(s). (18)

Recall from (5) that R∗ = βGµS, since (8) implies µC = µS. Conditioning on the first

generation of B̂S or suitable differentiation of (17) yields

(

µẐS
H

µẐS
W

)

=

(

1 + µZS
HR

1 + µZS
WR

)

+MS

(

µẐS
H

µẐS
W

)

,

where

MS =

(

µZS
HH

µZS
HW

µZS
WH

µZS
WW

)

. (19)

Let ζS be the maximum eigenvalue (Perron-Frobenius root) of MS. In Section 6.4 we
show that ζS serves as a threshold parameter for the epidemic with πG = 0, i.e. for the
epidemic with only local infection, so we also denote ζS by RL. Thus,

RL(= ζS) =
µZS

HH
+ µZS

WW
+
√

(µZS
HH

− µZS
WW

)2 + 4µZS
HW

µZS
WH

2
. (20)
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Observe that µẐS
H
= µẐS

W
= ∞ if RL ≥ 1, otherwise

(

µẐS
H

µẐS
W

)

=
(

I −MS
)−1
(

1 + µZS
HR

1 + µZS
WR

)

.

Differentiation of (18) then yields

R∗ =

{

βG

[

1− 2θ + (1− θ)(µZS
RR

+ µZS
RH

µẐS
H
+ µZS

RW
µẐS

W
) + θ(µẐS

H
+ µẐS

W
)
]

if RL < 1,

∞ if RL ≥ 1.

(21)

5.4 Numerical computation

We outline computation of R∗ and z (and hence also ρ when I ≡ 1). Computation of
ρ when I is non-constant is indicated in Section 5.3.3 above but its implementation is
computationally more intensive and intricate, owing to the appreciably larger dimension
of the approximation branching process BC.

For X = R,H,W , let ZS
X = (ZS

XR, Z
S
XH , Z

S
XW ). Note that ZS

X has finite support, so
its joint PGF gSX(s1, s2, s3) and mean vector are easily computed from its joint PMF
(probability mass function). Thus, given the joint PMFs of ZS

X (X = R,H,W ), the
PGF fS(s) is easily computed using (17) and (18), enabling the limiting final size z to be
computed using (7), and R∗ is easily computed using (21). We outline how the joint PMF
of ZS

R may be computed; the joint PMFs of ZS
H and ZS

W may be computed similarly.

Recall the binomially distributed independent random variables M1,M2, . . . ,Md defined
in Section 5.3.2. Consider the susceptibility set, SC,j∗ say, of a single individual j∗ within
a typical complex. Given j∗ is a remainer, the number of individuals in the complex in
groups 2j − 1 and 2j (j = 1, 2, . . . , d) are n −Mj and Mj , respectively, and the number

of individuals in group 2d + 1 is
∑d

i=1Mi. Let SC
R = (SC

R,1, S
C
R,2, . . . , S

C
R,2d+1), where SC

R,i

is the number of group-i individuals in the complex susceptibility set SC,j∗, excluding j∗

if i = 1. Let M = (M1,M2, . . . ,Md) and m denote a realisation of M . For each possible
m, the joint PMF of SC

R|M = m may be computed using Ball [3], Lemma 4.1. The joint
PMF of SC

R may then be computed using the law of total probability and the joint PMF
of ZS

R follows easily.

Let ℓ = (ℓ1, ℓ2, . . . , ℓ2d+1) be a possible realisation of SC
R. Using Ball [3], Lemma 4.1,

P(SC
R = ℓ|M = m) takes the form

P(SC
R = ℓ|M = m) = αR(m, ℓ)βR(ℓ),

where βR(ℓ) is defined in terms of multivariate Gontcharoff polynomials (Lefèvre and
Picard [19]). The αR(m, ℓ) are readily computed but the βR(ℓ) need to be obtained by
solving a triangular system of linear equations, which is numerically prohibitive unless d
and n are suitably small. However, note that the βR(ℓ) are independent of m and hence
need only computing once.
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5.5 Proof of Theorem 3.1 when πG > 0

We prove here a version of Theorem 3.1 in which logn is replaced by κn = log log n.
The result for logn follows from the proof of Theorem 3.2 in Section 5.6. We use the
construction of the final size of E(n) via local infectious clumps outlined in Section 5.2.
Let Z(n) denote the final size of E(n) and Ž(n) be the final size of a modified epidemic,
Ě(n), in which the size of local infectious clumps is capped at κn + 1. The latter can be
achieved by growing the local infectious clumps in real time and stopping the growth of
a clump if and when its size reaches κn + 1. Thus, in Ě(n), the local infectious clump of
individual i is Č

(n)
i , where Č

(n)
i ⊆ C

(n)
i and Č

(n)
i has size

Č
(n)
i =

{

C
(n)
i if C

(n)
i ≤ κn + 1,

⌊κn⌋ if C
(n)
i > κn + 1.

Let B(n) be the branching process of local infected clumps defined analogously to the
branching process B in Section 5.2, except (C,A,R) is distributed as (C(n), A(n), R(n)).

Let Z
(n)
I be the total number of infected individuals in B(n), i.e. the sum of the sizes of

the local infectious clumps of all individuals in B(n). Let B̌(n) be a modified version of
B(n) in which the size of local infectious clumps is capped at κn and let Ž

(n)
I be the total

number of infected individuals in B̌(n). Observe that

P(Z(n) ≤ κn) = P(Ž(n) ≤ κn) and P(Z
(n)
I ≤ κn) = P(Ž

(n)
I ≤ κn). (22)

We construct coupled realisations of Ě(n) and B̌(n) as follows. Let G̃(n) be the random
graph with vertex set N in which for distinct i, j ∈ N there is an edge between i and j if
and only if i and j belong to the same complex. For (i, j) ∈ N2, let ρ(i, j) be the length

of the shortest path between i and j in G̃(n), with ρ(i, i) = 0. Let J
(n)
1 , J

(n)
2 , . . . be i.i.d.,

each uniformly distributed on N. The initial infective in Ě(n) is individual J
(n)
1 and for

k = 1, 2, . . . , the kth global contact in Ě(n) is with individual J
(n)
k . Let

Fn =

⌊κn⌋−1
⋂

i=1

⌊κn⌋
⋂

j=i+1

{ρ(J (n)
i , J

(n)
j ) > 2(κn + 1)}.

If Fn occurs, then Č
(n)

J
(n)
k

(k = 1, 2, . . . , ⌊κn⌋) are independent, so (Č
(n)

J
(n)
k

, Ř
(n)

J
(n)
k

) (k =

1, 2, . . . , ⌊κn⌋) can be used to give the clump sizes and offsprings of the first ⌊κn⌋ in-

dividuals in B̌(n). (Here, Ř
(n)
i is the number of global contacts that emanate from Č

(n)
i .)

If FC
n occurs, then we construct a realisation of B̌(n) independently of Ě(n). Now,

P(Ž(n) ≤ κn) = P(Ž(n) ≤ κn, Fn) + P(Ž(n) ≤ κn, F
C
n )

and
P(Ž

(n)
I ≤ κn) = P(Ž

(n)
I ≤ κn, Fn) + P(Ž

(n)
I ≤ κn, F

C
n ).

