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Abstract

We consider a model for an influenza-like disease, in which, between seasons,
the virus makes a random genetic drift δ, (reducing immunity by the factor δ)
and obtains a new random transmissibility τ (closely related to R0). Given the
immunity status at the start of season k: p(k), describing community distribu-
tion of years since last infection, and their associated immunity levels ι(k), the
outcome of the epidemic season k, characterized by the effective reproduction
number R(k)

e and the fractions infected in the different immunity groups z(k), is
determined by the random pair (δk, τk). It is shown that the immunity status
(p(k), ι(k)), is an ergodic Markov chain, which converges to a stationary distri-
bution π̄(·). More analytical progress is made for the case where immunity only

lasts for one season. We then characterize the stationary distribution of p
(k)
1 ,

being identical to z(k−1). Further, we also characterize the stationary distribu-
tion of (R(k)

e , z(k)), and the conditional distribution of z(k) given R(k)
e . The

effective reproduction number R(k)
e is closely related to the initial exponential

growth rate ρ(k) of the outbreak, a quantity which can be estimated early in the
epidemic season. As a consequence, this conditional distribution may be used for
predicting the final size of the epidemic based on its initial growth and immunity
status.

1 Introduction

Several infectious diseases are globally endemic but circulate around the globe leading
to seasonal outbreaks in the winter seasons in the northern and southern hemisphere,
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seasonal influenza being the prime example. Coming into a new epidemic season, a
given community has some natural immunity originating from people being infected in
recent years. Vaccinations, typically among the elderly population, reduce the number
of severe cases but only marginally affect disease spreading, and are hence neglected
in what follows. Between seasons, the circulating virus has often evolved (drifted),
leading to decay of immunity among previously infected, and the transmissibility of
the new strain may also differ from the transmissibility of the previous strain (disease
severity may also differ, but this is not considered here).
One of the first to analyse mathematical models for these type of situations was Viggo
Andreasen who wrote an influential paper where he analyses a determinstic model
for seasonal outbreaks in which the immunity of individuals in the community decays
in a specified deterministic way with the number of years since the last infection
(Andreasen, 2003). When considering the special case where immunity only lasts one
or two years he characterized the possible scenarios. For immunity lasting only one
year he showed that there are three parameter regions in which, respectively, the yearly
outbreak size converges to a constant, there is an outbreak only every other year, or the
outbreak size alternates between a small and a large outbreak every other year. This
model has later been extended in several ways. Kucharski et al (2016) consider a virus
appearing in different variants, possibly having (partial) cross immunity to each other,
and where immunity of the different strains depend on time since last infection of this
strain. Roberts et al. (2024) extend the model by assuming a heterogeneous community
(specified by a continuous distribution) affecting the immunity and infectivity of the
individuals. Additionally they study what happens with the long term behaviour of
the season outbreaks if the yearly deterministic immunity drift is perturbed randomly
by a small amount each year.
In the current paper we take a more genuinely stochastic perspective by treating the
yearly genetic drift, and also a transmissibility, (δk, τk) as a bivariate random vector,
and where we assume the drift and transmissibility of different years to be indepen-
dent. One reason for introducing such randomness is to allow for variable outcomes
of seasonal outbreaks (as empirically observed), but also because the drift and trans-
missibility of a new strain depends on mutations in many loci on the virus, their
common effect being highly complicated and thus conveniently modelled by random
variables. The drift and transmissibility a given year may very well depend on each
other, perhaps most likely having negative correlation (one of them being large may
be enough to become dominant). Another novel feature in our model is that we allow
also the transmissibility to vary between seasons. As a consequence, two quantities
of the seasonal outbreaks will vary: the initial growth and the final epidemic size, as
also observed empirically [3]. Considering a stochastic model also affect the analysis
and in particular the resulting yearly epidemic outcome. Rather than converging to
a fixed point or a deterministic periodic situation as in the deterministic setting, the
stochastic model leads to a yearly epidemic outbreak depending on previous outbreaks
but still being random, having some limiting stationary distribution depending on the
random vector (δ, τ).
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In Section 2 we define the seasonal epidemic model with random genetic drift and
transmissibility, and also characterize it as a Markov chain with a stationary distribu-
tion. In Section 3 we treat the case where immunity only lasts one season, for which
more analytical progress is made. In Section 4 we present simulations for both when
immunity lasts one or several years. The paper ends with a short discussion.

2 The multi-season model with random genetic drift
and transmissibility

2.1 Model definition

The seasonal epidemic is driven by the yearly random genetic drift δk and the yearly
random transmissibility τk, where the random pairs (δ1, τ1), (δ2, τ2), . . . are assumed
independent and identically distributed, but where δk and τk may depend on each
other (in applications possibly being negatively correlated).
We assume that the immunity of an individual coming into season k depends on how

many years j ago the individual was last infected, and that this immunity ι
(k)
j is given

by the previous j − 1 genetic drifts as follows:

ι
(k)
1 = 1, ι

(k)
j = (1− δk−1) · · · (1− δk−j+1), 2 ≤ j < r, and ι(k)r = 0,

meaning that immunity decays multiplicatively year by year, each year proportionally
to the genetic drift. We make an additional assumption: that all immunity is lost after

r ≥ 2 years, so ι
(k)
r = 0 for all k irrespective the genetic drifts.

