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Abstract

We analyse a generalized stochastic household epidemic model defined by a bi-
variate random variable (XG,XL), representing the number of global and local
infectious contacts that an infectious individual makes during their infectious pe-
riod. Each global contact is selected uniformly among all individuals and each local
contact is selected uniformly among all other household members. The main focus
is when all households have the same size h ≥ 2, and the number of households
is large. Large population properties of the model are derived including a central
limit theorem for the final size of a major epidemic, the proof of which utilises an
enhanced embedding argument. A modification of the epidemic model is considered
where local contacts are replaced by global contacts independently with probability
p. We then prove monotonicity results for the probability of the major outbreak
and the limiting final fraction infected z (conditioned on a major outbreak). a) The
probability of a major outbreak is shown to be increasing in both h and p for any
distribution of XL. b) The final size z increases monotonically with both h and p

if the probability generating function (pgf) of XL is log-convex, which is satisfied
by traditional household epidemic models where XL has a mixed-Poisson distribu-
tion. Additionally, we provide counter examples to b) when the pgf of XL is not
log-convex.

Keywords: Household epidemic model; SIR epidemic; Final size; Large population limits;
Branching process; Central limit theorem; Coupling; Monotonicity.

1 Introduction

The spreading of an infectious disease in a community is highly affected by how individuals
mix. The earliest epidemic models assumed homogeneous mixing between all individuals,
but this has later been generalized to allow for e.g. a multitype community (where mixing
rates depend on the types of the two involved individuals involved), social networks (where
individuals are connected through some underlying social structure, often characterized by
a degree distribution for how many acquaintances individuals have), household epidemic
models (where the population is divided into small units with higher mixing within the
units) and spatial models (where the rate at which people mix depend on their spatial
distance from each other), or a combination of these heterogeneous mixing features.
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Stochastic household epidemic models were first considered by McKendrick [15], with
increased interest in the past 30 years starting with Becker and Dietz [11] and Ball et
al. [5]. A common definition of such a model uses the SIR or SEIR model concept
to define an infectious period I, possibly having a random duration, during which an
infectious individual has infectious contacts on the global scale and within the household
according to independent Poisson processes having rates βG and βL (global and local).
Each global contact is with a uniformly selected individual from the entire population
(including also household members for convenience) and each local contact is with a
uniformly selected individual of the same household. This implies that, conditional on
the duration of the infectious period of an infective I = x, the random number of (not
necessarily unique) global and local contacts are Poisson distributed with means βGx
and βLx, respectively. The corresponding unconditional numbers of global and local
contacts (XG, XL) are hence mixed-Poisson distributed: XG ∼ MixPo(βGI) and XL ∼
MixPo(βLI), where both random variables depend on the same random variable I (the
infectious period). If the population size is large it is unlikely that an individual makes
multiple global contacts with the same individual. However, within small households
multiple infectious contacts with the same individual are common.

The time dynamics of this household epidemic depends on the infectious period I and
its possible preceding latent period L, but the final size describing who eventually gets
infected is independent of L and only depends on I through (XG, XL). In the present
paper we study a more general model where (XG, XL) may follow an arbitrary but specified
distribution on Z

2
+. Hence, XG and XL need not be mixed-Poisson, nor do they have to

be positively correlated as in the traditional model. In fact, it is quite possible that
someone who becomes ill soon after infection makes fewer global infectious contacts but
on the other hand more local (household) infectious contacts, thus making XG and XL

negatively correlated. We consider also a modification of the model where each local
contact is replaced by a global contact with probability p, in order to analyse what
happens with the epidemic as more of the contacts become global, i.e. p increases.

The focus of this paper is the distribution of the final size of the epidemic as the population
size, N , tends to infinity in the case where all households have the same size h ≥ 2. We
extend limiting results for the traditional epidemic models to our more general household
epidemic model: a branching process approximation of the initial stages of the epidemic,
an expression for the basic reproduction number R∗, and a law of large number and central
limit theorem for the final size, conditional on the epidemic taking off. The central limit
theorem (Theorem 2.1) uses an embedding argument based on the approach introduced in
Scalia-Tomba [18] and successfully applied to household epidemics in [5]. However, given
that the number of global infectious contacts made by infectives is not necessarily mixed-
Poisson an additional layer of embedding is required to allow for a general distribution for
global contacts, necessitating a novel proof. An explicit, and relatively easy to compute,
expression for the variance of the central limit theorem is given in (2.4) with details on
numerical computation given in Appendix A. In the absence of local infection, XL ≡ 0, the
model behaves as a homogeneously mixing epidemic and Theorem 2.1 holds for extensions
of the Reed-Frost model considered in Martin-Löf [14] and Picard and Lefèvre [16], with
Theorem 2.1 corresponding to [14], Theorem 1. Provided that µG = E[XG] < ∞, in the
limit as N → ∞, we obtain the same asymptotic final size distribution whether the global
contacts made by an individual are with or without replacement. The standard household
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model assumes the local contacts are made with replacement and such a model is the
main focus of this paper. However, the central limit theorem given in Theorem 2.1 holds
if instead we assume that local contacts are made without replacement through minor
modifications to the arguments.

We provide novel insight into how the household size, h, and the probability, p, that a
local contact is replaced by a global contact, affect the probability that the epidemic takes
off (a major epidemic occurs) and the (asymptotic) final size of a major epidemic. For
larger households (increasing h) and a greater proportion of global contacts (increasing
p), the epidemic more closely resembles a homogeneously mixing epidemic with fewer
multiple contacts made by an infective with the same individual. Hence, intuitively the
probability that the epidemic takes off and the final size of a major epidemic are increasing
in both h and p. In Theorem 2.2, we show that this is the case for the probability a major
epidemic outbreak regardless of the choice of (XG, XL). The effect of h and p on the
final size of the epidemic depends on the distribution of XL, with XG only affecting the
final size through its mean µG. Specifically, in Theorem 2.3, we show that the final
size of the epidemic is increasing in both h and p if the logarithm of the probability
generating function (pgf) of XL is convex. This is the case if XL follows a mixed-Poisson
distribution, so the monotonicity results hold for the standard construction of the SIR
household model. However, for more general XL the situation is more complex, with
scenarios where the counter-intuitive result holds of smaller household sizes and increased
local infectious contacts (with repeated contacts) leading to a larger final size.

The remainder of the paper is structured as follows. In Section 2, we present the general
stochastic household epidemic model and state the main results of the paper, a central
limit theorem for the final size of the epidemic (Theorem 2.1) and sufficient conditions
for the probability of a major outbreak (Theorem 2.2) and the final size of the epidemic
(Theorem 2.3) to be increasing in h and p. In Section 3, we present numerical illustrations
of the main results, demonstrating the usefulness of the central limit theorem for finite
N and providing examples where the final size of the epidemic is not increasing in h
and/or p. The proofs of the central limit theorem and of the effects of h and p on the
probability and final size of a major outbreak are given in Sections 4 and 5, respectively.
In Section 6, we discuss the findings of the paper and possible extensions. Finally, in the
appendices we present details of how to compute key quantities such as the probability of a
major outbreak, the final proportion infected and the variance of the final size (Appendix
A), along with Appendices B and C, which provide the proofs of Theorems 2.4 and 2.5
concerning how the final size of a major epidemic behaves near p = 1 (almost all local
contacts replaced by global contacts) and as h → ∞, respectively.

2 Model and main results

2.1 The general household epidemic model

The main ingredient for our epidemic model is the bivariate random variable (XG, XL)
with distribution on Z

2
+. XG and XL, respectively, denote the number of global and local

contacts that a randomly selected individual makes.

Consider a population consisting of n households, all having size h. We investigate the
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limiting situation where the population size N = nh tends to infinity in such a way that
the household size h remains fixed and the number of household n → ∞.

An individual who gets infected draws their random pair (XG, XL). Each of the XG global
infectious contacts is with a uniformly selected individual from the entire population. Each
of the XL local infectious contact is selected uniformly among the other h− 1 household
members. All contact selections are made independently, and a susceptible individual who
is contacted gets infected (and repeats the procedure), whereas contacts with previously
infected individuals have no effect. It is worth pointing out that the contacts of an
individual may not all be to unique individuals. In particular, the XL local contacts
may very well include multiple contacts to some individual(s). Such multiple contacts
have no effect on the epidemic - it is the number of unique contacts that determines the
propagation of the epidemic.

We consider also a modification of the model containing an additional parameter p. In
this model, each local contact is, independently of everything else, replaced by a global
contact with probability p. Thus, as p increases, there are fewer local and more global
contacts.

The epidemic is initiated by a number of individuals, chosen uniformly at random from
the population, being infected and all other individuals being uninfected and susceptible.
The epidemic continues until it eventually stops by no new individuals getting infected.
The final number infected is denoted Z, or Zn,h if we want to emphasize its dependence
on the number and size of households. Clearly 1 ≤ Z ≤ N(= nh).

We denote the original model by En,h(XG, XL) and the model with swapping of local con-
tacts to global contacts by En,h(XG, XL, p), so En,h(XG, XL) is identical to En,h(XG, XL, 0).
Note that En,h(XG, XL, 1) is a homogeneously mixing epidemic.

2.2 Relation to traditional household epidemic models

As described in the introduction, traditional household epidemic models are often defined
by infectious individuals having a random infectious period I, during which the infective
has global contacts at rate βG and household contacts at rate βL (or (h−1)βL, so βL to each
household member, but we choose the former parametrisation). In that case, the numbers
of global and local contacts have distribution (XG, XL) = (MixPo(βGI),MixPo(βLI)),
where we note that the two random variables are dependent having parameter containing
the same random variable I. The final size of the epidemic depends only on the distribu-
tion of (XG, XL), so the traditional model can be viewed as a subclass of En,h(XG, XL).

2.3 The En,h(XG, XL, p) model described as an En,h(X
′
G, X

′
L) model

It is worth mentioning that En,h(XG, XL, p) can, for a fixed value p, be described by
En,h(X

′
G, X

′
L), i.e. the model without swapping, where the new random vector (X ′

G, X
′
L)

is different from the original vector (XG, XL). More precisely, the new vector is simply
the (random) number of global and local contacts that occur after the swapping has
happened. Suppose that XL = k and let YL ∼ Bin(k, p) denote how many contacts are
swapped, then X ′

G = XG + YL and X ′
L = XL − YL. Unconditionally, and showing the

4



dependence on p, we hence have

(X
(p)
G , X

(p)
L ) = (XG + Y

(p)
L , XL − Y

(p)
L ), where Y

(p)
L ∼ MixBin(XL, p).

Note that, in the expressions above, Y
(p)
L depends on XL which is evident from the mixed-

binomial distribution but hidden when writing the random vector (XG+Y
(p)
L , XL−Y

(p)
L ).

2.4 Main results for the general household epidemic model

We now state our main results, firstly for the En,h(XG, XL) model and then for the
En,h(XG, XL, p) model. These results are asymptotic results as n → ∞ and for fixed
h, we consider a sequence of epidemics, indexed by the number of households n. The
epidemic En,h(XG, XL) is initiated by mn individuals, chosen uniformly at random from
the population, being infected, with the remaining nh−mn individuals being susceptible.
Let Z̄n,h = (nh)−1Zn,h denote the proportion of the population infected in En,h(XG, XL)
and let Vn,h denote the number of households where at least one individual is infected.
Let Gn,h = {Vn,h ≥ ⌊log n⌋}, the event that the epidemic infects at least kn = ⌊log n⌋
households. We say that a major epidemic has occurred if Gn,h occurs. The choice of
kn = ⌊log n⌋ households being infected to define a major epidemic is somewhat arbitrary
and the results in this paper hold for any sequence kn such that kn → ∞ and kn/

√
n → 0

as n → ∞.

Before stating Theorem 2.1, which extends known results for the traditional household
epidemic models (where (XG, XL) = (MixPo(βGI),MixPo(βLI))) to a general random
vector (XG, XL), we require some extra notation.

Consider a household of size h, with initially 1 infective and h − 1 susceptibles. Let
EH
h (XG, XL) denote the ensuing within-household epidemic in which infected individuals

make global and local infections according to the random pair (XG, XL). Let C denote
the number of global contacts that emanate from EH

h (XG, XL). Let S denote the size
of the susceptibility set of a typical individual in the household, where the susceptibility
set of a given individual is the set of individuals, including themselves, who if infected
globally will lead to the chosen individual being infected locally. A formal definition is
given in Section 4.4. Note that S has support {1, 2, . . . , h}. Let

fS(s) =

h
∑

k=1

P(S = k)sk (0 ≤ s ≤ 1) (2.1)

and

fC(s) =
∞
∑

k=0

P(C = k)sk (0 ≤ s ≤ 1)

denote the pgfs of S and C, respectively. Note that the distributions of S and C depend
on h but for notational convenience we suppress explicitly mentioning the dependence on
h unless it is the focus of our study. Let R∗ = E[C], the mean number of global contacts
emanating from a household epidemic. Then, letting µG = E[XG], it is straightforward
(see the appendix of Ball et al. [5]) to show that

R∗ = E[C] = µGE[S].
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We now consider the household exposed to global infection. For π ∈ [0, 1], let ẼH
h (XG, XL, π)

denote the following epidemic. Initially the whole household is susceptible. During the
course of the epidemic, individuals avoid external infection independently with proba-
bility π. Infected individuals make global and local infections according to the random
pair (XG, XL). For t ≥ 0, let R(t) and G(t) be respectively the total number infected in
the household and the total number of global contacts emanating from the household in
ẼH
h (XG, XL, e

−t).

For t ≥ 0, let

νR(t)

(

=
1

h
E[R(t)]

)

= 1− fS(e
−t). (2.2)

Suppose that R∗ > 1 and define z to be the solution in (0, 1] of

z = 1− fS(e
−zµG) = νR(µGz). (2.3)

(It is seen easily that z exists and is unique, since νR(·) is concave, µGν
′
R(0) = R∗ and

νR(∞) = 1.) Let

σ2 =
1

h

[

(1 + b(τ)µG)
2var(R(τ)) + b(τ)2hνR(τ)(σ

2
G − µG) (2.4)

+ 2b(τ)(1 + b(τ)µG)(cov(R(τ), G(τ))− µGvar(R(τ)))] ,

where σ2
G = var(XG), τ = µGz and b(t) = ν ′

R(t)/[1− µGν
′
R(t)].

Theorem 2.1. Suppose that R∗ > 1, and that there exists m ≥ 1 such that mn = m for
all sufficiently large n, and a > 0 such that E[X2+a

G ] < ∞. Let z > 0 be given by (2.3)
and ρ be the unique solution in [0, 1) of

ρ = fC(ρ). (2.5)

Then
Z̄n,h

D−→ Z as n → ∞,

where the random variable Z has probability mass function

P(Z = 0) = 1− P(Z = z) = ρm. (2.6)

Furthermore, there exists 0 < σ2 < ∞ given by (2.4), such that

√
nh
(

Z̄n,h − z
)

∣

∣

∣
Gn,h D−→ N(0, σ2) as n → ∞. (2.7)

Theorem 2.1 holds if instead (XG, XL) are the numbers of unique individuals contacted
by an infective in the population and their household, respectively. In this case XL has
support {0, 1, . . . , h − 1} and corresponds to sampling local infectious contacts without
replacement from the other members of the household. Sampling without replacement
affects the distributions of C and S but does not otherwise affect the derivation of the
central limit theorem. We discuss this in more detail in Section 4.9.

In Section 4.8 we give two alternative but equivalent expressions for σ2. Note that z
depends on the distribution of XG only through its mean µG. In Appendix A, we give
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expressions for E[R(t)], var(R(t)), cov(R(t), G(t)) and fC(s) in terms of Gontcharoff poly-
nomials, which enable ρ, z and σ2 to be computed.

We now turn our attention to the En,h(XG, XL, p) model. Theorems 2.2 and 2.3 analyse
π(h,p), the limiting probability of a major outbreak assuming a single initial infective,
and z(h,p), the limiting final fraction getting infected in the event of a major outbreak, in
particular their dependence on h and p for a given vector (XG, XL). (To connect with
Theorem 2.1, note that in an obvious notation, π(h,p) = 1− ρ(h,p).)

Theorem 2.2. The limiting probability of a major outbreak π(h,p) is monotonically in-
creasing in h and p for any random vector (XG, XL).

This hence means that the probability of a major outbreak increases if households are
larger and/or local contacts are replaced by global contacts, both features making the
epidemic model becoming closer to homogeneously mixing.

The second theorem concerns the final outbreak size z(h,p) assuming a major outbreak has
occurred. Here the result depends on the distribution of XL and in particular how much
randomness there is. To this end we define the pgf of XL: fXL

(s) =
∑∞

k=1 s
kP(XL = k).

Theorem 2.3. Assume that log(fXL
(s)) is convex on 0 ≤ s ≤ 1. Then the limiting final

size z(h,p) is monotonically increasing in h and p for any XG (dependent or independent
of XL).

The mixed-Poisson distribution has a log-convex pgf, so Theorem 2.3 holds for the tradi-
tional household epidemic model. Log-convexity of the pgf of XL implies that σ2

L ≥ µL

where σ2
L = var(XL) and µL = E[XL]. In Section 2.5, we present counter examples to

Theorem 2.3 in the case where σ2
L < µL. (See Theorem 2.4 (a) below.)

The following theorem is proved in Appendix B. We define z(h,p) to be strictly increasing
(decreasing) in p near 1 if there exists p

(h)
∗ ∈ [0, 1) such that z(h,p) is strictly increasing

(decreasing) in p for p ∈ [p
(h)
∗ , 1]. For σ2

L < µL, let z∗(µL, σ
2
L) = 1 − µL−σ2

L

3µ2
L

and note

that z∗(µl, σ
2
L) ∈ (0, 1) since XL takes values in Z+. Let α = µL + µG and, for α > 1,

let zhom(α) be the unique solution of 1 − z = e−αz in (0, 1). Note that zhom(α) is the
proportion infected by a major outbreak in a homogeneously mixing epidemic, where
each individual makes on average α infectious contacts.

Theorem 2.4. Suppose that h ≥ 2 and α = µG + µL > 1, so En,h(XG, XL, 1) is
supercritical.

(a) If σ2
L ≥ µL, then z(h,p) is strictly increasing in p near 1.

