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Abstract

The standard procedure to decide on the complexity of a CART
regression tree is to use cross-validation with the aim of obtaining a
predictor that generalises well to unseen data. The randomness in the
selection of folds implies that the selected CART tree is not a deter-
ministic function of the data. We propose a deterministic in-sample
method that can be used for stopping the growing of a CART tree
based on node-wise statistical tests. This testing procedure is derived
using a connection to change point detection, where the null hypothe-
sis corresponds to that there is no signal. The suggested p-value based
procedure allows us to consider covariate vectors of arbitrary dimen-
sion and allows us to bound the p-value of an entire tree from above.
Further, we show that the test detects a not-too-weak signal with a
high probability, given a not-too-small sample size.

We illustrate our methodology and the asymptotic results on both
simulated and real world data. Additionally, we illustrate how our p-
value based method can be used as an automatic deterministic early
stopping procedure for tree-based boosting. The boosting iterations
stop when the tree to be added consists only of a root node.
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1 Introduction
When using binary-split regression trees in practice an important question is
how to decide on the complexity of the constructed tree expressed in terms
of, e.g., the number of binary splits in the tree, given data. Many applica-
tions focus on predictive modeling, where the objective is to construct a tree
that generalises well to unseen data. The standard approach to decide on
the tree complexity is then to use hold-out data and apply cross-validation
techniques, see e.g. [Hastie et al., 2009]. When constructing a tree by sequen-
tially deciding on continuing to split, adding new leaves to the tree in each
step, cross-validation corresponds to a method for so-called “early stopping”.
When using a cross-validation-based early stopping rule, the constructed tree
obviously depends on the hold-out-data for the different steps of the proce-
dure. In particular, a randomised selection of hold-out data will inevitably
result in the constructed tree being a random function of the data. This is
not always desirable. In the present paper a deterministic in-sample early
stopping rule is introduced, which is based on p-values for whether to accept
a binary split or not.

In order to explain the suggested tree-growing method, let Tm denote a
greedily grown optimal L2 CART regression tree (L2 refers to using a squared-
error loss function) with m leaves (suppressing the dependence on covariates),
see e.g. [Breiman et al., 1984]. Input to the tree-growing method is a given
sequence of nested regression trees Tm1 , Tm2 , . . ., where 1 =: m1 < m2 < . . .,
i.e. the first tree is simply a root node, each tree is a subtree of the next tree
in the sequence, and no tree appears more than once. Note that Tmj

and
Tmj+1

may differ by more than one leaf, i.e. mj+1−mj ≥ 1. The tree-growing
process starts from the root node Tm1 by testing whether increasing the tree-
complexity from Tm1 to Tm2 corresponds to a significant improvement in
terms of the L2 loss. If this is the case, the tree-growing process continues
to test whether the tree-complexity should be increased from Tm2 and Tm3 ;
otherwise the tree-growing process stops. If mj+1 −mj > 1, all added splits
are tested. The tree-growing process is

(i) based on p-values so hypotheses and significance levels need to be spec-
ified,

(ii) an iterative procedure, possibly resulting in a large number of tests.

Concerning (i): The null hypothesis, H0, is that there is no signal in data.
The alternative hypothesis, HA, is that there is a sufficiently strong signal
making a binary split appropriate. The significance level of the test can be
seen as a subjectively chosen hyper-parameter, depending on the modeler’s
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view on the Type I-error. Concerning (ii): We cannot perfectly adjust for
multiple testing, but it is possible to use Bonferroni arguments to bound the
Type I-error from above. By doing so the tree-growing process is stopped
once the sum of the p-values is greater than the subjectively chosen overall
significance level for testing the significance of the entire tree. If mj+1−mj >
1, then more than one p-value is added is added to sum. Since the p-value
based stopping rule relies on a Bonferroni bound, this tree-growing procedure
will be conservative, tending to avoid fitting too large trees to the data.

Relating to the previous paragraph it is important to recall that the tree-
growing process is based on a given sequence of nested greedily-grown L2

CART regression trees, and it is whether these binary splits provide signif-
icant loss improvements or not that is being tested. In order to compute a
p-value for such a split it is crucial to account for that the split was found
to be optimal in a step of the greedy recursive partitioning process that gen-
erated the tree. This is done by representing the tree-growing process as a
certain change-point detection problem, building on results and constructions
from [Yao and Davis, 1986]. The usefulness of these results for change-point
detection when analysing regression trees was noted in [Shih and Tsai, 2004].
It is important to stress that the p-values used are defined with respect to
loss improvements and not with respect to potential errors in the estima-
tors for the mean values within a leaf. In the latter problem one needs to
adjust for selective inference and this is discussed in a CART-tree context
in [Neufeld et al., 2022]. By focusing on the loss improvement and properly
taking into account that the tested splits are locally optimal (as described
above), selective inference will not be an issue here. Moreover, since the tree-
growing process is based on a given sequence of nested CART-trees, we do
not address variable selection issues. For more on CART-trees and variable
selection, see [Shih and Tsai, 2004].

The p-values for loss improvements for a single locally optimally cho-
sen binary split can be calculated exactly for small sample sizes n, but in
practice large values for the sample size require approximations. In the cur-
rent paper an asymptotic approximation is used, which is based on results
from [Yao and Davis, 1986] for a single covariate. A contribution of the cur-
rent paper is to show that for covariate vectors of arbitrary dimension, the
accuracy of the p-value approximation for a single binary split does not de-
teriorate substantially if we increase the dimension of the covariate vector.
The p-value approximation for an entire tree, accounting for multiple testing
issues, results in

(a) a conservative stopping rule, given that the null hypothesis H0 of no
signal is true, i.e. the tree-growing process will not be stopped too late,
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due to that we are using a Bonferroni upper bound,

(b) that a not-too-weak signal should be detected with a high probability,
given a sufficient sample size, i.e. given that the alternative hypothesis
HA is true, the signal will be detected as the sample size tends to infinity.

So far we have focused on deterministic p-value-based early stopping when
constructing a single greedily grown optimal L2 CART tree. In practice,
however, trees are commonly used as so-called “weak learners” in boosting.
The use of p-value based early stopping in tree-based L2 boosting is con-
sidered in Section 4. This is similar to the so-called ABT-machine intro-
duced in [Huyghe et al., 2024], which uses another deterministic (not based
on e.g. cross-validation) stopping rule based on a sequence of nested trees
obtained from so-called cost-complexity pruning, see [Breiman et al., 1984].