What happens during outbreak season k depends on the drift and transmissibility
(δk, τk) but also on the community distribution of when individuals were last infected:

we introduce p(k) = (p
(k)
1 , . . . , p

(k)
r ), where p

(k)
j denotes the community fraction which

were last infected j seasons ago, and pr(k) = 1 −
∑r−1

j=1 p
(k)
j includes also those who

were infected more than r seasons ago, or never: all of them lacking any immmunity.

Given the vector p(k) and their associated immunity levels ι(k) = (ι
(k)
1 , . . . , ι

(k)
r−1) and

the drift and transmissibility of year k: (δk, τk), the effective reproduction number is
given by

R
(k)
E = τk

r∑
j=1

p
(k)
j

(
1− (1− δk)ι

(k)
j

)
. (1)

The basic reproduction number, corresponding to the situation where there is no

immunity, is simply R
(k)
0 = τk. Further, the final epidemic outcome season k in the

different immunity classes, z(k) = (z
(k)
1 , . . . , z

(k)
r ), is determined by the drift and

transmissibility year k: (δk, τk) through the following final size equations

1− z1 = e−(1−(1−δk))τk(
∑

j p
(k)
j zj)

. . .

1− zj = e−(1−(1−δk)ι
(k)
j )τk(

∑
j p

(k)
j zj)
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. . .

1− zr = e−τk(
∑

j p
(k)
j zj),

It is well known that these equations have a unique positive solution z(k) iff R
(k)
E >

1 (e.g. Sec 13.2.3 in [1]). The component z
(k)
j denotes the fraction infected during

epidemic season k among those who were last infected j seasons ago. The overall

fraction getting infected is hence z(k) =
∑

j z
(k)
j p

(k)
j . Summing the equations above,

weighted by p
(k)
j , gives the following equation for the overall fraction getting infected

1− z =
∑
j

p
(k)
j e−(1−(1−δk)ι

(k)
j )τkz. (2)

This is a 1-dimensional equation for z(k), the overall fraction getting infected, from

which the fraction infected of the different types is easily obtained: z
(k)
j = 1 −

e−(1−(1−δk)ι
(k)
j )τkz

(k)

.

2.2 Characterization as a Markov chain and its stationary
distribution

We now describe the epidemic model as a Markov chain. Given the integer r ≥ 2
indicating how many years until immunity is completely lost, the state of our Markov

chain is given by the vector (p(k), ι(k)), where p(k) = (p
(k)
1 , . . . p

(k)
r ) describes the

community distribution of time since last infection, and ι(k) their associated immunity

levels ι(k) = (ι
(k)
1 , . . . , ι

(k)
r−1), with ι

(k)
j = (1 − δk−1) · · · · · (1 − δk−(j−1)). The vector

(p(k), ι(k)) in fact only has dimention 2r − 3, since p
(k)
r = 1−

∑r−1
j=1 p

(k)
j and ι

(k)
1 = 1.

We now show that the vector {(p(k), ι(k))}∞k=1 is a Markov chain driven by (δk, τk).
Given (p(k), ι(k)), the next state in the Markov chain, (p(k+1), ι(k+1)), is determined by

(δk, τk) as follows. The final outcome of the epidemic season k: z(k) = (z
(k)
1 , . . . , z

(k)
r )

is determined as described in the previous subsection (if R
(k)
E ≤ 1 then all z

(k)
j = 0

and otherwise they are all strictly positive). The fraction having j years since last
infection coming into the next epidemic season k + 1 is then equal to the fraction
having j − 1 years since last infection in season k and who avoid getting infected in

season k: p
(k+1)
j = p

(k)
j−1(1−z

(k)
j−1). The first and last components are different: p

(k+1)
r =

p
(k)
r (1 − z

(k)
r ) + p

(k)
r−1(1 − z

(k)
r−1), and p

(k+1)
1 =

∑r
j=1 p

(k)
j z

(k)
j (=all who got infected

season k). The immunity levels are simply shifted one step: ι
(k+1)
j = ι

(k)
j−1(1− δk), and

ι
(k+1)
1 = 1 and ι

(k)
r = 0.

We have hence shown that (p(k+1), ι(k+1)) is determined by (δk, τk) given (p(k), ι(k)),
implying that {(p(k), ι(k))}∞k=1 is a Markov chain. A Markov chain is often described by
its transition kernel π(·|·). It is in principle possible to determine the transition matrix
π((p(k+1), ι(k+1))|(p(k), ι(k))), at least numerically, although it is quite complicated for
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general r. In Section 3 we make more analytical progress for the case r = 2. Instead we
end this section with the following theorem for our Markov chain, valid for arbitrary r.