By construction, if Fn occurs, then Ž(n) ≤ κn if and only if Ž
(n)
I ≤ κn, so

∣

∣

∣
P(Ž(n) ≤ κn)− P(Ž

(n)
I ≤ κn)

∣

∣

∣
≤ P(FC

n ).
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Note that, since each individual belongs to 1 or 2 complexes and each complex contains at
most 2w individuals, for K = 1, 2, . . . , there are at most H(K) = 2

∑K

i=1(2w)
i ≤ 4(2w)K

individuals within ρ-distance K of a given individual, so

P(FC
n ) ≤ κn(κn − 1)4(2w)2(κn+1)

n
→ 0 as n → ∞.

Thus, recalling (22),

lim
n→∞

∣

∣

∣
P(Z(n) ≤ κn)− P(Z

(n)
I ≤ κn)

∣

∣

∣
= 0. (23)

Recall that ξ is the extinction probability of B and let ξn be the extinction probability of

B(n). Now R(n) D−→ R as n → ∞, so limn→∞ ξn = ξ (cf. Britton et al. [15], Lemma 4.1).
Hence,

lim sup
n→∞

P(Z
(n)
I ≤ κn) ≤ lim sup

n→∞
P(Z

(n)
I < ∞) = lim sup

n→∞
ξn = ξ. (24)

Also, for fixed k = 1, 2, . . . ,

lim inf
n→∞

P(Z
(n)
I ≤ κn) ≥ lim inf

n→∞
P(Z

(n)
I ≤ k) = P(ZI ≤ k), (25)

where ZI is the total number of individuals infected in B. Now, P(ZI ≤ k) → ξ as k → ∞,
so letting k ↑ ∞ in (25) yields

lim inf
n→∞

P(Z
(n)
I ≤ κn) ≥ ξ,

which together with (24) implies limn→∞ P(Z
(n)
I ≤ κn) = ξ. Thus, using (23),

lim
n→∞

P(Z(n) ≤ κn) = ξ,

whence limn→∞ P(Z(n) < κn) = ρ = 1 − ξ, which completes the proof of Theorem 3.1,
with log n replaced by κn.

Note that a similar argument to the above shows that

lim
n→∞

P(Z(n) ≤ k) = P(ZI ≤ k) (k = 1, 2, . . . ),

so Z(n) D−→ ZI as n → ∞. The random variable ZI is defective, with a mass at infinity,
if R∗ > 1.

5.6 Proof of Theorem 3.2 when πG > 0

To prove Theorem 3.2, we use the adaptation of the embedding technique of Scalia-
Tomba [26, 27] to the general two-levels of mixing setting; see Ball and Neal [8], Section
6.2 and Ball and Sirl [11], Section 3.4.2.

Let I1, I2, . . . , In and the random directed graph G(n) be as in Section 5.2 and let L1, L2, . . . , Ln

be an independent sequence of i.i.d. exponential random variables, each having rate βG.
Given, I1, I2, . . . , In, G

(n) and L1, L2, . . . , Ln, we construct for each t ≥ 0 a realisation of
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the final outcome of an epidemic Ẽ(n)(t) as follows. Note that in this construction t refers
to global infectious pressure and not time. We determine first who is infected globally;
specifically, for i ∈ N, individual i is infected globally if and only if Li ≤ t. We then
use the random directed graph G(n) to determine who is subsequently infected locally.
Specifically, for i ∈ N, individual i is infected locally if and only if at least one member
of i’s local susceptibility set S

(n)
i is infected globally. For i ∈ N, let

χ
(n)
i (t) = 1{i is infected in Ẽ(n)(t)}

=

{

1 if min
j∈S

(n)
i

Lj ≤ t,

0 otherwise .

Let

R(n)
• (t) =

n
∑

i=1

χ
(n)
i (t) and A(n)

• (t) =
n
∑

i=1

Iiχ
(n)
i (t)

be respectively the total size and severity of the epidemic Ẽ(n)(t).

To connect with the epidemic E(n), consider an epidemic, Ê(n) say, that is initiated by
exposing the population to T

(n)
0 units of global infectious pressure, so each individual is

exposed to T̄
(n)
0 = n−1T

(n)
0 units of global infectious pressure. These T

(n)
0 units of global

infectious pressure may infect some individuals globally and the consequent local spread
will lead to A

(n)
• (T̄

(n)
0 ) further units of global infectious pressure. Thus, the population is

now exposed to T
(n)
0 + A

(n)
• (T̄

(n)
0 ) units of global infectious pressure and the process can

be continued in the obvious fashion. For k = 0, 1, . . . , let

T̄
(n)
k+1 = T̄

(n)
0 + A(n)

• (T̄
(n)
k ).

Then k
(n)
∗ = min{k : T̄

(n)
k+1 = T̄

(n)
k } is well-defined as the population is finite. Let T

(n)
∞ =

T
(n)

k
(n)
∗

and T̄
(n)
∞ = n−1T

(n)
∞ . Note that

T̄ (n)
∞ = min{t ≥ 0 : t = T̄

(n)
0 + Ā(n)

• (t)}, (26)

where Ā
(n)
• (t) = n−1A

(n)
• (t). The total size and severity of the epidemic Ê(n) are given by

R
(n)
• (T̄

(n)
∞ ) and A

(n)
• (T̄

(n)
∞ ), respectively.

The epidemics E(n) and Ê(n) have different laws, since E(n) is initiated by a single individual
chosen uniformly at random from the population being externally infected and the number
of initial infectives in Ê(n), Ẑ

(n)
init say, is distributed as R

(n)
• (T̄

(n)
0 ). However, owing to the

lack-of-memory property of the exponential distribution, E(n) has the same law as Ê(n)

conditioned upon Ẑ
(n)
init = 1. Suppose that P(T

(n)
0 = 1) = 1. Then, Ẑ

(n)
init ∼ Bin(n, 1 −

exp(−βG/n)), so

P(Ẑ
(n)
init = 1) = n exp(−(n− 1)βG/n)(1− exp(−βG/n)) → βG exp(−βG) as n → ∞.

Thus, lim infn→∞ P(Ẑ
(n)
init = 1) > 0 and (cf. Jansen [17]) it follows that convergence in

probability results for Ê(n) hold also for Ê(n)|Ẑ(n)
init = 1, and hence for E(n).

Recall the random variable S defined at (3) in Section 5.2, describing the size of a typical
local susceptibility set in the limit n → ∞. For t ≥ 0, let r(t) = 1 − fS(e

−βGt) and

R̄
(n)
• (t) = n−1R

(n)
• (t).
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Lemma 5.2. Suppose that var(I) < ∞. Then, for any t0 > 0,

sup
t0≤t<∞

|R̄(n)
• (t)− r(t)| p−→ 0 and sup

t0≤t<∞
|Ā(n)

• (t)− r(t)| p−→ 0 as n → ∞. (27)

Proof. We prove the result for Ā
(n)
• (t). The result for R̄

(n)
• (t) is proved similarly. Recall

that we assume E[I] = 1.