(b) Suppose that σ2
L < µL. Then z(h,p) is strictly increasing in p near 1 if zhom(α) <

z∗(µL, σ
2
L) and strictly decreasing in p near 1 if zhom(α) > z∗(µL, σ

2
L).

Finally, we consider the final size z(h,p) in the limit as household size h → ∞, with the
proof given in Appendix C.

Theorem 2.5. Suppose that α = µG+µL > 1. Then for any 0 ≤ p ≤ 1, z(h,p) → zhom(α)
as h → ∞.
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2.5 Counter examples to Theorem 2.3 when σ2
L < µL

In this section we provide simple counter examples showing that our main results are not
necessarily true when XL has too little randomness.

2.5.1 An example where final size decreases with household size

Consider the simple case where XL ≡ 1, meaning that all infected individuals have exactly
one household contact, uniformly selected among all household neighbours, and some fixed
µG. Note that log(fXL

(s)) = log(s), so the pgf of XL is a concave function. From (2.3), we
know that the final size z is given by the solution in (0, 1) of the equation 1−z = fS(e

−µGz).

We start with the case h = 2. The susceptibility set is then identical to 2, since the other
household member must contact the index locally. So S ≡ 2, and the right-hand side of
the final size equation equals e−2µGz.

When h = 3 the susceptibility set of an individual can in fact take only the values 1 or
3. The former if both housemates contact each other locally, and the latter otherwise.
Consequently, we have P(S3 = 1) = 0.25 and P(S3 = 3) = 0.75. The right-hand side of
the final size equation then equals 0.25e−µGz + 0.75e−3µGz.

If we choose µG = 2 the final size equation for h = 2 becomes 1− z = e−4z, with solution
z2 = 0.980. When h = 3 the final size equation is 1−z = 0.25e−2z+0.75e−6z with solution
z3 = 0.961, thus showing that h = 2 gives a larger major outbreak than h = 3.

2.5.2 An example where moving local to global contacts lead to smaller final

size

For an example such that the final size decreases as local contacts are swapped to global
contacts we continue the example from the previous subsection with XL ≡ 1, µG = 2 and
h = 2. When p = 0 we have the final size equation considered above, leading to final size
z2 = 0.980. If we swap all local contacts to global contacts (so p = 1) we simply have
a homogeneous community where all individuals have µG = 3 global contacts. The final
size equation is then 1 − z = e−3z, with solution z = 0.941. So, if all local contacts are
swapped to global contacts we get a smaller outbreak, implying that the final size cannot
increase monotonically with p (in fact it decreases monotonically).

3 Numerical illustrations

3.1 Accuracy of asymptotic approximations

Figure 1 shows histograms of the fraction of the population infected, Z̄n,h, in the epi-
demic En,h(XG, XL) when h = 2, XG ∼ Po(1) and XL ∼ Po(1) independently, and
n = 125, 250, 500 and 1, 000 (so the total population size N = 250, 500, 1, 000 and 2, 000).
Each epidemic is initiated by a single infective and each histogram is based on 100, 000
simulations. Superimposed on each histogram is the density π(h,0)fN(x), where fN(x) is
the probability density function of the normal distribution N(z, σ2

N
), which approximates
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the distribution of Z̄n,h for a major outbreak by Theorem 2.1. For N = 1, 000 and 2, 000,
there is a clear distinction between major and minor outbreaks. The distinction is fairly
clear for N = 500 but not when N = 250, where the choice of a cutoff to separate minor
and major outbreaks is far from clear. Figure 2 shows histograms of 100, 000 simulated
major epidemics, using the same parameters as in Figure 1 and a cutoff of z = 0.2, with
the N(z, σ2

N
) probability density function superimposed. Also shown are estimates of the

skewness β1 and kurtosis β2 of the distribution of Z̄n,h conditional upon a major outbreak.
(Note that β1 = 0 and β2 = 3 for a normal distribution.) The asymptotic normal distri-
bution gives a good approximation for N ≥ 500. The true distribution of Z̄n,h is skewed
slightly to the left, with the degree of skewness decreasing as N increases, and slightly
more peaked than the asymptotic normal distribution. Note that Theorem 2.1 implies
that, for any z∗ ∈ (0, z), the probability a major outbreak infects at least a fraction z∗ of
the population tends to one as n → ∞. In the numerical study below, following inspec-
tion of histograms, we define a major outbreak to be one with Z̄n,h ≥ 0.2. Of course, the
choice of cutoff depends on the parameters of an epidemic.

For a population of size N consisting of households of size h = 2, let πN be the major out-
break probability, and zN and σN be the mean and scaled standard deviation of the frac-
tion infected by a major outbreak. (Thus σ2

N = Nvar(Z̄n,h|Z̄n,h ≥ 0.2), cf. Theorem 2.1.)
Table 1 shows estimates of πN , zN and σN for the epidemic En,h(XG, XL) with house-
hold size h = 2 and various choices for the population size N = nh and distribution for
(XG, XL). For each choice of N and distribution for (XG, XL), nsim = 100, 000 epidemics
were simulated and πN was estimated by π̂N , the fraction of simulations with Z̄n,2 > 0.2,

with an approximate 95% confidence interval for πN given by π̂N±1.96
√

π̂N (1− π̂N )/nsim.
The simulations with Z̄n,h ≤ 0.2 were then discarded and further simulations made until
there were nsim simulations with Z̄n,h > 0.2, which were used to estimate zN and the
scaled standard deviation σN . Let ẑN and σ̃2

N be the sample mean and variance of these
nsim simulations of Z̄n,h. Then zN was estimated by ẑN , with an approximate 95% confi-
dence interval given by ẑN ± 1.96σ̃N/

√
nsim and σ̃N was estimated by σ̂N =

√
Nσ̃N , with

an approximate 95% confidence interval given by
[

σ̂N

√

(nsim − 1)/q2, σ̂N

√

(nsim − 1)/q1

]

,

where q1 and q2 are respectively the 2.5% and 97.5% quantiles of the χ2
nsim−1 distribution.

The N = ∞ entries in Table 1 give the asymptotic values π, z and σ given by Theorem 2.1.

The distributions of (XG, XL) in Table 1 all have E[XG] = E[XL] = 1 and are defined
as follows. Constant: (XG, XL) ≡ (1, 1). Binomial: XG ∼ Bin(2, 1

2
) and XL ∼ Bin(2, 1

2
)

independently. Poisson: XG ∼ Po(1) and XL ∼ Po(1) independently. Mixed-Poisson I:
XG|I ∼ Po(I) and XL|I ∼ Po(I) independently, where I is a single realisation of the
given distribution. Note that in Table 1, the distributions are listed in increasing order of
var(XG) and var(XL). There are no entries under π̂N when (XG, XL) has the Constant
distribution since, then π = 1 and for the values of N considered, πN is extremely close
to one.

It can be seen from Table 1 that π̂N generally increases with N and π is an overestimate
of πN for finite N , as one would expect on intuitive grounds. Further, the convergence of
πN to its asymptotic value π is faster when XG and XL have a smaller variance. A similar
comment holds for the fraction infected by a major outbreak z, though convergence of
zN to z is generally faster than that of πN to π. Note that the confidence intervals for
zN are smaller than those for πN . The simulations suggest that σ is an underestimate of

9



σN and that the scaled standard deviation of the size of a major outbreak converges to
its asymptotic value more slowly than the mean. Caution is required when interpreting
results for small N , since then the distinction between major and minor outbreaks is less
clear, particularly for distributions with larger var(XG) and var(XL).

The accuracy of the asymptotic normal distribution as an approximation for the size of
a major epidemic in a finite population is explored further in Table 2, which is based
on nsim = 100, 000 simulations for each choice of distribution for (XG, XL), population
size n and household size h. For each such choice, the table shows the value of the
Kolmogorov-Smirnov one-sample test statistic Dnsim

= sup
x

|Fnsim
(x)− F (x)|, where Fnsim

is the empirical distribution function of the nsim simulated fractions infected by a major
outbreak and F is the distribution function of the approximating N(z, σ2

N
) distribution

obtained using Theorem 2.1. Note that the corresponding tests all reject the null hy-
pothesis that the fraction infected by a major outbreak follows a N(z, σ2

N
) distribution,

with a very low p−value, since the true distribution is not N(z, σ2

N
) and the sample size

nsim is very large. Nevertheless, the values of Dnsim
give a measure of the accuracy of the

normal approximation. The values of Dnsim
clearly decrease with N , consistent with the

convergence in Theorem 2.1. They also generally decrease with increasing household size
h, though that is less clear for the Constant and Binomial cases. Among the Poisson and
mixed-Poisson choices for the distribution of (XG, XL), the accuracy of the approximation
generally decreases with increasing variance. Overall, Table 2 confirms the usefulness of
the asymptotic normal approximation for finite population sizes.

3.2 Exploring model behaviour

In this section, we illustrate numerically the dependence of π(h,p), z(h,p) and σ(h,p) on h, p
and the distribution of (XG, XL). (Recall that h is the household size, p is the probability
that a local contact is replaced by a global contact, π(h,p) is the asymptotic probability
of a major outbreak, given one initial infective, and z(h,p) and σ(h,p) are the asymptotic
mean and scaled standard deviation of the fraction of the population infected by a major
outbreak.) Unless specified otherwise, the naming of the distributions follows exactly
that used in Table 1. Figures 3 and 4 show the dependence of z(h,p) and σ(h,p) on h and
p when (XG, XL) is (a) Constant, (b) Binomial, (c) Poisson and (d) Mixed-Poisson with
I ∼ Exp(1). Note that in both the Poisson and Mixed-Poisson cases, z(h,p) is increasing in
both h and p, as predicted by Theorem 2.3 since for both of these distributions log(fXL

(s))
is convex. The same holds for this Binomial case, even though then log(fXL

(s)) is not
convex, so the condition that log(fXL

(s)) is convex is not necessary for the conclusions of
Theorem 2.3 to hold. Observe that in this Constant case, where (XG, XL) ≡ (1, 1), z(h,p)

is decreasing with p when h = 3, 4, 5, 6, while z(2,p) first increases and then decreases with
p, and z(2,0) = z(2,1). The final observation has a simple explanation. When p = 0, an
infected individual necessarily contacts their housemate, so the epidemic can be viewed as
a homogeneously mixing one of fully infected households in which each infected household
makes precisely two global contacts. When p = 1, the epidemic is homogeneously mixing
with each individual making two (global) contacts. Hence, z(2,0) = z(2,1). For h = 3, 4, 5, 6,
z(h,p) is decreasing with h but the comparison with h = 2 depends on the value of p.

Turning to the scaled standard deviation, note that in the Poisson and Mixed-Poisson

10



Figure 1: Histograms of 100,000 simulations of the fraction of the population infected
in En,2(XG, XL) when XG ∼ Po(1) and XL ∼ Po(1) independently, for population sizes
N = nh = 250, 500, 1, 000 and 2, 000, with a normal approximation superimposed; see
text for details.
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Figure 2: Histograms of 100,000 simulations of the fraction of the population infected
in a major outbreak in En,2(XG, XL) when XG ∼ Po(1) and XL ∼ Po(1) independently,
for population sizes N = nh = 250, 500, 1, 000 and 2, 000, with a normal approximation
superimposed; see text for details.
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(XG,XL) N π̂N ẑN σ̂N
250 0.7960 (0.7957, 0.7962) 0.7471 (0.7438, 0.7504)
500 0.7966 (0.7964, 0.7968) 0.7402 (0.7369, 0.7434)
1,000 0.7967 (0.7965, 0.7968) 0.7421 (0.7389, 0.7454)

Constant 2,000 0.7967 (0.7966, 0.7968) 0.7394 (0.7362, 0.7427)
5,000 0.7967 (0.7967, 0.7968) 0.7384 (0.7352, 0.7417)
10,000 0.7968 (0.7967, 0.7968) 0.7367 (0.7335, 0.7399)
∞ 0.7968 0.7386

250 0.8103 (0.8078, 0.8127) 0.6762 (0.6757, 0.6766) 1.1642 (1.1591, 1.1693)
500 0.8181 (0.8157, 0.8205) 0.6794 (0.6791, 0.6797) 1.1138 (1.1089, 1.1187)
1,000 0.8199 (0.8175, 0.8223) 0.6805 (0.6803, 0.6808) 1.0963 (1.0915, 1.1011)

Binomial 2,000 0.8230 (0.8207, 0.8254) 0.6812 (0.6811, 0.6814) 1.0902 (1.0854, 1.0950)
5,000 0.8233 (0.8210, 0.8257) 0.6814 (0.6813, 0.6815) 1.0928 (1.0881, 1.0976)
10,000 0.8238 (0.8215, 0.8262) 0.6816 (0.6815, 0.6817) 1.0852 (1.0805, 1.0900)
∞ 0.8238 0.6817 1.0854

250 0.5916 (0.5885, 0.5946) 0.6084 (0.6078, 0.6091) 1.5814 (1.5745, 1.5884)
500 0.6053 (0.6023, 0.6083) 0.6135 (0.6131, 0.6139) 1.5249 (1.5182, 1.5316)
1,000 0.6126 (0.6096, 0.6157 0.6159 (0.6156, 0.6162) 1.4670 (1.4606, 1.4735)

Poisson 2,000 0.6169 (0.6139, 0.6199) 0.6170 (0.6168, 0.6172) 1.4359 (1.4297, 1.4423)
5,000 0.6153 (0.6123, 0.6183) 0.6178 (0.6177, 0.6179) 1.4270 (1.4208, 1.4333)
10,000 0.6179 (0.6149, 0.6209) 0.6179 (0.6178, 0.6180) 1.4196 (1.4134, 1.4259)
∞ 0.6181 0.6181 1.4201

250 0.3992 (0.3962, 0.4023) 0.5640 (0.5633, 0.5648) 1.9193 (1.9110, 1.9278)
500 0.4127 (0.4097, 0.4158) 0.5661 (0.5655, 0.5666) 2.0076 (1.9989, 2.0165)

Mixed-Poisson 1,000 0.4252 (0.4221, 0.4283) 0.5687 (0.5683, 0.5691) 1.9666 (1.9580, 1.9752)
I ∼ Gamma(2, 2) 2,000 0.4284 (0.4253, 0.4314) 0.5708 (0.5705, 0.5710) 1.8831 (1.8749, 1.8914)

5,000 0.4316 (0.4285, 0.4346) 0.5718 (0.5716, 0.5719) 1.8508 (1.8428, 1.8590)
10,000 0.4350 (0.4319, 0.4381) 0.5722 (0.5721, 0.5723) 1.8461 (1.8381, 1.8542)
∞ 0.4391 0.5725 1.8378

250 0.2933 (0.2905, 0.2961) 0.5357 (0.5348, 0.5365) 2.0870 (2.0779, 2.0962)
500 0.3024 (0.2995, 0.3052) 0.5320 (0.5313, 0.5326) 2.3291 (2.3190, 2.3394)

Mixed-Poisson 1,000 0.3150 (0.3122, 0.3179) 0.5326 (0.5322, 0.5331) 2.4141 (2.4035, 2.4247)
I ∼ Exp(1) 2,000 0.3224 (0.3195, 0.3253) 0.5346 (0.5343, 0.5349) 2.3315 (2.3213, 2.3417)

5,000 0.3254 (0.3225, 0.3283) 0.5359 (0.5357, 0.5361) 2.2697 (2.2598, 2.2797)
10,000 0.3274 (0.3245, 0.3303) 0.5363 (0.5362, 0.5365) 2.2453 (2.2355, 2.2552)
∞ 0.3247 0.5368 2.2347

250 0.1892 (0.1868, 0.1917) 0.5013 (0.5004, 0.5021) 2.2397 (2.2299, 2.2496)
500 0.1838 (0.1814, 0.1862) 0.4900 (0.4892, 0.4907) 2.6346 (2.6231, 2.6462)

Mixed-Poisson 1,000 0.1900 (0.1876, 0.1924) 0.4831 (0.4825, 0.4837) 2.9566 (2.9437, 2.9696)
I ∼ Gamma(12 ,

1
2) 2,000 0.1984 (0.1959, 0.2009) 0.4810 (0.4806, 0.4815) 3.1439 (3.1302, 3.1578)

5,000 0.2011 (0.1986, 0.2036) 0.4816 (0.4813, 0.4819) 3.0990 (3.0854, 3.1126)
10,000 0.2044 (0.2019, 0.2069) 0.4819 (0.4818, 0.4821) 3.0495 (3.0362, 3.0629)
∞ 0.2060 0.4829 2.9959

Table 1: Simulation results against theoretical (asymptotic) calculations for epidemics
with h = 2. See text for details.
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(XG,XL) N h = 2 h = 3 h = 4 h = 5

250 0.0477 0.0391 0.0455 0.0469
500 0.0350 0.0293 0.0314 0.0332
1,000 0.0228 0.0196 0.0266 0.0226

Constant 2,000 0.0168 0.0135 0.0174 0.0185
5,000 0.0092 0.0098 0.0149 0.0099
10,000 0.0083 0.0081 0.0085 0.0070

250 0.0303 0.0272 0.0320 0.0349
500 0.0215 0.0204 0.0224 0.0233
1,000 0.0154 0.0127 0.0200 0.0197

Binomial 2,000 0.0107 0.0100 0.0107 0.0116
5,000 0.0085 0.0072 0.0071 0.0100
10,000 0.0048 0.0072 0.0057 0.0090

250 0.0414 0.0357 0.0314 0.0342
500 0.0285 0.0244 0.0225 0.0224
1,000 0.0193 0.0173 0.0169 0.0162

Poisson 2,000 0.0154 0.0115 0.0123 0.0123
5,000 0.0100 0.0081 0.0077 0.0110
10,000 0.0076 0.0081 0.0062 0.0072

250 0.0469 0.0479 0.0431 0.0371
500 0.0363 0.0322 0.0270 0.0267

Mixed-Poisson 1,000 0.0276 0.0212 0.0196 0.0190
I ∼ Gamma(2, 2) 2,000 0.0176 0.0149 0.0152 0.0149

5,000 0.0115 0.0103 0.0098 0.0100
10,000 0.0102 0.0078 0.0067 0.0070

250 0.0643 0.0542 0.0517 0.0493
500 0.0481 0.0387 0.0342 0.0324

Mixed-Poisson 1,000 0.0371 0.0267 0.0236 0.0224
I ∼ Exp(1) 2,000 0.0240 0.0187 0.0174 0.0162

5,000 0.0152 0.0121 0.0118 0.0098
10,000 0.0110 0.0082 0.0079 0.0074

250 0.0923 0.0589 0.0597 0.0623
500 0.0797 0.0509 0.0461 0.0438

Mixed-Poisson 1,000 0.0616 0.0357 0.0297 0.0283
I ∼ Gamma(12 ,

1
2 ) 2,000 0.0434 0.0256 0.0202 0.0217

5,000 0.0213 0.0164 0.0148 0.0122
10,000 0.0134 0.0118 0.0100 0.0094

Table 2: Kolmogorov-Smirnov one-sample test statistics Dnsim
for testing the goodness-of-

fit of the approximating N(z, σ2

N
) distribution, obtained using Theorem 2.1, to a random

sample of nsim = 100, 000 simulated major outbreaks for each parameter combination.
See text for details.
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(a) Constant (b) Binomial
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(c) Poisson (d) Mixed-Poisson, I ∼ Exp(1)
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Figure 3: Graphs of the fraction of the population infected by a major outbreak, z(h,p),
against p for different choices of household size h and distribution of (XG, XL).
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(a) Constant (b) Binomial
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(c) Poisson (d) Mixed-Poisson, I ∼ Exp(1)
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Figure 4: Graphs of the scaled variance, σ(h,p), of the fraction of the population infected
by a major outbreak against p for different choices of household size h and distribution
of (XG, XL).

cases, σ(h,p) is decreasing in both h and p. The same observation holds for all of the
cases we have considered in which log(fXL

(s)) is convex. A possible intuitive explanation
is that increasing h and increasing p both have the effect of making the epidemic more
homogeneous. The observation also holds for this Binomial case but, as we illustrate
below, it and the above observation concerning z(h,p), do not hold generally when XG and
XL follow independent Binomial distributions. In this Constant case, σ(h,p) is decreasing
with h, however it is decreasing with p for h = 2, 3, 4 and increasing with p for h = 5, 6.
Note that for the distributions considered, z(h,p) decreases and σ(h,p) increases as the
variances of XL and XG increase.