Proposition 2.1. Assume the random vector (δ, τ) has a continuous density function
with strictly positive support on [0, 1)× [0,∞), and with an atom at δ = 1 (no immu-
nity) with positive probability. Then the Markov chain {(p(k), ι(k))}∞k=1 is recurrent,
aperiodic, and converges to a stationary distribution π̄(·).

Proof . We first prove recurrence. We do this by showing that any state (p, ι) can reach the
state (0, . . . , 1, 1, 0, . . . , 0) with pr = 1 and ι1 = 1 and all other components being 0 (so no
immunity). This will happen if the next r random pairs (δj , τj) have δj = 1 and τj < 1, an
event with positive probability (τ = R0 < 1 imply no outbreak).
From state (0, . . . , 1, 1, 0, . . . , 0) we now show that any state (p, ι) can be reached after r
seasons. We do this by induction in r. Start with r = 2. We then want to find a τ such that
the final outcome z = p1 for some given value p1, starting with no prior immunity. This is
easy: we simply choose τ1 such that 1− p1 = e−p1τ1 , i.e. τ1 = − ln(1− p1)/p1.
For the induction step we want to show that we can reach any fixed state (p1, . . . pr, ι1 =
1, . . . , ιr−1) after r seasons, starting with no immunity season 0. We use that, by induction,
we can reach any state (p′1, . . . p

′
r−1, ι

′
1 = 1, . . . , ι′r−2) after r − 1 seasons. Our task is hence

to specify a vector (p′1, . . . p
′
r−1, ι

′
1 = 1, . . . , ι′r−2) and a drift and transmissibility (δ, τ) which

result in the desired (p1, . . . pr, ι1 = 1, . . . , ιr−1).
We start with the immunities. Set δ = 1− ι2, and ι′j = ιj+1/(1− δ), j = 1, . . . , r− 2, leading
to the desired immunities.
We now want to specify the vector (p′1, . . . p

′
r−1) and transmissibility τ which, together with

immunity vector (ι′1 = 1, . . . , ι′r−2) result in the vector (p1, . . . pr) next year.
If p1 = 0, implying that there was no outbreak the previous year, this is easy: we simply set
p′j = pj+1, j = 1, . . . , r − 1, and we choose any τ < 1 so that no outbreak will occur.
The case p1 > 0 is a bit more involved. The vector (p1, . . . pr) will be obtained by iteratively

choosing τi, i = 1, 2, . . . making our vector (p
(i)
1 , . . . p

(i)
r ) approaching (p1, . . . pr) closer and

closer.
Start with some arbitrary value larger than 1, e.g. τ1 = 1.5.
The following step is repeated until suitable precision is obtained. For any i, set

1− z′j = e−(1−(1−δ)ι′j)τip1 , and p′j−1 = pj/(1− z′j−1), j = 1, . . . r.

These candidate values for {z′j} (which depend on i through τi!) give the right relations
between them (see end of the previous subsection), but it may give too few or too many

overall infected. This we now control by Equation (2). Compute 1−z′ =
∑

j p
′
je

−(1−ι′j)τip1 . If

1−p1 > 1−z′ it means too many got infected overall for our candidate value τi, implying that
we should pick a smaller τi+1 and repeat the procedure. On the other hand, if 1−p1 < 1−z′

it means too few got infected overall for our candidate value τi, implying that we should pick
a larger τi+1 and repeat the procedure. In each iteration we can pick a new τi being half
way between the previous τi−1 and the closest earlier tested value in the desired direction,
implying that our sequence τi will converge, and we stop when our vector (p′1, . . . p

′
r−1) and

τi comes close enough to the desired outcome (p1, . . . pr). This completes the induction step.
The aperiodicity follows from the fact that the immunity-free state (0, . . . , 1, 1, 0, . . . , 0) can
return to itself with positive probability (if τ < 1).

Since our Markov chain {(p(k), ι(k))}∞k=1 returns to the immunity-free state
(0, . . . , 1, 1, 0, . . . , 0) in r steps with positive probability it is a Harris chain (cf. Sec 5.8
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in Durrett, 2019). It then follows that it has stationary measure π̄(·) to which the chain
converges irrespective of starting value. □

3 Analytical results for the case r = 2 where
immunity is lost after two seasons

We now focus on the case where r = 2, so immunity only lasts the year after being
infected. In this case our vector (p(k), ι(k)) is simply the one dimensional quantity

p
(k)
1 =: p(k), since the outcome on year k only depends on (δk, τk) and how many that

were infected last season p
(k)
1 = z(k−1). We will hence study the distribution of the

outcome some year given the outcome of the previous year. We drop the k-notation
and hence consider the outcome of RE and z, given p. All results below are hence
conditional on p, the fraction infected in the previous season.
We assume that joint probability distribution of the pair (δ, τ) has density q (with
support in (0, 1)× (0,+∞)), and we wish to explicitly compute some properties of the
Markov chain in this specific case.