For t ≥ 0, let

a(n)(t) = E[Ā(n)
• (t)] = E[I1χ

(n)
1 (t)]

= E[I1(1− exp(−βGtS
(n)
1 ))]

= 1− E[exp(−βGtS
(n)
1 )],

since I1 and S
(n)
1 are independent. We show below that, for each t ∈ (0,∞), Ā

(n)
• (t) −

a(n)(t)
p−→ 0 as n → ∞. Now a(n)(t) → r(t) as n → ∞, since S

(n)
1

D−→ S as n → ∞ and

0 ≤ exp(−βGtS
(n)
1 ) ≤ 1 for all n. Thus, Ā

(n)
• (t)

p−→ r(t) as n → ∞. This convergence

holds also for t = ∞, since Ā
(n)
• (∞) = n−1

∑n

i=1 Ii
p−→ 1 = r(∞) as n → ∞ by the weak

law of large numbers. The random function Ā
(n)
• (t) is non-decreasing in t on [t0,∞] and

r(t) is continuous and increasing on [t0,∞]. The second result in (27) then follows by a
similar argument to the proof of Ball and Lyne [6], Lemma 5.1, see Ball and Sirl [11],
page 187.

To complete the proof, we show that for each t ∈ (0,∞), Ā
(n)
• (t)−a(n)(t)

p−→ 0 as n → ∞.
By Chebysvev’s inequality

P(|Ā(n)
• (t)− a(n)(t)| > ǫ) ≤ var(Ā

(n)
• (t))

ǫ2
=

var(A
(n)
• (t))

n2ǫ2
,

so a sufficient condition for Ā
(n)
• (t)− a(n)(t)

p−→ 0 as n → ∞ is

lim
n→∞

n−2var(A(n)
• (t)) = 0. (28)

For t ≥ 0, let χ̃
(n)
i (t) = 1− χ

(n)
i (t) and Ã

(n)
• (t) =

∑n
i=1 Iiχ̃

(n)
i (t). Let σ2

I = var(I). Noting

that A
(n)
• (t) + Ã

(n)
• (t) =

∑n
i=1 Ii, we have that

nσ2
I = var(A(n)

• (t)) + var(Ã(n)
• (t)) + 2cov(A(n)

• (t), Ã(n)
• (t)).

Further,

cov(A(n)
• (t), Ã(n)

• (t)) = cov

(

n
∑

i=1

Ii(1− χ̃
(n)
i (t)),

n
∑

i=1

Iiχ̃
(n)
i (t)

)

= cov

(

n
∑

i=1

Ii,

n
∑

i=1

Iiχ̃
(n)
i (t)

)

− var(Ã(n)
• (t)),

so (28) holds if

lim
n→∞

n−2var(Ã(n)
• (t)) = 0 and lim

n→∞
n−2cov

(

n
∑

i=1

Ii,

n
∑

i=1

Iiχ̃
(n)
i (t)

)

= 0. (29)

26



For t ≥ 0, let Â
(n)
• (t) =

∑n

i=1 Iiχ̃
(n)
i (t)1

{S
(n)
i ≤κn}

, where κn = log log n as in Section 5.5.

Then, using the independence of Ii and S
(n)
i and recalling that E[I] = 1,

∣

∣

∣
E[Ã(n)

• (t)]− E[Â(n)
• (t)]

∣

∣

∣
= E

[

n
∑

i=1

Iiχ̃
(n)
i (t)1

{S
(n)
i >κn}

]

=
n
∑

i=1

E
[

Ii exp(−βGtS
(n)
i )1

{S
(n)
i >κn}

]

≤ ngn(t), (30)

where gn(t) = exp(−βGtκn). Further,

E
[

Ã(n)
• (t)2

]

= E

[

n
∑

i=1

Iiχ̃
(n)
i (t)

n
∑

j=1

Ijχ̃
(n)
i (t)

]

=

n
∑

i=1

n
∑

j=1

E
[

IiIj exp(−βGt|S(n)
i ∪ S

(n)
j |)

]

.

Thus,

∣

∣

∣
E[Ã(n)

• (t)2]− E[Â(n)
• (t)2]

∣

∣

∣
=

n
∑

i=1

n
∑

j=1

E
[

IiIj exp(−βGt|S(n)
i ∪ S

(n)
j |)

(

1− 1
{S

(n)
i ≤κn}

1
{S

(n)
j ≤κn}

)]

≤
n
∑

i=1

n
∑

j=1

E
[

IiIj exp(−βGt|S(n)
i ∪ S

(n)
j |)

(

1
{S

(n)
i >κn}

+ 1
{S

(n)
j >κn}

)]

≤ 2gn(t)
n
∑

i=1

n
∑

j=1

E[IiIj]

= 2gn(t)[nσ
2
I + n2]. (31)

It follows from (30) and (31) that, for t > 0,

lim
n→∞

n−2var(Ã(n)
• (t)) = 0 ⇐⇒ lim

n→∞
n−2var(Â(n)

• (t)) = 0, (32)

since gn(t) → 0 as n → ∞.

Note that, by exchangeability,

n−2var(Â(n)
• (t)) = n−2

n
∑

i=1

n
∑

j=1

cov
(

Iiχ̃
(n)
i (t)1

{S
(n)
i ≤κn}

, Ijχ̃
(n)
j (t)1

{S
(n)
j ≤κn}

)

= n−1
n
∑

j=1

cov
(

I1χ̃
(n)
1 (t)1

{S
(n)
1 ≤κn}

, Ijχ̃
(n)
j (t)1

{S
(n)
j ≤κn}

)

= cov
(

I1χ̃
(n)
1 (t)1

{S
(n)
1 ≤κn}

, IJ χ̃
(n)
J (t)1

{S
(n)
J

≤κn}

)

, (33)

where J is chosen uniformly at random from N.
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Recall from Section 5.5 the graph G̃(n) and the associated distance function ρ(i, j). Let

X
(n)
i (t) = Iiχ̃

(n)
i (t)1

{S
(n)
i ≤κn}

(i ∈ N) and U (n) = 1{ρ(1,J)≤3κn}. Then,

cov
(

X
(n)
1 (t), X

(n)
J (t)

)

= E
[

cov
(

X
(n)
1 (t), X

(n)
J (t) | U (n)

)]

+ cov
(

E
[

X
(n)
1 (t) | U (n)

]

,E
[

X
(n)
J (t) | U (n)

])

.

Let pn = P(U (n) = 1) and note that pn ≤ H(3κn)
n

, where H(K) ≤ 4(2w)K; see just

before (23) in Section 5.5. Hence, pn → 0 as n → ∞. Further, X
(n)
1 (t) and X

(n)
J (t) are

independent if U (n) = 0, since {i ∈ N : ρ(1, i) ≤ κn + 1} and {j ∈ N : ρ(j, J) ≤ κn + 1}
are disjoint. Thus,

∣

∣

∣
E
[

cov
(

X
(n)
1 (t), X

(n)
J (t) | U (n)

)]
∣

∣

∣
≤ pn

∣

∣

∣
cov

(

X
(n)
1 (t), X

(n)
J (t) | U (n) = 1

)
∣

∣

∣

≤ pnE[I
2] → 0 as n → ∞.

Also,

∣

∣

∣
cov

(

E
[

X
(n)
1 (t) | U (n)

]

, E
[

X
(n)
J (t) | U (n)

])
∣

∣

∣

= pn(1− pn)
(

E
[

X
(n)
J (t) | U (n) = 1

]

− E
[

X
(n)
J (t) | U (n) = 0

])2

≤ pn(1− pn)E[I]
2 → 0 as n → ∞.