Although we focus only on CART trees, one may, of course, consider
other types of regression trees and inference based procedures to construct
trees. For more on this, see e.g. [Hothorn et al., 2006].

Our main contribution. Given an arbitrary sequence of nested L2

CART trees, grown by greedy optimal recursive partitioning, we provide an
easy-to-use deterministic stopping rule for deciding on the regression tree
with suitable complexity. We allow for covariate vectors of arbitrary dimen-
sion and the stopping rule is formulated in terms of an easily computable
upper bound for the p-value corresponding to testing the hypothesis of no
signal. Because of the upper bound, the stopping rule is conservative. How-
ever, we provide a theoretical guarantee that if there exists signal, then we
will detect the existence of this signal if the sample size is sufficiently large. In
particular, it is unlikely that we will stop the tree-growing process too early.
The asymptotic theoretical guarantee is confirmed by numerical experiments.

Organisation of the paper. The remainder of the paper is structured
as follows. Section 2 introduces L2 CART trees and sequences of nested
such trees. Section 2.1 presents and motivates the suggested stopping rule.
Section 2.2 describes that the stopping rule naturally leads to considering
a change-point-detection problem and presents theoretical results that guar-
antee statistical soundness of our approach for large sample size. Section 3
compares, for a single split, our approach to well-established regularisation
techniques. Section 4 provides a range of numerical illustrations, both in
order to clarify the finite-sample performance of our approach and also to il-
lustrate useful applications for tree-based boosting without cross-validation.
The proofs of the main results are found in the appendix.
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2 Regression trees
The Classification and Regression Tree (CART) method was introduced in
the 1980s and uses a greedy approach to build a piecewise constant predictor
based on binary splits of the covariate space, one covariate at a time, see e.g.
[Breiman et al., 1984]. If we let x be a d-dimensional covariate vector with
x ∈ X ⊆ Rd, a regression tree with m leaves can be expressed as

x 7→ Tm(x) :=
m∑
k=1

ζk1{x∈Ak}, (1)

where ζk ∈ R, where Ak ⊂ X,∪m
k=1Ak = X, and where 1{x∈Ak} is the indicator

such that 1{x∈Ak} = 1 if x ∈ Ak, and 0 otherwise. For binary split regression
trees, having m leaves corresponds to having made m− 1 binary splits.

The construction of a CART tree is based on recursive greedy binary split-
ting. A split is decided by, for each covariate dimension j, considering the
best threshold value ξ for the given covariate dimension, and finally choos-
ing to split based on the best covariate dimension and the associated best
threshold value. Splitting the covariate space X based on the jth covariate
dimension and threshold value ξ corresponds to the two regions

Rleft(j, ξ) = {x ∈ X : xj ≤ ξ}, Rright(j, ξ) = {x ∈ X : xj > ξ}.

The CART algorithm estimates a regression tree by recursively minimising
the empirical risk based on the observed data (Y (1), X(1)), . . . , (Y (n), X(n))
that are independent copies of (Y,X), where Y is a real-valued response
variable and X is a X-valued covariate vector. When using the L2 loss and
considering a split w.r.t. covariate j, this means that we want to minimise∑

i:X(i)∈Rleft(j,ξ)

(Y (i) − Y left(j, ξ))
2 +

∑
i:X(i)∈Rright(j,ξ)

(Y (i) − Y right(j, ξ))
2, (2)

where Y left(j, ξ) is the average of all Y (i) for which X(i) ∈ Rleft(j, ξ), and
similarly for Y right(j, ξ). A regression tree with a single binary split w.r.t. co-
variate j and threshold value ξ is therefore

T2(x) = Y left(j, ξ)1{x∈Rleft(j,ξ)} + Y right(j, ξ)1{x∈Rright(j,ξ)}.

In order to ease notation, it is convenient to fix a covariate dimension
index j and considered the the ordered pairs (Y (1), X(1)), . . . , (Y (n), X(n)) of
(Y,X), where we assume ordered covariate values X

(1)
j ≤ · · · ≤ X

(n)
j and

that the response variables appear in the order corresponding to the size of
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the covariate values. Hence, (Y (1), X(1)) satisfies X
(1)
j = miniX

(i)
j , etc. A

different choice of index j would therefore imply a particular permutation
of the n response-covariate pairs. By suppressing the dependence on j, this
allows us to introduce

S≤r :=
r∑

i=1

(Y (i) − Y ≤r)
2, S>r :=

n∑
i=r+1

(Y (i) − Y >r)
2, S := S≤n, (3)

where

Y ≤r :=
1

r

r∑
i=1

Y (i), Y >r :=
1

n− r

n∑
i=r+1

Y (i).

That is, minimisation of (2) is equivalent to minimising S≤r + S>r with
respect to r, or alternatively we can consider maximising the relative L2 loss
improvement, given by

S − (S≤r + S>r)

S
. (4)

Further, note that unless we build balanced trees with a pre-specified number
of splits we need to add a stopping criterion to the tree-growing process. The
perhaps most natural choice is to consider a threshold value, ϑ, say, such
that the recursive splitting only continues if the optimal r, denoted r∗, for
the optimally chosen covariate dimension j∗ ∈ {1, . . . , d} satisfies

S − (S≤r∗ + S>r∗)

S
> ϑ. (5)

This means that the threshold parameter ϑ functions as a hyper-parameter.
In particular, if we let Tm denote a recursively grown L2 optimal CART-tree
with m leaves created using the threshold parameter ϑ, then for any subtree
Tm of Tm′ , m < m′, the corresponding threshold parameters satisfy ϑ > ϑ′.
Threshold parameters ϑ1 > ϑ2 > . . . > ϑτ generate a sequence of nested
trees Tm1 , Tm2 , . . . , Tmτ with m1 ≤ m2 ≤ . . . ≤ mτ . In applications we will
consider sequences ϑ1 > ϑ2 > . . . such that 1 = m1 < m2 < . . .. Note that
such a decreasing sequence of threshold parameters will not necessarily result
in a sequence of nested trees that only increases by one split at a time.