3.1 Bivariate distribution of effective reproduction ratio and
attack ratio

Two important properties of a seasonal epidemic are its effective reproduction ratio
Re and its final attack ratio z. The value of Re determines the initial exponential
growth rate, and can be estimated in the first phase of an epidemic. The final attack
ratio z (i.e. the fraction of the population that gets infected in one season) determines
(together with the infection severity) the impact of an epidemic; by definition, it can
be ascertained only after an epidemic is over, and may be difficult to estimate, because
of under-reporting and other concurring infections.
As stated above, when r = 2, the Markov chain is one-dimensional, and only depends
on the fraction p infected in the previous year. Simplifying for the case r = 2 the
formulae (1) and (2), we have

Re = τ(pδ + 1− p). (3)

If Re ≤ 1, then z = 0 is the only solution, but if Re > 1, there is a unique solution z
in (0, 1) to the equation

1− z = pe−τδz + (1− p)e−τz. (4)

In order to consider the probability distribution of the pair (z,Re), given p (the fraction
infected in the previous year), we need to distinguish the case p = 0 from p > 0. We
obtain the following

Proposition 3.1. Assume that the pair (δ, τ) has density q(·, ·) (with support in
(0, 1)× (0,+∞).

If p(k) = 0, the distribution of the pair (z(k), R
(k)
e ) lies on the one-dimensional curve
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(z(Re), Re) where, if Re > 1, z(Re) is the unique solution in (0,1) of 1− z = e−Rez,
while z(Re) = 0 if Re ≤ 1.

On that curve R
(k)
e has density qR(y) =

∫ 1

0
q(x, y) dx.

If p(k) = p > 0, the distribution of (z(k), R
(k)
e is composed of two parts. With probability

P(z = 0|p) = P(Re ≤ 1|p) =
∫ 1

0

∫ 1/(pδ+1−p)

0

q(δ, τ) dτ dδ. (5)

the pair lies in the segment {z = 0, 0 < Re ≤ 1} with density

∫ 1

0

q

(
δ,

Re

pδ + 1− p

)
1

pδ + 1− p
dδ.

The second part lies in {0 < z < 1, Re > 1} with bivariate density

f(z,Re|p) =

q(δ∗, τ∗)
pδ∗+1−p−Re

(
pδ∗e−δ∗τ∗z+(1−p)e−τ∗z

)
p(1−p)Rez(e−δ∗τ∗z−e−τ∗z)

if (z,Re) ∈ A

0 otherwise
(6)

where

A = {0 < z < 1− p, − log(1− z)

z
< Re < − (1− p)

z
log

(
1− z

1− p

)
}

∪ {1− p ≤ z < 1, − log(1− z)

z
< Re}, (7)

δ∗(z,Re) is the unique solution (existing when (z,Re) ∈ A) in (0, 1) of

G(δ, z, Re) := pe−
δRez

pδ+1−p + (1− p)e−
Rez

pδ+1−p + z − 1 = 0. (8)

and

τ∗ =
Re

pδ∗ + 1− p
.

Proof If p = 0, formulae (3) and (4) show that Re = R0 = τ and z is the only solution of
1 − z = e−τz , which is completely determined by τ . Hence the pair (z,Re) lies on a one-

dimensional curve: Re has density qR(y) =
∫ 1
0 q(x, y) dx, while z is a function of Re. The

density of Re is the density of τ which is obtained by marginalizing the density q as in the
statement of the Theorem.
On the other hand, if p > 0, we can consider the map

F : (0, 1)× (0,+∞) → [0, 1)× (0,+∞)

(δ, τ) → (z,Re).
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Using the standard formula (see. for instance, [5, Theorem 12.7]) for the density of a random
variable F (X), the density of the pair (z,Re) is

f(z,Re) =

{
q(F−1(z,Re))× |det((F−1)′(z,Re))| if (z,Re) ∈ Im(F )

0 if (z,Re) ̸∈ Im(F ).
(9)

In this case, F1((δ, τ)) ≡ 0 for all values such that F2((δ, τ)) ≤ 1; thus F is not invertible
everywhere. It is useful to think of (9) as a defective density restricted to the set {(z >

0, Re > 1)}, while, when Re ≤ 1 the support of (z(k+1), R
(k+1)
e ) lies in the segment with

z = 0. It is easy to see that P(z = 0) = P(Re ≤ 1) can be computed as in (5), while on that

segment the density of R
(k+1)
e can be computed from

P(R(k+1)
e ≤ Re) =

∫ 1

0

∫ Re/(pδ+1−p)

0
q(δ, τ) dτ dδ.