Thus, cov
(

X
(n)
1 (t), X

(n)
J (t)

)

→ 0 as n → ∞, so the first condition in (29) is satisfied

using (32) and (33). The second condition in (29) is proved similarly, so the details are
left to the reader.

Remark 5.3. Note that Ā
(n)
• (0) = a(n)(0) = 0, so (27) holds with t0 = 0 if limt↓0 r(t) = 0,

a necessary and sufficient condition for which is RL ≤ 1.

Suppose that P(T
(n)
0 = 1) = 1 and that R∗ > 1. Note that the equation r(t) = t is

the same equation satisfied by z at (7) in Section 5.2. Now, r(0) = 0, r′(0) = R∗ > 1
and r′′(t) < 0 for t ≥ 0. Thus, r(t) is concave on [0,∞). Further, r(∞) = 1, so
there exists a unique z ∈ (0,∞) satisfying r(z) = z and r′(z) < 1. (If r′(z) = 1 then
r(z) =

∫ z

0
r′(x) dx >

∫ z

0
1 dx = z, contradicting r(z) = z.) It follows from (26) and the

second result in (27) that min(T̄
(n)
∞ , |T̄ (n)

∞ − z|) p−→ 0 as n → ∞, and hence from the first
result in (27) that

min(R̄(n)
• (T̄ (n)

∞ ), |R̄(n)
• (T̄ (n)

∞ )− z|) p−→ 0 as n → ∞. (34)

Recall that R̄
(n)
• (T̄

(n)
∞ ) = n−1R

(n)
• (T̄

(n)
∞ ), where R

(n)
• (T̄

(n)
∞ ) is the total size of the epidemic

Ê(n), and that convergence in probability results that hold for Ê(n), hold also for E(n). Let
Z̄(n) = n−1Z(n), where Z(n) is the total size of the epidemic E(n). It follows from the above
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that Z̄(n) p−→ Z̄ as n → ∞, where the random variable Z̄ has support {0, z}. All that
remains is to determine P(Z̄ = 0). Using Theorem 3.1, with log n replaced by κn,

lim inf
n→∞

P(Z̄(n) ≤ z

2
) ≥ lim inf

n→∞
P(Z(n) ≤ κn) = ξ. (35)

To obtain an upper bound, first note using (34) that, for any ǫ ∈ (0, z/2),

lim sup
n→∞

P(Z̄(n) ≤ z

2
) = lim sup

n→∞
P(Z̄(n) ≤ ǫ). (36)

For K = 1, 2, . . . , let Ě
(n)
K be a modification of the epidemic E(n) in which the size of all

local infectious clumps is capped at K and let Ž
(n)
K be the total size of Ě

(n)
K . Clearly,

P(Z̄(n) ≤ ǫ) ≤ P(Ž
(n)
K ≤ nǫ). (37)

To derive an upper bound for P(Ž
(n)
K ≤ nǫ), we extend a technique which dates back to

Whittle [28]. A realisation of Ě
(n)
K can constructed in an analogous fashion to that of Ě(n) in

Section 5.5, by using a sequence J
(n)
1 , J

(n)
2 , . . . of i.i.d. random variables that are uniformly

distributed on N to determine the individuals contacted by successive global contacts. A
lower bound process may be obtained by deleting any global contact (and ignoring the
consequent local infectious clump) that is with an individual whose ρ-distance from any
previously globally contacted individual (including the initial infective) is ≤ 2K. While

the total size of Ě
(n)
K is ≤ ǫn, the probability that a global contact is deleted is bounded

above by ǫnH(2K)
n

≤ 4ǫ(2w)2K . Thus,

P(Ž
(n)
K ≤ nǫ) ≤ P(Ž

(n)
I,K,ǫ ≤ nǫ), (38)

where Ž
(n)
I,K,ǫ is the total number of individuals infected in the branching process B̌

(n)
K,ǫ,

whose law is similar to that of B(n), except the size of local infectious clumps is capped at
K and each individual (i.e. local infectious clump) is deleted at birth independently with
probability min(4ǫ(2w)2K, 1). Let BK,ǫ be an analogous branching process derived from

B. Let ξn(K, ǫ) and ξ(K, ǫ) be the extinction probabilities of B̌
(n)
K,ǫ and BK,ǫ, respectively,

and note that limn→∞ ξn(K, ǫ) = ξ(K, ǫ). Using (36), (37) and (38),

lim sup
n→∞

P(Z̄(n) ≤ z

2
) ≤ lim sup

n→∞
P(Ž

(n)
I,K,ǫ ≤ nǫ) ≤ lim sup

n→∞
ξn(K, ǫ) = ξ(K, ǫ). (39)

Now ξ(K, ǫ) ↓ ξ(K) as ǫ ↓ 0, where ξ(K) is the extinction probability for the branching
process derived from B in which clumps are capped at size K, and ξ(K) ↓ ξ as K ↑ ∞.
Thus, (35) and (39) yield

lim
n→∞

P(Z̄(n) ≤ z

2
) = ξ,

whence P(Z̄ = 0) = ξ = 1− P(Z̄ = z).

Recall from the end of Section 5.5 that Z(n) D−→ ZI as n → ∞. It follows easily from
the above that, if (υn) is any sequence of nonnegative integers satisfying υn → ∞ and
n−1υn → 0 as n → ∞, then

lim
n→∞

P(Z(n) ≥ υn) = 1− ξ

and, if R∗ > 1,
Z̄(n)|Z(n) ≥ υn

p−→ z as n → ∞.
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6 Derivations and proofs when πG = 0

6.1 Introduction and overview

In this section we consider the special case where πG = 0, so that all infection is local
through the households and workplaces. Throughout this section we assume that θ >
0, since otherwise the complexes and workplaces coincide and in the absence of global
infection the epidemic is restricted to its original workplace. We prove Theorems 3.1
and 3.2 concerning the probability (ρ) and final size (z) of a major outbreak hold in this
setting. Note that ρ = 0 unless the local infectious clumps and local susceptibility sets
are supercritical, i.e. unless RL > 1, in which case z and ρ are given by (44) and (57),
respectively.

Let i∗ denote the initial infective. We couple the construction of the local infections clump
for individual i∗, C

(n)
i∗ , to a forward branching process BC . Then we show that

P(C(n) > log n) → ρ as n → ∞,

where C(n) = |C(n)
i∗ | and ρ is the non-extinction probability of BC given by (57). Further-

more, we show that there exists δ′ > 0 such that

P(C(n) > δ′n|C(n) > log n) → 1 as n → ∞. (40)

In the absence of global infection, Z(n) = C(n).

Similarly, we couple the construction of the local infections susceptibility set, S(n), to a
backward branching process BS. We show that

P(S(n) > log n) → z as n → ∞, (41)

where z is the non-extinction probability of BS given by (44). Consider a typical initially

susceptible individual j∗, with local susceptibility set S
(n)
j∗ having size S

(n)
j∗ ∼ S(n). If

S
(n)
j∗ < logn, then with high probability (i.e. with probability tending to one as n → ∞),

S
(n)
j∗ does not contain i∗, so j∗ is not infected by the epidemic. Suppose instead that

S
(n)
j∗ ≥ log n. Then, in the event of a major outbreak, it follows from (40) that C(n) > δ′n

with high probability, and consequently S
(n)
j∗ ∩ C(n) is non-empty with high probability

and j∗ is infected by the epidemic. The events S
(n)
j∗1

< logn and S
(n)
j∗2

< logn, where j∗1
and j∗2 are chosen uniformly at random from the initial susceptibles, are asymptotically

independent and consequently n−1Z(n)|Z(n) > log n
p−→ z as n → ∞. This is the intuition

underlying the proof. Rather than considering whether S
(n)
j∗ < logn, it is convenient

to consider whether S
(n)
j∗ goes extinct before generation ℓn, where ℓn = ⌈a log logn⌉ for

suitable choice of a > 0, cf. Ball et al. [12].