Figure 5 shows plots of z(h,p) and σ(h,p) when XG ∼ Bin(2, 3
4
) and XL ∼ Bin(2, 3

4
) inde-

pendently. Note that these plots are broadly similar to the corresponding plots in the
above Constant case, except here z(h,p) is also non-monotonic with p when h = 3.

Finally, Figure 6 shows plots of the probability of a major outbreak, π(h,p), for various
choices of distribution for (XG, XL). Note that in all cases, π(h,p) is increasing in both h
and p, as predicted by Theorem 2.2. For fixed (h, p), π(h,p) decreases as the variances of
XG and XL increase. Note that in the Poisson case, π(h,p) = z(h,p), while in the other cases
in which log(fXL

(s)) is convex, π(h,p) < z(h,p) (see also Table 1 when (h, p) = (2, 0)). This
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Figure 5: Graphs of z(h,p) (left panel) and σ(h,p) (right panel) when XG ∼ Bin(2, 3
4
) and

XL ∼ Bin(2, 3
4
) independently.

is usually the case for epidemic models. However, in the Binomial case, π(h,p) > z(h,p).

4 Central limit theorem proof

4.1 Introduction

In this section we prove Theorem 2.1. We begin in Section 4.2 by defining a sequence of
En,h(XG, XL) epidemics, Ẽn, indexed by n the number of households. In Section 4.3, we
give a branching process approximation for the early stages of the epidemic and show that
the probability of a minor outbreak (which infects at most ⌊log n⌋ households) converges
to ρm as n → ∞, where ρ satisfies (2.5). In Section 4.4 we define the embedding process
which is utilised for the central limit theorem. The embedding process is based on a Sellke
construction, see Sellke [17], of the epidemic with an extra level of embedding. We define
a sequence of epidemics En based on the embedded construction and show that Ẽn and
En can be coupled to give the same epidemic final size, albeit with potentially different
global infectors of individuals. This enables us to focus on the embedded construction
in the remainder of the section. In Section 4.5, we prove a law of large numbers result

and show that Z̄n,h
D−→ Z as n → ∞, where the probability mass function of Z satisfies

(2.6). In Section 4.6 we prove Theorem 2.1 by exploiting an upper and lower bound for
the proportion infected in the event of a major epidemic and showing that both these
bounds have the same limit. A key component in the proof is Theorem 4.1 whose proof is
postponed to Section 4.7. In Section 4.8, we discuss σ2 and give two equivalent expressions
for σ2 in (4.30) and (4.31). The first expression, (4.30), arises naturally in the proof of
Theorem 2.1, whilst the second expression, (4.31), is often simpler to work with in terms of
computing σ2 numerically. The proof that the expressions in (4.30) and (4.31) are equal,
and equivalent to that given by (2.4) in Section 2.4 are deferred to Appendix D. Finally,
in Section 4.9 we discuss the minor modifications to the central limit theorem for the case
where the contacts (XG, XL) are sampled without replacement from the population and
household, respectively.
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(a) Mixed-Poisson, I ∼ Gamma(1
2
, 1
2
) (b) Binomial
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(c) Poisson (d) Mixed-Poisson, I ∼ Exp(1)
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Figure 6: Graphs of the probability of a major outbreak, π(h,p), against p for different
choices of household size h and distribution of (XG, XL).
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4.2 Model description

For i = 1, 2, . . . and j = 1, 2, . . . , h, let Xij be i.i.d. copies of X = (XG, XL) with Xij

determining the number of global and local infectious contacts made by the jth indi-
vidual in household i. We construct the epidemic Ẽn using {Xij = (XG,(i,j), XL,(i,j)); i =
1, 2, . . . , n, j = 1, 2, . . . , h} as follows. We assign to each individual a list of household con-
tacts Hij = (Hij1, Hij2, . . .), where Hijk is the individual within the household contacted
by the kth household infectious contact made by individual j in household i. (Note that the
{Hijk}s are independent and uniformly distributed on {1, 2, . . . h}\j.) The individual (i, j)
makes a household infectious contact with individual (i, l) if l ∈ {Hij1, Hij2, . . . , HijXL,(i,j)

}.
In addition, for each n, we let Un

1 , U
n
2 , . . . be i.i.d. copies of Un, where

P(Un = (i, j)) =
1

nh
(i = 1, 2, . . . , n; j = 1, 2, . . . , h).

Therefore, Un can be used to choose an individual uniformly at random from the popu-
lation underlying the epidemic Ẽn.

The epidemic Ẽn starts with mn initial infectives, and we assume that there exists m ≥ 1
such that mn = m for all sufficiently large n. The mn initial infectives are given by the
first mn unique Un. For n = 1, 2, . . . and k = 1, 2, . . ., let Ink = ∪k

i=1{Un
i }. Then InKn

denotes the set of initial infectives where Kn satisfies

Kn = min {k : |Ink | = mn} .

The epidemic is then constructed by considering infectives one at a time. Suppose that
prior to considering individual (i0, j0), say, there has been a total of M global infectious
contacts. The local infectious contacts made by individual (i0, j0) are governed byXL,(i0,j0)

andHi0j0. The global infectious contacts made by individual (i0, j0) are with, ifXG,(i0,j0) >
0, individuals Un

M+1, U
n
M+2, . . . , U

n
M+XG,(i0,j0)

. The process continues until there are no

more infectives in the population.

4.3 Branching process approximation

For the epidemic Ẽn we have defined a major epidemic as one that infects at least kn =
⌊log n⌋ households. Therefore we define a minor epidemic as one that infects fewer than
⌊log n⌋ households, that is, if Vn,h < ⌊log n⌋ and in this section we show that

P(Vn,h < ⌊log n⌋) → ρm as n → ∞, (4.1)

where ρ satisfies (2.5).

In order to prove (4.1), we couple the sequence of epidemics Ẽn to a Galton-Watson
branching process B. Specifically, the branching process B has m ancestors and the
number of offspring from individuals are i.i.d. copies of C, defined just before (2.1) in
Section 2.4. Hence, ρ denotes the extinction probability of the branching process B. Let
V denote the total size, including initial ancestors, of the branching process B.

Lemma 4.1. For any k = 1, 2, . . .,

P(Vn,h ≤ k) → P(V ≤ k) as n → ∞.
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Proof. We prove the lemma by constructing Ẽn and B on a common probability space.
For i = 1, 2, . . . and j = 1, 2, . . . , h, let X̄ij be i.i.d. copies of X and let H̄ij be independent

with H̄ij
D
= H1j. For i = 1, 2, . . ., let Ci denote the number of global contacts emanating

from the ith household epidemic constructed using {X̄ij, H̄ij; j = 1, 2, . . . , h}, where the
individual (i, 1) is the initial infective in the household. Let Ci denote the number of
offspring of the ith individual in the branching process B with C1, C2, . . . , Cm denoting
the offspring of the m ancestors.

Let Ũn
1 , Ũ

n
2 , . . . be i.i.d. copies of Ũn, where Ũn is a discrete uniform distribution on

{1, 2, . . . , n}. We construct a realisation of Ẽn by assigning the ith global contact in Ẽn

to household Ũn
i . Given that household Ũn

i has not previously been infected we assign
infectious histories {X̄ij, H̄ij; j = 1, 2, . . . , h} to the individuals in household Ũn

i and
assume that the individual contacted globally is individual (i, 1). Therefore the number
of global contacts emanating from the first household epidemic in household Ũn

i is Ci.

Let Mn = min
{

k > 1 : Ũn
k ∈

{

Ũn
1 , Ũ

n
2 , . . . , Ũ

n
k−1

}}

, the number of global contacts that

occur until the first attempted infection of a previously infected household. This is the
well known Birthday Problem, see for example Ball and Donnelly [3], and

P(Mn ≤ k) ≤ k(k − 1)

2n
(k = 2, 3, . . . , n). (4.2)

Therefore, for any k = 1, 2, . . .,

P(Vn,h ≤ k) = P(Vn,h ≤ k|Mn > k)P(Mn > k) + P(Vn,h ≤ k|Mn ≤ k)P(Mn ≤ k)

= P(V ≤ k|Mn > k)P(Mn > k) + P(Vn,h ≤ k|Mn ≤ k)P(Mn ≤ k)

→ P(V ≤ k) as n → ∞, (4.3)

as required.

Given that (4.2) implies P(Mn > ⌊log n⌋) → 1 as n → ∞, it is straightforward to show
that

|P(Vn,h ≤ log n⌋)− P(V ≤ logn⌋)| → 0 as n → ∞.

Since P(k < V < ∞) → 0 as k → ∞ and P(V < ∞) = ρm, it follows by the triangle
inequality that

|P(Vn,h ≤ log n⌋)− ρm| ≤ |P(Vn,h ≤ logn⌋)− P(V ≤ ⌊log n⌋)|+ P(⌊log n⌋ < V < ∞)

→ 0 as n → ∞.

4.4 Embedding

In order to obtain a central limit theorem for the final size, we use an embedding argument
similar to [18], [5] and Ball and Neal [7], utilising a Sellke ([17]) construction of the
epidemic. This involves taking an alternative approach to modelling global infection but
we show that the final size of the epidemic is unchanged. Specifically, we assume that
any given individual encounters global infections at the points of a homogeneous unit
rate Poisson point process as the amount of global infectious pressure they are exposed
to increases. In [5] and [7], an infectious individual with infectious period I contributes
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λGI/N units of global infectious to each individual in the population with the number
of new global infectious encounters arising following a Poisson distribution with mean
λGI. In our setting, each infective makes a given number of global contacts distributed
according to XG. This means that we cannot directly apply the embedding arguments
used in the earlier referenced works but require an additional layer of embedding which
links the total number of global contacts in the epidemic process to the independent
Poisson point processes of global contacts attached to individuals.

Before defining a sequence of embedded epidemics, En, indexed by n the number of house-
holds and showing that En and Ẽn give the same final size, we require some additional
notation. This includes the formal definition of a susceptibility set whose pgf plays a key
role in obtaining, z, the mean final proportion infected in a major outbreak given by (2.3).

For i = 1, 2, . . . and j, l = 1, 2, . . . , h, let (i, j) ❀ (i, l) denote that there is a path of
household infection from individual (i, j) to individual (i, l) with the convention that
(i, j) ❀ (i, j). Note that (i, j) ❀ (i, l) is determined by {(XL,(i,k),Hik); k = 1, 2, . . . , h}.
For i = 1, 2, . . . and j = 1, 2, . . . , h, let Sij denote the susceptibility set of individual (i, j)
which is defined to be

Sij = {l ∈ {1, 2, . . . , h} : (i, l) ❀ (i, j)}.

That is, Sij is the set of individuals whom if infected by a global infection will infect
individual (i, j), if susceptible, via a chain of local infections within the household. Let
Sij = |Sij| denote the size of the susceptibility set of individual (i, j). Note that for all

(i, j), Sij
D
= S11 and for k 6= i, Sij and Skl are independent with the pgf of S11 given by

fS(s), cf. (2.1).

Finally, before introducing the embedded epidemic process we attach to each individual
(i, j) an independent, homogeneous Poisson point process, ηij, with rate 1. For t ≥ 0, let
ζij(t) denote the number of points of ηij in [0, t]. Thus ζij(t) ∼ Po(t).

Suppose that global contacts occur with an individual at the points of a homogeneous Pois-
son point process with rate 1. Specifically, we assume that individual (i, j) receives global
contacts at the points of ηij as the individual is exposed to increasing amounts of global
infection. We assume that when an individual is infected globally the local household
epidemic from that individual occurs instantaneously. Let χij(t) = 1 −∏l∈Sij 1{ζil(t)=0}.
Then χij(t) is an indicator random variable for whether or not individual (i, j) is infected
when all members of the population are exposed to t units of global infectious pressure,
since an individual is infected once somebody in their susceptibility set receives a global
infectious contact.

For i = 1, 2, . . . and t ≥ 0, let (Ri(t), Gi(t), Yi(t)) be a trivariate random variable determin-
ing the state of household when each individual is exposed to t units of global infection.
Let Ri(t) =

∑h
j=1 χij(t) denote the number of individuals infected in the household, let

Gi(t) =
∑h

j=1XG,(i,j)χij(t) denote the number of global contacts made by those infected in

the household and let Yi(t) =
∑h

j=1 ζij(t)[=
∑h

j=1 χij(t)ζij(t)] denote the number of global
contacts made into the household. By construction the {(Ri(t), Gi(t))}s are i.i.d. copies
of (R(t), G(t)), defined in Section 2.

For t ≥ 0, let νR(t) = E[R1(t)]/h = E[χ11(t)] = 1− fS(e
−t), cf. (2.2). Since, for all t ≥ 0,
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XG,(1,1) and χ11(t) are independent, we have that

νG(t) =
1

h
E[G1(t)] = µG[1− fS(e

−t)].

Finally, νY (t) = E[Y (t)]/h = t.

We are now in position to describe the construction of the embedded epidemic process En

and obtain an expression for the proportion, Z̄n,h, of the population infected.

The embedded epidemic process considers each individual, and hence, household being
exposed to infection at a constant rate. If each member of the population is exposed
to t units of global infection, the total number of global infectious contacts is random
and distributed according to Po(nht), the number of points in [0, t] of the Poisson point
process ηn, where ηn is defined to be the superposition of the Poisson processes {ηij ; i =
1, 2, . . . , n, j = 1, 2, . . . , h}. To study the original epidemic process using the embedded
epidemic process, we reverse this procedure and for a given x ∈ R

+, we find the random
time Sn(x) such that the number of global contacts in the population on the interval
[0, Sn(x)] is equal to ⌊xnh⌋. More specifically, for n = 1, 2, . . . and x ≥ 0, let

Sn(x) = min

{

t ≥ 0 :
n
∑

i=1

Yi(t) = ⌊xnh⌋
}

. (4.4)

Let T n
0 denote the number of global infections required to generatemn infectives to initiate

the epidemic, and remember that mn = m for all sufficiently large n. Therefore T n
0

p−→ m
as n → ∞. Let T̄ n

0 = T n
0 /(nh). Then

Sn(T̄
n
0 ) = min

{

t ≥ 0 :

n
∑

i=1

Yi(t) = T n
0

}

is the initial amount of global infection in the epidemic process En to generatemn infectives
(T n

0 global infectious contacts). We say that the set of individuals whose susceptibility
set contains an initial infective form generation 0 of En. (Therefore generation 0 of En

is obtained by running the local epidemics from the initial infectives.) Generation 0 will
generate

∑n
i=1Gi(Sn(T̄

n
0 )) global infectious contacts. Thus

T n
1 (= nhT̄ n

1 ) = T n
0 +

n
∑

i=1

Gi(Sn(T̄
n
0 )),

is the number of global infections, including those required for the initial infectives, after
the global infections emanating from generation 0 have been considered. Following [5],
Section 4.2.2, we can define T n

0 , T
n
1 , . . ., with T̄ n

k = T n
k /(nh), to satisify, for k = 0, 1, . . .,

T n
k+1(= nhT̄ n

k+1) = T n
0 +

n
∑

i=1

Gi(Sn(T̄
n
k )).

For k = 1, 2, . . ., we say an individual belongs to the kth generation of infectives if the first
time a member of their susceptibility set is infected globally is by a member of generation
k − 1. Using the embedding process an individual (i, j) belongs to generation k if

χij(Sn(T̄
n
k−1)) = 0 and χij(Sn(T̄

n
k )) = 1,
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and T n
k+1 is the total number of global infections, including those required for the initial

infectives, from the first k generations of infectives. The process continues until there
are no additional global infections created in a generation. That is, T n

k+1 = T n
k , and

consequently we can define T n
∞ = nhT̄ n

∞ to satisfy

T̄ n
∞ = min

{

x ≥ 0 : T n
0 +

n
∑

i=1

Gi(Sn(x)) = ⌊xnh⌋
(

=
n
∑

i=1

Yi(Sn(x))

)}

. (4.5)

Hence,

T̄ n
∞ = T̄ n

0 +
1

nh

n
∑

i=1

Gi(Sn(T̄
n
∞))

(

=
1

nh

n
∑

i=1

Yi(Sn(T̄
n
∞))

)

.

Therefore, Z̄n,h, the proportion of the population infected by the epidemic En, satisfies

Z̄n,h =
1

nh

n
∑

i=1

Ri(Sn(T̄
n
∞)) =

1

nh

n
∑

i=1

h
∑

j=1

χij(Sn(T̄
n
∞)).