Considering now (9), the density f(z,Re) cannot be written explicitly, since there are not
explicit expressions for F and F−1. However, one can improve on (9) by computing the range
of F and the derivatives of F−1.
In order to find the range of F , we first find

τ =
Re

pδ + 1− p

and then, substituting in (4), δ can be obtained as a solution of G(δ, z, Re) = 0 with G shown
in (8).
Simple computations then yield

∂G

∂δ
= − p(1− p)Rez

(pδ + 1− p)2

(
e−

δRez
pδ+1−p − e−

Rez
pδ+1−p

)
< 0 (10)

∂G

∂Re
= − z

pδ + 1− p

(
pδe−

δRez
pδ+1−p + (1− p)e−

Rez
pδ+1−p

)
< 0 (11)

∂G

∂z
= 1− Re

pδ + 1− p

(
pδe−

δRez
pδ+1−p + (1− p)e−

Rez
pδ+1−p

)
> 0. (12)

The sign of ∂G
∂z comes from the fact that the derivative of the RHS of (4) is larger than −1

at the solution z ∈ (0, 1) of (4).
Since G is decreasing a function of δ, there exists a solution δ∗(z,Re) of G(δ, z, Re) = 0 if
and only if

p+ (1− p)e−
Rez
1−p + z − 1 = G(0, z, Re) > 0 > G(1, z, Re) = e−Rez + z − 1. (13)

It is easy to see that, if z < 1− p, (13) is equivalent to

− log(1− z)

z
< Re < − (1− p)

z
log

(
1− z

1− p

)
,

while only the first condition holds if z ≥ 1− p.
It follows that

Im(F ) = A ∪ {z = 0, Re ≤ 1},
with A specified in (7).
Considering only the case where Re > 1, where F is invertible and (9) holds, we have

F−1(z,Re) =

(
δ∗(z,Re),

Re

pδ∗(z,Re) + 1− p

)
.

We can then compute its Jacobian using (10)–(12). First of all, notice that

∂τ

∂z
= − pRe

(pδ∗ + 1− p)2
∂δ

∂z

∂τ

∂Re
=

1

pδ∗ + 1− p
− pRe

(pδ∗ + 1− p)2
∂δ

∂Re
.
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Then ∣∣∣∣∣∣∣∣
∂δ

∂z

∂δ

∂Re

∂τ

∂z

∂τ

∂Re

∣∣∣∣∣∣∣∣ =
∂δ

∂z
· 1

pδ∗ + 1− p
.

Using the implicit function theorem, and remembering τ = Re
pδ+1−p ,

∂δ

∂z
= −

∂G
∂z
∂G
∂δ

= (pδ∗ + 1− p)
pδ∗ + 1− p−Re

(
pδ∗e−δ∗τ∗z + (1− p)e−τ∗z

)
p(1− p)Rez

(
e−δ∗τ∗z − e−τ∗z

) .

Substituting, we obtain (6). □

3.2 Transition probabilities

From (6) one can compute several other formulae of interest. We start with the tran-
sition probabilities. Under the assumption that (δ, τ) has density q (with support in
(0, 1)× (0,+∞)), one sees that p(k) has a distribution with an atom at 0 and a density
over (0, 1), and the same will be true for p(k+1).
Then one obtains the following

Proposition 3.2. The transition probability of the Markov chain consist of

P(p(k+1) = 0|p(k) = 0) = π00 = P(τ ≤ 1) =

∫ 1

0

∫ 1

0

q(x, y) dx dy. (14)

P(p(k+1) = 0|p(k) = p) = π(p, 0) = P(R(k)
e ≤ 1) = P(τ(δp+ (1− p)) ≤ 1)

=

1∫
0

1/(xp+(1−p))∫
0

q(x, y) dy dx. (15)

while the density function of p(k+1) for p′ > 0 conditional on p(k) = p ≥ 0 is

π(p, p′) =

1∫
0

q(x, τ∗)
1− τ∗

(
pxe−τ∗xp′

+ (1− p)e−τ∗p′
)

p′ (pxe−τ∗xp′ + (1− p)e−τ∗p′)
dx (16)

where τ∗ = τ∗(x, p′) is the unique solution of

pe−xτp′
+ (1− p)e−τp′

+ p′ − 1 = 0.

Proof The computation of (14) and (15) is straightforward.
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To compute the density function π(p, p′) where p′ ∈ (0, 1) and p ≥ 0, one needs only integrate
(6) to obtain

π(p, p′) =



− (1−p)

p′ log
(
1− p′

1−p

)∫
− log(1−p′)

p′

f(p′, y) dy p′ < 1− p

+∞∫
− log(1−p′)

p′

f(p′, y) dy p′ ≥ 1− p.