The remainder of this section is organised as follows. In Section 6.2, we derive some
asymptotic properties of local infectious clumps and susceptibility sets, focusing mainly
on the latter. In Section 6.3, we consider the final outcome of the epidemic. We show first
in Lemma 6.3 that the fraction of the population whose local susceptibility set reaches
generation ℓn converges in probability to z. Then, in Lemma 6.4, we consider the special
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case when I ≡ 1 and show that, conditional upon the occurrence of a major outbreak,
the difference between that fraction and n−1Z(n) converges in probability to 0 as n → ∞,
leading to

Z(n)

n

∣

∣

∣

∣

Z(n) > log n
p−→ z as n → ∞,

i.e. Theorem 3.2 in the case πG = 0 and I ≡ 1. Finally, in Section 6.4, we extend the
proof to the case of general I.

6.2 Asymptotic properties of local infectious clumps and sus-

ceptibility sets

For some a > 0, let ℓn = ⌈a log logn⌉, where further requirements on a will be defined as
required. We start by coupling the construction of C(n) to BC and S(n) to BS over the first
ℓn generations, where the initial individual is generation 0. Since the maximum size of a
complex is 2w (all individuals in the workplace are movers), we have that the number of
individuals whose shortest path from a randomly selected individual has length at most
ℓn, is bounded above by

ℓn
∑

i=0

2(2w)i = 2
[2w]ℓn+1 − 1

2w − 1
, (42)

where the factor 2 comes from mover individuals belonging to two complexes. For any
ǫ > 0, the right hand side of (42) is less than nǫ for all sufficiently large n. The total
number of movers in the population is Bin(n, θ), so the proportion of the population who
are movers is approximately θ. Given any single complex contains at most 2w movers it
is straightforward using the birthday problem, see, for example, Ball and Donnelly [5],
p.4, to show that with probability tending to 1, distinct complexes are used in the first ℓn
generations of S(n) or C(n). In other words, the growth of the population from a randomly
selected individual is, with high probability, a tree-like configuration of complexes over
the first ℓn generations c.f. the proof of Lemma 5.1. This can be taken further. Let
K(n) = K

(n)
S ∪ K

(n)
C be a set of K = KS + KC ∈ N randomly selected individuals in

a population of size n, where for the KS (KC) individuals in K
(n)
S (K

(n)
C ) we construct

the susceptibility set (clump) to generation ℓn. Then with probability tending to 1, no
complex is used more than once in the construction of any of the susceptibility sets or
clumps for the first ℓn generations.

In order to obtain z we employ a construction of a local susceptibility set similar to the
local infectious clump given in Section 5.3.2. In Section 5.3.2 and Lemma 5.1, the focus
is on the probability mass function of C(n) and its limit C. In the absence of global
infection, we simply need to consider whether or not the limiting branching process, BS,
goes extinct.

The construction of BS given in Section 5.3.4 can again be used with ZS
X = (ZS

XH , Z
S
XW )

being the number of new complex susceptibility sets that are added to a local susceptibility
set (offspring in the branching process) from a type X complex susceptibility set. Let j∗

denote the initial individual for whom we are constructing a local susceptibility set. If j∗
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is a mover then they belong to two complexes and its offspring distribution is ZS
H + ZS

W ,
where the two random vectors are independent. If j∗ is a remainer, then without loss of
generality they belong to group 1 and ZS

R = (ZS
RH , Z

S
RW ) gives the number of movers in

the complex who belong to the susceptibility set of j∗. Note that, beyond the identity
(mover or remainer) of the initial individual, we are not interested in any remainers who
belong to the complex susceptibility set as they play no role in the extinction probability.

For X = R,H,W and s ∈ [0, 1]2, let

ḡSX(s) = E
[

s
ZS
XH

1 s
ZS
XW

2

]

.

Remark 6.1. Note that ḡSX(s) = gSX(1, s1, s2) where gSX is defined in (16). Thus, ḡSX can
be computed using methods described in Section 5.4.

Let ηS = (ηSH , η
S
W ) denote the smallest solution in [0, 1]2 of

ηS =
(

ḡSH(η
S), ḡSW (ηS)

)

, (43)

where ηSH (ηSW ) is the probability that the branching process BS goes extinct from a single
type H (W ) individual. Then z, the non-extinction of BS, satisfies

1− z = (1− θ)ḡSR(η
S) + θηSHη

S
W . (44)

For i = 1, 2, . . ., letVS
i = (V S

H,i, V
S
W,i) denote the number of individuals in the ith generation

of BS. Similarly, let VS(n)

i = (V S(n)

H,i , V S(n)

W,i ) denote the number of individuals in the ith

generation of S(n). Since with probability tending to 1, S(n) can be coupled to BS to
coincide over the first ℓn generations, we have that

P
(

VS(n)

ℓn
6= VS

ℓn

)

→ 0 as n → ∞.

We use properties of branching processes to explore VS
ℓn
.

The mean offspring matrix, MS, given in (19), with Perron-Frobenius eigenvalue ζS(=
RL), determines the behaviour of the branching process BS. Note that ηS = (1, 1) if
ζS ≤ 1 and ηS is the unique solution of (43) if ζS > 1. Hence, z > 0 if and only if ζS > 1.
Also, for 0 < θ < 1, all elements of MS are non-zero and the branching process BS is
aperiodic. Therefore by Mode [20], p.19, (8.2), there exists a random variable W S with
P(W S = 0) = 1− z and a continuous distribution on (0,∞), such that

lim
k→∞

1

[ζS]k
VS

k = W SvS a.s., (45)

where vS > 0 is the normalised left eigenvector of MS corresponding to the Perron-
Frobenius root ζS. For θ = 1, the branching process BS has period 2 and the arguments
are easily modified by letting ℓn = ⌈a log log n⌉+1 if ⌈a log log n⌉ is odd and using single-
type branching process theory.
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Lemma 6.2. Suppose that ζS > 1. Let cS = log ζS > 0 and a = 5/(2cS), and recall that
ℓn = ⌈a log logn⌉. Then

P
(

[log n]2 < VS(n)

ℓn
< [logn]3

)

→ z as n → ∞, (46)

where z satisfies (44).

Proof. Note that

[ζS]ℓn = exp(cS⌈a log log n⌉) ≈ exp
(

log[logn]c
Sa
)

= [log n]c
Sa.

Therefore
VS

ℓn
≈ [logn]c

SaW SvS,

where W S = 0 if only and if the branching process goes extinct. Therefore, for any
0 < d0 < cSa < d1, conditional on non-extinction of the branching process, BS, we have
that for all sufficiently large n, the number of individuals in generation ℓn lies between
[logn]d0 and [log n]d1 . Since acS = 2.5, (46), follows immediately.