We show how the epidemic processes En and Ẽn can be coupled to give the same final size.
We construct En using {Xij = (XG,(i,j), XL,(i,j)),Hij, ηij; i = 1, 2, . . . , n, j = 1, 2, . . . , h}.
To construct Ẽn from En, we use {Xij = (XG,(i,j), XL,(i,j)),Hij; i = 1, 2, . . . , n, j = 1, 2, . . . , h}
so local epidemics are unchanged and the number of global contacts made by a given in-
dividual are the same in both processes. Using {ηij ; i = 1, 2, . . . , n, j = 1, 2, . . . , h}, we
construct Un

1 , U
n
2 , . . .. For k = 1, 2, . . ., we set Un

k = (i′, j′) if the kth point of ηn comes from
ηi′j′. This construction means that the initial mn infectives in Ẽn are InKn

and that the
individual contacted by the kth global contact is the same in both epidemics although the
assignment of the infector might be different. Consequently, those individuals whose sus-
ceptibility sets have been globally infected, and thus are guaranteed to be infected, by the
first t global infections in Ẽn, is precisely the set of individuals for whom χij(Sn(t/nh)) = 1
(i = 1, 2, . . . , n; j = 1, 2, . . . , h). Therefore, T n

∞ is the total number of global infectious
contacts in both En and Ẽn, with Z̄n,h denoting the proportion of individuals infected.

4.5 Law of large numbers

In this section we prove that the proportion of the population infected, Z̄n,h, converges
to a random variable Z whose probability mass function is defined in (2.6).

Lemma 4.2. Suppose that there exists m ∈ N such that mn = m for all sufficiently large
n. For R∗ > 1, there exists 0 < τ < ∞ which solves τ = νG(τ) with

min
{

|Sn(T̄
n
∞)|, |Sn(T̄

n
∞)− τ |

} a.s.−→ 0 as n → ∞. (4.6)

Proof. Firstly, mn = m for all sufficiently large n, implies that T̄ n
0

a.s.−→ 0 as n → ∞. By
the strong law of large numbers, (nh)−1

∑n
i=1Gi(t)

a.s.−→ νG(t) as n → ∞, for all t ≥ 0.
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Also, νG(∞) = µG < ∞. A similar, but simpler, argument to the proof of [7], Lemma
3.8, yields

sup
t≥0

∣

∣

∣

∣

∣

1

nh

n
∑

i=1

Gi(t)− νG(t)

∣

∣

∣

∣

∣

a.s.−→ 0 as n → ∞. (4.7)

By a similar argument, for any T > 0, we have that

sup
0≤t≤2T

∣

∣

∣

∣

∣

1

nh

n
∑

i=1

Yi(t)− t

∣

∣

∣

∣

∣

a.s.−→ 0 as n → ∞. (4.8)

For any x ≥ 0, using (4.4), we have that

|Sn(x)− x| =
∣

∣

∣

∣

∣

Sn(x)−
1

nh

n
∑

i=1

Yi(Sn(x)) +
⌊xnh⌋
nh

− x

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

Sn(x)−
1

nh

n
∑

i=1

Yi(Sn(x))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

⌊xnh⌋ − xnh

nh

∣

∣

∣

∣

.

Since Sn(x) is increasing in x, it follows that for Sn(T ) ≤ 2T ,

0 ≤ sup
0≤x≤T

|Sn(x)− x| ≤ sup
0≤x≤T

(
∣

∣

∣

∣

∣

Sn(x)−
1

nh

n
∑

i=1

Yi(Sn(x))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

⌊xnh⌋ − xnh

nh

∣

∣

∣

∣

)

≤ sup
0≤t≤2T

∣

∣

∣

∣

∣

1

nh

n
∑

i=1

Yi(t)− t

∣

∣

∣

∣

∣

+
1

nh
. (4.9)

Given (nh)−1
∑n

i=1 Yi(2T ) ≥ T implies that Sn(T ) ≤ 2T and (nh)−1
∑n

i=1 Yi(2T )
a.s.−→ 2T

as n → ∞, it follows from (4.9) and (4.8) that

sup
0≤x≤T

|Sn(x)− x| a.s.−→ 0 as n → ∞.

Let K = {t ∈ [0,∞] : t = νG(t)}. Since νG(·) is a strictly concave function of t, it follows
that K = {0, τ} for R∗ > 1. Also ν ′

G(τ) 6= 1 for all τ ∈ K. Let (Ω,F,P) denote the proba-
bility space on which the random vectors (R1(t), G1(t), Y1(t)), (R2(t), G2(t), Y2(t)), . . . are
defined. Fix T > τ and let

F1 =

{

ω ∈ Ω : sup
t≥0

∣

∣

∣

∣

∣

1

nh

n
∑

i=1

Gi(t, ω)− νG(t)

∣

∣

∣

∣

∣

→ 0 as n → ∞
}

F2 =

{

ω ∈ Ω : sup
0≤x≤T

∣

∣

∣

∣

∣

1

nh

n
∑

i=1

Sn(x, ω)− x

∣

∣

∣

∣

∣

→ 0 as n → ∞
}

and
F3 =

{

ω ∈ Ω : lim
n→∞

T̄ n
0 (ω) = 0

}

.

Then
min

{

|Sn(T̄
n
∞, ω)− τ | : τ ∈ K

}

→ 0 as n → ∞,

for all ω ∈ F1 ∩ F2 ∩ F3. The lemma follows since P(F1 ∩ F2 ∩ F3) = 1.
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A corollary of Lemma 4.2 concerns the proportion infected in the epidemic. For R∗ > 1,
let z = τ/µG. Note that z = νR(µGz), so z coincides with the definition at (2.3).

Corollary 4.1. Suppose that there exists m ∈ N such that mn = m for all sufficiently
large n. For R∗ > 1, we have that

min
{

|Z̄n,h|, |Z̄n,h − z|
} a.s.−→ 0 as n → ∞. (4.10)

Proof. An identical line of argument to the derivation of (4.7) gives

sup
t≥0

∣

∣

∣

∣

∣

1

nh

n
∑

i=1

Ri(t)− νR(t)

∣

∣

∣

∣

∣

a.s.−→ 0 as n → ∞, (4.11)

Then using Lemma 4.2, (4.6) and (4.11) it is straightforward to prove (4.10) along similar
lines to the proof of Lemma 4.2.

The final step to prove that Z̄n,h
D−→ Z, where Z has probability mass function given by

(2.6), is to show that for any 0 < ǫ < z, P(Z̄n,h < ǫ) → ρm as n → ∞. Let V̄n,h = Vn,h/n.
By construction we have that V̄n,h/h ≤ Z̄n,h ≤ V̄n,h and therefore it suffices to show that
there exists ǫ′ > 0,

P(V̄n,h ≤ ǫ′) → ρm as n → ∞. (4.12)

It is straightforward using a lower bound branching process, cf. Whittle [20], [5], Ball and
Lyne [4], to show that (4.12) holds by following a similar line of argument to the proof of
Ball and Neal [10], Theorem 3.2. An outline of the argument is as follows. We couple Ẽn

and B until kn = ⌊log n⌋ households have been infected. The first kn household epidemics
will generate approximately R∗kn global infections. More precisely, we can show that
for any 0 < δ < R∗ − 1, the first ⌊log n⌋ household epidemics create at least a further
⌊δ logn⌋ local epidemics in distinct households with probability tending to 1 as n → ∞.
For any 0 < ǫ′ < [R∗ − 1]/R∗, we consider a super-critical lower bound branching process
approximation to the epidemic starting from ⌊δ log n⌋ individuals where each birth in the
branching process is aborted independently with probability ǫ′. Since the lower bound
branching process is super-critical and E[C2] < ∞, we have that the extinction probability,
ρ(ǫ′), from a single ancestor is bounded away from 1 by Ball and Neal [9], Lemma A3,
with ρ(ǫ′)⌊δ logn⌋ → 0 as n → ∞. Whilst the proportion of households infected is less than
ǫ′, the probability that a global contact is with a previously infected household is at most
ǫ′. We can then use the lower bound branching process to show that

P(V̄n,h ≤ ǫ′|Vn,h > ⌊log n⌋) → 0 as n → ∞,

which combined with (4.1) yields (4.12).

4.6 Proof of Theorem 2.1

We are now in position to prove (2.7) in Theorem 2.1. By conditioning on the event Gn,h,
that at least logn households are infected in the epidemic, it follows from Lemma 4.2,
Corollary 4.1 and the discussion after Corollary 4.1 that

Sn(T̄
n
∞)|Gn,h p−→ τ and Z̄n,h|Gn,h p−→ z (= νR(τ)) as n → ∞.
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Throughout the remainder of the proof we implicitly condition on Gn,h.

Considering Z̄n,h|Gn,h directly is not straightforward. However, we note that condtional
upon Gn,h at least kn = ⌊log n⌋ households are infected. This allows us to construct lower,
Z̄L

n,h, and upper, Z̄U
n,h, bounds for the proportion infected in the event of a global epidemic

by considering who becomes infected in the first kn households and restarting the epidemic
with kn infected households and n − kn initially susceptible households. We show that

Z̄L
n,h

st

≤ Z̄n,h|Gn,h
st

≤ Z̄U
n,h with

√
nh(Z̄L

n,h−z)
D−→ N(0, σ2) and

√
nh(Z̄U

n,h−z)
D−→ N(0, σ2)

from which (2.7), and hence Theorem 2.1, follow.

In order to obtain suitable Z̄L
n,h and Z̄U

n,h, we first define a sequence of epidemic pro-

cesses Ên(Dn), indexed by the number of households n, where Dn ∈ N denotes the
number of global contacts from outside the population to initiate the epidemic. Sup-
pose that in Ên(Dn) there are initially n − kn totally susceptible households, with the
remaining kn households consisting entirely of removed individuals. We label the ini-
tially susceptible households 1, 2, . . . , n − kn and the initially removed households n +
1 − kn, n + 2 − kn, . . . , n. The epidemic is constructed in a similar manner to En using
{Xij,Hij, ηij; i = 1, 2, . . . , n, j = 1, 2, . . . , h} with Dn initial global contacts to determine
the initial infectives within the population. However, throughout the epidemic global
contacts with households n + 1 − kn, n + 2 − kn, . . . , n have no effect as they are with
removed individuals. Thus for the initially removed households only the ηijs are re-
quired. The epidemic only effectively takes place between n− kn households with the kn
initially removed households included to absorb unsuccessful global infections when we
relate Ên(Dn) to En. Due to the construction of Ên(Dn), we can use the trivariate random
vectors (Ri(t), Gi(t), Yi(t)) for the embedding process. Let T̂ n

∞(Dn) satisfy

T̂ n
∞(Dn) = min

{

x ≥ 0 : Dn +

n−kn
∑

i=1

Gi(Sn(x)) = ⌊xnh⌋
(

=

n
∑

i=1

Yi(Sn(x))

)}

. (4.13)

We note that the difference between (4.13) and (4.5) for T̄ n
∞ is the number of global

infections to initiate the epidemic and that in Ên(Dn) only n− kn households contribute
to the generation of new global infections. By construction if D1

n < D2
n then T̂ n

∞(D1
n) ≤

T̂ n
∞(D2

n).

We have the following central limit theorem for the proportion infected in the epidemic
Ên(Dn) with the proof deferred to Section 4.7. Theorem 4.1 is central to proving (2.7).
(We show in Section 4.8 that the expression for σ2 given in (4.14) below is equivalent to
that given in (2.4) in Section 2.4.)

Theorem 4.1. Let Dn be a sequence of positive integers such that Dn → ∞ andDn/
√
n →

0 as n → ∞. Let

Ẑn,h(Dn) =
1

nh

n−kn
∑

i=1

Ri(Sn(T̂
n
∞(Dn))),

the proportion of individuals who are infected during the epidemic Ên(Dn). Then
√
nh
(

Ẑn,h(Dn)− z
)

D−→ N(0, σ2) as n → ∞,

where
σ2 = var (R1(τ) + b(τ) [G1(τ)− Y1(τ)]) . (4.14)
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Conditional on Gn,h, we can consider the first kn households infected. Let D̃I
n denote the

total number of global infectious contacts emanating from the first kn local household
epidemics plus the initial T n

0 global infectious contacts required to create the mn initial

infectives. Then D̃I
n/kn

p−→ R∗ as n → ∞, where R∗ = E[C] is the mean number of global
contacts emanating from a local epidemic initiated by a single infective in an otherwise
susceptible household. Let D̃B

n denote the number of global infections required to infect kn
distinct households and note that using the birthday problem P(D̃B

n = kn) → 1 as n → ∞,
cf. 4.2. Let D̃A

n = D̃I
n − D̃B

n the number of excess global contacts between the number
of global contacts required to infect the first kn households and the number of global
infectious contacts generated by these first kn household epidemics. Then D̃A

n /kn
p−→

R∗ − 1 > 0 as n → ∞. Let D̃C
n denote the sum of all the global contacts from individuals

in the first kn infected households whether or not they are infected in the initial local

epidemic in the household plus the initial T n
0 global infectious contacts. Note that D̃C

n
D
=

T n
0 +

∑kn
i=1

∑h
j=1XG,(i,j) with E[D̃C

n ] = E[T n
0 ] + hknµG. Let D̃

D
n = D̃C

n − D̃B
n , the number

of excess global contacts between the number of global contacts required to infect the first
kn households and the total number of potential global infectious contacts generated by
these first kn households should everybody become infected.

We create a lower bounding epidemic process ĒL
n by using the same construction as En

except that in the first kn households to be infected only the first global contact is success-
ful. All subsequent global infectious contacts with these kn households, which we denote
by Fn, are unsuccessful. For households in FC

n , the epidemic progresses as in En. Let
Z̄L

n,h denote the proportion of the population infected in ĒL
n , then Z̄L

n,h ≤ Z̄n,h. Similarly

we create an upper bounding epidemic process ĒU
n by using the same construction as En

except that in the first kn households all individuals are made infectious. All subsequent
global infectious contacts with these kn households have no effect, as the individual con-
tacted has already been infected. For households in FC

n , the epidemic again progresses as
in En. Let Z̄

U
n,h denote the proportion of the population infected in ĒU

n , then Z̄U
n,h ≥ Z̄n,h.

Let Z̄L
n,h = Z̄L,0

n,h + Z̄L,1
n,h , where Z̄

L,0
n,h is the proportion of the population who both belong to

Fn and are infected in ĒL
n and Z̄L,1

n,h is the proportion of the population who both belong

to FC
n and are infected in ĒL

n . Define Z̄U,0
n,h and Z̄U,1

n,h similarly, with Z̄U
n,h = Z̄U,0

n,h + Z̄U,1
n,h .

By construction, the lower bounding and upper bounding epidemic processes behave as
if the households in Fn are removed after considering the first kn households and D̃B

n

global infections. Given that Poisson processes have independent increments and Gn,h

with D̃A
n = D1

n, we can couple the construction of ĒL
n to a realisation of Ên(D

1
n) such that

{Z̄L,1
n,h |Gn,h, D̃A

n = D1
n} = Ẑn,h(D

1
n). Similarly, given that D̃D

n = D2
n, we can couple the

construction of ĒU
n to a realisation of Ên(D

2
n) such that {Z̄U,1

n,h |Gn,h, D̃D
n = D2

n} = Ẑn,h(D
2
n).

Let DL
n = ⌊(R∗ − 1)kn/2⌋ and DU

n = ⌊2hknµG⌋. Then P(DL
n ≤ D̃A

n ) → 1 and P(DU
n ≥

D̃D
n ) → 1 as n → ∞. Also since DL

n , D
U
n → ∞ and DL

n/
√
n,DU

n /
√
n → 0 as n → ∞,

it follows from Theorem 4.1 that both
√
nh
(

Ẑn,h(D
L
n)− z

)

and
√
nh
(

Ẑn,h(D
U
n )− z

)

converge in distribution to N(0, σ2) as n → ∞.

Let Z̄0
n,h (Z̄1

n,h) denote the proportion of the population who both belong to Fn (FC
n ) and

are infected in En. We have that if DL
n ≤ D̃A

n and DU
n ≥ D̃D

n ,

Ẑn,h(D
L
n ) ≤ Z̄L,1

n,h |Gn,h ≤ Z̄1
n,h|Gn,h ≤ Z̄U,1

n,h |Gn,h ≤ Ẑn,h(D
U
n ).
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Given that P({DL
n ≤ D̃A

n }∪{DU
n ≥ D̃D

n }) → 1 as n → ∞, it follows that
√
nh(Z̄1

n,h−z)
D−→

N(0, σ2) as n → ∞. Finally, (2.7) follows using Slutsky’s theorem (see, for example,

Billingsley [12], Theorem 3.1), since
√
nhZ̄0

n,h

p−→ 0 as n → ∞.

4.7 Proof of Theorem 4.1

In order to prove Theorem 4.1, we show that
√
nh(Ẑnh(Dn) − z) has the same limit-

ing distribution, as n → ∞, as the normalised sum of a certain linear combination of
{(Ri(τ), Gi(τ), Yi(τ)); i = 1, 2, . . . , n}. This requires first defining for T > 0 a sequence of
stochastic processes W[n,T ] and showing in Lemma 4.3 that the limiting stochastic process
is a zero-mean trivariate Gaussian process.

For J = R,G, Y and t ≥ 0, let

W J
n (t) =

1√
nh

nJ
∑

i=1

[Ji(t)− hνJ(t)] , (4.15)

where νR(t) is defined in (2.2), νG(t) = µGνR(t), νY (t) = t, nR = nG = n̂ = n − kn and
nY = n. That is, for R and G we sum over the n−kn initially susceptible households and
for Y we sum over all n households, since global contacts with the initially susceptible
households are important. Let Wn(t) = (WR

n (t),WG
n (t),W Y

n (t)) and let, for T > 0,

W[n,T ] = {Wn(t) : 0 ≤ t ≤ T}. (4.16)

Also for T > 0, let W[∗,T ] = (WR,WG,W Y ) be a zero-mean trivariate Gaussian process
with, for J, L ∈ {R,G, Y } and 0 ≤ s, t ≤ T ,

cov(W J(s),WL(t)) =
1

h
cov(J1(s), L1(t)).

Lemma 4.3. For any T ≥ 0,

W[n,T ]
w−→ W[∗,T ] as n → ∞

where
w−→ denotes weak convergence in the space of bounded functions from [0, T ] to R

3

endowed with the supremum metric (see, van der Vaart and Wellner [19], page 34).