One procedure to construct a sequence of nested trees is to first pick
ϑ = 0 and build a maximal CART-tree, which is pruned from the leaves to
the root. One such procedure is the cost-complexity pruning introduced in
[Breiman et al., 1984], which likely will lead to a sequence of nested trees
where more than one leaf is added in each iteration. For more on this, see
Section 3.1.
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The threshold parameter ϑ controls the complexity of the tree that is con-
structed using recursive binary splitting, but it is not clear how to choose ϑ.
One option is to base the choice of ϑ on out-of-sample validation techniques,
such as cross-validation. The drawback with this is that the tree construction
then becomes random: given a fixed dataset repeated application of the pro-
cedure may generate different regression trees. We do not want a procedure
for constructing regression trees to have this feature. The focus of the cur-
rent paper is to start from a sequence of nested greedy binary split regression
trees, from shallow to deep, and use a particular stopping criterion to decide
when to stop the greedy binary splitting in the tree-growing process. The
stopping criterion is based entirely on the data used for building the regres-
sion trees and is a deterministic mapping from the data to the elements in
the sequence of regression trees.

2.1 The stopping rule

Our approach relies on that all binary splits in the sequence of nested re-
gression trees have been chosen in a greedy optimal manner. That is, if
we consider an arbitrary binary split in the sequence of nested trees, the
reduction in squared error loss is given by the statistic

Umax := max
1≤j≤d

Uj, Uj := max
1≤r≤n−1

S − (S≤r + S>r)

S
, (6)

where the sums S≤r and S>r depend on j because of the implicit ordering
of the terms as outlined above, see (3). Given any sample size n and any
observed value uobs for the test statistic Umax we easily compute, under the
null hypothesis of no signal, an upper bound pobs ≥ PN (Umax > uobs), where
the subscript N emphasizes the null hypothesis. Therefore, for a regression
tree Tm resulting from m− 1 binary splits, it holds that

PN

(m−1⋃
k=1

{
Umax,k > uobs,k

})
≤

m−1∑
k=1

PN (Umax,k > uobs,k) ≤
m−1∑
k=1

pobs,k.

Note that the summation is over all m−1 splits (or internal nodes) of the tree
with m leaves. We emphasize that, for every binary split k, uobs,k is observed
and pobs,k is easily computed from uobs,k. If for a pre-chosen tolerance δ ∈
(0, 1) close to zero,

m−1∑
k=1

pobs,k ≤ δ, (7)
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then we conclude that the event ∪m−1
k=1 {Umax,k > uobs,k} is very unlikely and

we reject the null hypothesis of no signal. Consequently, we proceed by
considering the next, larger, regression tree Tm′ , m′ > m, in the sequence of
nested regression trees. If, when considering the regression tree Tm′ we find
that

m′−1∑
k=1

pobs,k > δ, (8)

then the procedure stops and the previous regression tree Tm is selected as
the optimal regression tree.

Since we consider an upper bound for the probability (under the null
hypothesis) of the event ∪m−1

k=1 {Umax,k > uobs,k} and since we consider upper
bounds pobs,k for the probabilities of the events Umax,k > uobs,k, we are more
likely to stop – observe that (8) holds – compared to a hypothetical situation
where the probability of the event ∪m−1

k=1 {Umax,k > uobs,k} could be computed
and were found to exceed the tolerance level δ. Hence, our stopping criterion
is conservative. We therefore have to be concerned with the possibility of a
too conservative stopping criterion. However, it is shown in Proposition 1
below that under an alternative hypothesis of a sufficiently strong signal, the
computable upper bound pobs for the true p-value is very small. Hence, our
stopping criterion is not too conservative.

2.2 Change point detection for a single binary split

The question of whether a candidate binary split should be rejected or not can
be phrased as a change-point-detection problem. This observation has been
made already in [Shih and Tsai, 2004], where the aim was to target inference
based variable selection. The idea here is to make inference on squared-error-
loss reduction, where a significant loss reduction translates into not rejecting
a split, hence continuing the tree-growing process. This approach builds on
the analysis of change-point detection from [Yao and Davis, 1986] that uses
a scaled version of (6) according to

U
(n)
j := max

1≤r≤n−1

S − (S≤r + S>r)

S/n
, U (n)

max := max
1≤j≤d

U
(n)
j ,

where the dependence of U (n)
j on j is implicit in the order of Y (1), . . . , Y (n)

which determines the sums of squares S≤r and S>r, as before. That is, the
optimal candidate change point w.r.t. covariate dimension j is expressed in
terms of the statistic U

(n)
j , which, hence, is identical to a candidate split

point.

8



The test for rejecting a candidate split is based on the null hypothesis
saying that observing X gives no information about Y . The null hypothesis
corresponds to a simple model N for (Y,X).

Definition 1 (Null hypothesis, H0). For model N , Y and X are independent
and Y is normally distributed: there exist µ ∈ R and σ2 ∈ (0,∞) such that

PN (Y ∈ · | X) = PN (Y ∈ ·) = N(µ, σ2).

When considering a nested sequence of binary regression trees, U (n)
max is

the random variable whose outcome is the observed test statistic for a single
candidate binary split. Under the null hypothesis, the common distribution
of the statistics U

(n)
1 , . . . , U

(n)
d does not depend on µ and σ. Hence, under

the null hypothesis, the distribution of U (n)
max does not depend on µ and σ.

Clearly,

PN
(
U (n)
max > u

)
= PN

(
∪d

j=1 {U
(n)
j > u}

)
≤ dPN

(
U

(n)
j > u

)
(9)

which does not depend on j since the probability is evaluated under the null
hypothesis. We approximate the tail probability PN (U

(n)
j > u) by pn(u),

where

pn(u) := 1− Φ

(
u1/2 − ln3(n) + ln(2)

(2 ln2(n))1/2

)2 ln(n/2)

, (10)

where lnk(n) corresponds to the k times iterated logarithm, e.g. ln2(n) =
ln(ln(n)). The approximation pn(u) from (10) corresponds to Eq. (2.5)
on p. 345 in [Yao and Davis, 1986]. The true p-value is the function u 7→
PN

(
U

(n)
max > u

)
evaluated at the observed value for U (n)

max. The true p-value is
approximated from above by

P (n)
max := dpn(U

(n)
max). (11)

We emphasise that given an observation uobs,k of U (n)
max, pobs,k is the observed

outcome of P (n)
max.