It is straightforward to adapt the arguments used in the proof of Lemma 6.2 to prove
(41). Let 0 < p0 ≤ 1 then using (45), we have that the P(VS

⌈p0ℓn⌉
6= 0) → z as n → ∞.

For sufficiently small p0, the number of individuals in the first p0ℓn generations is less
than [logn] with probability tending to 1 as n → ∞. However, if the susceptibility set
reaches generation ⌈p0ℓn⌉ without going extinct, it will, with probability tending to 1,
reach generation ℓn without going extinct, as the number of individuals in generation
⌈p0ℓn⌉ tends to infinity as n → ∞.

6.3 Size of major outbreaks

For n = 1, 2, . . . and j = 1, 2, . . . , n, let Š
(n)
j denote the number of individuals in generation

ℓn of the susceptibility set of individual j. In particular, we are interested in whether or
not Š

(n)
j = 0, i.e. whether or not the susceptibility set goes extinct by generation ℓn. Let

Ž(n) =
n
∑

j=1

1
{Š

(n)
j 6=0}

denote the number of susceptibility sets which do not go extinct by generation ℓn.

Lemma 6.3. Let z satisfy (44), then

Ž(n)

n

p−→ z as n → ∞. (47)

Proof. Using Markov’s inequality, (47) holds if for m = 1, 2,

E

[(

Ž(n)

n

)m]

→ zm as n → ∞. (48)
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Since the individuals in the population are exchangeable, we have that

E

[

Ž(n)

n

]

= P
(

Š
(n)
1 6= 0

)

→ z as n → ∞.

Similarly, we have that

E

[

(

Ž(n)

n

)2
]

=
1

n
P
(

Š
(n)
1 6= 0

)

+
n− 1

n
P
(

Š
(n)
1 6= 0, Š

(n)
2 6= 0

)

, (49)

where individuals 1 and 2 denote two individuals selected uniformly at random from the
population.

Let En be the event that two randomly selected individuals 1 and 2 are within a distance
2ℓn of each other, under the metric ρ defined just after (22). Using (42) it is straight-
forward to show that, for any ǫ > 0, the number of individuals within a distance 2ℓn of
individual 1 is at most nǫ, for all sufficiently large n. Hence, P(En) → 0 as n → ∞.
Conditional upon EC

n , the growth of the susceptibility sets of individuals 1 and 2 over the
first ℓn generations are independent. Therefore

P
(

Š
(n)
1 6= 0, Š

(n)
2 6= 0

)

= P
(

Š
(n)
1 6= 0, Š

(n)
2 6= 0, En

)

+ P
(

EC
n

)

2
∏

j=1

P
(

Š
(n)
j 6= 0|EC

n

)

→ z2 as n → ∞. (50)

The lemma follows since (50) and (49) imply (48) holds for m = 2.

In Lemma 6.4 we show, conditional on Z(n)(= C(n)) > logn, i.e. a major epidemic out-
break has occurred, that those infected in the epidemic consist mainly of those individuals
whose susceptibility set does not go extinct in ℓn generations. We prove the lemma under
the assumption that I ≡ 1, a constant infectious period. In this case the construction of

infectious clumps and susceptibility sets are identical, and VC(n)

ℓn

D
= VS(n)

ℓn
, where VC(n)

ℓn

is the number of individuals in the ℓthn generation of the infectious clump. Observe that
Lemma 6.4 yields Theorem 3.2 with πG = 0 (recall RL = ζS). In Section 6.4, we show
how the arguments are adjusted to general I.

Lemma 6.4. Suppose that I ≡ 1 and ζS > 1, and let z satisfy (44). Then

C(n)

n
| C(n) > logn =

Z(n)

n
| Z(n) > log n

p−→ z, as n → ∞. (51)

Proof. Note that C(n) D
= S(n), since I ≡ 1, so (40) implies limn→∞ P(C(n) > log n) = z,

where z > 0 as ζS > 1. Hence, Lemma 6.3 implies

Ž(n)

n
| C(n) > log n

p−→ z as n → ∞. (52)

Thus, to prove (51), we show that

Ž(n)

n
− C(n)

n
| C(n) > log n

p−→ 0 as n → ∞,
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with the lemma then following immediately from C(n) = Z(n) and (52).

By Markov’s inequality, for any ǫ > 0,

P

(
∣

∣

∣

∣

Ž(n)

n
− C(n)

n

∣

∣

∣

∣

> ǫ | C(n) > logn

)

≤ 1

ǫ
E

[
∣

∣

∣

∣

Ž(n)

n
− C(n)

n

∣

∣

∣

∣

| C(n) > log n

]

. (53)

We can bound the expectation on the right-hand side of (53) by

E

[
∣

∣

∣

∣

Ž(n)

n
− C(n)

n

∣

∣

∣

∣

| C(n) > log n

]

= E

[

1

n

∣

∣

∣

∣

∣

n
∑

j=1

(

1
{Š

(n)
j 6=0}

− 1
{i∗∈S

(n)
j }

)

∣

∣

∣

∣

∣

| C(n) > logn

]

≤ 1

n

n
∑

j=1

E
[
∣

∣

∣
1
{Š

(n)
j 6=0}

− 1
{i∗∈S

(n)
j }

∣

∣

∣
| C(n) > log n

]

= P
(

1
{Š

(n)
1 6=0}

6= 1
{i∗∈S

(n)
1 }

| C(n) > log n
)

, (54)

where the final equality in (54) follows from the exchangeability of individuals.

Let Ěn be the event that the length of the shortest path between individuals 1 and i∗ is
less than or equal to ℓn. Then P(Ěn) → 0 as n → ∞ and

P
(

Š
(n)
1 = 0, i∗ ∈ S

(n)
1 | ĚC

n

)

= 0.

Hence, P
(

Š
(n)
1 = 0, i∗ ∈ S

(n)
1 |C(n) > logn

)

→ 0 as n → ∞.

We complete the proof of Lemma 6.4 by showing that

P
(

Š
(n)
1 6= 0, i∗ 6∈ S

(n)
1 |C(n) > log n

)

→ 0 as n → ∞. (55)

Following Lemma 6.2 and the subsequent arguments, for a = 5/(2cS) and ℓn = ⌈a log log n⌉,
we have that

P
(

VC(n)

ℓn
> [logn]2

∣

∣

∣
C(n) > log n

)

→ 1 as n → ∞.

From generation ℓn we couple the growth of the infectious clump to a lower bound branch-
ing process. As n → ∞, the probability that the total number of movers who belong to
complexes only through a household (workplace) exceeds θn/2 tends to 1. The number of
movers who belong to a given complex only through a household (workplace) is at most
w. Therefore, conditional on the number of movers exceeding θn/2, the probability of
selecting a given complex, when selecting a mover who belongs to a complex through a
household (workplace) at random, is at most 2w/(θn). It follows that if an infectious
clump is comprised of K complexes then the probability of attempting to add an existing
complex from within the clump to the clump is at most K × 2w/(θn).