Proof. Fix T > 0. The lemma follows using [19], Theorem 1.5.4, by showing that the
finite-dimensional distributions ofW[n,T ] converge to those ofW[∗,T ] and that the sequence
W[n,T ] (n = 1, 2, . . .) is asymptotically tight.

For any m ∈ N, t ∈ [0, T ]m and αJk ∈ R (J = R,G, Y ; k = 1, 2, . . . , m),

m
∑

k=1

{

αRkW
R
n (tk) + αGkW

G
n (tk) + αY kW

Y
n (tk)

}

(4.17)

=
1√
nh

n̂
∑

i=1

Qi(α, t) +
m
∑

k=1

1√
nh

n
∑

i=n̂+1

αY k[Yi(tk)− hνY (tk)],
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where, for i = 1, 2, . . . ,

Qi(α, t) =

m
∑

k=1

{αRk[Ri(tk)− hνR(tk)] + αGk[Gi(tk)− hνG(tk)] + αY k[Yi(tk)− hνY (tk)]} .

The {Qi(α, t)}s are i.i.d. with E[Q1(α, t)] = 0. Since, for any t ≥ 0, R1(t) ≤ h, G1(t) ≤
∑h

j=1C
G
1j and Y1(t) ∼ Po(ht), it is straightforward to show that

E
[

Q1(α, t)2
]

< ∞.

Therefore, since kn/
√
n → 0 as n → ∞, the central limit theorem yields

1√
nh

n̂
∑

i=1

Qi(α, t)
D−→ N

(

0,
1

h
var(Q1(α, t))

)

as n → ∞.

It is straightforward to show that the final term on the right-hand side of (4.17) converges
in probability to 0 as n → ∞, so using Slutsky’s theorem,

m
∑

k=1

{

αRkW
R
n (tk) + αGkW

G
n (tk) + αY kW

Y
n (tk)

} D−→ N

(

0,
1

h
var(Q1(α, t))

)

as n → ∞.

By considering linear combinations of Wn(tk) and using the Cramér-Wold device, it fol-
lows that the finite-dimensional distributions of W[n,T ] converge to those of W[∗,T ].

By [19], Lemma 1.4.3, the sequence W[n,T ] (n = 1, 2, . . .) is asymptotically tight if and
only if each of the sequences W J

[n,T ] (J = R,G, Y ;n = 1, 2, . . .) is asymptotically tight.

We start by showing that the sequence WG
[n,T ] (n = 1, 2, . . .) is asymptotically tight.

For t ≥ 0, let Ḡ1(t) = G1(t) − hνG(t), with WG
n (t) = (nh)−1/2

∑nG

i=1 Ḡi(t). Since
Ḡ1(·), Ḡ2(·), . . . are i.i.d., the 3 conditions which are given for asymptotic tightness of
WG

[n,T ] (n = 1, 2, . . .) in [19], Theorem 2.11.9 simplify to showing that as n → ∞:

(i) For every ξ > 0,

nGE

[
∥

∥

∥

∥

Ḡ1√
nh

∥

∥

∥

∥

T

1{‖[Ḡ1/
√
nh‖T>ξ}

]

→ 0,

where ‖f‖T = sup0≤t≤T |f(t)|.

(ii) For every δn ↓ 0,

sup
|s−t|<δn

nG

nh
E
[

(

Ḡ1(s)− Ḡ1(t)
)2
]

→ 0.

(iii) For every δn ↓ 0,
∫ δn

0

√

logNn
[ ](ǫ, T ) dǫ → 0,

where for ǫ > 0, the bracketing number Nn
[ ](ǫ, T ) is defined to be the minimum

number of sets Nǫ in a partition [0, T ] = ∪Nǫ

j=1A
n
ǫj such that, for each An

ǫj, we have

nG

nh
E

[

sup
s,t∈An

ǫj

(

Ḡ1(t)− Ḡ1(s)
)2

]

≤ ǫ2. (4.18)
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Given that, for all t ≥ 0, |Ḡ1(t)| ≤
∑h

j=1XG,(1,j)+ hµG = QG, say, it follows that, for any
ξ > 0,

nGE

[
∥

∥

∥

∥

Ḡ1√
nh

∥

∥

∥

∥

T

1{‖[Ḡ1/
√
nh‖T>ξ}

]

≤
√

n

h
E
[

QG1{QG>
√
nhξ}

]

. (4.19)

The same argument as a proof of Markov’s inequality yields, for a > 0,

E
[

QG1{QG>
√
nhξ}

]

= (
√
nhξ)−(1+a)E

[

QG1{QG>
√
nhξ}(

√
nhξ)(1+a)

]

≤ E
[

(QG)2+a
]

(ξ
√
nh)1+a

.

(4.20)

Since E[X2+a
G ] < ∞ implies that E[(QG)2+a] < ∞, it is straightforward to show condition

(i) holds using (4.19) and (4.20).

Given that G1(·) and νG(·) are non-decreasing in t, it is straightforward to show that for
any u ≤ s ≤ t ≤ v,

[

Ḡ1(t)− Ḡ1(s)
]2 ≤ [G1(t)−G1(s)]

2 + h2 [νG(t)− νG(s)]
2 (4.21)

≤ [G1(v)−G1(u)]
2 + h2 [νG(v)− νG(u)]

2 . (4.22)

Also, jumps in G1(·) only occur when a global infectious contacts are made with the
household, so, for all 0 ≤ s < t,

|G1(t)−G1(s)| ≤
(

h
∑

j=1

XG,(1,j)

)

1{Yi(t)6=Yi(s)} (4.23)

with
∑h

j=1XG,(1,j) independent of 1{Yi(t)6=Yi(s)}. It then follows from (4.21), (4.23) and

h2(νG(t)− νG(s))
2 = h2

(

1

h
E [G1(t)−G1(s)]

)2

≤ E[(G1(t)−G1(s))
2],

that for all 0 ≤ s < t,

E
[

(

Ḡ1(t)− Ḡ1(s)
)2
]

≤ 2E
[

(G1(t)−G1(s))
2]

≤ 2E





(

h
∑

j=1

XG,(1,j)

)2


E
[

1{Y1(t)6=Y1(s)}
]

≤ 2E





(

h
∑

j=1

XG,(1,j)

)2


E [Y1(t)− Y1(s)]

≤ 2h2E
[

X2
G

]

h(t− s). (4.24)

Condition (ii) follows since for all s ≥ 0, the right hand side of (4.24) converges to 0 as
t ↓ s.
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Fix ǫ > 0 and A = [u, v], where 0 ≤ u < v such that |u− v| ≤ ǫ2/(4h2E[X2
G]). It follows

from (4.22) and (4.24) that

nG

nh
E

[

sup
s,t∈A

(

Ḡ1(t)− Ḡ1(s)
)2
]

≤ 1

h
E
[

(G1(v)−G1(u))
2
]

+ h [νG(v)− νG(u)]
2

≤ 2

h
E
[

(G1(v)−G1(u))
2
]

≤ 2

h
× 2h3E

[

X2
G

]

× ǫ2

4h2E[X2
G]

= ǫ2.

Therefore a partition of [0, T ] into intervals An
ǫj of length Lǫ = ǫ2/(4h2E[X2

G]) exists such
that (4.18) holds. Hence, Nn

[ ](ǫ, T ) ≤ c/ǫ2, where c = 1 + 4Th2E[X2
G]. Then,

∫ δn

0

√

logNn
[ ](ǫ, T ) dǫ ≤

∫ δn

0

√

log
( c

ǫ2

)

dǫ

=

√
c

2

∫ ∞

log(c/δ2n)

√
u exp

(

−u

2

)

du → 0 as n → ∞.

Hence condition (iii) is satisfied, concluding the proof of asymptotic tightness of WG
[n,T ]

(n = 1, 2, . . .).

The asymptotic tightness of WR
[n,T ] (n = 1, 2, . . .) follows by an identical argument with

XG ≡ 1. Finally, using properties of Poisson processes, it is straightforward to show
that conditions (i)-(iii) hold with Ḡ1 replaced by Ȳ1, where Ȳ1(t) = Y1(t) − hνY (t) and
nG = n − kn replaced by nY = n. Therefore, the sequence W[n,T ] (n = 1, 2, . . .) is
asymptotically tight and the lemma follows.

Proof of Theorem 4.1. Using similar arguments to Section 4.5, we have that if Dn → ∞
and Dn/

√
n → 0 as n → ∞, then

Sn(T̂
n
∞(Dn))

p−→ τ, as n → ∞. (4.25)

This is because the probability that the epidemic fails to take-off from Dn initial global
contacts, of which Bin(Dn, (n − kn)/n) are with initially susceptible households, tends
to 0 as n → ∞. Therefore, using similar arguments to Corollary 4.1, we have that
Ẑn,h(Dn)

p−→ z as n → ∞.

Using the mean value theorem, we have that

√
nh
(

Ẑn,h(Dn)− z
)

=
√
nh

[

1

nh

n̂
∑

i=1

Ri(Sn(T̂
n
∞(Dn)))− νR(τ)

]

=
√
nh

[

1

nh

n̂
∑

i=1

Ri(Sn(T̂
n
∞(Dn)))− νR(Sn(T̂

n
∞(Dn))) + νR(Sn(T̂

n
∞(Dn)))− νR(τ)

]

= WR
n (Sn(T̂

n
∞(Dn))) + ãn + ν ′

R(an1)
√
nh[Sn(T̂

n
∞(Dn))− T̂ n

∞(Dn) + T̂ n
∞(Dn)− τ ],

(4.26)
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where an1 lies between Sn(T̂
n
∞(Dn)) and τ and ãn =

√
nh[n̂− n]νR(Sn(T̂

n
∞(Dn)))/n

p−→ 0
as n → ∞. By definition, see (4.13),

1

nh

n
∑

i=1

Yi(Sn(T̂
n
∞(Dn))) = T̂ n

∞(Dn) and νY (Sn(T̂
n
∞(Dn))) = Sn(T̂

n
∞(Dn)).

Therefore, we can rewrite (4.26) as

√
nh
(

Ẑn,h(Dn)− z
)

= WR
n (Sn(T̂

n
∞(Dn))) + ãn − ν ′

R(an1)W
Y
n (Sn(T̂

n
∞(Dn)))

+ ν ′
R(an1)

√
nh[T̂ n

∞(Dn))− τ ]. (4.27)

Hence, we need to consider the distribution of
√
nh[T̂ n

∞(Dn))− τ ].

Let D̂n = Dn/(nh) and note that

√
nh[T̂ n

∞(Dn))− τ ] =
√
nh

[

D̂n +
1

nh

n̂
∑

i=1

Gi(Sn(T̂
n
∞(Dn)))− νG(τ)

]

=
√
nhD̂n +WG

n (Sn(T̂
n
∞(Dn))) + ãnµG

+
√
nh[νG(Sn(T̂

n
∞(Dn))− νG(T̂

n
∞(Dn)) + νG(T̂

n
∞(Dn))− νG(τ)].

By the mean value theorem, there exists an2 lying between Sn(T̂
n
∞(Dn)) and τ , such that

√
nh[T̂ n

∞(Dn)− τ ]

=
√
nhD̂n +WG

n (Sn(T̂
n
∞(Dn))) + ãnµG

+
√
nhν ′

G(an2)[Sn(T̂
n
∞(Dn))− T̂ n

∞(Dn) + T̂ n
∞(Dn)− τ ]

=
√
nhD̂n +WG

n (Sn(T̂
n
∞(Dn))) + ãnµG − ν ′

G(an2)W
Y
n (Sn(T̂

n
∞(Dn)))

+ ν ′
G(an2)

√
nh[T̂ n

∞(Dn)− τ ],

using (4.13). Hence,

√
nh[T̂ n

∞(Dn)− τ ]

=
1

1− ν ′
G(an2)

{√
nhD̂n +WG

n (Sn(T̂
n
∞(Dn))) + ãnµG − ν ′

G(an2)W
Y
n (Sn(T̂

n
∞(Dn)))

}

.

(4.28)

Inserting (4.28) into (4.27), we obtain that

√
nh
(

Ẑn,h(Dn)− z
)

= WR
n (Sn(T̂

n
∞(Dn)) + ãn +

√
nhD̂n + ãnµG

[1− ν ′
G(an2)]

+

[

ν ′
R(an1)

1− ν ′
G(an2)

]

[

WG
n (Sn(T̂

n
∞(Dn)))−W Y

n (Sn(T̂
n
∞(Dn)))

]

.

(4.29)

Using (4.25), we have by the sandwich theorem that an1, an2
p−→ τ as n → ∞. Therefore,

ν ′
G(an2)

p−→ ν ′
G(τ) < 1 as n → ∞. Given that

√
nD̂n → 0 and ãn

p−→ 0 as n → ∞, the
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second and third terms on the right-hand side of (4.29) converge in probability to 0 as
n → ∞. Also, we have that

ν ′
R(an1)

1− ν ′
G(an2)

p−→ ν ′
R(τ)

1− ν ′
G(τ)

as n → ∞.

It follows by Slutsky’s theorem that
√
nh
(

Ẑn,h(Dn)− z
)

and

WR
n (Sn(T̂

n
∞(Dn))) + b(τ)

[

WG
n (Sn(T̂

n
∞(Dn)))−W Y

n (Sn(T̂
n
∞(Dn)))

]

have the same limiting distribution, should one exist, as n → ∞. By Slutsky’s lemma and
the continuous mapping theorem, [19], Example 1.4.7 and Theorem 1.3.6, respectively, it
follows from Lemma 4.3 and (4.25) that

Wn(Sn(T̂
n
∞(Dn)))

D−→ W(τ) as n → ∞.

Hence,

WR
n (Sn(T̂

n
∞(Dn))) + b(τ)

[

WG
n (Sn(T̂

n
∞(Dn)))−W Y

n (Sn(T̂
n
∞(Dn)))

]

D−→ WR(τ) + b(τ)
[

WG(τ)−W Y (τ)
]

as n → ∞,

and the theorem follows since

σ2 = var
(

WR(τ) + b(τ)
[

WG(τ)−W Y (τ)
])

=
1

h
var (R1(τ) + b(τ) [G1(τ)− Y1(τ)]) .

4.8 Variance calculations

In this section we discuss σ2 and present an alternative representation of the variance.
The variance σ2 satisfies

σ2 =
1

h
var (R1(τ) + b(τ)[G1(τ)− Y1(τ)]) (4.30)

= (1 + b(τ)µG)
2νR(τ)[1 − νR(τ)] + (h− 1)(1 + b(τ)µG)

2cov (χ11(τ), χ12(τ))

+ b(τ)2νR(τ)[σ
2
G − µG] + 2(h− 1)b(τ)(1 + µGb(τ))cov(χ11(τ), XG,(1,2)), (4.31)

where b(t) = ν ′
R(t)/[1−µGν

′
R(t)]. Since ν

G(·) is a concave function, we have that νG(τ) < 1
giving b(τ) < ∞.

We make the following observations regarding σ2 and defer showing that σ2 satisfies (4.31)
to Appendix D.

1. The expression for σ2 in (4.31) involves simply the relationship by individuals (1, 1)
and (1, 2). Note that if the number of global and local contacts made by individuals
are independent then cov(χ11(τ), XG,(1,2)) = 0.
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2. In the case XL ≡ 0 (no local infection) we obtain a homogeneously mixing model
with P(S11 = 1) = 1, giving νR(t) = 1 − e−t and νR(t) + ν ′

R(t) − 1 = 0. Therefore
for XL ≡ 0, letting ξ = exp(−τ)[= ν ′

R(τ)], we have that νR(τ) = 1 − ξ, b(τ) =
ξ/[1− µGξ], τ = µG(1− ξ) and 1 + b(τ)µG = [1− µGξ]

−1, so

σ2 = (1 + b(τ)µG)
2νR(τ)[1− νR(τ)] + b(τ)2νR(τ)[σ

2
G − µG]

=
[1− ξ]ξ

(1− µGξ)2
+

ξ2

(1− µGξ)2
[1− ξ][σ2

G − µG]

=
ξ(1− ξ) + ξ2(1− ξ)[σ2

G − µG]

(1− µGξ)2
. (4.32)

The expression for σ2 given in (4.32) agrees with the variance term given in [14],
Theorem 1, for a constant number of initial infectives m. The model considered in
[14] is the generalised Reed-Frost model, where infectious individuals make XG con-
tacts with distinct members of the population. As we note in Section 4.9 below the
difference between sampling global contacts with and without replacement vanishes
as n → ∞.

3. The expression for σ2 given at (2.4) in Section 2.4 is of course equivalent to (4.30)
or (4.31) above, as is shown at the end of the proof of (4.31) in Appendix D.

4.9 Global and local contacts sampled without replacement

In this section, we briefly describe the minor modifications required for the central limit
theorem to hold when the global and local contacts made by an infective are without
replacement from the remainder of the population and household, respectively. As n → ∞,
the probability an infective makes either a global self-contact or multiple global contacts
with a given individual converges to 0 provided that µG = E[XG] < ∞. Moreover, it is
straightforward to show that the total number of global self-contacts and multiple global
contacts made by individuals with the same individual, Vn say, satisfies

Vn
D−→ V ∼ Po

(

E[XG(XG + 1)]

2

)

as n → ∞,

provided that E[X2
G] < ∞, which is the case as under the assumptions of Theorem 2.1,

there exists a > 0 such that E[X2+a
G ] < ∞. The effect of Vn additional global contacts to

replace global self- and multiple contacts is negligible and does not affect the law of large
numbers and central limit theorem for final proportion infected by a major epidemic. A
similar result holds if we preclude the possibility of an individual making global contacts
with their own household.

Turning to local (household) infectious contacts, if XL denotes the total number of dis-
tinct household contacts then XL has support on {0, 1, . . . , h−1}. Consequently, Hij, the
successive individuals contacted locally by individual (i, j), is a random vector of length
h−1, whose entries are a random permutation of {1, 2, . . . h}\j, with individual (i, j) mak-
ing a household infectious contact with individual (i, l) if l ∈ {Hij1, Hij2, . . . , HijXL,(i,j)

}.
The susceptibility set of individuals can then be constructed from {(XL,(i,k),Hik); k =
1, 2, . . . , h} in a similar manner to Section 4.4 with the proof of the central limit theorem
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continuing unchanged. The only change is the values taken by z and σ2, which change
owing to the different distribution of S, the size of a susceptibility set (see Remark A.2
in Appendix A). Note that the probability of a minor outbreak, ρ, also changes, since C
has a different distribution.