(17)

It is more convenient to change the integration variable in (17) to x = δ∗(p′, y); then

dy = −
∂G
∂δ
∂G
∂Re

dx

while

f(p′, y) = −q(δ∗(p′, y), τ∗(p′, y))
∂G
∂z
∂G
∂δ

· 1

pδ∗ + 1− p
. (18)

Hence, using (10)–(12),

f(p′, y) dy = −q(x, τ∗)
∂G
∂z
∂G
∂Re

· 1

px+ 1− p
dx

= q(x, τ∗)
1− τ∗

(
pxe−τ∗xp′

+ (1− p)e−τ∗p′)
p′
(
pxe−τ∗xp′

+ (1− p)e−τ∗p′) dx

Substituting in (17), we obtain (16). □

3.3 The conditional distribution of final size given the
effective reproduction ratio

As mentioned above, coming into season k the fraction infected in the previous season

z(k−1) = p(k) is known, and the value of R
(k)
e can be estimated from data during the

early phase of the epidemic, while the final size z(k) (= p(k+1)) can be estimated from
data only at the end of a seasonal epidemic. Hence it may be useful to predict z(k)

knowing z(k−1) = p(k) and R
(k)
e .

If R
(k)
e ≤ 1, necessarily z(k) = 0. Similarly if z(k−1) = 0, there is no immunity; then

both R
(k)
e and z(k) are determined by τk only, so that knowing one, the other one can

be exactly computed.

Finally, the non-trivial case is where z(k−1) > 0 and R
(k
e = Re > 1. We wish to

compute the conditional density

f(z(k) = z|R(k)
e = Re, p(k−1) = p) =

f(z,Re|p)∫
z′:(z′,Re)∈A

f(z′, Re|p) dz′
, (19)

where f denotes the density for whatever variables and conditional events that are
indicated.

10



In this case too, it is convenient to change the integration variable to x = δ∗(p′, Re) so

that dp′ = −
∂G
∂δ
∂G
∂z

dx. Remembering that δ∗ is the solution of G(δ, z, Re) = 0 as defined

in (8), this yields, together with (18),

f(z|Re, p) =
f(z,Re|p)∫ 1

0
q(x, τ) 1

px+1−p dx
(20)

where in the integral τ =
Re

px+ 1− p
.

3.4 Stationary distribution

The results of Section 2 can be made more specific when r = 2. Precisely

Proposition 3.3. Assume that the pair (δ, τ) has a density q with support in (0, 1)×
(τm, τM ) with 0 ≤ τm < 1 < τM ≤ +∞, such that the marginal density qτ (y) =∫ 1

0
q(x, y) dx > 0 on (τm, τM ).

Then the Markov chain {p(k)}∞k=1 is recurrent, aperiodic, and converges to a stationary
distribution π̄ which consists of an atom π̃0 at 0 and a density π̃(·) with support on
(0, z̄); z̄ = 1 if τM = +∞, while z̄ is the solution of 1− z = e−τMz if τM < +∞.
The pair (π̄0, π̄(x)) satisfies the system

π̄0 = π̄0π00 +

∫ z̄

0

π(x, 0)π̄(x) dx

π̄(x) = π̄0π(0, x) +

∫ z̄

0

π(z, x)π̄(z) dz x ∈ (0, z̄)

1 = π̄0 +

∫ z̄

0

π̄(x) dx.

(21)

Proof The proof follows the same path as in Proposition 2.1, but much more simply since
the state space is one-dimensional. From any state p one reaches 0 if τ < 1; vice versa from
0 one can reach any state p ∈ (0, z̄) for an appropriate τ ∈ (1, τM ). The aperiodicity follows

from the fact that π00 = P(p(k+1) = 0|p(k) = 0) > 0.
It follows that the Markov chain is recurrent, aperiodic, and convergent. Equations (21) come
directly from the stationarity condition. □

Presumably, the result holds also if τm ≥ 1, but the proof would be more delicate. If
τM ≤ 1, then π̄0 = 1, since P (R0 ≤ 1) = 1.

Similarly to Subsection 3.3, one may wish to predict z(k) knowing R
(k)
e ; in this case

we assume that p(k) is not known, but its distribution is the stationary one π̄.

One starts by computing the stationary bivariate distribution of (z(k), R
(k)
e ). If p(k) =

0 (with probability π̄0), R
(k)
e = τk and z(k) = z(R

(k)
e ) where the function z(·) is

defined in Proposition 3.1. Hence, the pair (z(k), R
(k)
e ) has a component on the curve

11



(z(Re), Re) with (one-dimensional) density ofRe given by π̄0qτ (·), with qτ the marginal
distribution of τ .
If p(k) > 0, its (defective) density is given by π̄(·) and one obtains the bivariate
distribution simply by multiplying by π̄(x) the formulae presented in Proposition 3.1.
Precisely, the (defective) bivariate density over {z ∈ (0, 1), Re > 1} is

f̄(z,Re) =

{
0 if − ln(1−z)

z ≥ Re∫ 1

1−p(z,Re)
π̄(x)f(z,Re|x) dx otherwise

(22)

where f(z,Re|x) is given by (6), and p(z,Re) is the only solution in (0, 1) of

Re = − (1− p)

z
ln

(
1− z

1− p

)
.