Fix 0 < δ < [ζS − 1]/ζS and let δ′ = δθ/(2w). Construct C
(n)
i∗ from generation ℓn onwards

until δ′n complexes have been added to C
(n)
i∗ as follows. Consider the growth of the

infectious clump from each of the VC(n)

ℓn
> [logn]2 individuals in generation ℓn in turn.
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We choose complexes to add to the infectious clump according to the number of movers
in the complex. Whilst fewer than δ′n complexes have been added to C

(n)
i∗ , the probability

we attempt to add an existing complex to the clump is less than δ. We construct a lower
bound branching process, BL

δ , where the addition of each complex is culled independently
with probability δ. Since [1− δ]ζS > 1, the extinction probability, zL,δ, of B

L
δ is less than

1. It follows that

P
(

C(n) > δ′n|C(n) > log n
)

→ 1 as n → ∞.

Given that P (Š
(n)
1 > [logn]2|Š(n)

1 6= 0) → 1 as n → ∞, we have, using the theorem of
total probability, that

P
(

i∗ 6∈ S
(n)
1 |Š(n)

1 6= 0, C(n) > log n
)

≤ P
(

i∗ 6∈ S
(n)
1 |Š(n)

1 > [logn]2, C(n) > δ′n
)

+ P
(

Š
(n)
1 ≤ [logn]2|Š(n)

1 6= 0, C(n) > log n
)

+ P
(

C(n) ≤ δ′n|Š(n)
1 6= 0, C(n) > log n

)

. (56)

Using a similar argument to (50), we have that P(Š
(n)
1 6= 0, C(n) > logn) → z2 as n → ∞.

It is then straightforward to show that the latter two terms on the right hand side of (56)
converge to 0 as n → ∞. Finally

P
(

i∗ 6∈ S
(n)
1 |Š(n)

1 > [log n]2, C(n) > δ′n
)

≤
[

1− [log n]2

n

]δ′n

→ 0 as n → ∞,

with (55) following immediately, completing the proof of the lemma.

6.4 Non-constant infectious periods

In the proof of Lemma 6.4 we have assumed I ≡ 1. We now discuss how the arguments
need to be changed for general, random I using the construction of complex infectious
clumps given in Section 5.3.3. (Note that the constructions of susceptibility sets do not
change and the coupling of S(n) to BS carries over.) In Section 5.3.3, the focus is on the
distribution of the severity of an infectious clump whereas here we focus on the probability
of extinction of the infectious clump.

Let ZX,l be defined, as in Section 5.3.3, as a random vector of length w + h − 2 for the
number of movers of each type infected in a complex infectious clump where the initial
infective is of type (X, l). Let ηC = (ηCH,1, . . . , η

C
H,h−1, η

C
W,1, . . . , η

C
W,w−1), where ηCX,l is the

probability of extinction of the branching process starting from a single complex infectious
clump of type (X, l). Then ηC is the smallest solution in [0, 1]w+h−2 of

ηC = gC(ηC) =
(

gCH,1(η
C), . . . , gCH,h−1(η

C), gCW,1(η
C), . . . , gCW,w−1(η

C)
)

where for x ∈ [0, 1]w+h−2,

gCX,l(x) = E

[

h−1
∏

i=1

x
Z

X,l
H,i

i ×
w−1
∏

j=1

x
Z

X,l
W,j

j+h−1

]

.
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Then gCX,l(x), the PGF of Z(X,l), can be obtained in a similar manner to the PGF of
ZS

X in Section 5.4. By conditioning on the complex structure given by M1,M2, . . . ,Md,
defined in Section 5.3.2, and who the initial infective in the complex infects, gCX,l(x) can
be derived using Ball and O’Neill [9], Theorem 5.1 or Ball [3], Theorem 4.2.

Returning to the initial infective, let ZR = (ZR
H,1, . . . , Z

R
H,h−1, Z

R
W,1, . . . , Z

R
W,w−1) be the

number of offspring of each type where the initial individual is a remainer with PGF
gR(x). Then we have that

1− ρ = (1− θ)gR(ηC) + θE
[

gH,QH(ηC)gW,QW (ηC)
]

, (57)

with gH,0(ηC) = gW,0(ηC) = 1, since from (H, 0) and (W, 0) individuals no infectious
clump is created.

By coupling C
(n)
i∗ to the branching process BC in analogous fashion to S(n) to BS, we have

that

P
(

C(n) > logn
)

→ ρ as n → ∞,

where ρ satisfies (57).

Let M̃C be the mean offspring matrix of the branching process BC (excluding the initial
generation) and let ζ̃C be the maximum eigenvalue of M̃C . For 0 < θ < 1, we have that
the branching process BC is aperiodic and again by Mode [20], p.19, (8.2), there exists a
random variable WC with P(WC = 0) = 1 − ρ and a continuous distribution on (0,∞),
such that

lim
k→∞

1

[ζ̃C ]k
VC

k = WCvC a.s.,

where vC > 0 is the normalised left eigenvector of M̃C corresponding to ζ̃C. It follows
that

P(VC(n)

ℓn
> [log n]2|C(n) > logn) → 1 as n → ∞,

and employing a lower bound branching process as before,

P(C(n) > δ′n|C(n) > log n) → 1 as n → ∞. (58)

As before, the argument is easily modified if θ = 1.

We describe how to combine the forward infectious clump with w + h− 2 types with the
backward 2-type susceptibility sets. From the proof of Lemma 6.2, there is, conditional on
the susceptibility set surviving to generation ℓn, at least [log n]

2 individuals in generation

ℓn with probability tending to 1 as n → ∞. We grow the local infectious clump C
(n)
i∗ from

generation ℓn in a similar fashion as in the proof of Lemma 6.4. However, each time a
mover is added to the infectious clump, we determine first who that mover is by sampling
uniformly from the set of available movers, including those of the right type (H or W )

in the ℓthn generation of the susceptibility set S
(n)
1 . If the chosen mover belongs to the

susceptibility set then individual 1 is infected by the epidemic and we can stop growing
the infectious clump. Otherwise we determine the finer type of the mover (number of
individuals it infects in its new complex) and carry on growing the infectious clump. In
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view of (58), we can then follow similar arguments to the proof of Lemma 6.4 to show
that an infectious clump containing at least δ′n individuals will infect a susceptibility
set which does not go extinct in the first ℓn generations with probability tending to 1 as
n → ∞.

Finally, we show that the maximum eigenvalues associated with the forward and backward
branching processBC andBS are equal, so as is clear on intuitive grounds, limn→∞ P(C(n) >
logn) > 0 if and only if limn→∞ P(S(n) > log n) > 0.

Lemma 6.5. The maximum eigenvalues of M̃C and MS are equal, i.e.

ζ̃C = ζS. (59)

Proof. Consider the spread of a clump within a typical single complex and for X, Y =
H,W define ZC

XY analogously to ZS
XY . Recall that in BC , type-H individuals are par-

titioned into type-(H, 0), (H, 1), . . . , (H, h − 1) individuals and type-W individuals are
partitioned into type-(W, 0), (W, 1), . . . , (W,w−1) individuals. Note that in the spread of
an epidemic within a complex, the infectious period of an individual if it becomes infected
is independent of the event that it becomes infected. Thus, the finer type of each type-H
individual infected in the complex epidemic is independently distributed, with probability
pH(i) of being type (H, i), where

pH(i) = E

[(

h− 1

i

)

(

1− e−β′

HI
)i

e−(h−1−i)β′

HI

]

(i = 1, 2, . . . h− 1),

with β ′
H = βH/(h − 1). Similarly, each type-W individual is independently type (W, i)

with probability pW (i), where

pW (i) = E

[(

w − 1

i

)

(

1− e−β′

W
I
)i

e−(w−1−i)β′

W
I

]

(i = 1, 2, . . . w − 1),

with β ′
W = βW/(h− 1). (Although the types of individuals are independent, the type of

an individual is not independent of the size of the clump unless I is non-random.)