5 Proofs of Theorems 2.2 and 2.3

5.1 Proof of Theorem 2.2

In this section we prove that the probability of a major outbreak, π(h,p), is increasing in
h and p for any random vector (XG, XL). This is proved in two separate lemmas where
we vary h (keeping p fixed) in Lemma 5.1 and vary p (keeping h fixed) in Lemma 5.2.
Lemma 5.2 is proved under weaker assumptions on X = (XG, XL) and the independent
replacement of local contacts by global contacts.

We show first that π(h,p) is increasing in h. We assume without loss of generality that
p = 0. Recall the single-household epidemic model from EH

h (XG, XL) from Section 2.4.
Let R(h) be the size of that epidemic, including the initial infective, and C(h) be the
number of global contacts that emanate from infectives in that epidemic. Thus C(h) is
the offspring random variable for the branching process, B(h), which approximates the of
the epidemic En,h(XG, XL). Let ρ

(h) denote the extinction probability of B(h).

Lemma 5.1. For a given contacts random vector X = (XG, XL), ρ
(h) is strictly decreasing

in h.

Proof. It is immediate that C(1)
st
≤ C(2) and hence that ρ(1) ≥ ρ(2). Let (XG,k, XL,k)

(k = 1, 2, . . . ) be i.i.d. copies of (XG, XL) and Uk (k = 1, 2, . . . ) be an independent
sequence of independent U(0, 1) random variables. We use these random variables to
construct a realisation of C(h) for each h = 2, 3, . . . , as follows.

Fix h ≥ 2. We determine (R(h), C(h)) by considering the infectives in EH
h (XG, XL) one at

a time. We use XL,1 to determine the number of distinct local contacts, Z
(h)
1 , made by

the initial infective. Precise details are given below. If Z
(h)
1 = 0 the epidemic stops and

(R(h), C(h)) = (1, XG,1). Otherwise, we take one of Z
(h)
1 newly infected individuals and use

XL,2 to determine the number of distinct contacts it makes with the remaining h−1−Z
(h)
1

susceptibles. We continue the process in the obvious fashion, stopping when we have run
out of infectives to consider. Let W

(h)
0 = 1 and W

(h)
k = 1 + Z

(h)
1 + Z

(h)
2 + · · · + Z

(h)
k

(k = 1, 2, . . . ). Then R(h) = min{k ≥ 1 : W
(h)
k − k = 0} and C(h) =

∑R(h)

i=1 XG,i. For

completeness we define W
(h)
k = WR(h) for k > R(h).

To determine whether local contacts are with susceptibles, we treat the local contacts one
at a time. Suppose that just prior to the lth local contact a total of Y

(h)
l individuals have

been infected (including the initial infective). Then that local contact is with a susceptible

if and only if Ul ≤ (h − Y
(h)
l )/(h − 1); otherwise the contact is with a non-susceptible

individual and does not result in a new infective. Since (h− y)/(h− 1) ≤ (h + 1 − y)/h

for y = 1, 2, . . . , it follows immediately from the construction that W
(h+1)
k ≥ W

(h)
k for k =

0, 1, . . . , whence R(h+1) ≥ R(h) and C(h+1) ≥ C(h). Thus, C(h)
st
≤ C(h+1) and ρ(h) ≥ ρ(h+1).
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The inequality (h−y)/(h−1) ≤ (h+1−y)/h is strict for y > 1, so P(C(h+1) > C(h)) = 1,
whence ρ(h) > ρ(h+1).

Consider a random vector X = (XG, XL) for the number of global and household con-
tacts made by a typical individual. For 0 ≤ p ≤ 1, let B(p) denote the branching process
where a proportion p of household contacts are converted to global contacts. Through-
out, the branching process approximation is based on the assumption that each global
infectious contact (birth) is with a previously uninfected household. Therefore, each in-
fected household is infected globally once. The local epidemic (within the household)
is determined by the number of local contacts, distributed independently according to
XL, and p, the proportion of household contacts that are converted to global contacts.
We allow for a general rule for the transferring of household to global contacts. Let
Y

(p)
T denote the number of household contacts transferred to global contacts, so that in

B(p) the number of global and household contacts made by a typical infective are dis-

tributed according to (XG + Y
(p)
T , XL − Y

(p)
T ). Note that Y

(0)
T = 0 and Y

(1)
T = XL, and

if Y
(p)
T = Y

(p)
L ∼ MixBin(XL, p) we are in the scenario described in Section 2.3. For

0 ≤ p < q ≤ 1, we assume that Y
(p)
T |XL

st
≤ Y

(q)
T |XL, that is, a coupling exists such that

at least as many household contacts are transferred for an individual in B(q) as for the
corresponding individual in B(p).

Lemma 5.2. For a given household size h and contacts random vector X = (XG, XL),
the extinction probability, ρp, of the branching process B(p) is monotonically decreasing
in p.

Proof. Fix 0 ≤ p < q ≤ 1. We prove the lemma by showing that ρq ≤ ρp.

Construct B(p) and B(q) on a common probability space such that the ith individual in

both process makes XG,i +XL,i attempted births and Y
(p)
T,i ≤ Y

(q)
T,i . We construct a lower

bound branching process B̂(p, q) in which the ith individual makes XG,i + Y
(p)
T,i global and

XL,i − Y
(q)
T,i local contacts. Note that in B̂(p, q) the ith individual has Y

(q)
T,i − Y

(p)
T,i fewer

contacts than its counterparts in B(p) and B(q) and we term these missing contacts, ghost
contacts. Let ρp, ρq and ρ̂p,q denote the extinction probabilities in the branching processes

B(p),B(q) and B̂(p, q), respectively. Let (V̂p,q, Ŵp,q) denote the number of global and

ghost contacts emanating from a typical infectious individual in B̂(p, q). Then

ρ̂p,q = E
[

ρ̂V̂p,q

p,q

]

.

We define

f̂p,q(θ, s) = E
[

θV̂p,qsŴp,q

]

,

the joint pgf of (V̂p,q, Ŵp,q), so ρ̂p,q solves

θ = f̂p,q(θ, 1).

Also we have that ρq solves

θ = f̂p,q(θ, θ) = E
[

θV̂p,q+Ŵp,q

]

,

36



since all ghost contacts in B̂(p, q) correspond to global contacts in B(q).

The ghost contacts in B̂(p, q) correspond to local contacts within the household in B(p).
The additional Ŵp,q local contacts in B(p) will result in W̃p,q ≤ Ŵp,q additional infectives

from whom to grow the epidemic. It is likely that W̃p,q < Ŵp,q as some contacts could
be with individuals who are already members of the local household epidemic and/or
repeat contacts with a new individual. Let P (V̂p,q, Ŵp,q) denote the probability that the

branching process goes extinct from those individuals infected by the additional Ŵp,q local
contacts. Thus, ρp solves

θ = E
[

θV̂p,qP (V̂p,q, Ŵp,q)
]

.

The W̃p,q individuals will initiate a local epidemic in a household with at least one removed
individual (the initial infective). The number of global infections emanating from the

local epidemic from the W̃p,q is stochastically smaller than
∑W̃p,q

i=1 Ṽp,i, where the Ṽp,is
are i.i.d. copies of Ṽp, the number of global contacts emanating from a household where

individuals have i.i.d. contacts according to (XG,i + Y
(p)
T,i , XL,i − Y

(p)
T,i ) and households

initially have 1 infective, 1 removed and h− 2 susceptibles. Let ρ̃p solve

θ = E
[

θṼp

]

,

the extinction probability of a branching process where the offspring distribution is Ṽp.

Then Ṽp

st

≤ Vp, where Vp is the number of global contacts emanating from a household

where individuals have i.i.d contacts according to (XG,i+Y
(p)
T,i , XL,i−Y

(p)
T,i ) and households

initially have 1 infective and h− 1 susceptibles. Thus, ρ̃p ≥ ρp and for 0 ≤ θ ≤ 1,

E
[

θV̂p,qP (V̂p,q, Ŵp,q)
]

≥ E
[

θV̂p,q ρ̃Ŵp,q

p

]

= f̂p,q(θ, ρ̃p). (5.1)

Let ρ∗ solve

ρ∗ = f̂p,q(ρ∗, ρ̃p).

Then by (5.1) it follows that ρp ≥ ρ∗.

Since ρ̃p ≥ ρ∗, it follows that

ρ∗ ≥ f̂p,q(ρ∗, ρ∗). (5.2)

Given that ρq is the smallest solution in [0, 1] of θ = f̂p,q(θ, θ), an immediate consequence
of (5.2) is that ρ∗ ≥ ρq, whence ρp ≥ ρq, as required.

We observe that Lemma 5.2 holds if we assume instead that the, XL, local contacts made
by an individual are without replacement, with each local contact made by an individual
being equally likely to be with anybody in their household they have not previously
contacted.
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5.2 Proof of Theorem 2.3

In this section we prove that the final size of a major outbreak, z(h,p), is increasing in
h and p for any random vector (XG, XL), for which the pgf of XL is log-convex. As in
Section 5.1 we prove the result in two separate lemmas where we vary h (keeping p fixed)
in Lemma 5.3. and vary p (keeping h fixed) in Lemma 5.4.

We show first that z(h,p) is increasing in h. We assume without loss of generality that
p = 0 and for ease of notation write z(h,0) as z(h).

Lemma 5.3. For a given contact random vector X = (XG, XL), with log(fXL
(s)) being

convex, the final size of a major outbreak, z(h), is strictly increasing in h.

Proof. In the proof, we use the following way of sampling a Bin(n, 1−q) random variable.
First sample Z ∼ Po(λ), where λ = −n log q. Then place Z balls independently and
uniformly at random into n boxes and let Y be the number of boxes that contain at least
one ball. Then Y ∼ Bin(n, 1− q). (The numbers of balls in the n boxes are independent

Po(− log q) random variables.) Note this implies that Y
st

≤ Z.

The susceptibility set S(h) of a typical individual a in a household of size h can be con-
structed as follows. We first look to see which individuals make contact with a; there are
X

(h)
1 ∼ Bin(h− 1, 1− q

(h)
0 ) such individuals, where

q
(h)
0 = E

[

(

h− 2

h− 1

)XL

]

= fXL

(

1− 1

h− 1

)

.

If X
(h)
1 = 0, the process stops and S(h) = 1. Otherwise, we take one of the X

(h)
1 individuals

that have been added to the susceptibility set, individual b say, and look to see which of
the remaining h − 1 − X

(h)
1 individuals make contact with b. Each of these individuals

have failed to make contact with a, so the probability they make contact with b is 1−q
(h)
1 ,

where

q
(h)
1 =

E
[

(

h−3
h−1

)XL

]

E
[

(

h−2
h−1

)XL

] =
fXL

(

1− 2
h−1

)

fXL

(

1− 1
h−1

) .

The process is then continued in the obvious fashion. Specifically, for k = 2, 3, . . . , h− 1,

X
(h)
k |X(h)

1 , X
(h)
2 , . . . , X

(h)
k−1 ∼ Bin(h− 1−X

(h)
1 −X

(h)
2 − · · · −X

(h)
k−1, 1− q

(h)
k−1),

where

q
(h)
k =

E

[

(

h−(k+2)
h−1

)XL

]

E

[

(

h−(k+1)
h−1

)XL

] =
fXL

(

1− k+1
h−1

)

fXL

(

1− k
h−1

) . (5.3)

Let Y
(h)
0 = 1 and Y

(h)
k = 1 +X

(h)
1 +X

(h)
2 + · · ·+X

(h)
k (k = 1, 2, . . . , h), where X

(h)
h = 0.

Then S(h) D
= min{k ≥ 1 : Y

(h)
k − k = 0}.

For k = 0, 1, . . . , h− 2, let λ
(h)
k = −(h − 1) log q

(h)
k . Note that (5.3) holds also for k = 0,

since fXL
(1) = 1. Hence, for k = 0, 1, . . . , h− 2,

λ
(h)
k = −(h− 1) log q

(h)
k = (h− 1)gXL

(

k + 1

h− 1

)

− (h− 1)gXL

(

k

h− 1

)

.
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where gXL
(x) = − log fXL

(1 − x) (0 ≤ x ≤ 1). The function gXL
is concave, increasing

and differentiable on [0, 1] (recall that log fXL
is convex). For k = 0, 1, . . . , h− 2,

λ
(h)
k = (h− 1)

∫ (k+1)/(h−1)

k/(h−1)

g′XL
(y) dy =

∫ k+1

k

g′XL

(

u

h− 1

)

du, (5.4)

where we have made the substitution u = (h− 1)y. Now g′XL
is decreasing on (0, 1), since

gXL
is concave, so it follows from (5.4) that λ

(h)
k ≥ λ

(h′)
k if h > h′.

It is immediate that S(h)
st
≥ S(1), for h > 1, so suppose that h > h′ ≥ 2. We construct

coupled realisations of S(h) and S(h′), satisfying S(h) ≥ S(h′), as follows. Let Z̃
(h)
k ∼

Po(λ
(h)
k ) (k = 0, 1, . . . , h − 2) be independent random variables and define Z̃

(h′)
k (k =

0, 1, . . . , h′ − 2) similarly. Since, λ
(h)
k ≥ λ

(h′)
k (k = 0, 1, . . . , h′ − 2), Z̃

(h)
k and Z̃

(h′)
k can

be coupled so that Z̃
(h)
k ≥ Z̃

(h′)
k (k = 0, 1, . . . , h′ − 2). We show by induction that the

processes Y
(h)
k (k ≥ 0) and Y

(h′)
k (k ≥ 0) can be coupled so that Y

(h)
k ≥ Y

(h′)
k for all

k = 0, 1, . . . , h′, whence S(h)
st
≥ S(h′). (Note that S(h′) is necessarily ≤ h′.)

Now Y
(h)
0 = Y

(h′)
0 = 1. Suppose that Y

(h)
i ≥ Y

(h′)
i for i = 0, 1, . . . k, where k ≤ h′ − 1. Let

y = Y
(h)
k and y′ = Y

(h′)
k , so y ≥ y′. We use the above balls-in-boxes approach to obtain

a realisation of X
(h)
k+1. We place Z̃

(h)
k balls uniformly at random in h − 1 boxes, labelled

1, 2, . . . , h− 1. Then X
(h)
k+1 is given by the number of boxes with label ≥ y which contain

at least one ball. A realisation of X
(h′)
k+1 can be obtained similarly, using Z̃

(h′)
k . Let X

′(h′)
k+1

be the number of boxes with label ≥ y that contain at least one ball in the realisation of

X
(h′)
k+1. Now Z̃

(h)
k ≥ Z̃

(h′)
k and (h − y)/(h− 1) > (h′ − y)/(h′ − 1), so using a sequence of

independent U(0, 1) random variables as in the proof of Lemma 5.1, it is straightforward

to couple X
(h)
k+1 and X

′(h′)
k+1 so that X

(h)
k+1 ≥ X

′(h′)
k+1 , whence Y

(h)
k ≥ Y

(h′)
k , as required.

It follows immediately from the above argument that fS(h)(s) ≤ fS(h′)(s) (0 ≤ s ≤ 1)
if h > h′. Moreover, it easily seen that this inequality is strict for s ∈ [0, 1). Hence,
z(h) > z(h

′) if h > h′.

The proof of Lemma 5.4 is similar to that of Lemma 5.2. In Lemma 5.2 we select a
random typical individual and study the forward epidemic process of who is infected from
the resulting epidemic. We couple this to a forward branching process and compute the
probability of extinction of the branching process. In Lemma 5.4 we select a random
typical individual and study the backward epidemic process of who, if infected, will infect
our selected individual. That is, we identify the susceptibility set of the individual and
couple this to a backward branching process and compute its probability of extinction.
Dependencies in the backward branching process mean that we require conditions on
(XG, XL), namely, that the pgf of XL is log-convex and Y

(p)
L ∼ MixBin(XL, p), each local

contact is independently with probability p replaced by a global contact.

For 0 ≤ p ≤ 1, let S(p) denote the susceptibility set of a randomly chosen individual in a
household of size h, where individuals have household contacts distributed according to
XL and each local contact is replaced by a global contact independently with probability
p. Let S(p) = |S(p)|, the size of the susceptibility set. Let BB(p) denote the backward
branching process where individuals (household susceptibility sets) have sizes indepen-
dently distributed according to S(p) and an individual, with a susceptibility set of size
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S(p) has Po([µG + pµL]S(p)) offspring. The offspring of a household susceptibility set
in BB(p) correspond to the set of individuals, who if infected, will infect the household
susceptibility set via a global infection. Let ρBp denote the extinction probability of BB(p).
Note that ρBp satisfies

E
[

e−(µG+pµL)S(p)(1−ρBp )
]

= ρBp ,

so z(h,p) = 1− ρBp ; cf. (2.3).

Lemma 5.4. For a given household size h and contacts random vector X = (XG, XL),

with log(fXL
(s)) being convex, if Y

(p)
L ∼ MixBin(XL, p), then ρBp is monotonically decreas-

ing in p.

Proof. Fix 0 ≤ p < q ≤ 1. We prove the lemma by showing that ρBq ≤ ρBp .

Construct BB(p) and BB(q) on a common probability space as follows. Attach to each
individual a local contact random variable XL to be used to construct susceptibility sets
in the household. For each (potential) local contact assign an independent U ∼ U(0, 1)
random variable and if U ≤ p (U ≤ q) convert the local contact to a global contact in
BB(p) (BB(q)). Thus in BB(q) each individual makes the same number or fewer local
contacts than the corresponding individual in BB(p). Each individual has backward global
contacts to grow the branching process beyond the current household. Attach to each
individual a random variable XB ∼ Po(µG + µL) of potential global contacts into the
individual. To each (potential) global contact assign an independent Ũ ∼ U(0, 1) random
variable and if Ũ ≤ [µG + pµL]/[µG + µL] (Ũ ≤ [µG + qµL]/[µG + µL]) the global contact
is kept in BB(p) (BB(q)). Thus in BB(q) each individual has the same number or more
global contacts in than the corresponding individual in BB(p).

