

Introduction to Real Analysis

Lecture 3: Compact and Connected sets

Sofia Tirabassi tirabassi@math.su.se

Lecture Plan

- Compact spaces (Rudin 2.31-2.42)
- Connected sets (Rudin 2.45-2.47)

Section 1 Compact sets continued

Given $E \subseteq X$, an open cover of E is a collection $\{U_{\alpha}\}_{\alpha \in A}$ of open sets of X such that $E \subseteq \bigcup U_{\alpha}$

Definition: Compact set

Given $K \subseteq X$, we say that it is compact if, for every open covering $\{U_{\alpha}\}_{\alpha \in A}$ there are finitely many $\alpha_1, \ldots, \alpha_n$ such that

$$E\subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

Open covering

$$R^{n} \rightarrow Euclidean distance$$

$$d(x,y) = \sqrt{\frac{2}{2}} (x; -y;)^{2} \qquad n=1 \qquad |x-y| = d(xy)$$

Compact and closed 2

CEKEX metric apace

Theorem 😃

Let *K* be a compact set and $C \subseteq K$ a closed set (relatively to *X*). Then *C* is compact.

Corollary

If *C* is closed and *K* is compact then $C \cap K$ is compact.

Theorem I K is closed K Z KAC is closed compt theorem 2=> KAC is compat

Proof of the theorem 2

Intersection of compact

Theorem

Let $\{K_{\alpha}\}$ a collection of compact sets such as any finite intersection is non-empty. Then,

 $\int K_{\alpha} \neq \emptyset$

Corollary

If $\{K_n\}$ is a sequence of compact sets such that $K_n \supset K_{n+1}$ then we have that The intersection of finitely $\bigcap_{n} K_{n} \neq \emptyset$

many Kn is

Kongliest mor en

きひ

Limits in compact sets

Theorem

Any infinite subset of a compact set K has a limit point in K.

$$\frac{P_{roof}}{P_{roof}}; B_{y} \text{ codeadiction no point of the 1s a limit point of E
E \leq K ([E] = + \infty)
q \in K = 3 some $r_{q} \times \circ \quad \forall_{q} := N_{r_{q}}(q)$
 $(\forall_{q} \cap E) \cdot \{q\} = \phi$ (.) OPEN
Consider $\forall_{q} \cap E = -\phi$
 $\geq \{q\}$
 $K \leq \bigcup \forall_{q}$ compact $\exists q_{1} - - q_{n}$ such that
 $K \leq \bigcup \forall_{q}$ is $\forall_{q} \in \mathbb{C}$ (.) \forall_{q} is $\forall_{q} \in \mathbb{C}$
 $\forall_{q} \in \mathbb{C}$ (.) $\forall_{q} \in \mathbb{C}$ (.) $\forall_{q} \in \mathbb{C}$$$

Compact subsets of \mathbb{R}^n

Let (X, d) be \mathbb{R}^k with the Euclidean distance. We want to prove the following theorem

K-cells 1-coll Tab] 2-cell [a,b] x[c,d]

A (closed) *k*-cell *I* is a subset of \mathbb{R}^k which is a product of (closed) intervals. That is there are (a_1, \ldots, a_k) and (b_1, \ldots, b_k) , with $b_i \ge a_i$ such that

$$I = \{(x_1, \ldots, x_k) \in \mathbb{R}^k | a_i \le x_i \le b_i\}$$

If we set

length of diagona
$$\delta(I) := \left(\sum_{i=1}^k (b_i - a_i)^2\right)^{rac{1}{2}}$$

we have that

 $d(x,y) < \delta(I)$

for all x and y in I.

Two Lemmas Idea: We want to show that k-sells are compact => we show the theorem.

Lemma

The intersection of a sequence of nested interval in \mathbb{R} is not empty.

Lemma

The intersection of a sequence of nested k-cells in \mathbb{R}^k is not empty.

Lemmas => the same or show for colls

The main technical step

Theorem

Every *k*-cell is a compact subset of \mathbb{R}^k .

Skip the proof new ;

borrad C= 2

Weierstrass Theorem

Theorem

Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Section 2 Connected sets

Definiton (usual connected set)

A subset E of X is said to be connected if it cannot be written as union as a union of two disjoint, nonempty sets open with respect to the restricted metric

E = U, v U2

Definiton (usual connected set)

A subset E of X is said to be connected if it cannot be written as union as a union of two disjoint, nonempty sets open with respect to the restricted metric

In other words, if there are two open sets U_1 and U_2 in X such that

- $E \subseteq U_1 \cup U_2$
- $E \cap U_1 \cap U_2 = \emptyset$

Then $E \cap U_1 = \emptyset$ or $E \cap U_2 = \emptyset$

Connected sets - A la Rudin

Two subsets A and B of a metric space X are said to be separated if

 $\overline{A} \cap B = \emptyset$ and $\overline{B} \cap A = \emptyset$

Connected sets - A la Rudin

Two subsets A and B of a metric space X are said to be separated if

 $\overline{A} \cap B = \emptyset$ and $\overline{B} \cap A = \emptyset$

Definiton

A subset E of X is said to be connected if it cannot be written as union of two nonempty separtaed subsets.

$$\frac{1dee}{U_1 = \overline{A}} \qquad \begin{array}{c} A, B & (R^{U}DIN) \\ U_2 = \overline{A} & U_2 = \overline{B} \end{array}$$

Connected sets - A la Rudin

Two subsets A and B of a metric space X are said to be separated if

 $\overline{A} \cap B = \emptyset$ and $\overline{B} \cap A = \emptyset$

Definiton

A subset E of X is said to be connected if it cannot be written as union of two nonempty separtaed subsets.

The two definitions are equivalent. This is a nice exercise to do :).

Connected subset of the real line Stockholm lei-i e- fxz couned University E 2 A subset $E \subseteq \mathbb{R}$ is connected if, and only if, for all x < y in E we have that $[x, y] \subseteq E$ $\in \mathbb{Z}$ (Infections) え=(し E = { lufe, supes E connocted ESR Proof x, y, e E x < y 2 e (x, y) Suppose that 2 d E y minune of two of the F-1(-00 2) NE) ulter +0) NE) apoundisjoint =) MO E=((-\$\$) NE) U((\$,+\$) NE) 1=(-@2) B = (3, +00) separated non empty + separated E not connected E. ANB up to swap them can assume x cy Aex ANTX, y) bounded above (by y) UB B

. 344.

Thank you for your attention!