If the true signal is not too weak, which means that the conditional ex-
pectation of Y given X should fluctuate sufficiently in size, then for any
significance level we want to reject the null hypothesis in a setting with suf-
ficiently large sample size n. In order to make the meaning of this statement
precise, and in order to verify it, we must consider the alternative hypothesis
as a sequence of hypotheses indexed by the sample size n. The alternative
hypothesis corresponds to a sequence of models A = (A(n)).
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Definition 2 (Alternative hypothesis, HA). For the sequence of models
(A(n)) there exist j ∈ {1, . . . , d}, ξ ∈ R, t0 ∈ (0, 1), σ2 ∈ (0,∞) and
µl, µr ∈ R, µl ̸= µr, such that for all n

PA(n)(Xj ≤ ξ) = t0,

PA(n)(Y ∈ · | Xj = x) = N(µl1{x<ξ} + µr1{x≥ξ}, σ
2),

where |µr − µl| = σθn > 0. The sequence θn satisfies

θn =
(2 ln2(n))

1/2 + ηn
n1/2(t0(1− t0))1/2

(12)

for some increasing sequence ηn with limn→∞ ηn = ∞ and lim supn→∞ θn <
∞.

The requirement under the alternative hypothesis of a shift in mean of
size σθn says that the amplitude of the signal is allowed to decrease towards
zero with n, but not too fast. We could consider θn = n−r for some r <
1/2. We may also consider a constant signal amplitude θ. However, that
situation is not very interesting since such a signal should eventually be easily
detectable as the sample size n becomes very large. The expression for θn in
(12) comes from [Yao and Davis, 1986] (Eq. (3.2) on p. 347) and corresponds
to an at least slightly stronger signal compared to what was considered in
[Yao and Davis, 1986] (ηn → ∞ instead of ηn = η + o(1)).

We want to show that under the alternative hypothesis we will reject the
null hypothesis with a probability tending to one. The null hypothesis is not
rejected at significance level ε > 0 if P (n)

max > ε. We want to show that under
the alternative hypothesis, the probability of falsely not rejecting the null
hypothesis is very small. More precisely, we show the following:

Proposition 1. limn→∞ PA(n)(P
(n)
max > ε) = 0 for every ε > 0.

The proof of Proposition 1 is given in the Appendix.
To conclude, using the p-value approximation (11) results in

(i) a conservative stopping rule, given that the null hypothesis H0 of no
signal is true, i.e. the tree-growing process will not be stopped too early,
due to that we are using a Bonferroni upper bound,

(ii) that a not too weak signal should be detected with a high probability,
given a sufficient sample size, i.e. given that the alternative hypothesis
HA is true, the signal will be detected as the sample size tends to
infinity.
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3 Relation to classical regularisation techniques
The focus of this section is on a single binary split. Let T2(X) denote an
optimal binary split CART tree with a single split, and let T1(X) denote the
root tree of T2(X). Based on the notation in Section 2 the split is accepted
at significance level ε if

U (n)
max =

S − (S≤r∗ + S>r∗)

S/n
> uε, (13)

where “∗” indicates that we consider the optimal split, and where uε is the
solution to

dpn(uε) = ε, (14)

where pn(u) is from (10). An equivalent rephrasing of (13) is

MSE1 −MSE2 − uεσ̂
2 > 0, (15)

where MSE1 := S,MSE2 := S≤r∗ +S>r∗ , together with σ̂2 := S/n. A natural
question, which is partially answered below, is how uε depends on n for a
fixed significance level ε.

Proposition 2. uε solving (14) satisfies uε = o(ln2(n)) as n → ∞.

The proof of Proposition 2 is given in the Appendix.

Based on (15) it is seen that uε can be thought of as a regularisation
term (or penalty), and from Proposition 2 it is seen that this term behaves
almost like a constant. We will continue with a short comparison with other
techniques that can be used to decide on accepting a split or not.

3.1 Cost-complexity pruning

cost-complexity pruning was introduced in [Breiman et al., 1984] and is de-
scribed in terms of the so-called “cost” w.r.t. a split tolerance ϑ, denoted by
Rϑ(T ), defined as

Rϑ(T ) := R(T ) + ϑ|T |, (16)

where, in our sitting, we have R(T ) =
∑n

i=1(Y
(i) − T (X(i)))2 (other loss

functions may be considered). The parameter ϑ is also referred to as the
“cost-complexity” parameter. Note that the critical ϑ value needed in order
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to accept T2(X) in favour of T1(X) is the threshold value ϑ for which the
so-called “gain” Rϑ(T1)−Rϑ(T2) is 0, which gives

Rϑ(T1)−Rϑ(T2) = R(T1)−R(T2) + ϑ(|T1| − |T2|)
= MSE1 −MSE2 − ϑ = 0,

or equivalently, the split is accepted if MSE1 −MSE2 − ϑ > 0. The choice of
ϑ used in applications is typically based on out-of-sample performance using,
e.g., cross-validation; also recall the discussion in relation to (5) above. Using
the specific choice ϑ := uεσ̂

2 is equivalent to using the p-value based penalty
from (15). Note that this equivalence only applies to the situation concerning
whether one should accept a single split or not, whereas, as mentioned above,
the cost-complexity pruning is a procedure that evaluates entire subtrees.

3.2 Covariance penalty and information criteria

Another alternative is to assess a candidate split based on its predictive per-
formance using the mean squared error of prediction (MSEP), conditioning
on the observed covariate values. When working with linear Gaussian models
this corresponds to using Mallows’ Cp, where p corresponds to the number
of regression parameters, see e.g. [Mallows, 1973], which is an example of
an estimate of the prediction error using covariance based penalty, see e.g.
[Efron, 2004]. The Cp statistic can then be expressed as

Cp :=
1

n

(
MSEp+2pσ̂2

)
,

which is the formulation used in [Hastie et al., 2009, Ch. 7.5, Eq. (7.26)].
Consequently, since a binary single-split L2 regression tree with predeter-
mined split point can be interpreted as fitting a Gaussian model with a
single binary covariate, Cp can in this situation be used to evaluate predic-
tive performance. By considering the Cp improvement when going from no
split, i.e. p = 1, to one split, p = 2, corresponds to C1 − C2 > 0, which is
equivalent to

MSE1 −MSE2 − 2σ̂2 > 0.