As in Lemma 5.2, we construct a lower bound branching process B̂B(p, q) in which the
ith individual has the same number of global contacts in as the ith individual in BB(p)

and the same number of local contacts out as the ith individual in BB(q). Let Ŝ(p, q)
denote the susceptibility set of a randomly chosen individual in the branching process

B̂B(p, q) with Ŝ(p, q) = |Ŝ(p, q)|. Then Ŝ(p, q)
D
= S(q). More explicitly, by selecting a

typical individual in a typical household we can construct realistions of S(p), S(q) and

Ŝ(p, q) such that Ŝ(p, q) = S(q) ⊆ S(p), with Ŝ(p, q) = S(q) ≤ S(p).

Let Ŵ (p,q) be the number of potential global infectious contacts made with individuals in
Ŝ(p, q) in B̂B(p, q). Then

Ŵ (p,q)|Ŝ(p, q) ∼ Po
(

λpŜ(p, q)
)

,

where λp = µG + pµL. Let ρ̂
B
p,q denote the extinction probability of the branching process

B̂B(p, q). Then

ρ̂Bp,q = E
[

exp
(

−λp

[

1− ρ̂Bp,q
]

Ŝ(p, q)
)]

.

For 0 ≤ θ ≤ 1 and s = 1, 2, . . ., let

fp(θ; s) = exp (−λp[1− θ]s) .
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Hence, ρ̂Bp,q solves

ρ̂Bp,q = E
[

fp(ρ̂
B
p,q; Ŝ(p, q))

]

= E
[

fp(ρ̂
B
p,q;S(q))

]

.

Similarly,

ρBq = E
[

fq(ρ
B
q ;S(q))

]

= E
[

fp(ρ
B
q ;S(q)) exp

(

−(q − p)µL[1− ρBq ]S(q)
)]

. (5.5)

Let VC denote the individuals in Sc(q) that make contact with members of S(q) in the
construction of S(p). Let V C = |VC |. For these V C individuals we can construct the
restricted susceptibility set, S̄R, from members of Sc(q). In other words, the restricted
susceptibility set precludes individuals in S(q). Let S̄R = |S̄R|. (Note that if V C = 0 then
S̄R = ∅.) Then

S̄R|V C , S0

st
≤

V C
∑

i=1

Si(p), (5.6)

where S1(p), S2(p), . . . are i.i.d. according to S(p). The justification for (5.6) is as follows.

Recall the definition of q
(h)
k at (5.3) and note that (5.4) implies q

(h)
k is nondecreasing in k.

Let X̄L denote the local infectious contact distribution of a member of Sc(q)\VC who does

not make any household contacts with S(q). Then X̄L

st
≤ XL, since q

(h)
k is nondecreasing in

k. Further, since |Sc(q)| ≤ h− 1, we can couple the construction of the susceptibility set
of one member of VC with the construction of the susceptibility set of an individual in a
new household of size h where all individuals have local contact distributions according to
XL, so that the size of the susceptibility set in the latter case is no smaller than the former
case. If V C > 1 we can repeat the process in turn for each member of VC considering
only those individuals in Sc(q) who have not previously been added to S̄R.

Let P (V C , S(q)) denote the probability of extinction of a branching process with an atyp-
ical initial individual, whose suspectibility set is formed of S̄R, and subsequent individuals
have susceptibility sets of size i.i.d. according to S(p), and each member of the suscepti-
bility set has Po(λp) offspring. Then it follows from (5.6) that

P (V C , S(q)) ≥ [ρBp ]
V C

. (5.7)

Also we have that ρBp solves

ρBp = E
[

fp(ρ
B
p ;S(q))P (V C , S(q))

]

. (5.8)

However, from (5.7), we have that

E
[

fp(ρ
B
p ;S(q))P (V C , S(q))

]

≥ E
[

fp(ρ
B
p ;S(q))(ρ

B
p )

V C
]

= E
[

fp(ρ
B
p ;S(q))E

[

(ρBp )
V C |S(q)

]]

. (5.9)

Therefore if ρ∗ is the smallest solution in [0, 1] of

θ = E
[

fp(θp;S(q))θ
V C
]

= E
[

fp(θ;S(q))E
[

θV
C |S(q)

]]

,
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it follows from (5.8) and (5.9) that ρBp ≥ ρ∗.

We complete the proof of the lemma by showing, for 0 ≤ θ ≤ 1, that

E[θV
C |S(q)] ≥ exp (−[1 − θ](q − p)µLS(q)) . (5.10)

Since then it follows that

E
[

fp(θp;S(q))θ
V C
]

= E
[

fp(θ;S(q))E
[

θV
C |S(q)

]]

≥ E [fp(θ;S(q)) exp (−[1 − θ](q − p)µLS(q))] = E [fq(θ;S(q))] ,
(5.11)

and together with (5.5), (5.11) implies that ρ∗ ≥ ρBq , whence ρBp ≥ ρBq , as required.

For 0 ≤ s ≤ 1, let fXL,p(s) be the pgf of MixBin(XL, 1− p), so

fXL,p(s) = E
[

E
[

sXL,p|XL

]]

= E
[

(p+ (1− p)s)XL

]

= fXL
(p+ [1− p]s) .

Note that

fXL,p(s) = fXL
(p+ [1− p][1− s]) = fXL

(1− [1− p]s)

Now

V C |S(q) ∼ Bin
(

h− S(q), 1− rS(q)
)

where for k = 1, 2, . . . , h− 1,

rk =
fXL,p (1− k/[h− 1])

fXL,q (1− k/[h− 1])
=

fXL
(1− (1− p)k/[h− 1])

fXL
(1− (1− q)k/[h− 1])

is the probability that an individual fails to infect locally a given set of k individuals,
when the probability of a local contact being transferred to a global contact is p, given the
individual fails to infect locally a given set of k individuals, when the probability of a local

contact being transferred to a global contact is q. Hence, using Bin(n, 1−r)
st
≤ Po(−n log r)

and gXL
(s) = − log fXL

(1− s) (0 ≤ s ≤ 1), we have that

E
[

θV
C |S(q)

]

≥ exp

(

[h− S(q)] log

{

fXL
(1− (1− p)S(q)/[h− 1])

fXL
(1− (1− q)S(q)/[h− 1])

}

[1− θ]

)

= exp

(

− [h− S(q)] [1− θ]

{

gXL

(

(1− p)S(q)

h− 1

)

− gXL

(

(1− q)S(q)

h− 1

)})

= exp

(

−h− S(q)

h− 1
[1− θ]{q − p}S(q)g′XL

(ξ)

)

,

where (1− q)S(q)/(h− 1) < ξ < (1− p)S(q)/(h− 1). Now g′XL
(θ) is decreasing as fXL

is
log-convex, so for 0 ≤ θ ≤ 1,

g′XL
(θ) =

f ′
XL

(1− θ)

fXL
(1− θ)

≤ f ′
XL

(1)

fXL
(1)

= µL.

Hence,

E
[

θV
C |S(q)

]

≥ exp

(

−h− S(q)

h− 1
[1− θ](q − p)µLS(q)

)

≥ exp (−[1− θ](q − p)µLS(q)) ,

proving (5.10) and completing the proof of the lemma.
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6 Discussion

In the paper we analysed a stochastic household epidemic model characterized by the
random vector (XG, XL) describing the number of global and local (=household) contacts
individuals have, all global contacts being uniform in the entire community and all local
contacts uniform in the household. Large population properties of the epidemic model
were derived for the probability and size of a major outbreak. Then it was shown that the
outbreak probability increases the larger household are considered, and the more of the
local contacts are transferred to global contacts. The corresponding monotonicity results
for the limiting relative final size z were shown to require conditions on the distribution
of XL with counter examples provided when these conditions were not satisfied.

For ease and clarity of presentation we have assumed that all households are of the
same size. It is trivial to extend the central limit theorem to the case of unequal sized
households provided that there exists hmax < ∞ such that all households are of size at
most hmax. Additional conditions on the household size distribution will be required to
extend the central limit theorem to the case where there is no maximum household size,
see for example [4] Section 5. The monotonicity results with increasing household size are
conjectured to hold if we replace increasing household size by a stochastically increasing
household distribution. That is, if we have epidemics in two populations with the same
(XG, XL) and household size distributions H1 and H2, in populations 1 and 2, respectively,
such that H1 is stochastically smaller than H2 then π1 < π2 and, provided that XL has a
log-convex pgf, z1 < z2, where πk and zk (k = 1, 2) are the probability of, and proportion
infected in, a major outbreak in populations 1 and 2, respectively.

The somewhat surprising counter examples to the monotonicity result: bigger epidemics
with larger households or when swapping local to global contacts, occurred when the
number of local contacts XL had low or no randomness. For example, in a household of
size 3 and XL ≡ 1 this would mean that an individual who gets infected would certainly
infect one but not both of its household members. From an applied point of view this
seems like an exceptional case, so we believe the monotonicity results are valid in most
real world situations.

In Ball et al. [2] we analysed an epidemic model with two types of subgroups where each
individual belongs to precisely one subgroup of each type. Therefore each type of subgroup
forms a partition of the population and it was assumed all subgroups of a given type have
a common size. We allowed for the possibility of overlap between subgroups, that is, the
possibility of two or more individuals belonging to the intersection of a subgroup of type
1 and a subgroup of type 2. The model was defined by contact rates during the infectious
periods (rather than arbitrary random vector as in the current paper), leading to mixed-
Poisson distributed contacts of different categories. A branching process approximation
for the initial stages of the epidemic and a law of large number approximation for the
final proportion infected were derived for the model. Numerical investigations suggested
that the final size is increasing in the size of both group structures, and also increases as
the amount of overlap between the two group structures decreases. These results served
as inspiration for the current paper, but here we simplified to having only one group
structure. A relevant question is of course if the monotonicity can be proven also when
there are two (possibly overlapping) group structures. It follows immediately that in the
case that there is no overlap between the two subgroups, our results in the present paper
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carry over to the case with two (and more) group structures: the final size increases
if either (or both) of the two subgroup sizes increases. This follows, since as noted in
Ball and Neal [6], the construction of the susceptibility set, which now extends across
multiple, and in the limit possibly infinitely many groups, alternates between the two
types of subgroups, so the distribution of the size of a susceptibility set of a typical
individual is stochastically increasing as the size of subgroups increases. For the situation
where the two group structures are partly overlapping it remains an open problem, as is
the numerically motivated conjecture that the final size increases as the amount of overlap
between the two group structures decreases.

The embedding argument employed in the proof of the central limit theorem in Section
4 can be utilised to study a wide range of epidemic models. As has been noted above,
the central limit theorem can be applied to extensions of the Reed-Frost epidemic model
where individuals are assumed to make infectious contacts with members of the population
without replacement, see [14] and [16]. In a household context the key elements of the
proof evolve around deriving the joint distribution of the number infected in a household,
R(t), and the number of global infections out of the household, G(t), given that there
has been a specific number of infectious contacts into the household, Y (t). Therefore the
approach is applicable to a wider class of models including, for example, assuming that not
every individual is infected the first time they are contacted by an infectious individual
but instead assuming there is a distribution on the number of infectious contacts required
to infect an individual. Beyond the household model, the embedding argument could be
employed to central limit theorems for the final size of epidemics in other two-level mixing
population structures such as the great circle epidemic model, [7], and network epidemic
models, Ball and Neal [8], allowing progress beyond the mixed-Poisson distributions of
global and local contacts in these earlier works.

An important assumption in the current model is that the random number of (uniformly
chosen) local contacts XL is independent of household size. Some household epidemic
models are defind by assuming the contact rate to each household member equals some
constant βH . The overall rate to infect household members if in a household of size h then
equals (h−1)βH (in our model the contact rate, or equivalently total number of contacts,
is assumed to be the same irrespective of household size). In such a situation, the epidemic
is easily shown to increase the larger the household size is. Most network epidemic models
makes a similar assumption: the rate or probability of contacting a given neighbour is
fixed and independent of the number of neighbours. For a network epidemic model to
more closely mimic the current model a fixed overall rate of infecting neighbours would be
required, which is then distributed uniformly among the neighbours. The effect would be
that highly connected individuals are no longer necessarily super-spreaders to the same
extent. Would such an epidemic increase if the mean degree increased? Would the final
size increase if the degree distribution has a heavier tail? These are some interesting open
questions.

A Calculation of asymptotic properties of En,h(XG, XL)

In this appendix we outline calculation of the major outbreak probability, 1 − ρ, and
the asymptotic mean, z, and scaled variance, σ2 of the fraction infected by a major out-
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break; see Theorem 2.1. We make extensive use of Gontcharoff polynomials (see Lefèvre
and Picard [13]). Let U = u0, u1, . . . be a sequence of real numbers. The Gontcharoff
polynomials associated with U , i.e. Gi(x|U) (i = 0, 1, . . . ) are defined by

n
∑

i=0

n[i]u
n−i
i Gi(x|U) = xn (n = 0, 1, . . . ), (A.1)

where n[i] = n(n − 1) . . . (n − i + 1) denotes a falling factorial, with the convention that
n[0] = 1. Note that G0(x) = 1 (x ∈ R) and that Gi(x|U) (i = 1, 2, . . . ) can be computed
recursively for fixed x. Further, Gi(x|U) is a polynomial of degree i and (Lefèvre and
Picard [13], Property 2.4) for 0 ≤ j ≤ i,

G
(j)
i (x|U) = Gi−j(x|EjU), (A.2)

whereG
(j)
i (x|U) denotes the jth derivative ofGi(x|U) and EjU is the sequence uj, uj+1, . . . .

For h = 1, 2, . . . and π ∈ [0, 1], recall the epidemic model ẼH
h (XG, XL, π) defined in

Section 2.4. Let R̃(h) be the number of individuals infected in ẼH
h (XG, XL, π) and G̃(h)

be the total number of global contacts that emanate from those infectives. Further, let
S̃(h) = h − R̃(h) be the number of susceptibles at the end of the epidemic. Note that if

π = e−t then (R̃(h), G̃(h))
D
= (R(t), G(t)), defined in Section 2.4. We derive expressions

for E[S̃
(h)
[i] ] (i = 1, 2) and E[S̃(h)G̃(h)], from which νR(t) = h−1E[R(t)], var(R(t)) and

cov(R(t), G(t)) follow easily.

For k = 1, 2, . . . , h − 1, let A
(h)
k be the event that an infective in ẼH

h (XG, XL, π) fails
to contact anyone in a given set of k susceptibles in the household. For s ∈ [0, 1], let
q0(s) = E[sXG ] and qk(s) = E[sXG1

A
(h)
k

] (k = 1, 2 . . . , h− 1). Then,

qk(s) = fXG,XL

(

s, 1− k

h− 1

)

(k = 0, 1, . . . , h− 1), (A.3)

where fXG,XL
is the joint pgf of (XG, XL). Let f̃h(s1, s2) = E[sS̃

(h)

1 sG̃
(h)

2 ] (s1, s2,∈ [0, 1]).
Then it follows using Ball [1], Theorem 3.3, that

f̃h(s1, s2) =
h
∑

i=0

h[i](qi(s2))
h−iπiGi(s1|U(s2)) (s1, s2,∈ [0, 1]), (A.4)

where the sequence U(s2) satisfies ui(s2) = qi(s2) (i = 0, 1, . . . , h− 1). (Note from (A.1)
that, for i = 1, 2, . . . , Gi(x|U) is determined by u0, u1, . . . , ui−1.)

Remark A.1. Observe from (A.3) that qk(s), and hence also U(s2) and Gi(s1|U(s2)),
depends on h. We have suppressed this dependence for ease of presentation but note that
in the sequel all Gontcharoff polynomials need to be recalculated if the household size is
changed.

Remark A.2. Note that if the local contacts made by an infective are without replacement
then, for k = 0, 1, . . . , h− 1,

P(A
(h)
k |XL) =

(

h−1−k
XL

)

(

h−1
XL

) =
(h− 1−XL)[k]

(h− 1)[k]
,
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so (A.3) is replaced by

qk(s) = E

[

sXG
(h− 1−XL)[k]

(h− 1)[k]

]

(k = 0, 1, . . . , h− 1).

Differentiating (A.4) partially k times with respect to s1, using (A.2), yields (see [1],
Proposition 3.1)

E[S̃
(h)
[k] ] =

h
∑

i=k

h[i]q
h−i
i πiGi−k(1|EkU) (k = 1, 2, . . . , h),

where qi = qi(1) = fXL

(

1− i
h−1

)

(i = 0, 1, . . . , h − 1) and U satisfies ui = qi (i =
0, 1, . . . , h− 1).

Remark A.3. Note from [1], Lemma 3.1, that P(S(h) = i) = (h − 1)[i−1]Gi−1(1|EU)qh−i
i

(i = 1, 2, . . . , h), where S(h) is the size of the susceptibility set of a typical individual in

a household of size h. Setting π = e−t, so R(t)
D
= h− S̃(h), yields (2.2), and also enables

ν ′
R(t) to be computed easily.

For a function f : R
2 → R and (k1, k2) ∈ Z

2
+, let f (k1,k2)(s1, s2) denote the partial

derivative of f of order k1 in s1 and k2 in s2. Then, E[S̃(h)G̃(h)] = f̃
(1,1)
h (1, 1). For i =

0, 1, . . . , h − 1 and (s1, s2) ∈ [0, 1]2, let αi(s1, s2) = Gi(s1|EU(s2)). Differentiating (A.4)

with respect to s1, using (A.2) and noting that G
(1)
0 (s1|U(s2)) = 0, yields

f̃
(1,0)
h (s1, s2) =

h
∑

i=1

h[i](qi(s2))
h−iπiαi−1(s1, s2). (A.5)

Recalling that qi = qi(1), differentiating (A.5) with respect to s2 yields

E[S̃(h)G̃(h)] =

h
∑

i=1

h[i]q
h−i
i πiα

(0,1)
i−1 (1, 1) +

h−1
∑

i=1

h[i+1]q
(1)
i (1)qh−i−1

i πiαi−1(1, 1).

Using (A.1),

n
∑

i=0

n[i](qi+1(s2))
n−iαi(s1, s2) = sn1 (n = 0, 1, . . . , h− 1), (A.6)

whence, differentiating (A.6) partially with respect to s2,

n−1
∑

i=0

n[i+1]q
(1)
i+1(1)q

n−i−1
i+1 αi(1, 1)+

n
∑

i=1

n[i]q
n−i
i+1α

(0,1)
i (1, 1) = 0 (n = 0, 1, . . . , h−1). (A.7)

Now αi(1, 1) (i = 0, 1, . . . , h− 1) can be computed using (A.6), α
(0,1)
0 = 0 and α

(0,1)
i (i =

1, 2, . . . , h− 1) can be computed using (A.7), thus enabling E[S̃(h)G̃(h)] to be computed.