For i = 1, 2, . . . , h− 1 and X = H,W , let ZC
(H,i),X be the number of type-X offspring of

a typical type-(H, i) individual in BC and define ZC
(W,i),X similarly for i = 1, 2, . . . , w− 1.

Exploiting the above-mentioned independence of types, the mean numbers of type-(H, j1)
and type-(W, j2) individuals in the kth generation of BC given that the initial individual
has type (H, i) are given by

(

µZC
(H,i),H

, µZC
(H,i),W

)

(

MC
)k−1

(

pH(j1) 0
0 pW (j2)

)

, (60)

where

MC =

(

µZC
HH

µZC
HW

µZC
WH

µZC
WW

)

.

If the initial individual has type (W, i) then these means are given by

(

µZC
(W,i),H

, µZC
(W,i),W

)

(

MC
)k−1

(

pH(j1) 0
0 pW (j2)

)

. (61)
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Note that ζ̃C equals the asymptotic geometric rate of growth of E[VC
k ]. Hence, it follows

from (60) and (61) that ζ̃C = ζC , where ζC is the maximum eigenvalue ofMC . To complete
the proof we show that the maximum eigenvalues of MC and MS are equal.

Consider a complex C having structure A = a, where ai denotes the number of individuals
in group i, and at least two movers but without the restriction that group 2 contains at
least one mover. Let H be the set of individuals in C that belong to groups 2, 4, . . . 2d
and W set of individuals in group 2d+1, so |H| = |W| = a2d+1. Construct on C a random
directed graph GC of potential local contacts in an analogous fashion to G(n) in Section 5.2.
For i ∈ H ∪ W, let CC

i = {j ∈ C : i ❀ j} and SC
i = {j ∈ C : j ❀ i} be respectively

the local infectious clump and local susceptibility set of i in C. For X, Y = H,W, let
ẐC

XY (a) = |CC
i ∩ Y | and ẐS

XY (a) = |SC
i ∩ Y |, where i is chosen uniformly at random from

X and the dependence on the complex structure a is indicated. Then, for X, Y = H,W,

µẐC
XY

(a) =
1

a2d+1

∑

i∈X

E
[

|CC
i ∩ Y |

]

=
1

a2d+1
E

[

∑

i∈X

∑

j∈Y

1i❀j

]

(62)

=
1

a2d+1

∑

j∈Y

E
[

|SC
j ∩X|

]

= µẐS
YX

(a).

Observe that (62) continues to hold if for all i ∈ H ∪W, both CC
i and SC

i do not include
i. With that modification,

MC =

(

E[µẐC
HW

(A)] E[µẐC
HH

(A)]

E[µẐC
WW

(A)] E[µẐC
WH

(A)]

)

and

MS =

(

E[µẐS
HW

(A)] E[µẐS
HH

(A)]

E[µẐS
WW

(A)] E[µẐS
WH

(A)]

)

,

where expectations are with respect to the complex structure A. Using (62),

MS =

(

µZS
HH

µZS
HW

µZS
WH

µZS
WW

)

=

(

µZC
WW

µZC
HW

µZC
WH

µZC
HH

)

,

so MC and MS have the same eigenvalues, whence ζC = ζS.

7 Discussion

In this paper we studied an epidemic model for a community having two different group
structures, households and workplaces, allowed to partly overlap, and asymptotic prop-
erties of the epidemic were derived. For ease of exposition, we have presented our re-
sults within the framework of an SIR model in which the infection rates remain constant
throughout an infective’s infectious period. Theorems 3.1 and 3.2 can be generalised to
the case where infectivity varies stochastically over an individual’s infective period, with
I denoting an individual’s final cumulative infectivity.

It would of course be interesting to generalise the model to make it more realistic. One
obvious generalisation would be to allow households as well as workplaces to have differ-
ent sizes. Such generalisation is not expected to result in any qualitative new insights.
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Perhaps more interesting would be to allow individuals to have more heterogeneities: cur-
rently the only difference between individuals is their random infectious period. Allowing
for varying overall contact rates will have no effect since this could be contained in the
infectious period, but allowing how the contact rate divides between household, workplace
and community to be different, and also allowing susceptibility to vary, would be an inter-
esting as well as from an applied point of view relevant, extension of the model. Another
interesting extension would be to consider non-pharmaceutical interventions (NPIs), typ-
ically acting differently on the three types of contact, to see how this alters an ongoing
epidemic.

A natural theoretical extension would be to supplement the law of large numbers for
the size of major outbreak in Theorem 3.2 with a central limit theorem. Figure 1 in
Section 4 suggests that Z(n)|Z(n) > log n is asymptotically normal when πG > 0 and
the embedding construction in Section 5.6 offers a possible method of proof (cf. Ball et
al. [7] for the households model). However, except in the special case θ = 0, proving
a functional central limit theorem analogue of Lemma 5.2 is not straightforward and a
useful expression for the asymptotic variance is difficult to obtain, owing to overlap of
complexes.

The numerical illustrations suggest that the final size z increases with θ (the amount of
non-overlap between group structures) and workplace size w. Other numerical calculations
(not shown) suggest that z also increases with πG (the fraction of contacts that are global)
and household size h. An obvious open problem is to prove these results in generality, or
to find counterexamples.

Another direction for future work is investigation of vaccination strategies under our
model. Patwardhan et al. [22] use Monte Carlo simulations to show that when a fraction
of the population is vaccinated with a perfect vaccine (i.e. one which necessarily renders
the recipient fully immune) by selecting individuals for vaccination uniformly at random,
there is a greater reduction in both the peak and final size of an outbreak when there
is full overlap (θ = 0) than when there is no overlap (θ = 1), provided β is calibrated
suitably for the two models. The methodology of this paper can be extended to allow
the effect of such vaccination on final size to be investigated more systematically. Other
vaccination-related questions could also be explored. For example, is it better to target
vaccination at movers or remainers, and what is the optimal vaccine allocation strategy
for a given vaccination coverage?

Although the reproduction numbers R∗ and RL serve as threshold parameters for the
model with πG > 0 and πG = 0, respectively, they do have some limitations; see Pellis et
al. [23] for a discussion of R∗ for the model with no overlap (θ = 1). For example, the fact
that R∗ can be infinite means that it can be completely uninformative about the effort
that is required to bring an epidemic below threshold. Even though RL is necessarily
finite, it can be misleading when comparing different models (for example, models with
different values of θ), since it is based on the proliferation of infected complexes, rather
than infected individuals, and different models may have different complex size distribu-
tions. A similar comment applies to R∗. It is possible to generalise the individual-based
reproduction numbers R0 and RI , given for the case θ = 1 in Ball et al. [10], Sections 4.2
and 4.5, respectively, to general θ, though numerical calculation of the former is generally
prohibitive. These will be considered in a subsequent paper.
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