From the previous formulae, one obtains, through straightforward computations,

the conditional stationary distribution of z(k) given R
(k)
e . One may note that this

distribution has an atom at z(Re) of probability

π̄0qτ (Re)

π̄0qτ (Re) +
∫ z(Re)

0
f̄(z,Re)dz

where π(x, z) is given in (16), and a continuous (defective) density over (0, z(Re))

f̄(z|Re) =
f̄(z,Re)

π̄0qτ (Re) +
∫ z(Re)

0
f̄(z,Re)dz

.

4 Numerical illustrations

We start by illustrating the analytical results obtained in the case r = 2. We chose 4
different densities q for the pairs (δk, τk); in all cases δ follows the Beta(a, b) distribu-
tion, and τ the log-normal(µ, σ2). In cases 1 and 2 the two variables are independent;
in cases 3 and 4 they are negatively correlated. Negative correlation between δ and
τ appears realistic, since viral strains may be fitter either because they are more
transmissible or because they are able to evade existing immune response.
Parameters and features of the four cases are listed in Table 1, while Figure 1 shows
200 random values from each of the four distributions.
In Figure 2, we show some heat maps of the bivariate distributions of the pair

(z(k), R
(k)
e ) given p(k) = z(k−1) = p, computed using Proposition 3.1. To give a better

feeling of the distributions we added (small crosses) 500 random draws. It can be seen
that either (p = 0.1), the support of the distribution is very narrow, or, when the sup-
port is wider (p = 0.5), the density is concentrated near the curve Re = − log(1−z)/z.

12



Parameters Case 1 Case 2 case 3 Case 4
a 3 4 0.5 3
b 7 6 1.5 7
µ 0.683 1.08 0.6 − 0.4 δ 0.7 − 0.5 δ
σ2 0.02 0.02 0.02 0.02
E(δ) 0.3 0.4 0.25 0.3√
V (δ) 0.14 0.15 0.25 0.14

E(τ) 2 2.97 1.74 1.83√
V (τ) 0.28 0.42 0.27 0.28

correl. coeff. 0 0 -0.38 -0.32

Table 1 Parameters and features of the 4 distributions used
in the simulations. In all cases δ ∼ Beta(a, b), while
τ ∼ Lognorm(µ, σ2).
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Fig. 1 200 draws of the random variables (τ, δ) for each case described in Table 1

In Figure 3 we show some examples of the distribution of z(k) = p(k+1) given p(k) = p
for two different values of p; clearly, these correspond to the transition probabilities,
obtained from Proposition 3.2. In the same pictures we also show the distribution

assuming that also R
(k)
e is known and equal to 1.6. It can be seen that the distributions

of z(k) is quite different depending on the value of p. Knowledge of R
(k)
e hence greatly

reduces uncertainty (i.e. randomness) of z(k). As a consequence, a prediction of the
final attack ratio after observing the initial growth in an epidemic will greatly improve
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Fig. 2 Examples of the bivariate distributions of (z(k), R
(k
e ) given pk = z(k−1) = p computed using

Proposition 3.1 for p = 0.1 (left panel) or p = 0.5 (right panel) in case 1 of Table 1.
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Fig. 3 The distributions of z(k) given p(k) = z(k−1) (solid curves), and given the pair (R
(k)
e , p(k))

(dashed curves). The red curves are computed with p(k) = p = 0.1, the blue ones with p = 0.5. The

conditional distributions are based on R
(k)
e = 1.6 The four panels correspond to the four distributions

of the pairs (δk, τk) as shown in Table 1.

the precision of a prediction of the final attack ratio z(k) as compared to only knowing
the attack ratio of the year before.
In Figure 4 we show (black curves) the stationary distribution of z(k) computed
through simulation of 20,000 values, smoothed through the density function of R.

These are compared to the conditional distributions of z(k) given R
(k)
e for R

(k)
e = 1.6

and 1.3, being common values for seasonal influenza estimates (e.g. [8]).
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Fig. 4 Estimates of the stationary distribution (black curve) of the attack ratio z(k), and of the

conditional distributions of z(k) given R
(k)
e = Re (red and blue curves); values used for Re in the

legend. The four panels correspond to the four distributions of the pairs (δk, τk) as shown in Table 1.

Note that the density shown for the stationary distributions (as well the transition
probabilities shown in Figure 3) are defective, in the sense that the stationary distri-
bution also has probability mass at z = 0. The value of π̄0 is estimated at 0.25, 0.06,
0.32 and 0.28 in the four cases illustrated in the figure.
Note also that we showed in Subsection 3.4 that the conditional distributions of z(k)

given R
(k)
e = Re has an atom at z(Re); this is not so clear in Figure 4, because it

is an empirical estimate of the distribution from a simulation through the function

density, and because we selected the values of k R
(k)
e was close to Re and not exactly

equal to Re (which is practically impossible). For these reasons, the atom of z(Re)
looks blurred in the Figure.