Thus, using Mallows’ Cp, targeting the predictive performance of the estima-
tor, will be asymptotically too liberal compared to the p-value based stopping
rule. This, however, should not be too surprising, since the above application
of the Cp statistic does not take into account that the candidate split point
has been chosen by minimising an L2 loss.

For a p-parameter Gaussian model the Cp statistic coincides with the
Akaike information criterion (AIC), see e.g. [Hastie et al., 2009, Ch. 7.5,
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Eq. (7.29)]. For a p-parameter Gaussian model, the Bayesian information
criterion (BIC) considers the quantity

BICp :=
n

σ2

(
MSEp + ln(n)pσ2

)
,

see e.g. [Hastie et al., 2009, Ch. 7.7, Eq. (7.36)], as the basis for model
selection. In practice σ2 is replaced by a suitable estimator, σ̂2, see, e.g.,
the discussion in the paragraph following [Hastie et al., 2009, Ch. 7.7, Eq.
(7.36)]. Hence, it follows that accepting a split based on BIC-improvement
in a single split corresponds to

BIC1−BIC2 > 0,

which is equivalent to

MSE1 −MSE2 − ln(n)σ̂2.

Thus, using BIC as a stopping criterion is more conservative than the p-value
based stopping criterion, despite not taking into account that the split point
is given as a result of an optimisation procedure.

4 Numerical illustrations

4.1 The p-value approximation for a single split

In this section we investigate the error from applying the two approximations
in (9) and (10). Both together provide the p-value approximation used to
test for signal. Since we do not have access to the true distribution of Umax

under H0, we compute its empirical distribution from 10, 000 realisations in
order to compare to the approximations.

Figure 1 shows the approximated and true cdfs for varying sample size and
covariate dependence. Here, the covariate dimension is set to d = 10. Table
1 compares the approximated and true critical quantile values at a 0.95-level
for varying sample size, covariate dimension and covariate dependence. Note
that for d = 1, varying dependence is not an issue so that the entries of the
first two tables are identical.

As was noted in [Yao and Davis, 1986][Remark 2.3], the approximation
(10) yields satisfactory results even for small sample sizes 20 ≤ n ≤ 50. This
is confirmed by the first row of Table 1. The second row of Figure 1 as well as
the middle part of Table 1 show that a strong positive pairwise correlation of
ρ = 0.8 between covariates does not substantially affect the upper tail of the
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Figure 1: Blue curves: empirical cdf of Umax given H0 computed from 10,000
realisations. Orange curves: Approximation 1−dpn(u). Left column: n = 50,
right column: n = 1000. Top row: independent standard normal covariates,
bottom row: dependent normal covariates with common pairwise correlation
ρ = 0.8 and unit variance. The points of intersection with the dashed blue
line illustrate empirical and approximate 0.95-quantile of Umax.
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n = 50 n = 1000

d = 1 8.55 10.78
d = 2 9.79 12.10
d = 10 12.46 15.51

n = 50 n = 1000

8.55 10.78
9.62 12.00
11.94 14.84

n = 50 n = 1000

9.12 11.09
10.67 12.68
14.23 16.31

Table 1: Left table: 0.95-level quantiles based on the empirical cdf of Umax

given H0 computed from 10,000 realisations for independent standard nor-
mal covariates. Middle table: The analogous quantiles for dependent normal
covariates with a common pairwise correlation of ρ = 0.8 and standard vari-
ances. Right table: Quantile approximation corresponding to (10).

distribution of Umax under H0 and that the quantile approximations provide
good upper bounds.

We now turn to assuming that the alternative hypothesis HA according
to Definition 2 holds. In order to illustrate Proposition 1, we pick ε = 0.05,
σ2 = 1, j = 1, ξ = 0, t0 = 1/2, µl = 0 and µr = n−1/5. Note that the step
size is chosen to decrease slowly enough towards zero in order to fulfil the
assumptions of HA in Definition 2.

In Figure 2, we plot the fraction of correct signal detections from 1000
realisations of the event {U (n)

max > uε}, where uε is given in (14). We run the
simulations for an increasing number of data points n. Figure 2 confirms the
findings of Proposition 1 that the probability of detecting a slowly decreasing
signal converges to one as n tends to infinity.

It can be noted that the upper tail of U (n)
max is not affected much by intro-

ducing dependence between the covariates, as the orange and blue curves in
the right plot of Figure 2 differ little.

4.2 Simulated examples from Neufeldt et al.

In this section we fix a simple tree and then generate residuals around its
level values in order to illustrate the detection performance of our method.
We consider the following example as proposed by [Neufeld et al., 2022, sec-
tion 5]. Consider independent standard normal covariates and a regression
function given by

µ(x) = b
(
1{x1≤0}

(
1 + a1{x2>0} + 1{x2x3>0}

))
, (17)

for x ∈ R10 and parameters a, b ∈ R determining the step size between the
level values (signal strength). The step size between siblings at level two is
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Figure 2: Blue curves: Fraction of correct signal detections according to
{U (n)

max > uε} for an increasing number of data points n and independent
standard normal covariates. Orange curve: The analogous fraction based on
dependent multivariate normal covariates with common pairwise correlation
ρ = 0.8 and unit variance. Green curve: The signal strength |µr−µl| = n−1/5.
The blue dashed line shows the 0.95-level. The left and right plots correspond
to d = 1 and d = 10 covariates, respectively.

ab while the step size between siblings at level three is b. An illustration
of the tree corresponding to (17) is given in Figure 3. We generate 500
iid covariate vectors X1, . . . , X500 of N(0, I10) and corresponding response
variables Y1, . . . , Y500, where, given Xi, Yi is drawn from N(µ(Xi), 1).