For h = 1, 2, . . . , let C(h) be the total number of global contacts that emanate from
EH
h (XG, XL) defined in Section 2.4. Then, using [1], Theorem 3.3,

fC(h)(s) =

h−1
∑

i=0

(h− 1)[i](qi(s))
h−iGi(1|U(s)) (s ∈ [0, 1]),
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thus enabling fC(h)(s), and hence ρ, to be computed.

The above enables the asymptotic properties of En,h(XG, XL) to be computed. To compute
the asymptotic properties of En,h(XG, XL, p), for p 6= 0, note that elementary calculation
yields

f
X

(p)
G

,X
(p)
L

(s1, s2) = fXG,XL
(s1, ps1 + (1− p)s2) ((s1, s2) ∈ [0, 1]2),

E[X
(p)
G ] = E[XG] + pE[XL],

var(X
(p)
G ) = var(XG) + 2pcov(XG, XL) + p2var(XL) + p(1− p)E[XL].

B Proof of Theorem 2.4

For h = 1, 2, . . . and p ∈ [0, 1], let S(h,p) denote the size of the (household) susceptibility
set of a typical individual in En,h(XG, XL, p). The mean number of global contacts made
by a typical individuals in En,h(XG, XL, p) is µG + pµL, so it follows from (2.3) that z(h,p)

is given by the largest solution in [0, 1] of

1− z = fS(h,p)(e−z(µG+pµL)).

Suppose that α = µG + µL > 1, so the (homogeneously mixing) epidemic when p = 1
is supercritical, and let z1 be the unique solution of 1 − z = e−αz in (0, 1). (Note that
z1 = zhom(α), defined just before the statement of Theorem 2.4 in Section 2.4.) For
h = 1, 2, . . . let

gh(p) = fS(h,p)(e−z1(µG+pµL)) (p ∈ [0, 1]). (B.1)

The behaviour of z(h,p) near p = 1 is determined by the derivatives of gh at p = 1.

It follows from Remark A.3, (A.1) and a little algebra that

n
∑

i=0

(

h− 1− i

n− i

)

vn+1−h
i P(S(h) = i+ 1) =

(

h− 1

n

)

(n = 0, 1, . . . , h− 1), (B.2)

where

vi = qi+1 = fXL

(

1− i+ 1

h− 1

)

(i = 0, 1, . . . , h− 2).

Now f
X

(p)
L

(s) = fXL
(p+ (1− p)s), so let

vi(p) = f
X

(p)
L

(

1− i+ 1

h− 1

)

= fXL

(

1− (1− p)(i+ 1)

h− 1

)

(p ∈ [0, 1]).

(Note that vi(p) depends also on h but we suppress that dependence for ease of notation.)

Fix h ≥ 2 and let fi(p) = P(S(h,p) = i+ 1) (i = 0, 1, . . . h− 1). Then, using (B.2),

n
∑

i=0

(

h− 1− i

n− i

)

(vi(p))
n+1−hfi(p) =

(

h− 1

n

)

(n = 0, 1, . . . , h− 1). (B.3)

Noting that vi(1) = 1 (i = 0, 1, . . . , h− 2), it follows from (B.3) that

f0(1) = 1 and fi(1) = 0 (i = 1, 2, . . . , h− 1). (B.4)
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Now,
d

dp

(

vi(p)
n+1−h

)
∣

∣

p=1
=

(n+ 1− h)(i+ 1)µL

h− 1
,

so differentiating (B.3) and using (B.4) yields

n
∑

i=0

(

h− 1− i

n− i

)

f
(1)
i (1) =

(

h− 1

n

)(

h− 1− n

h− 1

)

µL (n = 0, 1, . . . , h− 1). (B.5)

Successively setting n = 0, 1, 2, . . . , h− 1 in (B.5) yields, after a little algebra,

f
(1)
0 (1) = µL, f

(1)
1 (1) = −µL and f

(1)
i (1) = 0 (i = 2, 3, . . . , h− 1). (B.6)

Now
d2

dp2
(

v0(p)
n+1−h

)
∣

∣

p=1
=

(h− 1− n)(h− n)µ2
L

(h− 1)2
− (h− 1− n)µL,[2]

(h− 1)2
,

where µL,[2] = E[XL(XL − 1)]. Differentiating (B.3) twice yields, after using (B.4)
and (B.6),

n
∑

i=0

(

h− 1− i

n− i

)

f
(2)
i (1) = 2

(h− 1− n)

(h− 1)

[(

h− 1

n

)

− 2

(

h− 2

n− 1

)

1{n≥1}

]

µ2
L (B.7)

+

(

h− 1

n

)

(h− 1− n)

(h− 1)2
[µL,[2] − (h− n)µ2

L] (n = 0, 1, . . . , h− 1).

Successively setting n = 0, 1, 2, . . . , h− 1 in (B.7) yields, after a little algebra,

f
(2)
0 (1) =

1

h− 1
[µL,[2] + (h− 2)µ2

L], f
(2)
1 (1) = − 1

h− 1
[µL,[2] + 4(h− 2)µ2

L], (B.8)

f
(2)
2 (1) = 3

h− 2

h− 1
µ2
L and f

(2)
i (1) = 0 (i = 3, 4, . . . , h− 1).

Returning to gh, note from (B.1) that

gh(p) =

h
∑

k=1

fk−1(p)e
−kz1(µG+pµL) (p ∈ [0, 1]). (B.9)

Differentiating (B.9) yields, after using (B.4) and (B.6),

g
(1)
h (1) = µLe

−αz1(1− z1 − e−αz1) = 0, (B.10)

since 1− z1 = e−αz1 . Differentiating (B.9) twice, and using (B.4), (B.6) and (B.8), yields
after a little algebra

g
(2)
h (1) =

z1(1− z1)

h− 1
[µL,[2] + (2− 3z1)µ

2
L] =

z1(1− z1)

h− 1
[σ2

L − µL + 3(1− z1)µ
2
L]. (B.11)

Recall that h ≥ 2 is fixed and let z(p) = z(h,p) (p ∈ [0, 1]). Then (B.10) and (B.11) imply
that z(1)(1) = 0 and z(2)(1) > 0(< 0) if σ2

L − µL + 3(1 − z1)µ
2
L > 0(< 0), from which

Theorem 2.4 follows easily.
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C Proof of Theorem 2.5

We prove the theorem in the case p = 0, with a similar proof holding for 0 < p < 1. Note
that the case p = 1 is trivial as the epidemic is a homogeneously mixing epidemic with
mean number of contacts made by each individual being µG + µL.

For h = 1, 2, . . ., let S(h) denote the size of the susceptibility set of a typical individual
in a household of size h. The probability that an individual with XL = xL contacts the
same individual twice in the household converges to 0 as the household size h → ∞.
Therefore for large h, the probability an individual contacts a given individual in their
household via a local infection is approximately µL/(h− 1). It is then straightforward to
couple the construction of S(h) to a branching process with offspring distribution Vh ∼
Bin(h− 1, µL/(h− 1)), with Vh

D−→ Ṽ ∼ Po(E[XL]) as h → ∞.

Let B̃ denote the branching process with offspring distribution Ṽ and let S̃ denote the
total size of the branching process B̃. Then for 0 ≤ s ≤ 1, the probability generating
function of S̃ satisfies

E
[

sS̃
]

= fS̃(s) = sE
[

fS̃(s)
Ṽ
]

= s exp (−µL [1− fS̃(s)]) . (C.1)

It follows that z(h,0) → z̃ as h → ∞, where z̃ satisfies

1− z̃ = fS̃(exp(−µGz̃)), (C.2)

and it remains to show that z̃ = zhom(α), where α = µG + µL.

We set s = exp(−µGz̃) in (C.1), and then using (C.2), we have that

fS̃
(

e−µGz̃
)

= e−µGz̃ exp
(

−µL

[

1− fS̃
(

e−µG z̃
)])

= e−µGz̃ exp (−µLz̃) = exp (−[µG + µL]z̃) .

Therefore z̃ solves

z̃ = 1− fS̃
(

e−µG z̃
)

= 1− exp (−[µG + µL]z̃) = 1− exp(−αz̃),

which is the defining equation for zhom(α). Therefore, z̃ = zhom(α), as required.

D Comparison of variance expressions

In this appendix we prove that the expressions for σ2 in (4.30) and (4.31) are equivalent.
The first step, using (4.30), is to note that,

σ2 =
1

h

[

var(R1(τ)) + b(τ)2var(G1(τ)) + b(τ)2var(Y1(τ)) (D.1)

+2b(τ)cov(R1(τ), G1(τ))− 2b(τ)cov(R1(τ), Y1(τ))− 2b(τ)2cov(G1(τ), Y1(τ))
]

.

We consider separately each of the variance and covariance terms on the right-hand side
of (D.1).
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Using exchangeability of individuals,

var(R1(τ)) = hvar(χ11(τ)) + h(h− 1)cov(χ11(τ), χ12(τ))

= hνR(τ)[1 − νR(τ)] + h(h− 1)cov(χ11(τ), χ12(τ)). (D.2)

Similarly,

var(G1(τ)) = hvar(χ11(τ)XG,(1,1)) + h(h− 1)cov(χ11(τ)XG,(1,1), χ12(τ)XG,(1,2)). (D.3)

Since χ11(τ)
2 = χ11(τ),

var(χ11(τ)XG,(1,1)) = E
[

χ11(τ)X
2
G,(1,1)

]

− νR(τ)
2µ2

G

= νR(τ)[σ
2
G + µ2

G]− νR(τ)
2µ2

G

= νR(τ)[1 − νR(τ)]µ
2
G + νR(τ)σ

2
G. (D.4)

An observation similar to that made in [7], Section 4, is that, conditional upon χ11(τ) = 0
(individual (1, 1)’s susceptibility set is not contacted when each members of the popula-
tion is exposed to τ units of global infectious pressure), (XG,(1,1), XL,(1,1)) and χ12(τ) are
independent, so

E
[

(1− χ11(τ))(1 − χ12(τ))XG,(1,1)XG,(1,2)

]

= µ2
GE [(1− χ11(τ))(1− χ12(τ))] .

Since also

E
[

(1− χ11(τ))(1 − χ12(τ))XG,(1,1)XG,(1,2)

]

= E
[

XG,(1,1)XG,(1,2)

]

− 2E
[

χ11(τ)XG,(1,1)XG,(1,2)

]

+ E
[

χ11(τ)XG,(1,1)χ12(τ)XG,(1,2)

]

= µ2
G − 2µGE

[

χ11(τ)XG,(1,2)

]

+ E
[

χ11(τ)XG,(1,1)χ12(τ)XG,(1,2)

]

,

it follows that

E
[

χ11(τ)XG,(1,1)χ12(τ)XG,(1,2)

]

= µ2
G {E [(1− χ11(τ))(1 − χ12(τ))]− 1}+ 2µGE

[

χ11(τ)XG,(1,2)

]

= µ2
GE [χ11(τ)χ12(τ)] + 2µGcov

(

χ11(τ), XG,(1,2)

)

. (D.5)

Thus,

cov(χ11(τ)XG,(1,1), χ12(τ)XG,(1,2))

= E
[

χ11(τ)XG,(1,1)χ12(τ)XG,(1,2)

]

− νR(τ)
2µ2

G

= µ2
GE [χ11(τ)χ12(τ)] + 2µGcov

(

χ11(τ), XG,(1,2)

)

− νR(τ)
2µ2

G

= µ2
Gcov(χ11(τ), χ12(τ)) + 2µGcov

(

χ11(τ), XG,(1,2)

)

. (D.6)

Hence, substituting (D.4) and (D.6) into (D.3),

var(G1(τ)) = hνR(τ)[1 − νR(τ)]µ
2
G + hνR(τ)σ

2
G

+ h(h− 1)µ2
Gcov(χ11(τ), χ12(τ)) + 2h(h− 1)µGcov

(

χ11(τ), XG,(1,2)

)

= µ2
Gvar(R1(τ)) + hνR(τ)σ

2
G + 2h(h− 1)µGcov

(

χ11(τ), XG,(1,2)

)

. (D.7)
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Since Y1(τ) ∼ Po(hτ), we have that var(Y1(τ)) = hτ .

Turning to the covariance terms, since χ11(τ) and XG,(1,1) are independent,

cov(R1(τ), G1(τ)) = hcov
(

χ11(τ), χ11(τ)XG,(1,1)

)

+ h(h− 1)cov
(

χ11(τ), χ12(τ)XG,(1,2)

)

= hµGνR(τ)[1− νR(τ)] + h(h− 1)cov
(

χ11(τ), χ12(τ)XG,(1,2)

)

.

A similar argument to the derivation of (D.5) yields

E
[

χ11(τ)χ12(τ)XG,(1,2)

]

= µGE [χ11(τ)χ12(τ)] + cov
(

χ11(τ), XG,(1,2)

)

,

so

cov
(

χ11(τ), χ12(τ)XG,(1,2)

)

= E
[

χ11(τ)χ12(τ)XG,(1,2)

]

− µGνR(τ)
2

= µGE [χ11(τ)χ12(τ)] + cov(χ11(τ), XG,(1,2))− µGνR(τ)
2

= µGcov(χ11(τ), χ12(τ)) + cov(χ11(τ), XG,(1,2)).

Hence,

cov(R1(τ), G1(τ)) = hµGνR(τ)[1 − νR(τ)] + h(h− 1)µGcov(χ11(τ), χ12(τ))

+ h(h− 1)cov(χ11(τ), XG,(1,2))

= µGvar(R1(τ)) + h(h− 1)cov(χ11(τ), XG,(1,2)). (D.8)

Next, we have that

cov(R1(τ), Y1(τ) = hcov(χ11(τ), ζ11(τ)) + h(h− 1)cov(χ11(τ), ζ12(τ)). (D.9)

Since χ11(τ) = 1 if ζ11(τ) > 0 and ζ11(τ) ∼ Po(τ), we have that

cov(χ11(τ), ζ11(τ)) = E[χ11(τ)ζ11(τ)]− τνR(τ) = E[ζ11(τ)]− τνR(τ)

= τ [1 − νR(τ)]. (D.10)

Note that P(χ11(τ) = 1 | ζ12(τ) = k) = P(χ11(τ) = 1 | ζ12(τ) = 1) (k = 1, 2, . . . ), so

E [χ11(τ)ζ12(τ)] =

∞
∑

k=0

kP(χ11(τ) = 1 | ζ12(τ) = k)P(ζ12(τ) = k)

= τP(χ11(τ) = 1 | ζ12(τ) = 1),

since ζ12(τ) ∼ Po(τ). Also, P((1, 2) /∈ S1,1 |S11 = i) = h−i
h−1

(i = 1, 2, . . . , h), so

P(χ11(τ) = 0 | ζ12(τ) = 1) =

h
∑

i=1

P(S11 = i)

[

h− i

h− 1

]

e−iτ .

Noting that νR(τ) = 1− fS(e
−τ ) = 1−∑h

i=1 P(S11 = i)e−iτ , a short calculation yields

E [χ11(τ)ζ12(τ)] = τ

[

νR(τ) +
νR(τ) + ν ′

R(τ)− 1

h− 1

]

,
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whence

cov(χ11(τ), ζ12(τ)) = E[χ11(τ)ζ12(τ)]− τνR(τ)

=
τ [νR(τ) + ν ′

R(τ)− 1]

h− 1
. (D.11)

Substituting (D.10) and (D.11) into (D.9) yields

cov(R1(τ), Y1(τ)) = hτ [1− νR(τ)] + hτ [νR(τ) + ν ′
R(τ)− 1]

= hτν ′
R(τ). (D.12)

Also

cov(G1(τ), Y1(τ)) = µGcov(R1(τ), Y1(τ)) = hµGτν
′
R(τ). (D.13)

Substituting (D.2), (D.7), var(Y1(τ)) = hτ , (D.8), (D.12) and (D.13) into (D.1) yields

σ2 =
1

h

[

var(R1(τ)) + b(τ)2µ2
Gvar(R1(τ)) + hb(τ)2νR(τ)σ

2
G

+ 2h(h− 1)b(τ)2µGcov(χ11(τ), XG,(1,2)) + b(τ)2hτ + 2b(τ)µGvar(R1(τ))

+2b(τ)h(h− 1)cov(χ11(τ), XG,(1,2))− 2b(τ)[1 + µGb(τ)]hτν
′
R(τ)

]

.

Now,

1 + µGb(τ) = 1 +
µGν

′
R(τ)

1− µGν ′
R(τ)

=
1

1− µGν ′
R(τ)

,

so

{1 + µGb(τ)} ν ′
R(τ) =

ν ′
R(τ)

1− µGν ′
R(τ)

= b(τ).

Hence, using τ = νG(τ) = µGνR(τ),

σ2 =
1

h

[

{1 + µGb(τ)}2var(R1(τ)) + b(τ)2{hνR(τ)σ2
G + hτ − 2hτ}

+2h(h− 1)b(τ)[1 + µGb(τ)]cov(χ11(τ), XG,(1,2))
]

= (1 + b(τ)µG)
2 νR(τ)[1− νR(τ)] + b(τ)2νR(τ)[σ

2
G − µG]

+ (h− 1)
[

(1 + b(τ)µG)
2 cov(χ11(τ), χ12(τ) + 2b(τ) (1 + µGb(τ)) cov

(

χ11(τ), XG,(1,2)

)]

.

(D.14)

The right-hand side of (D.14) agrees with (4.31) completing the proof.

The expression for σ2 given by (2.4) follows after a little algebra by substituting (D.12),
(D.13) and var(Y1(τ)) = hτ into (D.1) and noting that (D.7) and (D.8) imply

var(G1(τ)) = 2µGcov(R1(τ), G1(τ))− µ2
Gvar(R1(τ)) + hνR(τ)σ

2
G.
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[14] Martin-Löf, A. (1986). Symmetric sampling procedures, general epidemic processes
and their threshold limit theorems. J. Appl. Prob. 23, 265–282.

[15] McKendrick, A.G. (1926). Applications of mathematics to medical problems. Proc.
Edin. Math. Soc. 44, 98–130.
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