In Figure 5 we show the distribution of (R
(k)
e , z(k)) along the simulations. It can be

seen that in all cases, the points are rather close to the curve Re = − log(1− z)/z; in
other words, if the model were correct, predicting the attack ratio from the final size

equation using the value of R
(k)
e (without using the knowledge of z(k−1)) would give

a rather good result.
We have also considered the more realistic case of r = 10, i.e. immunity is completely
lost 10 years after the last infection; in this case the state space has dimension 17,
and thus the transition probabilities are very complicated to compute analytically and
visualize.
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Fig. 5 Bivariate graphs of (R
(k)
e , z(k)) found along the simulations of the model with r = 2. The

curves are the functions Re = − log(1 − z)/z above which the bivariate distributioin always lies, as
shown in Section 3.

Therefore, when r = 10, we limited ourselves to simulations of the model. In Figure
6 we repeat the same procedure used to obtain Figure 4. In this case the stationary
distribution is multi-dimensional, and we show estimates of the marginal distribution
of the final size z(k). If one compares Figure 6 to Figure 4, one sees that the densities
are shifted to the left with r = 10, i.e. when immunity lasts longer the average attack

ratio is lower. On the other hand, once R
(k)
e is known, the estimates of z(k) are similar

for r = 2 and r = 10.
In Figure 7 we show, analogously to Figure 5, the pairs (R

(k)
e , z(k)).

Comparing the results obtained in the case r = 10 with the corresponding ones for

r = 2, one notices that the values of the pairs (R
(k)
e , z(k)) are even closer to the curve

Re = − log(1−z)/z than for r = 2. The fraction of years having an epidemic outbreak
is similar for r = 10 and r = 2, except for case 3, while the average size of the epidemics
is lower when r = 10 than when r = 2, again less so in case 2, in which immunity drift
is generally larger.

5 Discussion

In the paper we have introduced a stochastic epidemic model for seasonal outbreaks
(of e.g. influenza), where the virus has a random genetic drift and a new random
transmissibility each year. Given the community immunities coming into season k,
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Fig. 6 Estimates of the marginal distribution (black curve) of the attack ratio z(k), and of the

conditional distributions of z(k) given R
(k)
e = Re (red and blue curves), in the stationary distribution

of the model with r = 10; values used for Re in the legend. The four panels correspond to the four
distributions of the pairs (δk, τk) as shown in Table 1.

the epidemic outcome, described by the effective reproduction number R
(k)
e and final

attack ratio z(k), is determined by the drift and transmissibility of this year’s virus
strain. The novelty of our model lies in considering the yearly drift as random, varying
between years, and to also allow for transmissibility to vary between years.
The process of community immunities coming into next year’s season, is shown to be
a Markov chain having a stationary distribution. The case where immunity only lasts
one year is studied in more detail. For this situation, we obtain analytical results for
the transition distribution of the Markov chain, its stationary distribution, and also
the conditional distribution of the final attack ratio, given the early epidemic growth

(corresponding to R
(k)
e ) and incoming immunity.

The hope is that our model can contribute to the understanding of how and why
influenza outbreaks vary in size and initial growth between years, and also potentially
help to improve precision in predicting the severity of an influenza season based on
observing the start of the outbreak and knowing earlier years outcome.
Our model of course has several simplifications compared to empirical seasonal epi-
demics. The perhaps most important extensions for making the model more realistic,
are a) to consider more than one circulating strain: influenza currently has three
main circulating strains (AH1N1, AH3N2 and B) with separate attack ratios vary-
ing between years, and with interactions between the circulasting strains (e.g. [9]),
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Fig. 7 Bivariate graphs of (R
(k)
e , z(k)) found along the simulations of the model with r = 10. The

curves are the functions Re = − log(1 − z)/z above which the bivariate distributioin always lies, as
shown in Section 3.

and b) to allow for heterogeneities in the community, for example in terms of partial
immunities and how these affect infectivity.
In our illustrations we assume that the drift and transmissibility of different years
are independent. Our framework however allows for dependecies between years, for
example that large genetic drifts rarely happen repeatedly consecutive years, and this
can be incorporated, still keeping the Markov property in our model.
From an applied point of view, it would be interesting to try to fit the model to seasonal
outbreaks over a range of years, and to analyse how the fitted stationary distribution,
transition distribution, and early season predictions fit to data. It would also be of
interest to analyse what underlying distribution of the drift and transmissibility that
fits best to observed seasonal outbreak data, which may then be compared to other
estimates of yearly drift and transmissibility changes.
Of more mathematical curiosity, it would be interesting to see if a model allowing
longer lasting immunity (larger r) is more flexible than when immunity only lasts one
year. It would also be interesting to obtain qualitative results regarding concentration
of randomness of the final size coming from knowing prior immunity and/or the initial
growth rate, in line with what was illustrated numerically in Section 4.
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