X1 ≤ 0
b

X2 ≤ 0
2b

X3 ≤ 0
1.5b

2b b

X3 ≤ 0
2.5b

2b 3b

0

Figure 3: Regression tree corresponding to (17) with a = 1 adopted from
[Neufeld et al., 2022, section 5]. Each left child answers the inequality with
“true”.

Using the python package sklearn.tree.DecisionTreeRegressor, we grow a
full CART tree of maximal depth 4 with a minimal number of data points per
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leaf set to 20. For each tree in the nested sequence of cost-complexity-pruned
subtrees (from the root to the fully grown CART tree), we compute the in-
sample error (MSE) and out-of-sample error (MSEP), where the latter is done
using independently generated test data of the same size n = 500 which was
neither used to fit the CART tree, nor to compute p-values, but serves only
as a data set for pure out-of-sample testing.

2 4 6 8 10 12 14

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2 4 6 8 10 12 14

0

5

10

15

20

Figure 4: Left plot: MSEP (blue) and MSE (orange) for each tree in the
nested sequence of cost-complexity-pruned subtrees. Right plot: cumula-
tive p-value for each tree in the nested sequence of cost-complexity-pruned
subtrees. The x-axis depicts the number of leaves of the subtree considered.
The dashed blue line marks our method’s output tree, i.e. the largest subtree
whose cumulative p-value lies below δ = 0.05. The signal strength parame-
ters are a = b = 1.

In the example of Figure 4, the proposed method detects the correct com-
plexity of µ which is given by 5 leaves and which minimises MSEP. The cumu-
lative p-values of all smaller subtrees are very close to zero (0, 0.0001, 0.0003),
while jumping sharply to 1.08 after the first “unnecessary” split (cf. Figure
6). The results in this example are hence not sensitive to the choice of the
tolerance parameter δ. Note that individual p-values may exceed one due to
the approximation (11). Comparing Figure 3 with the upper tree of Figure
6, we note that also the split points and mean values are accurate.

We repeat the simulation for a decreased signal parameter b = 0.5, while
keeping a = 1, σ2 = 1 and n = 500. As can be observed in Figure 5 and
the bottom tree of Figure 6, the method stops after already one split not
capable of detecting the weak signal in the lower part of the tree. However,
it regularises well in the sense that MSEPs are close to minimal. Even though
the sample size n = 500 is chosen rather small, the results of Figures 4 and 5
do not vary much between runs with different random seeds for the training

17



and validation data generation.
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Figure 5: Analogue of Figure 4 with b = 0.5 instead of b = 1.

Moreover, from Figure 2 in Section 4.2 we can observe that a larger
number of data points of around n = 2500 would ensure (with a 95 percent
probability) the detection of an even lower signal 0.21 < b = 0.5 in each split
of the tree. We conclude that n = 500 is insufficient in this example with
b = 0.5.

4.2.1 Illustrating the randomness of tree construction using cross-
validation

Above we mention the drawback of training trees using cross-validation which
is that the resulting tree depends of the randomness inherent in the cross-
validation procedure. In this section we illustrate this fact for CART-trees.
We generate data according to the model from [Neufeld et al., 2022], as pre-
sented in Section 4.2, with parameters a = 1, b = 1 and σ2 = 1. Here we
consider sample size n = 1000 (rather than n = 500 considered in Section
4.2). We split the data into a 80% training set and a 20% test set. The CART-
tree is trained using 5-fold cross-validation on the training set, which entails
optimally choosing a cost-complexity parameter ϑ. An optimal CART-tree
is trained on the complete training set using the cost-complexity parameter
ϑ. Finally, the trained model is evaluated on the test set. This procedure
is repeated 500 times, allowing us to estimate RMSE values empirically. It
turns out that throughout the 500 iterations of the procedure, only two dis-
tinct trees are selected by the cross-validation procedure: either a tree with
two leaves or a tree made up of only the root node. Since cross-validation
results in non-deterministic ϑ, we realise two distinct ϑ values corresponding
to two distinct trees in the sequence cost-complexity pruned trees.
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X1 ≤ 0.00
0.99
0
0

X2 ≤ −0.01
2.03

8 · 10−5

1 · 10−4

X3 ≤ 0.04
1.57

1 · 10−5

1 · 10−4

X4 ≤ 0.17
2.10
0.86

1.9377

X7 ≤ 0.3
0.75
1.58
5.49

X3 ≤ 0.05
2.46
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X1 ≤ 0.00
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0
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X7 ≤ 0.22
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0.99
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Figure 6: Regularised output trees for b = 1 (top) and b = 0.5 (bottom).
First row of each node: split point selected by CART. Second row: mean
value. Third row: node p-value. Fourth row: cumulative p-value of the
smallest subtree the node appears in as a non-leaf. Nodes shaded red violate
the condition that the cumulative p-value lies below 0.05.
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We evaluate our model on the same dataset with identical CART-tree
parameters and significance levels δ = 0.1, 0.05, 0.01 and find that our method
attains an even lower RMSE for all three choices of δ. The results can be
seen in 2. Further, we can see the shape of the estimated trees in Figure 7.

cost-complexity parameter ϑ RMSE number of leaves
0.000 1.045 7
0.008 1.012 5
0.072 1.046 4
0.075 1.062 3
0.113 1.144 2
1.016 1.537 1

Table 2: Evaluation of trees in the sequence of cost-complexity pruned trees.

4.3 An application to L2-boosting

In this section, we illustrate how our proposed method performs when it
is used as a weak learner in a standard L2-boosting setting applied to the
datasets California Housing and beMTPL16 from [Dutang and Charpentier, 2024].

Throughout these illustrations we compare the L2-boosting version of our
method to the Gradient Boosting Machine (GBM) with identical configura-
tions. For both methods, we split the data into a 80% training set and a 20%
test set. We train the models on the same training set and evaluate them
on the same test set. We fix the max depth of the weak learners to 3, i.e. a
tree with at most 8 leaves can be added in a single iteration, the minimum
samples per leaf is set to 20 and we set the learning rate for the boosting
procedures to 0.1.

In each boosting iteration, we use the residuals from the previous iteration
as the working response. In each boosting iteration, we determine a nested
sequence of trees (as described above) and the weak learner is selected as
the maximally split tree that satisfies the criterion

∑
pj < δ for the chosen

significance level δ. We stop the boosting procedure when the candidate weak
learner is the root node, i.e, no statistically significant split can be made.
Note that the complexity of the weak learner for our method is dynamic,
determined by the criterion

∑
pj < δ.

The California Housing dataset consists of n = 20640 data points, and the
number of covariates is d = 8. The beMTPL16 dataset consists of n = 70791
data points, and the number of covariates is d = 6. In Figure 8 we see how our
method compares to the GBM when applied to the two datasets for varying
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0.996

(a) CV method: RMSE = 1.537

X1 ≤ 0.004

2.03 0.013

(b) CV method: RMSE = 1.144

X1 ≤ 0.004

X2 ≤ −0.061

X3 ≤ −0.155

2.23 1.049

X3 ≤ −0.016

1.969 3.004

0.013

(c) p-value method: RMSE = 1.012

Figure 7: Regression trees corresponding to different cost-complexity param-
eters related to the test of cross-validation randomness; Panels (a) and (b)
show the trees obtained using CV, Panel (c) shows the tree obtained using
the p-value method. Leaf values correspond to mean values. All RMSE val-
ues can be found in Table 2.

levels of δ. The value δ = ∞ gives a boosted-trees procedure similar to the
ABT-machine from [Huyghe et al., 2024] in the case of L2-boosting. It should
be noted that the GBM stopping criterion implies, for the California housing
dataset, that it is trained for approximately 2500 iterations before stopping.
One could consider tuning the shrinkage parameter in order to adjust the
number of boosting steps, but this has not been investigated further in the
present paper. It can be seen from Figure 8 that the number of iterations for
the p-value based method is not necessarily monotone in δ. However, this is
not contradictory since different values of δ will result in that the trees added
in each iteration may have a rather different tree complexity. We find that the
p-value based stopping criterion for the weak learner in L2-boosting generates
promising results and should be investigated further, including comparisons
with, e.g., the ABT-machine from [Huyghe et al., 2024].
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Figure 8: RMSE on test data (y-axis) as a function of the number of boost-
ing iterations (x-axis). The left plot corresponds to the California Housing
dataset, the right plot to the beMTPL16 dataset. The blue curve corre-
sponds to our method using δ = ∞, the orange curve δ = 0.10, the green
curve δ = 0.05, the red curve δ = 0.01 and the purple curve corresponds to
the GBM. The vertical dashed lines corresponds to where the iterations stop
and the horizontal dashed lines corresponds to the lowest RMSE achieved
for the respective methods.
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A Proofs

A.1 Proof of Proposition 1

Before starting the proof of Proposition 1 we note the following:

Remark 3. The distribution of the observed test statistic U
(n)
max does not de-

pend on σ under the alternative hypothesis. Under the alternative hypothesis,
for any r ∈ {1, . . . , n} and b ∈ {1, . . . , r} such that X

(i)
j < ξ for i ≤ b and

X
(i)
j ≥ ξ for i > b, we may write

Y (i) = Z(i) +

{
µl, i = 1, . . . , b,
µr, i = b+ 1, . . . , n.

where Z(1), . . . , Z(n) are independent and N(0, σ2) distributed. Then Y ≤r =
Z≤r + (bµl + (r − b)µr)/r and

Y (i) − Y ≤r = Z(i) − Z≤r +

{
(µl − µr)(r − b)/r, i = 1, . . . , b,
(µr − µl)b/r, i = b+ 1, . . . , r.

Hence, Y (i) − Y ≤r equals σ times a random variable whose distribution does
not depend on σ. This also holds for Y (i) − Y >r. We conclude that the
distribution of U (n)

j does not depend on σ under the alternative hypothesis.
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Remark 4. By construction

U
(n)
j

S/n

σ2
= max

1≤r≤n−1

1

σ2

(
S − S≤r − S>r

)
. (18)

Under the alternative hypothesis, by [Yao and Davis, 1986] p. 347,

max
1≤r≤n−1

1

σ2

(
S − S≤r − S>r

) d
= max

1≤nt≤n−1

(W0(t)− fn(t))
2

t(1− t)
,

where W0 is a standard Brownian bridge and

fn(t) =

{
n1/2θnt(1− [nt0]/n), if nt ≤ [nt0],
n1/2θn(1− t)[nt0]/n, if nt > [nt0].

Proof of Proposition 1. Since pn is a decreasing function we know that P (n)
max ≤

dpn(U
(n)
j ) for every j, in particular for j for which there is signal with ampli-

tude σθn according to the model A(n). Hence,

PA(n)(P (n)
max > ε) ≤ PA(n)(pn(U

(n)
j ) > ε/d)

= 1− PA(n)(U
(n)
j > p−1

n (ε/d))

Let T 2
n denote the quantity U

(n)
j (S/n)/σ2 in (18). Then

PA(n)(U
(n)
j > p−1

n (ε/d)) = PA(n)

(
T 2
n

(
c2n

p−1
n (ε/d)

σ2

S/n

)
> c2n

)
for any positive sequence (c2n). We consider the choice of sequence

c2n =

(
2−1 ln3(n)− ln(2−1π1/2 ln((1− α)−1))

(2 ln2(n))1/2
+ (2 ln2(n))

1/2

)2

(19)

in order to relate the tail probability PA(n)(U
(n)
j > p−1

n (ε/d)) to the tail
probability PA(n)(T 2

n > c2n) studied by [Yao and Davis, 1986]. By Lemma 5,

lim inf
n→∞

PA(n)(U
(n)
j > p−1

n (ε/d)) ≥ lim inf
n→∞

PA(n)(T 2
n > c2n).

For any η ∈ R, by Lemma 6,

lim inf
n→∞

PA(n)(T 2
n > c2n) ≥ α + Φ(η)(1− α).

Hence, for any η ∈ R,

lim sup
n→∞

PA(n)(P (n)
max > ε) ≤ lim sup

n→∞

(
1− PA(n)(T 2

n > c2n)
)

≤ 1− α− Φ(η)(1− α).

Since we may choose η arbitrarily large, the proof is complete.
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Lemma 5. lim infn→∞ PA(n)(U
(n)
j > p−1

n (ε/d)) ≥ lim infn→∞ PA(n)(T 2
n > c2n)

Proof. Let

Fn :=
c2n

p−1
n (ε/d)

σ2

S/n

and note that

PA(n)(U
(n)
j > p−1

n (ε/d)) = PA(n)(T 2
nFn > c2n)

≥ PA(n)(T 2
nFn > c2n | Fn < 1)PA(n)(Fn < 1)

+ PA(n)(T 2
n > c2n).

We will show that limn→∞ PA(n)(Fn < 1) = 0 from which the conclusion
follows. By Lemma 7,

lim
n→∞

p−1
n (ε/d)/c2n = 0. (20)

Under A(n) there exist independent Z(i) ∼ N(0, σ2) and r ∈ {1, . . . , n} such
that Y (i) = Z(i) for i ≤ r, and Y (i) = Z(i) + σθn for i > r. Therefore,

S =
r∑

i=1

(Y (i) − Y ≤n)
2 +

n∑
i=r+1

(Y (i) − Y ≤n)
2

=
n∑

i=1

(Z(i) − Z≤n)
2 + σ2θ2n

(
r

(
n− r

n

)2

+ (n− r)

(
r

n

)2)
+ 2

r∑
i=1

(Z(i) − Z≤n)σθn
n− r

n
+ 2

n∑
i=r+1

(Z(i) − Z≤n)σθn
r

n

Therefore, by Hölder’s inequality applied to the sum of the last two terms
above,

S

n
≤ 1

n

n∑
i=1

(Z(i) − Z≤n)
2 + σ2θ2n + 2

(
1

n

n∑
i=1

(Z(i) − Z≤n)
2

)1/2

σθn

=

((
1

n

n∑
i=1

(Z(i) − Z≤n)
2

)1/2

+ σθn

)2

.

Since the first term inside the square converges in probability to σ and since
the second term is bounded we conclude that limn→∞ PA(n)(Fn < 1) = 0.
The proof is complete.

Lemma 6. For every η ∈ R, lim infn→∞ PA(n)(T 2
n > c2n) ≥ α + Φ(η)(1− α).
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Proof. Fix η ∈ R. From the expression for the tail probability on page 350
in [Yao and Davis, 1986] we see that for each n,

PA(n)(T 2
n > c2n) ≥ P(Bn,1 ∩Bn,2 ∪ An(θn)).

The events Bn,1, Bn,2 are independent of θn and given by

Bn,1 =

{
max
t∈Dn,1

|W (t)|
t1/2

> cn

}
, Bn,2 =

{
max
t∈Dn,2

|W (t)−W (1)|
(1− t)1/2

> cn

}
,

where W is standard Brownian motion and Dn,1, Dn,2 are index sets. The
event An(θn) is increasing in θn and given by the expression on p. 350 in
[Yao and Davis, 1986] (there with θ instead of θn). Writing θn = θ(n, ηn) for
θn in (12), note that θ(n, ηn) ≥ θ(n, η) for n sufficiently large since ηn → ∞
as n → ∞. Hence, for n sufficiently large,

PA(n)(T 2
n > c2n) ≥ P(Bn,1 ∩Bn,2 ∪ An(θ(n, η)))

and the right-hand side converges to α+Φ(η)(1−α) as concluded on p. 350
in [Yao and Davis, 1986]. The proof is complete.

Lemma 7. limn→∞ p−1
n (ε/d)/c2n = 0

Proof. We have, from the definition of pn,

p−1
n (ε/d) =

(
ln3(n) + ln(2)

(2 ln2(n))1/2
+ Φ−1

(
(1− ε/d)1/(2 ln(n/2))

))2

, (21)

where the first term vanishes asymptotically and the second term tends to
∞ as n → ∞. Similarly, in (19) the first term vanishes asymptotically and
the second term tends to ∞ as n → ∞. Hence, it is sufficient to compare
the two terms that are not vanishing asymptotically and show that

lim
n→∞

Φ−1(xn)

Φ−1(yn)
= 0, xn := (1− ε/d)1/(2 ln(n/2)), yn := Φ((2 ln2(n))

1/2).

By l’Hospital’s rule, the convergence follows if we verify that

lim
n→∞

ϕ(Φ−1(yn))

ϕ(Φ−1(xn))
= 0.

Note that ϕ(Φ−1(yn)) = (
√
2π ln(n))−1 → 0 as n → ∞. The Mill’s ratio

bound (1− Φ(z))/ϕ(z) < 1/z for z > 0 yields, with z = Φ−1(xn),

ϕ(Φ−1(xn)) > Φ−1(xn)(1− xn), xn > 1/2.
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Hence,

ϕ(Φ−1(yn))

ϕ(Φ−1(xn))
≤ 1√

2π ln(n)Φ−1(xn)(1− xn)
.

We claim that ln(n)(1 − xn) converges to a positive limit as n → ∞. Since
Φ−1(xn) → ∞ as n → ∞ verifying this claim will prove the statement of the
lemma. Note that(

1− ε/d
)1/(2 ln(n/2))

= exp

(
ln
(
1− ε/d

)
2 ln(n/2)

)
and hence

1 +
ln
(
1− ε/d

)
2 ln(n/2)

<
(
1− ε/d

)1/(2 ln(n/2))

< 1 +
ln
(
1− ε/d

)
2 ln(n/2)

+
1

2

(
ln
(
1− ε/d

)
2 ln(n/2)

)2

.

Hence, with γ := − ln(1− ε/d),

γ

2

ln(n)

ln(n/2)
> ln(n)(1− xn) >

γ

2

ln(n)

ln(n/2)
− γ2

8

ln(n)

ln(n/2)2

which shows that limn→∞ ln(n)(1− xn) = γ/2. The proof is complete.

A.2 Proof of Proposition 2

Proof. Note that (14) is equivalent to uε = p−1
n (ε/d). Lemma 7 says that

limn→∞ p−1
n (ε/d)/c2n = 0. Note that c2n given by (19) takes the form

c2n = (dn + (2 ln2(n))
1/2)2,

where limn→∞ dn = 0. The inequality (a+ b)2 ≤ 2(a2 + b2) gives

c2n = (dn + (2 ln2(n))
1/2)2 ≤ 2(d2n + 2 ln2(n)).

Hence, limn→∞ uε/ ln2(n) = 0 which completes the proof.
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